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A propensity is a measure, determined by explanatory variable values, of the probability
that an observation will fall in the treatment rather than in the control group. Various
forms of discriminant analysis may be used to determine scores. The propensity score
is intended to account for between group differences that are not due to the effect under
investigation. If there is substantial overlap between propensity scores for the different
groups, then comparison of observations within the approximate region of overlap may
be reasonable, but using the propensity score to adjust for differences that remain. See
Rosenbaum and Rubin (1983) for further comments on the methodology.

We will first describe the data, then investigate more conventional regression approaches
to the analysis of these data, then investigate the use of propensity scores. The results
highlight the difficulty in reaching secure conclusions from the use of observational data.

The labor training data

Data are from an experimental study,conducted under the aegis of the the US National
Supported Work (NSW) Demonstration program, of individuals who had a history of em-
ployment and related difficulties. Over 1975–1977, an experiment randomly assigned indi-
viduals who met the eligibility criteria either to a treatment group that participated in 6–18
months training program, or to a control group that did not participate.

The results for males, because they highlight methodological problems more sharply,
have been studied more extensively than the corresponding results for females. Participa-
tion in the training gave an increase in male 1978 earnings, relative to those in the control
group, by an average of $886 [SE $472].

Can the same results be obtained by from data that matches the NSW training group
with a non-experimental control group that received no such training? Lalonde (1986)
and Dehejia and Wahba (1999) both investigated this question, using two different non-
experimental control groups. These were

1. The Panel Study of Income Dynamics study (PSID: 2490 males, data in psid1, filtered
data in psid2 and psid3),

2. Westat’s Matched Current Population Survey – Social Security Administration file
(CPS: 16 289 males, data in cps1, filtered data in cps2 and cps3).

Variables are

trt (0 = control 1=treatment)

age (years)

educ (years of education)

black (0=white 1=black)

hisp (0=non-hispanic 1=hispanic)

marr (0 = not married 2=married)

nodeg (0=completed high-school 1=dropout); i.e. educ <= 11

re74 (real earnings in 1974; available for a subset of the

experimental data only)

re75 (real earnings in 1975)
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re78 (real earnings in 1978)

Observe that trt, black, hisp, marr and nodeg are all binary variables. Here, they will
be treated as dummy variables. In the language of Section 7.1, observations that have the
value zero are the baseline, while the coefficient for observations that have the value 1 will
give differences from this baseline. (For marr, where values are 0 or 2, the coefficient for
observations that have the value 2 will be half the difference from the baseline.)

Note that nodeg is a categorical summary of the data in educ. It will not be used,
additionally to educ, as an explanatory variable in the various analyses.

Summary information on the data

Table 13.1 has summary information on proportions on discrete categories that are of in-
terest.3Information on re74 is complete for the non-experimental sets of control data, but
incomplete for the experimental data. We will take us the issue of how to handle re74
below.

Table 13.1: Proportion in the stated category, for each of the data sets
indicated. Proportions for the experimental data are in the final two
lines of the table.

Proportion
Black Hispanic Married Dropout re75> 0 re78> 0

psid1 0.25 0.03 0.87 0.31 0.90 0.89
psid2 0.39 0.07 0.74 0.49 0.66 0.66
psid3 0.45 0.12 0.70 0.51 0.39 0.49
cps1 0.07 0.07 0.71 0.30 0.89 0.86
cps2 0.11 0.08 0.46 0.45 0.82 0.83
cps3 0.20 0.14 0.51 0.60 0.69 0.77

nsw-ctl 0.80 0.11 0.16 0.81 0.58 0.70
nsw-trt 0.80 0.09 0.17 0.73 0.63 0.77

3showprop <-
function(dframe=psid1, facCols=4:7, zeroCols=9:10){
info <- numeric(length(facCols)+length(zeroCols))
info[1:length(facCols)] <- sapply(dframe[,facCols], function(x){
z <- table(x); z[2]/sum(z)})

info[-(1:length(facCols))] <- sapply(dframe[,zeroCols], function(x)
sum(x>0)/sum(!is.na(x)))

info
}

## Create matrix to hold resuilt
propmat <- matrix(0, ncol=6, nrow=8)
dimnames(propmat) <-
list(c("psid1", "psid2", "psid3", "cps1", "cps2", "cps3",

