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Preliminaries
See the document“Basic Ideas and Tools for Data Miners”. Points made in that document
can be summarized under the headings below.

Software Issues: R versus Matlab: I am not in a position to supply Matlab code.
Those who are thoroughly familiar with Matlab may be able to do equivalent compu-
tations using Matlab. Otherwise the choice is either to work through the computations
using the R system (instructions are relatively detailed, or to be content with studying
the computer output and associated commentary.

Issues of Purpose, Interpretation of Parameters, and Generaliza-
tion

Key points from the document “Basic Ideas and Tools for Data Miners” are:

• Note the importance of settling on a clear purpose.

• There is a broad distinction between projects where it is predictive accuracy that
matters, and projects where the aim is scientific or other insight. The aim of
scientifc insight, commonly based on parameter estimates, offers a potential for
misinterpretation that is largely absent when the aim is prediction.

• Key issues for any use of the data are:

– How widely do results apply?

– How widely applicable is whatever can be learned from the data? (Will it
apply to a city that is different from those that generated the sample data?
Will it apply to a different time – next year, or two years’ time?)

• The source/target is important for assessing how widely results apply. When data
are observational (rather than experimental), the target population to which it is
hoped to apply results is typically distinct, usually in time and perhaps also in
space or some other manner, from the source population from which the data were
obtained.

Analysis Types and Tools

Points made under this heading are:

• The data mining literature has been distinguished by a preference for specific “data
mining” methodologies.

• Model and variable selection can be huge issues, with wide scope for over-optimistic
assessments.

• The common tools for assessing predictive accuracy have been empirical – train-
ing/test methodology, cross-validation, and bootstrap sampling.

The Laboratory Exercises

There will not be time to work through all these exercises. If the discussion in Laboratory
Notes I makes sense without working through the calculations, and if practice with R is
not an issue, move on immediately to laboratory exercises II.

The laboratory notes divide up thus:
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Laboratory Exercises I may serve the purposes:

• For those who want to experiment with the use of R, they give an introduction to
graphics and model fitting.

• They are designed to assist understandings or interpretations that may be available
when transformation to a logarithmic scale leads to a relatively simple form of
relationship, here a line.

Laboratory Exercises II: Traps for the interpretation of model parameters are an
issue both for regression models with a continuous outcome and for classification models.
Two data sets are used, one small dataset where the outcome is a continuous variable,
and other largish ('26,000 rows) data set with a binary (0/1) outcome.

Laboratory Exercises III: These give practice in using linear discriminant analysis
and random forests, with the diabetes and forensic glass datasets.

Laboratory exercises IV: Here the focus is on the source/target distinction. What
clues can be extracted from data (the “source”), believed to be relevant to one or other
target population, that may help in assessing whether the belief is justified?

Laboratory exercises V: Where there is extensive variable selection, there is huge
potential for finding spurious relationships. This is true both for data with a continuous
outcome, and for data where the outcome is categorical. The cross-validation method-
ology is introduced as a way to get a measure of predictive accuracy that is not biased
from the effects of model and/or variable selection.

Further exercises: A further exercise may be provided that gives practice with the
use of the random forest methodology. This methodology is strongly in the style that is
popular in the data mining literature. It can also be remarkably effective.
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Part I

Time Versus Distance for Road and
Track Data
Motivations: There are (at least) two possible motivations:

• Those who want to experiment with the use of the R system should find these
exercises useful as an introduction to graphics and model fitting.

• These exercises, and the accompanying discussion, are desgned to assist understand-
ing or interpretations that may be available when transformation to a logarithmic
scale leads to a relatively simple form of relationship (here a line).

Use of R packages For plotting graphs, there is extensive use of the function xy-
plot(), from R’s lattice package. The primary function for fitting linear models is lm(),
where the lm stands for linear model. Here it will be used for a very simple form of model
– the straight line model.

1 Time versus Distance – A Graph
The data that are used here are world track and road record times, as at 9th August
2006. Data are from the web page http://www.gbrathletics.com/wrec.htm. Data are
in the dataset worldRecords in the DAAG package. To make the data available to your R
session, type:

> library(lattice)

> library(DAAG) # The worldRecords data are included with the DAAG package

> ## Now check what columns are included

> str(worldRecords)

'data.frame': 40 obs. of 5 variables:
$ Distance : num 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 ...
$ roadORtrack: Factor w/ 2 levels "road","track": 2 2 2 2 2 2 2 2 2 2 ...
$ Place : chr "Athens" "Cassino" "Atlanta" "Pretoria" ...
$ Time : num 0.163 0.247 0.322 0.514 0.72 ...
$ Date :Class 'Date' num [1:40] 12948 4889 9709 11040 10829 ...

The following gives a plot of Time against Distance, using the data set worldRecords,
as in Figure 1:

> pltA <- xyplot(Time ~ Distance,

+ groups=roadORtrack,

+ data=worldRecords,

+ auto.key=list(columns=2))

Actually, one does not yet have the plot. For that, type:

> print(pltA)

Or, if you are working from the command line, it is enough to do:

> xyplot(Time ~ Distance,

+ groups=roadORtrack,

+ data=worldRecords,
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+ xlab="Distance (km)",

+ ylab="Time (min)",

+ auto.key=list(columns=2))

The output from xyplot() goes to the command line, which causes the object to be
plotted.
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Figure 1: World record times
versus distance, for field and
road events. The left panel
is for the raw data, while the
right panel plots log(Time)
against log(Distance).

