
11
Spatial Display, Modeling and Interpolation

In the past several years, there have been spectacular advances in the abilities

that are available using R. The range of abilites that are available provide a

spectacular demonstration of the benefits of using R as a unfied framewotk

for using abilities that were designed to run independently of R, and inde-

pendently of one another. For an overview of what is available under the R

umbrella, see the CRAN Task View:

http://cran.ms.unimelb.edu.au/web/views/Spatial.html
Hengl(2009) provides a useful introduction

to software that is useful for geostatistical

and other mapping. Note especially Table

3.1 on page 89, which compares the spatio-

temporal abilities of some popular statistics

and GIS packages. There are columns for

R+gstat and R+geoR.

The R geo website, at http://www.r-project.org/Rgeo/ has exten-

sive information. The Wiki page http://spatial-analyst.net/wiki/

index.php?title=Software has extensive information about installation

of relevant geostatistical software.

Below, we will use R interfaces to GDAL and to PROJ.4. For this, various

software and scripts (including GDAL and to PROJ.4) must be installed

outside of R. For Windows and Linux 32-bit use, the easiest recourse is to

download and install the relevant binary toolkit from http://fwtools.

maptools.org/

From the R command line, the relevant R packages can be installed thus:

1
1

For MacOS X with version 2.13.x

of R, rgdal must be installed

from CRAN extras. Either type

setRepositories() and choose CRAN

extras as well perhaps as CRAN, or type

setRepositories(ind=1:2) , prior

to typing the install.packages()
command.

install.packages(c("rgdal","gstat","sp"), dependencies=TRUE)

Ensure also that you have rJava.

11.1 Reading and Processing Raster (Image) Files

The function readGDAL() in the rgdal package is intended for reading

GDAL grid maps. Among the large number of possible formats are sev-

eral that are widely used for image files more generally: BMP, various JPEG

formats, GIF, PNG, XPM, etc. Georeferencing (spatial reference data can be

included with the file) is available for BMP, JPEG 2000 formats, and TIFF.

The following, loosely based on the example code in the help pages for

readGDAL, requires the packages rgdal, sp, and grid. We begin by using the

function readGDAL() to input, as a grid, the R logo file that is supplied with

the R package rgdal:

166 the r system – an introduction and overview

> library(rgdal)
> logofile <- system.file("pictures/Rlogo.jpg", package = "rgdal")[1]
> rlogo <- readGDAL(logofile)
C:/PROGRA~1/R/R-212~1.0/library/rgdal/pictures/Rlogo.jpg has GDAL
driver JPEG and has 77 rows and 101 columns
Warning message:
In readGDAL(system.file("pictures/Rlogo.jpg", package = "rgdal")[1]) :
GeoTransform values not available

Notice the warning message “GeoTransform values not available”. This is not

surprising. Try however reading in an image from a camera that records GPS

data. The GeoTransform values should be included.

The R logo is to be found in many places, even sometimes on a T-shirt!

Now examine the input object:

> class(rlogo)
[1] "SpatialGridDataFrame"
attr(,"package")
[1] "sp"
> names(rlogo)
[1] "band1" "band2" "band3"

Notice that the file is input as a SpatialGridDataFrame The function

image has a method for objects of this class.

The image comes out more or less as expected using: Another possibility is to use the function

spplot() to examine the red green and blue

layers separately, thus:

spplot(rlogo, zcol=1:3,
names.attr=c("red","green","blue"),
col.regions=grey(0:100/100),
as.table=TRUE,
main=paste("example of three-layer",
"(RGB) raster image"))

image(rlogo, red="band1", green="band2", blue="band3")

The function spplot.grid() is called to do the plotting In turn, it calls

function levelplot() from the lattice package.

Note also the functions spplot.polygons() and spplot.points().

These are all documented on the same page as the generic function spplot().

