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The methods of science, with all its imperfections, can be used to improve social, political and 
economic systems, and this is, I think, true no matter what criterion of improvement is 
adopted.  How is this possible if science is based on experiment?  Humans are not electrons or 
laboratory rats.  But every act of Congress, every Supreme Court decision, every Presidential 
National Security Directive, every change in the Prime Rate is an experiment.  Every shift in 
economic policy, every increase or decrease in funding for Head Start, every toughening of 
criminal sentences is an experiment.  Exchanging needles, making condoms freely available, 
or decriminalizing marijuna are all experiments.  . . . In almost all these cases, adequate 
control experiments are not performed, or variables are insufficiently separated.  Nevertheless, 
to a certain and often useful degree, such ideas can be tested.  The great waste would be to 
ignore the results of social experiments because they seem to be ideologically unpalatable. 
[Sagan 1997, pp. 396-397] 

 
There is no more effective way to settle a disputed question than to do an experiment, 
when an experiment is possible.  When fire-walkers walk across hot charcoal and 
emerge unharmed, it provides a pretty effective demonstration that such a thing is 
possible.  When one plant grows like crazy in a bed of compost, while its neighbour 
has no compost and wilts, it seems like a convincing demonstration that compost 
helps growth. It seems convincing even though this is a rather poorly designed 
experiment. 

The aim of experimental design is to ensure that the experiment is able to detect the 
treatment effects that are of interest, and that it uses available resources to get the 
best precision possible.  The choice of design can make a huge difference. 

 

We wish to compare two technicians who will use a pressure tester to compare apple 
firmness.  How should we do the comparison?  Should we give the testers separate samples of 
perhaps twenty apples?  Or should we use one sample of twenty apples, with both technicians 
making firmness measurements on each apple? 

In a clinical trial that compares two different therapies for treating arthritis, right and left hand 
grip strength will be among the outcome measurements.  The measurements are highly 
variable.  Is it useful to increase the precision by making repeated grip strength 
measurements?  Or is the variation in measured grip strength for an individual patient of 
minor consequence relative to variation between patients?  If it turns out to be useful to make 
repeated measurements on individual patients, should the repeat measurements be made at the 
same session, or at different sessions that are separated by a few days or weeks?   

We plan on undertaking an experiment in which trays of fruit are the experimental unit.  In 
each of several coolstores, different treatments will be applied to different trays.  Should we 

                                                 
1 These notes have still to be converted to a free-standing document.  At present the figure numbers 
start with Fig. 13. 



opt for lots of trays with a small number of fruit on each, or for a small number of trays with a 
large number of fruit on each?  Which is the better design? 

The initial discussion will focus on two widely used types of experimental design – 
Completely Randomised Designs, and Randomised Block Designs.  The emphasis will be on 
designing experiments so that we get the best possible value for the resources used.  There’ll 
also be a brief introduction to incomplete block designs, both balanced and approximately 
balanced. 

I begin with definitions of the terminology that will be used through this chapter. 

The Language of Experimental Design 
You will learn about 

a. treatment units and measurement units.  They are not necessarily the same! 

b. randomisation, especially as opposed to haphazard assignment of treatments 

c. replication – genuine replication, effective replication and bogus replication 

d. blocking and other forms of local control 

e. levels of variation – these are sometimes called strata. 

12.1 Multiple Levels of Variation – Blocks 
Let us first of all remind ourselves of the issue that arises when we make multiple 
measurements on an experimental unit.  We have then introduced another, lower, 
level of variation – within experimental units as well as between experimental units.  
One can also group experimental units together into blocks.  Where experimental 
units are grouped together into blocks, blocks become another, now higher, level of 
variation.  The simplest type of one-factor block design, the randomised complete 
block design, has one experimental unit from each of the treatment levels in each 
block, e.g. 

 Block 1 Block 2 Block 3 
Treatments A, B, C A, B, C A, B, C 
N. B. Treatments should be randomly allocated to experimental units, independently for each block 

 
Also possible are block designs where a subset of the treatments appear in each block.  
For example, we might have  