Here again is the code:

> xyplot(Time ~ Distance,

+ groups=roadORtrack,

+ data=worldRecords,

+ xlab="Distance (km)",

+ ylab="Time (min)",

+ auto.key=list(columns=2))

Note: In printing the graph for inclusion in this document, there has been a further
refinement, so that the text and tick marks are scaled down to a suitable size for the size
of the graph on the printed page:

> ## Reduce text and point size by a factor of 0.8

> print(update(pltA, cex=0.8, scales=list(tck=0.8)))

Clearly, time is not proportional to distance.
Figure 2 examines the use of a power law relationship, albeit where the curvature is

much stronger than in Figure 1. It is, actually equivalent to straight-line plot in which
both scales are logarithmic.

The equation t = Asb implies that

log(t) = log(A) + b log(s) = a + b log(s), wherea = log(a).

and hence that
dt

t
=

ds

s
.

Figure 2 grossly exaggerates (b = 2.25 in place of b = 1.125), for purposes of demonstra-
tion, the effect of increasing relative distance.

2 A Plot, and Fitted Line, with Logarithmic Scales
The relationship between Time and Distance is best teased out, for the worldRecords
data, by fitting a line to a plot in which both scales are logarithmic (natural logarithms).
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Figure 2: Plot of Time
against Distance, under a
scenario where Time is pro-
portional to Distance2.25.
An exponent of 2.25 has
been used in order to exag-
gerate the effect of increas-
ing relative distance. The
slope of the tangent line in-
creases with s (Distance).
For the scenario shown in
the graph, dt

t = 2.25 ds
s .

For the worldRecords data,
a model that has an expo-
nent of 1.125 closely approx-
imates the data.

For now, any difference between road and track will be ignored. Actually, it will turn
out that there is no detectable difference.

> logplt <- xyplot(Time ~ Distance,

+ type=c("p","r"),

+ scales=list(log="e"),

+ data=worldRecords)

Again note that, on the command line, it will be enough to type:

> xyplot(Time ~ Distance,

+ type=c("p","r"),

+ scales=list(log="e"),

+ data=worldRecords)

Now examine the line:

> worldRecs.lm <- lm(log(Time) ~ log(Distance), data=worldRecords)

> print(worldRecs.lm)

Call:
lm(formula = log(Time) ~ log(Distance), data = worldRecords)

Coefficients:
(Intercept) log(Distance)

0.7316 1.1248

Check that the coefficient of log(Distance) is 1.125.

Checking Out the Line

The line is a very good fit. There are however small systematic departures from a line.
The best way to see the pattern in these departures is to plot the residuals (really, the
departures from a line) against either the distances or the fitted values, as in Figure 4.
For this, it is highly desirable to distinguish between road and track:
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Figure 3: Regression
line, fitted to the plot
of log(Time) against
log(Distance).

> xyplot(Time ~ Distance,

+ type=c("p","r"),

+ scales=list(log="e"),

+ data=worldRecords)

> yexpr <- expression("Residuals (log"[e]*"scale)")

> resplot <- xyplot(resid(worldRecs.lm) ~ log(Distance),

+ groups=roadORtrack,

+ ylab=yexpr,

+ data=worldRecords)

log(Distance)

R
es

id
ua

ls
 (

lo
g e

sc
al

e)

−0.05

0.00

0.05

0.10

0.15

−2 0 2 4 6

● ●●●

●
●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●
● ●

●
●●●

●●

●

●

●

●
●

●

●

●
●

●

Figure 4: Residuals from
regression line of log(time)
against log(distance).

Some of the residuals are actually quite large. For small x,

log(1 + x) ' x.

(The error is, for x << 1, approximately 1
2 x2. Thus, for x = 0.14, the error is close to

0.01, which for present purposes is of no consequence).
The largest of the residuals are thus rather more than 15%. Why did the residuals appear
small in Figure 3? They are small relative to the range in the y-direction, where the range
is from a time of 0.16 min to 1440 min (= 24h), i.e., variation by a factor of close to 9000.
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Part II

Time vs Distance & Climb for Hill
Race Data
Motivation: The analyses that will be described here demonstrate the careful thought
that may be necessary, in order to arrive at meaningful interpretations of model parame-
ters. Where scientific understanding is weak, definitive interpretation may be hazardous
or impossible.

Problems of interpretation of model parameters become much more severe when there
are many parameters. Analyses where there is extensive variable selection are particularly
difficult, though not necessarily impossible. For example, one variable may have an effect
that strongly dominates, irrespective of what over variables may be included in the model.

Two examples will be given, one where the outcome is a continuous variable, and one
where it is categorical, though with just two categories.

Data: Both datasets are in the DAAG package.
The dataset nihills has record times for Northern Ireland mountain races. Data

were taken from the web site http://www.nimra.org.uk/calendar.asp.
The dataset nassCDS is intended to be a random sample from all police-reported

crashes in the USA, over 1997 – 2002, that met the inclusion criteria. They were accidents
in which there was a harmful event (to people or property), and from which at least one
vehicle is towed.

1 Data Exploration
First, get a few details of the data:

> str(nihills)

'data.frame': 23 obs. of 5 variables:
$ dist : num 7.5 4.2 5.9 6.8 5 4.8 4.3 3 2.5 12 ...
$ climb : int 1740 1110 1210 3300 1200 950 1600 1500 1500 5080 ...
$ time : num 0.858 0.467 0.703 1.039 0.541 ...
$ timef : num 1.064 0.623 0.887 1.214 0.637 ...
$ gradient: num 232 264 205 485 240 ...

A scatterplot matrix, which plots every column against every other column and shows
the result in the layout used for correlation matrices, is useful for an initial look at the
data. The scatterplot matrix is a graphical counterpart of the correlation matrix.

For identifying the axes for each panel

• look along the row to the diagonal to identify the variable on the vertical axis.

• look up or down the column to the diagonal to identify the variable on the horizontal
axis.