"nsw-ctl", "nsw-trt"), names(nswdemo)[c(4:7, 9:10)])
## Run function
for(k in 1:8){
dframe <- switch(k, psid1, psid2, psid3, cps1, cps2, cps3,

subset(nswdemo, trt==0), subset(nswdemo, trt==1))
propmat[k,] <- showprop(dframe)

}
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Figure 13.2: Overlaid density plots, comparing treatment groups with the experimental control
data in nswdemo and with the non-experimental control data in psid3, for the variables age
educ,log(re75+30), and log(re78+30).

Notice the big differences, for black, marr and nodeg (dropout), between the non-
experimental controls (first six lines) and both sets of experimental data (final two lines).
Even in the filtered data sets (psid2, psid3, cps2 and cps3), the differences are substan-
tial. The big changes that the filtering has made to the proportion with non-zero earnings
is worrying. Notice particularly the huge differences between psid3 and psid1, both for
re75 and re78.

For those who did earn an income, how do the distributions compare? The very heavy
tails in the distributions of re75 and re78 make use of a logarithmic transformation desir-
able. Figure 13.2 compares the distributions of values, in the control and treatment groups,
for the explanatory variables age, educ, log(re75+30), and log(re78+30). The offset
of 30 is around half the minimum non-zero value for each of these variables, in the com-
bined data. Plate 7 is an extended version of Figure 13.2 that has comparisons with all of
the candidate sets of control data.

Examination of Figure 13.2, and of the additional comparisons in Plate 7, makes it
clear that there are large differences between treatment and controls, whichever set of non-
experimental controls is chosen.

The distributions of non-zero values of log(re78+30) are almost identical between ex-
perimental treated and control observations, just as similar as for log(re75+ 30). A more
careful comparison will use qq-plots. The comparison can be repeated with several boot-
strap samples, as a check that such small differences as are apparent are not maintained
under bootstrap sampling. This is pursued in the exercises at the end of the chapter. We
will later check whether the differences that are apparent between non-experimental con-
trols and treatment are maintained after a propensity score adjustment.

Plate 8 shows the scatterplot matrix, again for the dataset that combines the psid1 con-
trol data with the experimental treatment data, for the same variables as shown in Figure
13.2. Slightly simplified code is:

vnames <- c("trt","educ","age","re75","re78")

nsw <- rbind(psid1, subset(nswdemo, trt==1))

## Check minimum non-zero values of re75 and re78

round(sapply(nsw[,c("re75","re78")], function(x)unique(sort(x))[2]))

nsw[,c("re75","re78")] <- log(nsw[,c("re75","re78")] + 30)
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lab <- c(vnames[2:3], paste("log\n", vnames[-(1:3)], "+", 30))

nsw$trt <- factor(nsw$trt, labels=c("Control (psid1)","Treatment"))

splom(˜ nsw[,vnames[-1]], type=c("p","smooth"), groups=nsw$trt,

varnames=lab, auto.key=list(columns=2))

13.2.1 Regression comparisons

One possibility is to use regression methods directly to compare the two groups, with
variables other than re78 used as explanatory explanatory variables. The nature of the
data does however raise serious issues, for its use for this purpose.

Issues for the use of regression methods

The following points require consideration:

• Continuous variables then almost certainly require some form of non-linear transfor-
mation. Regression splines may be a reasonable way to go.