A genuine spatial image

On this occasion we ask for information about the file before inputting it:

> sp27 <- system.file("pictures/SP27GTIF.TIF", package = "rgdal")[1]
> GDALinfo(sp27)
projection +proj=tmerc +lat_0=36.66666666666666
+lon_0=-88.33333333333333 +k=0.999975
+x_0=152400.3048006096 +y_0=0 +ellps=clrk66 +datum=NAD27
+units=us-ft +no_defs
file C:/PROGRA~1/R/R-212~1.0/library/rgdal/pictures/SP27GTIF.TIF
apparent band summary:
GDType Bmin Bmax

1 Byte 0 255
Metadata:
TIFFTAG_XRESOLUTION=72
TIFFTAG_YRESOLUTION=72
TIFFTAG_RESOLUTIONUNIT=1 (unitless)

spatial display, modeling and interpolation 167

AREA_OR_POINT=Area

Now use readGDAL() to create a GDAL grid map from the image file,

and plot the grid map:

> SP27GTIF <- readGDAL(sp27, output.dim=c(100,100))
C:/PROGRA~1/R/R-212~1.0/library/rgdal/pictures/SP27GTIF.TIF
has GDAL driver GTiff and has 929 rows and 699 columns
> class(SP27GTIF)
[1] "SpatialGridDataFrame"
attr(,"package")
[1] "sp"
> spplot(SP27GTIF)

Note: Data files that can simplify specification of projections can be found in

the epsg database, included with the rgdal package. To locate it, type:

> normalizePath(system.file("proj/epsg", package="rgdal"))
[1] "C:\\Program Files\\R\\R-2.12.0\\library\\rgdal\\proj\\epsg"

To view it, type:

file.show(system.file("proj/epsg", package="rgdal"))

The numeric codes, given in diamond brackets, can simplify specification of

the projection. Projections become important when spatial data, e.g., on metal

concentrations, is overlaid on map data, e.g., from Google maps.

Overlaying information on plots

Section 5.3 showed how to use a bubble plot to display the meuse data from

the sp package. The function bubble() uses the abilities of the lattice pack-

age. As a consequence, the layering abilities of the latticeExtra package,

described earlier in Subsection 7.3. can be used to overlay additional infor-

mation on the plot.

Figure 11.1 adds river boundaries, using data from the dataset meuse.riv.

(This is a matrix, with Eastings in column 1 and Northings in column 2.)

zinc

Easting

N
or
th
in
g

330000

331000

332000

333000

178500 179500 180500 181500

●●●●
●●

●●
● ●●
●

●●●●
●
●
●
●●●●

●
●●●

●
●

●

●
●●●
●●

●●●●
●
●●

●

●
●
●
●
●
●●

●●●●●
●●
●●●

●
●
●
●●
●

●

●
●●●

●●●●
●

●●
●●

●

●

●

●
●

●
●
●
● ●●

●

●
●

●

●●
●

● ●
●

●

●

●
●

●

●

●
●●

●
●

●●
●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●
●

●●
●●● ●

●
●

●●
●

●

●

●

●

●

●

113
198
326
674.5
1839

Figure 11.1: Bubble plot for zinc, with area

of bubbles proportional to concentration.

River Meuse boundaries are in gray.

Code is:

library(sp)
data(meuse); data(meuse.riv)
coordinates(meuse) <- ~ x + y
library(latticeExtra)
gph <- bubble(meuse, "zinc", pch=1,

key.entries = 100 * 2^(0:4),
main = "Zinc(ppm)",
scales=list(axes=TRUE, tck=0.4)) +

layer(panel.lines(meuse.riv[,1], meuse.riv[,2],
col="gray"))

print(gph)

168 the r system – an introduction and overview

Combining information from sample sites with data from a regular grid

The web page http://spatial-analyst.net/book/system/files/ has

a zip file meuse.zip that holds a substantial number of files, including:

�req.asc (flooding frequency),

dist.asc (distance to river),

soil.asc (soil type),

ahn.asc (elevation),

topomap2m.tif (2m topomap).