Note that the data are positively skewed, i.e., there is a long tail to the right, for all
variables. For such data, a logarithmic transformation often gives more nearly linear
relationships.

> ## Create a data frame that holds the logged data

> lognihills <- log(nihills)

> names(lognihills) <- c("ldist", "lclimb", "ltime", "ltimef")
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> ## Create scatterplot matrix

> library(lattice)

> print(splom(nihills, par.settings=size10))

Scatter Plot Matrix
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Figure 5: Scatterplot matrix for
the Northern Ireland mountain
racing data, with the correlation
matrix given alongside. The
function cor() takes a matrix or
data frame as argument, by de-
fault giving the Pearson linear
correlation.
The correlation matrix is:
> ## Correlation matrix

> round(cor(nihills), 2)

dist climb time timef gradient

dist 1.00 0.91 0.97 0.95 0.03

climb 0.91 1.00 0.97 0.96 0.40

time 0.97 0.97 1.00 1.00 0.20

timef 0.95 0.96 1.00 1.00 0.19

gradient 0.03 0.40 0.20 0.19 1.00

Scatter Plot Matrix
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5.45.65.8 Figure 6: Scatterplot matrix for
the Northern Ireland mountain
racing data, with logarithmic
scales.

> print(splom(lognihills,

+ varnames=c("log(dist)", "log(climb)",

+ "log(time)", "log(timef)"),

+ par.settings=size10))

> round(cor(lognihills), 2)

ldist lclimb ltime ltimef <NA>

ldist 1.00 0.78 0.95 0.93 -0.07

lclimb 0.78 1.00 0.92 0.92 0.57

ltime 0.95 0.92 1.00 0.99 0.24

ltimef 0.93 0.92 0.99 1.00 0.25

<NA> -0.07 0.57 0.24 0.25 1.00

The relationships between explanatory variables, and between the dependent variable
and explanatory variables, are closer to linear when logarithmic scales are used. The log
transformed data are consistent with a form of parsimony that is advantageous if we hope
to find a relatively simple form of model. We will see that this also leads to more readily
interpretable results. Also the distributions for individual variables are more symmetric.
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1.1 The regression fit

The following fits a regression plane, with logarithmic scales for all variables:

> lognihills <- log(nihills)

> names(lognihills) <- paste("l", names(nihills), sep="")

> lognihills.lm <- lm(ltime ~ ldist + lclimb, data=lognihills)

> round(coef(lognihills.lm),3)

(Intercept) ldist lclimb
-4.961 0.681 0.466

This translates to:

t̂ime = e3.205 × dist0.686 × climb0.502

= 24.7e3.205 × dist0.686 × climb0.502

Thus for constant climb, the prediction is that time per mile will decrease with increasing
distance. Shorter races with the same climb will involve steeper ascents and descents;
thus this seems reasonable.

A result that is easier to interpret can be obtained by regressing log(time) on
log(dist) and log(gradient), where gradient is dist/climb.

> nihills$gradient <- with(nihills, climb/dist)

> lognihills <- log(nihills)

> names(lognihills) <- paste("l", names(nihills), sep="")

> lognigrad.lm <- lm(ltime ~ ldist + lgradient, data=lognihills)

> round(coef(lognigrad.lm),3)

(Intercept) ldist lgradient
-4.961 1.147 0.466

Thus, with gradient held constant, the prediction is that time will increase at the rate
of dist1.147. This makes good intuitive sense.

We pause to look more closely at the model that has been fitted. Does log(time)
really depend linearly on the terms ldist and log(lclimb)? The function termplot()
gives a good graphical indication (Figure 7).

The vertical scales show changes in ltime, about the mean of ltime. The lines
show the effect of each explanatory variable when the other variable is held at its mean
value. The lines, which are the contributions of the individual linear terms (“effects”) in
this model, are shown in gray so that they do not obtrude unduly. The dashed curves,
which are smooth curves that are passed through the residuals, are the primary feature
of interest in these plots. Notice that, in the plot for ldist, the smooth dashed line does
not quite track the fitted line; there is a small but noticeable indication of curvature.
Note also that until we have modeled effectively the clear trend that seems evident in
this plot, there is not too much point in worrying about possible outliers. The trend can
be very adequately modeled with a quadratic curve.

Now try the exercise that follows.
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Figure 7: In these “term plots” the vertical scales in both panels show log(time), but
centered to a mean of zero. The left panel shows partial residuals for ldist, while the
right panel shows partial residuals for lgradient, i.e., log(climb/dist). Smooth curves
(dashes) have been passed through the points.

> par(mfrow=c(1,2)) # Ask for a 2 by 1 layout

> ## Plot the terms in the model

> termplot(lognigrad.lm, col.term="gray",

+ partial=TRUE, col.res="black",

+ smooth=panel.smooth)

Exercise 1
For the data frame oddbooks (DAAG),

(a) Add a further column that gives the density.

(b) Use the function pairs(), or the lattice function splom(), to display the scatterplot matrix.
Which pairs of variables show evidence of a strong relationship?

(c) In each panel of the scatterplot matrix, record the correlation for that panel. (Use cor()) to
calculate correlations).

(d) Fit the following regression relationships:

(i) log(weight) on log(thick), log(height) and log(breadth).

(ii) log(weight) on log(thick) and 0.5*(log(height) + log(breadth)). What feature
of the scatterplot matrix suggests that this might make sense to use this form of equation?

(e) Take whichever of the two forms of equation seems preferable and rewrite it in a form that as
far as possible separates effects that arise from changes in the linear dimensions from effects
that arise from changes in page density.