• Should interaction terms should be included?
• The large number of explanatory variables, and interactions if they are included, com-

plicates the use of diagnostic checks.
• A substantial proportion of the values of re78 are zero. The distribution of non-zero

values of re78 is highly skew, in both of the experimental groups (treatment and non-
treatment), and in all of the non-experimental controls. A consequence is that the
regression results will be strongly influenced by a small number of very large values.
A log(re78+ 30) transformation (the choice of offset, in a range of perhaps 20 – 200,
is not crucial) gives values that may more reasonably be used for regression, however.
(In spite of the evident skewness, both Lalonde (1986) and Dehejia and Wahba (1999)
used re78 as the dependent variable in their analyses.)

• In the experimental data, almost 40% of values of the explanatory variable re74 are
missing. It is then necessary to ask whether these are “missing at random”, whether
there is a pattern in the missingness. An indication that values of re74 may not be
missing at random is that its minimum value in the experimental data is 445 (dollars),
which is close to 6 times the minimum of 74 for re75 and almost 10 times the mini-
mum of 45 for re78. Perhaps information on 1974 income was more readily available
for participants who who for most of 1974 held one steady job, or a small number
of steady jobs. In the analysis below, a factor will be created from re74 that has the
levels: no income, some income, and income status unknown.

• The large number of explanatory variables, and interactions if they are included, com-
plicates the use of diagnostic checks.

• Control and training groups can be made more comparable by some initial filtering
of the data, on values of the explanatory variables. Inevitably, the choice of filter-
ing mechanism and extent of filtering will be to an extent arbitrary, and filtering may
introduce its own biases.

• explanatory variables must both model within group relationships acceptably well and
model between group differences acceptably well. These two demands can be in con-
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flict.

Taken together, these points raise such serious issues that results from any use of regression
methods has to be treated sceptically.

The complications of any use of regression analyses, and the uncertainties that remain
after analysis, are in stark contrast to the relative simplicity of analysis for the experimen-
tal data. Experimental treatment and control distributions can be compared directly and
(assuming that the randomization was done properly) with confidence, without the com-
plications that arise from the attempt to adjust for explanatory variable effects.

Regression calculations

As there may be information in whether or not re74 is known, and in whether known
values are non-zero, it seems useful to distinguish three categories – no income in 1974,
some income in 1974, and details of income not known. Hence an argument for the use of
a factor fac74 that is derived thus:

nsw$fac74 <- with(nswdemo, factor(re74>0, exclude=NULL))

table(nsw$fac74) # Check the order of the levels

levels(nsw$fac74) <- c("0","gt0","<NA>")

In the following analysis, 2 degrees of freedom have been allowed for a regression using
a normal spline basis for each of log(re75+30), age and educ. Here is a function that can
be used for the calculations. The function has an argument that controls whether or not to
apply a logarithmic transformation to re78.

nswlm <-

function(control=psid1, df1=2, log78=TRUE, offset=30, printit=TRUE){

nsw0 <- rbind(control, subset(nswdemo, trt==1))

nsw0$fac74 <- factor(nsw0$re74>0, exclude=NULL)

levels(nsw0$fac74) <- c("0","gt0","<NA>")

if(log78) nsw.lm <- lm(log(re78+offset) ˜ trt + ns(age,df1) +

ns(educ,df1) + black + hisp + fac74 +

ns(log(re75+offset),df1), data=nsw0) else

nsw.lm <- lm(re78 ˜ trt + ns(age,df1) + ns(educ,df1) + black +

hisp + fac74 + ns(log(re75+offset),df1),

data=nsw0)

if(printit) print(summary(nsw.lm))

trtvec <- unlist(summary(nsw.lm)$coef["trt", 1:2])

trtEst <- c(trtvec[1], c(trtvec[1]+trtvec[2]*c(-1.96,1.96)))

if(log78) {

trtEst <- c(trtEst[1], exp(trtEst[1]), exp(trtEst[-1]))

names(trtEst)=c("Est.","exp(Est.)","CIlower","CIupper")

} else

names(trtEst)=c("Est.","CIlower","CIupper")

if(printit) print(trtEst)

invisible(list(obj=nsw.lm, est=trtEst))

}

## Try for example
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nsw.lm1 <- nswlm(control=psdi1)$nsw.lm

nswlm(control=subset(nswdemo, trt=0))

nswlm(control=psdi1, log78=FALSE)

for (z in list(psid1,psid2,psid3,cps1,cps2,cps3))

print(nswlm(control=z, printit=FALSE)$est)

Use of termplot() suggests that the default numbers of degrees of freedom are adequate
or more than adequate. The coefficients of other terms in the equation are not highly
sensitive to the number of degrees of freedom allowed.