 Block 1 Block 2 Block 3 
Treatments A, B B, C C, A 

 
One treatment has been left out in each block, in a balanced way.  This is a balanced 
incomplete block design.  I have used this type of design for comparing the readings 
of different firmness testing devices on the same fruit.  Each fruit was in effect a 
block.  We did two sets of two readings, one pair with each of the devices, on the one 
fruit. 
Block designs are widely used in agriculture, where the aim is to maximise the precision of 
treatment comparisons.  Thus each block is chosen to be as uniform as possible.  In the 
simplest form of randomised block design, all treatments occur once in each block.  Blocks 
should be sampled from the wider population to which it is intended to generalise results, so 
that they might be on different sites.   
In clinical trials blocks are more often used as a way of making it hard to predict treatment 
allocations for individual patients.  Allocation of treatments to patients is random within 



blocks, subject to devices that achieve a roughly equal numbers in the different treatments.  
(ICH 1998, p.21).  Where a surgical trial involves several different surgeons, blocking may be 
highly desirable as a mechanism for controlling variation.  The patients that are allocated to a 
surgeon form a block, with random allocation to treatments within those blocks. 

12.2 Trade-Offs From Different Design Possibilities 
In order to illustrate some of the different design possibilities, and the possible impact 
on precision, I will demonstrate two ways to do a taste experiment.  Section 12.5 will 
extend these ideas further, with a further example. 

The Standard Deviation of a Difference 
If you take two independent samples of size n, each from distributions with standard 
deviation σ, then 
 
(i)  SD[x1 - z1] = √2 σ  ( = 22 σσ + ) 
(ii)  SE[ zx − ] = √2 σ / n    

A Simple Taste Experiment 
The first is a completely randomised design, of a kind that is sometimes used in 
clinical trials. It was a taste experiment. To get an indication of what panelists think 
about the sweetness of a product, they are asked to mark off their response on a so-
called Likert scale, thus: 

Not sweet enough               Too sweet 

 1  3      x  5  7  9 

One uses a ruler to read off the results.  One way to make this easy is to place the 1 at 
10mm, the 30 at 30mm, and so on.  The x is at about 36mm. A reasonable way to do 
the experiment is to give each person both products.  Here then is a set of results from 
such an experiment: 
   Person 1  2  3  4   5  6   7  8  9 10 11 12 13  14 15 16 17  
4 units  72 74 70 72  46 60  50 42 38 61 37 39 25  44 42 46 56 
1 unit   58 69 60 60  54 57  61 37 38 43 34 14 17  54 32 22 36 
Diff.    14  5 10 12  -8  3 -11  5  0 18  3 25  8 -10 10 24 20 
  

The `units’ were amounts of an additive.  Here (Fig. 13) are boxplots that show the 
spread of results for the two products and for the differences: 
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Fig. 13: Distributions of assessments for the two individual products 
(left panel)compared with the distribution of the difference (right panel
Correlation between the two sets of results leads to a small standard
deviation for the difference.  

 
Notice the very much smaller spread of values for the differences. 
Another way to do the experiment would have been to take 34 people, choose 17 
people at random and given them the first product, and give the other product to the 
remainder.  We thus have two possible types of experiment.  The alternatives – an 
“independent samples” or completely randomised design, and a paired comparison 
design, are shown diagrammatically in Figures 14 and 15. 

one four one four four one four four

one one one four one four four one

four four four one four four four four

one one one one one one four one

four oneone: 1 unit of additive
four: 4 units of additive

Fig. 14: Completely randomised (independent samples) design, i. e. the
34 tasters are allocated at random to one of two groups, in such a way
that there are 17 in each group. Those labelled `one' get one unit of
additive, while those labelled `four' get 4 units of additive.
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1 4 4 1 1 4 4 1

4
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1: 1 unit of additive
4: 4 units of additive

Fig. 15: Paired comparisons (Dependent sanples) design.  Here each of 17 
tasters is given both products.  The order of presentation should be random.
[N.B.: This is a simple example of a block design, with 2 treatments per block.]  

 
We have enough information, in the data from the paired comparison experiment, to 
compare the precision of the two alternative experimental designs.  In the individual 
samples experiment, the SE is √2 SD/√17 = 3.8 . 
 
Independent Samples Experiment  
(2 groups of 17 panelists) 

Paired Samples Experiment (17 panelists) 

SD = 15.7  (pooled estimate; individual 
SDs are 14.6, 16.8) 
SE = 3.8  (individual SEs are 3.6, 4.1) 
SED = 22 8.38.3 + = 5.46 

SD = 10.7  (This is the SD of the 17 
sample 
differences.) 
SE of differences = 2.66 (i.e. 10.7/ 17 ) 

 
Under what conditions is the paired comparison experiment better?  The answer 
hinges on the correlation between the two sets of results.  Fig. 16 summarises this 
information.  If there is a strong correlation, then it pays to pair, or to “match”. 
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Fig. 16: Sweetness for the sample `four' (4 units of additive)
versus Sweetness for the sample `one' (1 unit of additive).  