[NB: To regress log(weight) on log(thick) and 0.5*(log(height)+log(breadth)),
the model formula needed is log(weight) ~ log(thick) + I(0.5*(log(height)+log(breadth)))
The reason for the use of the wrapper function I() is to prevent the parser from giving
* the special meaning that it would otherwise have in a model formula.]
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2 Which multi-way table? It can be important!
Each year the National Highway Traffic Safety Administration (NHTSA) in the USA
collects, using a random sampling method, data from all police-reported crashes in which
there is a harmful event (people or property), and from which at least one vehicle is
towed. The data frame nassCDS (DAAGxtras) is derived from NHTSA data.1

The data are a sample, for the years 19997 – 2002. The use of a complex sampling
scheme has the consequence that the sampling fraction differs between observations. Each
point has to be multiplied by the relevant sampling fraction, in order to get a proper esti-
mate of its contribution to the total number of accidents. The column weight (national
= national inflation factor in the SAS dataset) gives the relevant multiplier.

Other variables than those included in nassCDS might be investigated – those ex-
tracted into nassCDS are enough for present purposes.

The following uses xtabs() to estimate numbers of front seat passengers alive and
dead, classified by airbag use:

library(DAAGxtras)
> abtab <- xtabs(weight ~ dead + airbag, data=nassCDS)
> abtab

airbag
dead none airbag
alive 5445245.90 6622690.98
dead 39676.02 25919.11

The function prop.table() can then be used to obtain the proportions in margin 1, i.e.,
the proportions dead, according to airbag use:

> round(prop.table(abtab, margin=2)["dead", ], 4)
none airbag

0.0072 0.0039
## Alternatively, the following gives proportions alive & dead
## round(prop.table(abtab, margin=2), 4)

The above might suggest that the deployment of an airbag substantially reduces the
risk of mortality. Consider however:

> abSBtab <- xtabs(weight ~ dead + seatbelt + airbag, data=nassCDS)
> ## Take proportions, retain margins 2 & 3, i.e. airbag & seatbelt
> round(prop.table(abSBtab, margin=2:3)["dead", , ], 4)

seatbelt
airbag none belted
none 0.0176 0.0038
airbag 0.0155 0.0021

The results are now much less favorable to airbags. The clue comes from examination of:

> margin.table(AStab, margin=2:3) # Add over margin 1
airbag

seatbelt none airbag
none 1366088.6 885635.3
belted 4118833.4 5762974.8

1They hold a subset of the columns from a corrected version of the data analyzed in the Meyer (2005)
paper that is referenced on the help page for nassCDS. More complete data are available from one of the
web pages
http://www.stat.uga.edu/~mmeyer/airbags.htm (SAS transport file)
or http://www.maths.anu.edu.au/~johnm/datasets/airbags/ (R image file).
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In the overall table, the results without airbags are mildly skewed ( 4.12:1.37) to the
results for belted, while with airbags they are highly skewed ( 57.6:8.86) to the results
for belted.

Exercise 2
Do an analysis that accounts, additionally, for estimated force of impact (dvcat):

ASdvtab <- xtabs(weight ~ dead + seatbelt + airbag + dvcat,
data=nassCDS)

round(prop.table(ASdvtab, margin=2:4)["dead", , , ], 6)
## Alternative: compact, flattened version of the table
round(ftable(prop.table(ASdvtab, margin=2:4)["dead", , , ]), 6)

It will be apparent that differences between none and airbag are now below any reasonable threshold
of statistical detectability.

Exercise 3
The package DAAGxtras includes the function excessRisk(). Run it with the default arguments,
i.e. type

> excessRisk()

Compare the output with that obtained in Exercise 2 when the classification was a/c seatbelt (and
airbag), and check that the output agrees.
Now do the following calculations, in turn:

(a) Classify according to dvcat as well as seatbelt. All you need do is add dvcat to the first
argument to excessRisk(). What is now the total number of excess deaths?
[The categories are 0-9 kph, 10-24 kph, 25-39 kph, 40-54 kph, and 55+ kph]

(b) Classify according to dvcat, seatbelt and frontal, and repeat the calculations. What is
now the total number of excess deaths?

Explain the dependence of the estimates of numbers of excess deaths on the choice of factors for the
classification.

Note: Farmer (2006) argues that these data, tabulated as above, have too many un-
certainties and potential sources of bias to give reliable results. He presents a different
analysis, based on the use of front seat passenger mortality as a standard against which to
compare driver mortality, and limited to cars without passenger airbags. In the absence
of any effect from airbags, the ratio of driver mortality to passenger mortality should be
the same, irrespective of whether or not there was a driver airbag. In fact the ratio of
driver fatalities to passenger fatalities was 11% lower in the cars with driver airbags.
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Part III

Discriminant Methods & Associated
Ordinations
Packages:DAAGxtras, randomForest

These exercises will introduce classification into three or more groups. They examine
and compare two methods – linear discriminant analysis and random forests.

Linear discriminant analysis generates scores that can be plotted directly. For random
forests the pairwise proximity of points, calculated as the proportion of trees for whiah the
two observations end up in the same terminal node, is a natural measure of the relative
nearness. These can be subtracted from 1.0 to yield relative distances, with non-metric
scaling then be used to obtain a representation in a low-dimensional space. In favorable
cases, metric scaling may yield a workable represention, without going the further step
to non-metric scaling.

Again, it will be handy to have the function confusion() available.