The following table summarizes results, showing how they depend on the choice of
control group:

Control used Estimate of treatment effect 95% CI
psid1 exp(0.99) = 2.7 (1.9, 3.7)
psid2 exp(0.61) = 1.8 (1.0, 3.4)
psid3 exp(0.92) = 2.5 (1.2, 5.2)
cps1 exp(0.85) = 2.3 (1.7, 3.1)
cps2 exp(0.47) = 1.6 (1.1, 2.4)
cps3 rmexp(0.49) = 1.6 (0.96,2.8)
subset(nswdemo, trt=0) exp(0.35) = 1.4 (1.1, 1.9)

These results vary widely, but do all point in the same direction as the experimen-
tal comparison in the final row. It is instructive to re-run the above calculations with
log78=FALSE. The different results do not now all point in the same direction. The likely
reason is that a few very large values of re78 now have high leverage and a large influence.
(An exercise at the end of the chapter is designed to check this out.)

13.2.2 A strategy that uses propensity scores

A propensity “score” is a single variable whose values characterize the difference between
the control and treatment groups. Importantly, the score is designed to model only between
group differences; it does not model within group differences. Use of a single propensity
score in place of many explanatory variables facilitates the use of standard checks to inves-
tigate whether the propensity score effect is plausibly linear. There is just one explanatory
variable to investigate, rather than the complicated and often unfruitful task of carrying out
checks on several explanatory variables.

For the analyses described here, we will start by using control observations from the
data set psid3. Analyses that start by using control observations from one of the other
data sets are left as an exercise for the reader.

Propensity scores will be derived from a discriminant analysis that uses the
randomForest() function, from the package of the same name. Advantages of this appo-
rach are that prior transformation of variables is unnecessary, that assumptions about the
form of model are minimal, and that there is automatic allowance for interactions. The
extent of prior filtering of observations should not unduly matter.

We will however check out, for comparison, scores that arise from use of the function
lda() (MASS package). It will turn out that lda() is similarly effective, as measured by
predictive accuracy, in distinguishing the control and treatment groups. The key point is
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that it does no better than randomForest(), and thus that there is no reason to prefer the
lda scores.

Either method yields, for each observation, an estimated probability p that the ob-
servation is from the treatment group. A convenient choice of propensity score is then
log((p)/(1− p)).

The analysis will then replace the explanatory variables by a single propensity score.
This is justifiable on theoretical grounds if the distribution of the explanatory variables
is, conditional on the propensity score, the same for treatment and control observations.
Checks can be performed to determine whether this assumption is plausible. If these checks
fail, the analysis might still give reasonable results, but the theory does not give good
grounds for confidence.

Derivation and investigation of scores

We now derive propensity scores. We convert re74 to a factor with three levels – 0 (no
income in 1974), gt0 (income in 1974) and <NA> (income status in 1974 not known). The
observations for which 1974 income information is available may be a biased selection,
and it seems safest to use information on re74 as a coarse indicator only.

## Use the dataset nsw that combines psid1 with exptl trt obsns

nsw.rf <- randomForest(trt ˜ ., data=nsw[, -c(7:8,10)],

sampsize=c(297,297))

## NB: Use of equal bootstrap sample sizes (= 297 = number of

## treatment observations) gives the two groups equal prior weight.

We can check model accuracy

> nsw.rf

. . .

OOB estimate of error rate: 4.52%

Confusion matrix:

0 1 class.error

0 2381 109 0.0438

1 17 280 0.0572

The random forest calculation should be re-run several times. We have found error rates
that vary, over 4 runs, between 4.38% and 4.56%. These are the error rates that would be
expected from a separate random sample from the same population.