These data are on a grid of 78 by 104 points, giving a total of 8112 values.

The following code demonstrates the extraction of the file topomap2m.tif,

in the first place into a temporary directory, then copying it to the working

directory:

tmpfile <- zip.file.extract(file="topomap2m.tif",
zipname="meuse.zip")

file.copy(tmpfile, "./topomap2m.tif", overwrite=TRUE)

The following uses the same procedure for the four files that will be of imme-

diate interest:

grid.list <- c("ffreq.asc", "dist.asc", "soil.asc",
"ahn.asc")

unzip the maps in a loop:
for(j in grid.list){
tmpfile <- zip.file.extract(file=j,

zipname="meuse.zip")
file.copy(tmpfile, paste("./", j, sep=""),

overwrite=TRUE)
}

Now use readGDAL() to load the grids into R:

load grids to R:
meuse.grid <- readGDAL(grid.list[1])
fix the layer name:
names(meuse.grid)[1] <- sub(".asc", "", grid.list[1])
for(i in grid.list[-1]) {
meuse.grid@data[sub(".asc", "", i[1])] <-
readGDAL(paste(i))$band1

}
names(meuse.grid)
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
reformat maps where needed:
meuse.grid$ffreq <- as.factor(meuse.grid$ffreq)
pixels per class:
table(meuse.grid$ffreq)
meuse.grid$soil <- as.factor(meuse.grid$soil)
table(meuse.grid$soil)
str(meuse.grid)

spatial display, modeling and interpolation 169

Figure 11.2 shows the images in the 2 by 2 layout. The soil type class

image has the river boundaries added.

Figure 11.2: Plots show various features of

the Meuse river plain data.

The code that plots the images is:

plot the maps in a 2 columns by 2 rows layout:
ffreq.plt <- spplot(meuse.grid["ffreq"],

col.regions=grey(runif(length(levels(meuse.grid$ffreq)))),
main="Flooding frequency classes")

dist.plt <- spplot(meuse.grid["dist"],
col.regions=grey(rev(seq(0,1,0.025))),
main="Distance to river")

ahn.plt <- spplot(meuse.grid["ahn"],
col.regions=grey(rev(seq(0,1,0.025))),
main="Elevation (cm)")

soil.plt <- spplot(meuse.grid["soil"],
col.regions=grey(runif(length(levels(meuse.grid$ffreq)))),

main="Soil type classes")
print(ffreq.plt, split=c(1,1,2,2), more=T)
print(dist.plt, split=c(2,1,2,2), more=T)
print(ahn.plt, split=c(1,2,2,2), more=T)

170 the r system – an introduction and overview

print(soil.plt +
layer(panel.lines(meuse.riv[,1], meuse.riv[,2], col="red", type="l")),

split=c(2,2,2,2), more=F)

Notice the addition of the river boundaries to the map of soil type classes.

Overlaying onto new data

The following overlays the data in meuse.grid onto the points in meuse ,

i.e., data at a resolution of 78 by 104 is overlaid onto the 155 locations that

were sampled:

overlay points and grids:
meuse.ov <- overlay(meuse.grid, meuse)
meuse.ov@data <- cbind(meuse.ov@data, meuse[c("zinc", "lime")]@data)

The following plots the result:

ahn.plt <- spplot(meuse.grid["ahn"], col.regions=grey(rev(seq(0,1,0.025))),
main="Elevation (cm)")

print(ahn.plt +
spplot(meuse.ov["ahn"], col.regions=grey(rev(seq(0,1,0.025)))))

11.2 An Interface to Google maps

This requires the packages raster and dismo. The dismo package has the

function gmap() that downloads the map data.

Basic syntax, accepting defaults: The following is a simple example of

what is possible:

cbr <- gmap("Canberra , ACT")
plot(cbr)
acton <- gmap("Acton, ACT")
plot(acton)

The argument type can be ’roadmap’, ’satellite’, ’hybrid’or ’terrain’.