> confusion <- function(actual, predicted, names=NULL,

+ printit=TRUE, prior=NULL){

+ if(is.null(names))names <- levels(actual)

+ tab <- table(actual, predicted)

+ acctab <- t(apply(tab, 1, function(x)x/sum(x)))

+ dimnames(acctab) <- list(Actual=names,

+ "Predicted (cv)"=names)

+ if(is.null(prior)){

+ relnum <- table(actual)

+ prior <- relnum/sum(relnum)

+ acc <- sum(tab[row(tab)==col(tab)])/sum(tab)

+ } else

+ {

+ acc <- sum(prior*diag(acctab))

+ names(prior) <- names

+ }

+ if(printit)print(round(c("Overall accuracy"=acc,

+ "Prior frequency"=prior),4))

+ if(printit){

+ cat("\nConfusion matrix", "\n")

+ print(round(acctab,4))

+ }

+ invisible(acctab)

+ }

1 Discrimination with Multiple Groups
With three groups, there are three group centroids. These centroids determine a plane,
onto which data points can be projected. Linear discrinimant analysis assumes, effec-
tively, that discriminants can be represented without loss of information in this plane.
It yields two sets of linear discriminant scores that can be plotted, giving an accurate
graphical summary of the analysis.

More generally, with g ≥ 4 groups, there are max(g − 1, p) dimensions, and max(g −
1, p) sets of linear discriminant scores. With three (or more) sets of scores, the function
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plot3d() in the rgl package can be used to give a 3D scatterplot that rotates dynamically
under user control.

The output from printing an lda object that is called with CV=FALSE (the default)
includes “proportion of trace” information. The successive linear discriminants explain
successively smaller proportions of the trace, i.e., of the ratio of the between to within
group variance. It may turn out that the final discriminant or the final few discriminants
explain a very small proportion of the trace, so that they can be dropped.

With methods other than lda(), representation in a low-dimensional space is still in
principle possible. However any such representation arises less directly from the analysis,
and there is nothing directly comparable to the “proportion of trace” information.

2 The diabetes dataset
The package DAAGxtras has the data set diabetes.

2.1 Linear discriminant analysis

First try linear discriminant analysis. We specify CV=TRUE, in order to obtain predictions
of class membership that are derived from leave-one-out cross-validation. We then run
the calculations a second time, now with CV=FALSE, in order to obtain an object from
which we can obtain the discriminant scores

> library(MASS)

> library(lattice)

> diabetesCV.lda <- lda(clinclass ~ ., data=diabetes, CV=TRUE)

> confusion(diabetes$clinclass, diabetesCV.lda$class)

> diabetes.lda <- lda(clinclass ~ ., data=diabetes)

> diabetes.lda # Linear discriminant 1 explains most of the variance

> hat.lda <- predict(diabetes.lda)$x

> xyplot(hat.lda[,2] ~ hat.lda[,1], groups=diabetes$clinclass,

+ auto.key=list(columns=3), par.settings=simpleTheme(pch=16))

2.2 Quadratic discriminant analysis

The plot of linear discriminant scores makes it clear that the variance-covariance structure
is very different between the three classes. It is therefore worthwhile to try qda().

> diabetes.qda <- qda(clinclass ~ ., data=diabetes, CV=TRUE)

> confusion(diabetes$clinclass, diabetes.qda$class)

2.3 Use of randomForest()

First, fit a randomForest discriminant model, calculating at the same time the proximities.
The proximity of any pair of points is the proportion of trees in which the two points
appear in the same terminal node:

> ## Use randomForest(), obtain proximities

> library(randomForest)

> diabetes.rf <- randomForest(clinclass~., data=diabetes, proximity=TRUE)

> print(diabetes.rf)

Note the overall error rate.
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2.4 Plot derived using cmdscale()

> distmat <- 1-diabetes.rf$proximity

> diabetes.cmd <- cmdscale(distmat)

> xyplot(diabetes.cmd[,2] ~ diabetes.cmd[,1],

+ groups=diabetes$clinclass, auto.key=list(columns=3))

Such plots are likely to exaggerate the separation between the groups. They represent
visually the effectiveness of the algorithm in classifying the training data. To get a fair
assessment, the plot should show points for a separate set of test data.

It would be more reasonable to regard the proximities as relative distances. It is easy
enough to get such a plot. The above plot is adequate for present purposes.

3 The forensic glass dataset
The ’fgl’ data frame, dating from 1987, was collected by B. German on fragments of glass
encountered in forensic work. The variables are percentages of various elements in the
glass (Na, Mg, . . . ), plus refractive index.

The data consist of 214 rows × 10 columns.
WinF = Window float WinNF = Window non-float
Veh = Vehicle window Con = Containers
Tabl = Tableware Head = Headlamps

3.1 Linear Discriminant Analysis

The following code repeats the calculations for the diabetes dataset, now with the
forensic glass data.

> library(MASS)

> library(lattice)

> fglCV.lda <- lda(type ~ ., data=fgl, CV=TRUE)

> confusion(fgl$type, fglCV.lda$class)

> fgl.lda <- lda(type ~ ., data=fgl)

> fgl.lda # Linear discriminant 1 explains most of the variance

> hat.lda <- predict(fgl.lda)$x

> xyplot(hat.lda[,2] ~ hat.lda[,1], groups=fgl$type,

+ auto.key=list(columns=3), par.settings=simpleTheme(pch=16))

3.2 Random Forest Analysis

The following code repeats the calculations for the diabetes dataset, now with the
forensic glass data.

> ## Use randomForest(), obtain proximities

> library(randomForest)

> fgl.rf <- randomForest(type~., data=fgl, proximity=TRUE)

> print(fgl.rf)

Note the overall error rate.
Now obtain a plot that is nased on the proximities:

> distmat <- 1-fgl.rf$proximity

> fgl.cmd <- cmdscale(distmat)

> xyplot(fgl.cmd[,2] ~ fgl.cmd[,1],

+ groups=fgl$type, auto.key=list(columns=3))



3 THE FORENSIC GLASS DATASET 18



19

Part IV

Is the Match Between Source and
Target Close Enough to be Useful?
Motivations: Where data are observational, there is rarely a really good match be-
tween source and target.