The following fits a logistic regression model:

> library(MASS)

> library(splines)

> nsw.lda <- lda(trt ˜ ns(age,2) + ns(educ,2) + black + hisp +

+ fac74 + ns(log(re75+30),3),

+ CV=TRUE, prior=c(.5,.5), data=nsw)

> tab <- table(nsw.lda$class, nsw$trt)

> 1 - sum(tab[row(tab)==col(tab)])/sum(tab)

[1] 0.042
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Figure 13.3: Panel A shows density plots of scores (log((p+ 0.001)/(1+ 0.001− p)), where p is
predicted value) from the object lprob.rf, separately for control and treatment groups. Panel B is
for scores, calculated similarly, from lprob.lda. The ranges shown are ranges of relative numbers.

The lda() cross-validation error rate is very similar to that for randomForest(). The
simple lda() model that does not allow for interaction effects may be adequate. The
regression spline terms in the lda model seem to account for most of the non-linearity in
the explanatory variables.

Here is code that calculates the scores and compares the densities between the control
and treatment groups, as shown in Figure 13.3:3pt

logit <- function(p, offset=0.001)log((p+offset)/(1+offset-p))

trt <- nsw$trt

## NB: Derive scores by a logit transform of probabilities

lprob.rf <- logit(predict(nsw.rf, type="prob")[,2])

overlapDensity(lprob.rf[trt==0], lprob.rf[trt==1], ratio=c(1/20, 20))

nsw.lda <- lda(trt ˜ ns(age,2) + ns(educ,2) + black + hisp + fac74 +

ns(log(re75+30),3), prior=c(.5,.5), data=nsw)

lprob.lda <- logit(nsw.lda$posterior[,2])

overlapDensity(lprob.lda[trt==0], lprob.lda[trt==1], ratio=c(1/20, 50),

compare.numbers=TRUE, plotval="Density")

The bulk of the control observations lie, in each instance, off to the left of the minimum
score for which the ratio of treatment frequency to control frequency reached 1

20 = 0.05.
For use of the randomForest scores, choosing observations with a score of more than -1.5
will retain approximately equal numbers (307/289, varying from run to run) of control and
treatment scores. Without some such filtering, there may be undue leverage from the very
large proportion of control observations that have large negative scores, where there are no
treatment observations. Even modest filtering of observations with high scores (e.g., insist
on a ratio of less than 50 treatment to one control observation will filter out a large fraction
of the treatment observations, and we avoid this.

Now recalculate the propensity scores., at the same time calculating proximities between
observations. The proximity between any pair of observations is the proportion of trees, out
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of the total number of trees (by default, 500), where the two observations appear together
at the same terminal node.

nswa <- nsw[lprob.rf>-1.5, ]

nswa.rf <- randomForest(trt ˜ ., data=nswa[, -c(7:8,10)])

proba.rf <- predict(nswa.rf, type="prob")[,2]

lproba.rf <- logit(proba.rf)

For lda scores, choosing observations with a score of more than -4 would retain some-
what more treatment than control scores (329/281).

Checks on the propensity scores

Is the distribution of the explanatory variables is, conditional on the propensity score, the
same for treatment and control? This can be checked for each individual explanatory vari-
able. As interactions have seemed unimportant in determining the propensities, this may
be enough. Figure 13.4 and and Plate 9 provide a visual check. Code that gives a close
equivalent of Figure 13.4A is:

xyplot(age + educ + log(re75+30) ˜ lproba.rf, groups=trt, layout=c(3,1),

data=nswa, type=c("p","smooth"), span=0.4, aspect=1,

par.settings=simpleTheme(lwd=c(2,1.5), col=c("gray", "black"),

pch=c(20,3), cex=0.5, lty=c("solid","21")),

scales=list(y=list(relation="free"), tck=0.5),

auto.key=list(columns=2, points=TRUE, lines=TRUE,

text=c("psid1 controls", "experimental treatment")),

xlab="Scores, derived using randomForest()")

For Figure 13.4B, replace lproba.rf by lproba.lda, obtained by linear discriminant
calculations that use the subset of nsw for which nsw.lda is at least -4.