The argument exp can be used to specify an expansion factor.

Specify map longitude/latitude extent; overlay onto map: The data frame

possumsites (DAAG) holds the latitudes and longitudes of sites from

which possums were taken for study. In the following, a map is created that

takes in all the sites. The site names are then overlaid on to the map:

Ranges of latitude and longitude , slightly extended
lonlat <- with(possumsites , c(range(longitude)+c(-2,2),

range(latitude)+c(-3,3))
)

Obtain map, as a ‘‘RasterLayer ’’ object
googmap <- gmap(lonlat)

spatial display, modeling and interpolation 171

plot(googmap, inter=TRUE)
Convert latitude/longitude data to Mercator projection
xy <- Mercator(with(possumsites , cbind(latitude, longitude)))
Points show location of sites on the map
points(xy)
Add labels that give the names
text(xy, labels=row.names(possumsites), pos=c(1,4,4,1,3,4,4))

Specify map locality; vary vary map boundaries: The following takes the

map that is supplied by Google and varies the boundary limits. The argu-

ments left, right, bottom and top are fractions of the extent in the relevant

direction:

domap <- function(x="Acton, ACT", left=0, right=1,
bottom=0, top=1,
type="terrain"){

if(is.character(x))
x <- gmap(x, type=type)@extent
x0 <- x@xmin
x1 <- x@xmax
y0 <- x@ymin
y1 <- x@ymax
x@xmin <- x0+left*(x1-x0)
x@xmax <- x0+right*(x1-x0)
x@ymin <- y0+bottom*(y1-y0)
x@ymax <- y0+top*(y1-y0)

map <- gmap(x, type=type)
plot(map)

}

11.3 Other software – QGIS

Note in particular QGIS, whoich has an interface via manageR to R, which

however has still (May 2011) to be updated to work with versions of R that

are later than R-2.11.x Go to http://www.ftools.ca/plugins.html.

To obtain Windows and Linux installers for QGIS, go to http://www.

qgis.org/wiki/Download. The standalone installer for Windows includes

GRASS. For MacOSX, go to http://www.kyngchaos.com/software/

qgis. For Leopard and Snow Leopard installations, the QGIS 1.7 developer

builds seem relatively stable. GRASS must be installed separately.

11.4 References

Bivand R, Pebesma E J, Gomez-Rubio, V. 2008. Applied Spatial Data

Analysis with R. Springer.

172 the r system – an introduction and overview

Diggle, Peter J. & Ribeiro Jr, Paulo J 2007. Model-Based Geostatistics.

Springer.

Hengl, T. 2009, A Practical Guide to Geostatistical Mapping.

[To download (free) or purchase ($US16.78), go to: http://www.lulu.

com/product/download/a-practical-guide-to-geostatistical-mapping/

6379057]

Hijmans, R J. 2011. Introduction to the â
˘
A

´
Zrasterâ

˘
A

´
Z package.

[With the R package raster attached, type vignette("Raster" .

Hijmans, R J and Elith J. 2011. Species distribution modeling with R.

[With the R package dismo attached, type vignette("sdm") . The

vignette appears to be an outline for a book. Later chapters are very in-

complete.]

Maindonald, J H 2011. Generalized Additive Models in Spatial Statistics

– Linear Models with a Twist (slides). maths.anu.edu.au//~johnm/r/

spatial/

[This o�ers a perspective on spatial interpolation.]

Quantum GIS Development Team 2010. Quantum GIS User Guide(Ver-

sion 1.6.0 â
˘
A

´
ZCopiapÃşâ

˘
A

´
Z). Obtain from http://www.qgis.org/en/

documentation/manuals.html

See also the vignettes that accompany the package sp, describing classes and

methods for spatial data, and overlay and aggregation.