Data: Data are two sources:

• The main data are from an experimental study,conducted under the aegis of the
the US National Supported Work (NSW) Demonstration program, of individuals
who had a history of employment and related difficulties. Over 1975–1977, an
experiment randomly assigned individuals who met the eligibility criteria either
to a treatment group that participated in 6–18 months training program, or to a
control group that did not participate.

• Also available are control (untreated) observations from a two control groups, from
neighbouring regions that were though to be closely similar. The studies have the
mnemonics CPS and PSID.

There has been an ongoing debate in the economometric literature, arguing whether
the CPS and PSID studies provide data that might resonably be used to replace the
experimental control data. Accepting that the answer is that the non-experimental data
cannot be slotted in as a straight substitute, is it possible to adjust for the differences,
and to use as a control one that adjustment has been made. I am convinced that the
answer is, again, “No”.

Methodology: Detailed comparisons will be made between the experimental control
data, and the two non-experimental “controls”.

1 The Labor Training Data
Data are from an experimental study,conducted under the aegis of the the US National
Supported Work (NSW) Demonstration program, of individuals who had a history of
employment and related difficulties. Over 1975–1977, an experiment randomly assigned
individuals who met the eligibility criteria either to a treatment group that participated
in 6–18 months training program, or to a control group that did not participate.

The results for males, because they highlight methodological problems more sharply,
have been studied more extensively than the corresponding results for females. Partic-
ipation in the training gave an increase in male 1978 earnings, relative to those in the
control group, by an average of $886 [SE $472].

Can the same results be obtained by from data that matches the NSW training group
with a non-experimental control group that received no such training? Lalonde (1986)
and Dehejia and Wahba (1999) (see help(nswdemo) for the references) both investigated
this question, using two different non-experimental control groups. These were

(a) The Panel Study of Income Dynamics study (PSID: 2490 males, data in psid1,
filtered data in psid2 and psid3),

(b) Westat’s Matched Current Population Survey – Social Security Administration file
(CPS: 16 289 males, data in cps1, filtered data in cps2 and cps3).
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Variables are

trt (0 = control 1=treatment)
age (years)
educ (years of education)
black (0=white 1=black)
hisp (0=non-hispanic 1=hispanic)
marr (0 = not married 2=married)
nodeg (0=completed high-school 1=dropout); i.e. educ <= 11
re74 (real earnings in 1974; available for a subset of the

experimental data only)
re75 (real earnings in 1975)
re78 (real earnings in 1978)

Observe that trt, black, hisp, marr and nodeg are all binary variables. Here, they will
be treated as dummy variables. Observations that have the value zero are the baseline,
while the coefficient for observations that have the value 1 will give differences from this
baseline. (For marr, where values are 0 or 2, the coefficient for observations that have
the value 2 will be half the difference from the baseline.)

Note that nodeg is a categorical summary of the data in educ. It will not be used,
additionally to educ, as an explanatory variable in the various analyses.

Summary information on the data

Table ?? has summary information on proportions on discrete categories that are of
interest.

> showprop <-

+ function(dframe=psid1, facCols=4:7, zeroCols=9:10){

+ info <- numeric(length(facCols)+length(zeroCols))

+ info[1:length(facCols)] <- sapply(dframe[,facCols], function(x){

+ z <- table(x); z[2]/sum(z)})

+ info[-(1:length(facCols))] <- sapply(dframe[,zeroCols], function(x)

+ sum(x>0)/sum(!is.na(x)))

+ info

+ }

> ## Create matrix to hold resuilt

> propmat <- matrix(0, ncol=6, nrow=8)

> dimnames(propmat) <-

+ list(c("psid1", "psid2", "psid3", "cps1", "cps2", "cps3",

+ "nsw-ctl", "nsw-trt"), names(nswdemo)[c(4:7, 9:10)])

> ## Run function

> for(k in 1:8){

+ dframe <- switch(k, psid1, psid2, psid3, cps1, cps2, cps3,

+ subset(nswdemo, trt==0), subset(nswdemo, trt==1))

+ propmat[k,] <- showprop(dframe)

+ }

Information on re74 is complete for the non-experimental sets of control data, but in-
complete for the experimental data. We will take us the issue of how to handle re74
below.

Notice the big differences, for black, marr and nodeg (dropout), between the non-
experimental controls (first six lines) and both sets of experimental data (final two lines).
Even in the filtered data sets (psid2, psid3, cps2 and cps3), the differences are sub-
stantial. The big changes that the filtering has made to the proportion with non-zero
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Proportion
Black Hispanic Married Dropout re75> 0 re78> 0

psid1 0.25 0.03 0.87 0.31 0.90 0.89
psid2 0.39 0.07 0.74 0.49 0.66 0.66
psid3 0.45 0.12 0.70 0.51 0.39 0.49
cps1 0.07 0.07 0.71 0.30 0.89 0.86
cps2 0.11 0.08 0.46 0.45 0.82 0.83
cps3 0.20 0.14 0.51 0.60 0.69 0.77

nsw-ctl 0.80 0.11 0.16 0.81 0.58 0.70
nsw-trt 0.80 0.09 0.17 0.73 0.63 0.77

Table 1: Proportion in the stated category, for each of the data sets indicated. Proportions
for the experimental data are in the final two lines of the table.
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Figure 8: Overlaid density plots, comparing treatment groups with the experimental
control data in nswdemo and with the non-experimental control data in psid3, for the
variables age educ,log(re75+30), and log(re78+30).

earnings is worrying. Notice particularly the huge differences between psid3 and psid1,
both for re75 and re78.