 



It is useful to look at this experiment in the light of the experimental design principles. 
1. It must be possible to assess the consistency of treatment comparisons, when the 

experiment is repeated. (There should be a valid estimate of the standard error of 
treatment effects.) 

2. Results should be free of bias. 

3. Results should be as precise as possible, given the available resources of time and 
materials. 

A good way to demonstrate that results are repeatable is, not surprisingly, to repeat 
the experiment.  Generally all we insist is that the experimenter assess the extent to 
which results are consistent then they repeat the experiment.  At this point it becomes 
reasonable to expose the work to a harsher test – can other experimenters get similarly 
consistent results that point in the same direction? 

Long ago Fisher . . . recognised that solid knowledge came from a 
demonstrated ability to repeat experiments . . .  This is unhappy for the 
investigator who would like to settle things once and for all, but consistent 
with the best accounts we have of the scientific method. . . . 
[Tukey 1991.] 

Repeatability is right at the heart of science.  There are however weak and strong 
repeatability tests.  The practice of statistics is beginning to reflect distinctions that, in 
the past, have often been ignored. 

Freedom from bias is achieved by making the two samples look totally alike – by 
what the clinical trials people call concealment. 

The matched pairs design greatly assisted precision.  I have described a simple 
example of blocking.  One compares treatments under conditions that are as nearly 
identical as possible. 

12.3 Randomised Controlled Trials 
One day when I was a junior medical student, a very important Boston surgeon visited the 
school and delivered a great treatise on a large number of patients who had undergone 
vascular reconstructions.  At the end of the lecture a young student at the back of the room 
timidly asked, “Do you have any controls?”  Well, the great surgeon drew himself up to his 
full height, hit the desk, and said, “Do you mean did I not operate on half the patients?”  The 
hall grew very quiet then.  The voice at the back of the room very hesitantly replied, “Yes, 
that’s what I had in mind.” Then the visitor’s fist really came down as he thundered “Of 
course not. That would have doomed half of them to their death.”  It was absolutely silent 
then, and one could scarcely hear the small voice ask, “Which half?” 
[Peacock, E. E. 1972. Medical World News Sept 1 1972, p.45.] 

 
What makes it possible to write a long article on controversies in controlled clinical trials 
without writing a much longer article on uncontrolled trials or uninvestigated therapies?  
Essentially this paradox arises because in controlled trials we have a model of perfection and 
we can discuss departures from it with ease.  Without such a model, one tends to emphasise 
only major difficulties --- having swallowed a camel, why strain at a gnat?   
[Mosteller, Gilbert & Lewis, p. 14, in Shapiro & Lewis 1983.] 

By contrast with much agricultural experimentation, the design of a randomised 
controlled trial may be very simple in concept.  In a randomised controlled trial with 
two treatment groups, subjects are randomly assigned to one or other treatment.  The 
randomisation commonly designed so that roughly equal numbers of patients are 
assigned to each treatment.  Complications arise from the ethical and logistical 
difficulties of conducting a properly designed clinical trial.  It is ethical to involve 



patients in a clinical trial only if it is unclear which is the most effective treatment.  A 
clinical trial is both ethical and necessary in those cases where there are differences of 
opinion among medical specialists. 

A minor elaboration of the two-sample trial arises when subjects are matched, or 
when treatment comparisons can be made within subjects. In this case it may be 
possible to perform the analysis on the difference between the responses or on 
log(ratio) of the reponses, or on some other measure of the difference.  The analysis 
then reduces to a single sample analysis.  

The simplicity of the analysis, and perhaps the simplicity of interpretation, may be 
compromised when an adjustment for covariate effects seems necessary.  There are 
particular problems of interpretation when results are different depending on whether 
or not there is a covariate adjustment. 

Proper controls are essential.  Synthetic estrogen (diethylstilbestrol  or DES) 
injections in pregnancy were at one time thought to prevent miscarriage  A 
randomised double-blind study published in 1953 showed no effect, compared with 
placebo injections (Dickmann and Davis 1953).  This result seems to have attracted 
little attention, and DES continued in use for another two decades or more.  This 
unproved therapy later proved to give an excess of cases of vaginal carcinoma and of 
breast cancer (Gehan  & Lemak 1994, p.159.)  Irwig et al. (1999, pp.7-11 and 
elsewhere) give other such examples. 

Randomised controlled trials where there is matching provide a simple example of a 
block design.  The individuals who are matched form a single block. 