Conditional on the scores, both sets of panels show substantial differences for age
and for log(re75+30). The randomForest scores seem however preferable. In A
(randomForest()), removal of points with very low scores (less than -1.5) has largely
dealt with the most serious differences. In B (lda()) there is, for both of these variables,
a large cluster of control points on the right of the plot. For educ, differences seem minor,
for both sets of scores.

The graphs suggest that the formal requirements of the propensity score theory are in
doubt. There are not good grounds for confidence that propensity scores will work well in
making the necessary adjustment.

Use of proximities to give a two-dimensional representation

A more global graphical comparison is available by using the proximities from a
randomForest() discriminant analysis as the basis for an ordination, i.e., for a two-
dimensional representation. Plots are shown for three ranges of scores – low, medium
and high. The text in the panel is labeled according to the equivalent range of probabilities.

Figure 13.5 shows the result. The code is:
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Figure 13.4: These plots are designed as a check whether, in each case, the distribution of the ex-
planatory variable is, conditional on the score, similar for treated and controls. Panel A shows scores
from randomForest, while Panel B shows scores from lda(). Panel 9 is a color version that shows,
also, the distribution of new randomForest scores obtained by refitting the model to data for which
the scores shown in A were at least -1.5.

## Repeat randomForest calculation, now with proximities

nswa.rf <- randomForest(trt ˜ ., data=nswa[, -c(7:8,10)],

proximity=TRUE)

## Subtract proximities from 1.0, and use as "distances"

dmat <- 1-nswa.rf$proximity

dmat[dmat==0] <- 0.001

## From "distances", derive an ordination.

pts <- cmdscale(dmat)

rf.mds <- isoMDS(dmat, pts)

ordScores <- rf.mds$points

cutpts <- c(0, round(quantile(proba.rf, c(1/3,2/3)), 2), 1).

cutp <- cut(lproba.rf, breaks=cutpts, include.lowest=TRUE)
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Figure 13.5: These plots are designed as a check whether, in each case, the distribution of the ex-
planatory variables is, conditional on the score from randomForest(), are similar for treated and
controls. They examine a two-dimensional representation that is derived from the propensities. The
ranges shown are for the probabilities before use of the logit transformation to give scores. Cutpoints
have been chosen so that the three ranges contain an approximately equal number of observations.

xyplot(ordScores[,2] ˜ ordScores[,1]|cutp, groups=nswa$trt,

xlab="Co-ordinate 1", ylab="Co-ordinate 2",

auto.key=list(columns=2), aspect=1,

par.settings=simpleTheme(col=c("black","gray"),

pch=c(1,3)))

In the sequel, the randomForest scores will be used. They do at least as well as the lda
scores in accounting for differences between the two groups. Conditional on the propensity
score, the distribution of the explanatory variables may be rather more similar between
treatment and control than for the lda scores. They minimize opportunities for bias such
as arise from the assumption, in the lda analysis, of a specific form af additive model.

Probability of non-zero earnings – analysis using the scores

The following checks whether there is a detectable training effect on the probability of
non-zero earnings:

> lproba.rf <- logit(proba.rf)

> rf.glm <- glm(I(re78>0) ˜ ns(lproba.rf,2)+trt, data=nswa,

+ family=binomial)

> summary(rf.glm)

. . . .

Deviance Residuals:

Min 1Q Median 3Q Max

-1.926 -1.363 0.705 0.831 1.313
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.158 0.555 0.28 0.776

ns(lproba.rf, 2)1 1.001 1.313 0.76 0.446

ns(lproba.rf, 2)2 -1.026 0.492 -2.09 0.037

trttreated (experimental) 0.740 0.305 2.43 0.015

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 691.39 on 595 degrees of freedom

Residual deviance: 676.63 on 592 degrees of freedom

AIC: 684.6

Number of Fisher Scoring iterations: 4

The estimate is in line with that from comparing experimental treatment data with exper-
imental controls. Use of the linear discriminant scores yields a result that is even more
clearcut.