For those who did earn an income, how do the distributions compare? The very heavy
tails in the distributions of re75 and re78 make use of a logarithmic transformation
desirable. Figure ?? compares the distributions of values, in the control and treatment
groups, for the explanatory variables age, educ, log(re75+30), and log(re78+30). The
offset of 30 is around half the minimum non-zero value for each of these variables, in the
combined data.

Examination of Figure ?? makes it clear that there are large differences between
treatment and controls, whichever set of non-experimental controls is chosen.

The distributions of non-zero values of log(re78 + 30) are almost identical between
experimental treated and control observations, just as similar as for log(re75 + 30). A
more careful comparison will use qq-plots. The comparison can be repeated with sev-
eral bootstrap samples, as a check that such small differences as are apparent are not
maintained under bootstrap sampling. This is pursued in the exercises at the end of the
chapter.

Follow-up on the comparison

A document has been posted on the web site, essentially Section 13.2 from the upcoming
third edition of “Data Analysis and Grophics Using R” (Maindonald and Braun, Cam-
bridge University Press), that examines whether a “propensity score” methodology that
adjusts for differences between the experimental treatment and non-experimental controls
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can be effective.
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Part V

Variable Selection in Regression and
Classification
Motivations: Where there is extensive variable selection, there is huge scope for getting
spurious results.

Data: Data will be simulated that is pure noise, and the attempt made to extract a
signal.

Methodology: The DAAG package has a function bestsetNoise() that will be used
for the calculations.

1 Simulation – Regression with a Continuous Out-
come

In the following, 100 sets of observations, on each of 10 variables, are generated. A further
set of 100 values, again noise, are generated for an outcome variable. A search is then
made for the one variable that best “explains” the values of the outcome variable. Here
is an example:

> bestsetNoise(m=100, n=20, nvmax=1)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-2.45400 -0.59669 0.00369 0.57482 1.83155

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0320 0.0893 -0.36 0.721
x -0.2306 0.0946 -2.44 0.017

Residual standard error: 0.892 on 98 degrees of freedom
Multiple R-squared: 0.0572,Adjusted R-squared: 0.0476
F-statistic: 5.95 on 1 and 98 DF, p-value: 0.0165

Broadly, |t| > 2 may, if there has been no variable selection, be taken to indicate that
there is an effect that stands out above statistical noise.
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Exercise 1
Repeat the above exercise a number of times, and check the frequency with which the |t| >= 2. You
can do it thus:

> library(DAAG)

> tstat <- numeric(200)

> for (i in 1:200){

+ obj <- bestsetNoise(m=100, n=20, nvmax=1)

+ tstat[i] <- coef(summary(obj))["x", "t value"] # get the t statistic

+ }

> sum(abs(tstat) > 2)/200

Run this calculation several times.

Exercise 2
The simulations generate random normal data, independent between variables as well as between
observations. The probability that each of the 20 coefficients will have an absolute value of more
than 2 is slightly less than 0.05, independently between coefficients. In repeated simulations, how
frequently can it be expected that at least one of the 20 coefficients will have an absolute value of
2 or more?
[Hint: Calculate the probability that none of the coefficients will have an absolute value of 2 or
more?]

Exercise 3
Repeat the above exercise a number of times, and check the frequency with which the |t| >= 2.3.
(Use 2.3 rather than 2 as the cutoff, because we will select the best of the two coefficients that might
meet the statistical detectability criterion.) You can do it thus:

> b <- numeric(200)

> for (i in 1:200){

+ obj <- bestsetNoise(m=100, n=20, nvmax=2, print.summary=FALSE)

+ b[i] <- max(abs(coef(summary(obj))[2:3, "t value"]))

+ }

> sum(abs(b) > 2.3)/200

Run this calculation several times.
[NB: It is now more challenging to derive a theoretical estimate of the relevant probability.
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Exercise 4
The function bsnCV() also chooses random data, with no relationship between the outcome variable
and the explanatory variables. However, it splits the chosen data into two subsets (this is the default;
> 2 subsets are possible). It makes the first subset the training data, which it uses to select one or
more explanatory variables that best account for the outcome values. Having thus selected one or
more explanatory variables, a model is fitted, using those explanatory variables, to the remainder
of the data (for the time being, the test data). Assuming two subsets, the roles of the two sets, as
training and test, are then reversed, and the process repeated. Here is an example:

> bsnCV(m=100, n=20, nvmax=1, print.summary=FALSE)

Now repeat the calculations in Exercise 2 above:

> tstat1 <- tstat2 <- numeric(200)

> for (i in 1:200){

+ out <- bsnCV(m=100, n=20, nvmax=1, print.summary=FALSE)

+ tstat1[i] <- max(abs(coef(summary(out[[1]]))["x", "t value"]))

+ tstat2[i] <- max(abs(coef(summary(out[[2]]))["x", "t value"]))

+ }

> print(sum(abs(tstat1) > 2)/200)

[1] 0.06

> print(sum(abs(tstat2) > 2)/200)

[1] 0.085

Both the values that are printed should be within perhaps ±0.025 or so of 0.05.

2 Variable Selection in Classification
Motivations: Where there is extensive variable selection, there is huge scope for getting
spurious results.

Data: Data will be simulated that is pure noise, and the attempt made to extract a
signal.

Methodology: The hddplot package for R has a function simulateScores() that will
be used for the calculations.

Simulations
The following will mimic data such as comes from expression array experiments. Data
may be available for some thousands of gene sequences, but typically for a rather small
number of organisms, or (e.g.) cancer types. For the following, suppose that 80 individ-
uals are randomly split between three cancer types. Assume that, for each of the cancer
samples, expression indices are available for each of 7000 different gene sequences. The
aim is to determine which of the 7000 indices differ between the cancer types, to an extent
that can be distinguished from statistical variation.

A good way to check out a proposed methodology, and to foster intuition, is to try it
out on random data. This is the rationale for the folowing exercise.

In the following:

(a) 80 sets of observations, on each of 7000 variables (features), are generated. The 80
observations are randomly divided between three groups.
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(b) The 15 variables are then selected that, individually, best discriminate between the
three groups. (What is best? The “best” discriminators are those that show the
largest ratio of the between to the within groups sum of squares.)

(c) We apply linear discriminant analysis, using the lda() function from R’s MASS
package.

(d) From the linear discriminant analysis results, it is possible to determine sets of
axes, with scores along each axis uncorrelated with scores along previous axes once
account has been taken of the within groups correlation structure, and such that
each successive set of scores accounts for as much as possible of the remaining
variation. (The theory uses the singular value, or spectral, decomposition.)

(e) The scores on the two axes that give the best separation in two dimensions can
then be plotted, the second set against the first.

Detailed code now follows. An alternative is to use functions in the hddplot package
that shortcut the detail. Use of these will be explained following the detailed code.

> ## Step 1: Generate random data

> gps <- sample(c("A","B","C"), size=80, replace=TRUE)

> table(gps) # Check that the groups are very roughly equal in size

> X <- matrix(rnorm(7000*80), ncol=80)

> # NB: Rows of X will be features, and columns will be (eg) cancer samples

> ## Step 2: Select the best 15 features

> ord15 <- orderFeatures(X, gps)[1:15]

> ## Get the relevant subset of X; transpose to cancer samples by features

> X15 <- t(X[ord15, ])

> ## Step 3: Apply linear discriminant analysis

> library(MASS)

> X15.lda <- lda(X15, gps)

> scores <- predict(X15.lda, dimen=2)$x

> ## Plot the results

> library(lattice)

> theme <- simpleTheme(pch=16, cex=1.5)

> # Filled circles, enlarge; makes it easier to see colours

> xyplot(scores[,2] ~ scores[,1], groups=gps, par.settings=theme,

+ auto.key=list(columns=3))

Exercise 5
Do the following

(a) Repeat the above several times.

(b) Repeat, but varying the number of features and the number of observations. With 500 features
from which to choose, is there still a strong selection effect?

(c) Run the shortcut alternative:

> simscores <- simulateScores(nrow=7000, cl=gps)

> scoreplot(simscores)
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Exercise 6
We can split the columns of X (cancer samples, or observations) into a training set and a test set.
We use the training set to select the features, and then use those features to classify the observations
in the test set. Here is how it can be done, starting with the matrix X that was obtained above:

> ## Divide columns of X randomly into two groups

> ## Split gps (identifying groups) in the same way.

> n <- length(gps)

> in2 <- sample(1:2, size=n, replace=TRUE)

> Xone <- X[ , in2==1]

> Xtwo <- X[ , in2==2]

> gps1 <- gps[in2==1]

> gps2 <- gps[in2==2]

> ## Select the best 15 features, using Xone

> ord15a <- orderFeatures(Xone, gps1)[1:15]

> ## Get the relevant subsets of Xone and Xtwo;

> ## transpose to observations (cancer samples) by features

> Xone15a <- t(Xone[ord15a, ])

> Xtwo15a <- t(Xtwo[ord15a, ])

Exercise 6, continued
Now apply linear discriminant analysis, and plot the graph that results from making predictions for
Xtwo

> ## Apply linear discriminant analysis to Xone15a

> library(MASS)

> Xone15a.lda <- lda(Xone15a, gps1)

> ## Now apply the predictions to the data in Xtwo15a

> scoresA <- predict(Xone15a.lda, newdata=Xtwo15a, dimen=2)$x

> ## Plot the results

> xyplot(scoresA[,2] ~ scoresA[,1], groups=gps2, par.settings=theme,

+ auto.key=list(columns=3))

(a) Run the above code. Is any pattern discernable in the plot that results?

(b) Swap the roles of X1 and X2, i.e., use X2 to select features and fit the model, then apply the
predictions to X1. If necessary, see Exercise 3 for hints on how to do this.

Note: The calculations just done illustrate the cross-validation approach, with the data
split into two parts. Each part is left out in turn, and the model fitted to the reamining
data. Predictions are then made for the part that is left out.
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Exercise 7
Repeat exercise 2, but now keeping details of the predicted class. These can be compared with the
correct assignments.

(a) > predgp <- character(n)

> ## Fit model to data Xone15a

> Xone15a.lda <- lda(Xone15a, gps1)

> ## Now apply the predictions to the data in Xtwo15

> predgp[in2==2] <- predict(Xone15a.lda, newdata=Xtwo15a)$class

> ## Now make Xtwo the training data, with Xone for testing

> ord15b <- orderFeatures(Xtwo, gps2)[1:15]

> ## Get the relevant subsets of Xone and Xtwo;

> ## transpose to observations (cancer samples) by features

> Xone15b <- t(Xone[ord15b, ])

> Xtwo15b <- t(Xtwo[ord15b, ])

> ## Fit model to Xtwo15b

> Xtwo15b.lda <- lda(Xtwo15b, gps2)

> ## Apply predictons to Xone15b

> predgp[in2==1] <- predict(Xtwo15b.lda, newdata=Xone15b)$class

(b) Now compare predictions with actual group membership:

> table(Actual=gps, Predicted=predgp)

There should be no relationship between actual group assignments and predictions.

Exercise 7, continued

(c) Now run these calculations using the function accTrainTest() from hddplot :

> accTrainTest(x=X, cl=gps, traintest=in2, nfeatures=15)

Exercise 8
The calculations should now be run for a subset of the Golub data that are included in the hddplot
package. In the interim, try:

> example(Golub)

Watch this page!