Distribution of non-zero earnings – analysis using the scores

> rf.lm <- lm(log(re78+30) ˜ ns(lproba.rf,2)+trt, data=nswa,

+ subset = re78>0)

> summary(rf.lm)

. . . .

Residuals:

Min 1Q Median 3Q Max

-3.639 -0.441 0.153 0.660 2.695

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.699 0.329 29.47 <2e-16

ns(lproba.rf, 2)1 -1.488 0.768 -1.94 0.053

ns(lproba.rf, 2)2 -0.432 0.263 -1.64 0.101

trttreated (experimental) -0.373 0.151 -2.47 0.014

Residual standard error: 0.987 on 433 degrees of freedom

Multiple R-squared: 0.0931, Adjusted R-squared: 0.0868

F-statistic: 14.8 on 3 and 433 DF, p-value: 3.37e-09

The negative (and statistically significant) treatment estimate contrasts with the result
from the experimental data, where the estimated treatment effect is well below the thresh-
old of statistical detectability.

> round(summary(lm(log(re78+30) ˜ trt, data=nswdemo,

+ subset=re78>0))$coef, 4) %$

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.5601 0.0578 148.1486 0.0000
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trt 0.0021 0.0874 0.0245 0.9804

In the absence of the check that the experimental data provides, it would be necessary to
treat any of these results with extreme caution. Use of psid2 or psid3 (or cps2 or cps3)
is not an adequate answer. There are large elements of arbitrariness in the choice of obser-
vations to be removed, the filtering leaves datasets that still differ from the experimental
treatment data in important respects, and results vary depending on which of these datasets
is used as a control.

13.3 Further Reading

Streiner and Norman (2003) discuss important issues that relate to the collection and analy-
sis of multivariate data in medicine, in the health social sciences, and in psychology. On the
use of propensity scores, see Rosenbaum and Rubin (1983); Rosenbaum (2002). On wider
issues with respect to the analysis of observational data, see Rosenbaum (2002, 1999).

References for further reading

Rosenbaum, P. and Rubin, D. 1983. The central role of the propensity score in observa-
tional studies for causal effects. Biometrika 70: 41–55.

Rosenbaum, P. R., 1999. Choice as an alternative to control in observational studies. Sta-
tistical Science, 14:259–278. With following discussion, pp.279–304.

Rosenbaum, P. R., 2002. Observational Studies, 2nd edition.
Streiner, D.L. and Norman, G.R. 1995. Health Measurement Scales. A Practical Guide to

Their Development and Use, 2nd edn.

13.4 Exercises

1. Repeat the principal components calculation omitting the points that appear as outliers in Figure
13.1, and redo the regression calculation. What differences are apparent, in loadings for the first
two principal components and/or in the regression results?

2. Examine the implications that the use of the logarithms of the income variables in the analysis
of the dataset nswpsid1 has for the interpretation of the results? Determine predicted val-
ues for each observation. Then exp(predicted values) gives predicted incomes in 1978. Take
exp(estimated treatment effect) to get an estimate of the factor by which a predicted income for
the control group must, after adding the offset, be multiplied to get a predicted (income+offset)
for the treatment group, if explanatory variable values are the same.

3. Investigate the sensitivity of the regression results in Section 13.2.2 to the range of values of
the scores that are used in filtering the data. Try the effect of including data where: (a) the ratio
of treatment to control numbers, as estimated from the density curve, is at least 1:40; (b) the
ratio lies between 1:40 and 40; (c) the ratio is at least 1:10.

4. Modify the function nswlm() so that use of fac74 as an explanatory factor is optional. With
the psid3 controls, is use of fac74 as an explanatory factor justified? What is the effect on the
confidence interval for the treatment effect?