The Importance of Strict Protocols 
Randomisation ensures that all units have an equal chance of receiving all treatments.  
This reduces opportunities for unconscious bias in the assignment of subjects to 
treatments.  Also important may be procedures that reduce opportunities for bias 
when treatments are 
applied or results are assessed.  In a clinical trial, the ideal is that neither patients nor 
clinicians should know which treatment has been used.  The broad term `concealment' 
is used for devices that ensure this.  The double blind randomised controlled trial, 
where 
allocations are randomised and neither patient not doctor knows which treatment has 
been assigned, sets the standard for clinical trials. 

Some Noteworthy Clinical Trials 
We have come a huge distance from the standards of evidence of earlier centuries.  
Often effective comparative evidence of the effectiveness of treatments was provided 
as a result of chance occurrence.  Thus Ambroïse Paré (1510-1590) believed from 
what he had read that gunshot wounds ought to be cauterised with scalding hot oil of 
elders to which a little theriac had been added. When unable to get oil of elders, he 
applied a dressing made of yolk of egg, oil of roses and turpentine. To his surprise, 
those who were given the makeshift treatment fared much better. 

John Hunter (1728-1793) described five cases in which, because of delay in seeing the 
patients, he had been unable to follow his standard practice of removing the musket 
balls or shrapnel from gunshot wounds.  All wounds healed promptly, and Hunter 
discovered that ``balls seldom or ever did any harm when at rest''.   One of the earliest 
published studies that has a claim to be a clinical trial was conducted by British navy 



surgeon James Lind in 1753.  Because of the small numbers of subjects, present day 
researchers might prefer to call it a pilot clinical trial.  Lind assigned two scurvy 
victims to each of six treatments 

1. 1 quart of cider per day 
2. 25 gutts of elixir vitriol 3x daily 
3. 2 spoonfuls of vinegar 3x daily 
4. ½ pint of seawater per day 
5. 2 oranges & 1 lemon per day 
6. an electuary (garlic, mustard seed, . . .) recommended by a hospital surgeon. 

 
The seamen on the oranges and lemon did best, to the extent that one of them was 
able to resume duty, and the other was appointed nurse to the remaining 10 scurvy 
patients.   The two seamen who had been given cider showed some improvement. In 
spite of the clear win for the orange and lemon treatment, Lind continued to 
recommend the standard `dry air' treatment. 

Pierre Charles Alexander Louis (1835), compared the outcomes for pneumonia 
patients who had been bled with the outcome for patients who had not been bled.  He 
concluded that there was no appreciable difference in mortality or in duration or in 
duration of illness or in other clinical indicators.  His results were so far out of line 
with general opinion that he had misgivings about publishing them. 

Note the consistency with which these early trials, with all their defects, overturned 
conventional medical wisdom.  Those early experimenters were by and large not 
willing to allow their experimental results to challenge that wisdom.  They were 
inclined to argue that the fault lay with the experimental method, or with their use of 
it.  Indeed the experimental method used for clinical trials has required huge 
refinement to bring it to the point where it is now a credible instrument for 
comparison of treatments. 

The first random allocation of treatments may have been that of Amberson (1931), in 
a study  of sanocrysin in the treatment of pulmonary tuberculosis.   Amberson took 
two carefully matched groups of ten patients each, then tossing a coin to decide which 
patient received which treatment. two carefully matched groups of 12 patients each, 

Diehl et al.'s (1938) trial may have been the first trial that randomly assigned 
individuals to treatments.  A total of 1640 volunteer students were each assigned to 
one of four treatments for the common cold – three different vaccines and a placebo. 
Moreover it was a double blind trial. 

Randomised controlled trials did not become common till the 1950s. A major 
stimulus for the conduct of clinical trials in the United States arose from 1962 
Kefauver-Harris amendments to the United States Food, Drug and Cosmetic Act of 
1938.  Approval of a drug for human use was to require ``adequate and well-
controlled investigations''. 

Today standards for clinical trials are under continual review, a result of extensive and 
well-documented evidence of the misleading results that may be obtained when trials 
do not follow strict protocols.  There is now a huge literature that gives advice on the 
conduct of clinical trials.  See in particular Begg et al. (1996), ICH (1998) and related 
ICH documents, Piantadosi (1997) and Senn (2000), 

There are difficult conduct and analysis issues – the ethics of random allocation, and 
the use of covariate adjustments – on which there may never be complete agreement.  



There remains room for improvement – in getting different researchers to co-operate 
and follow compatible protocols when investigating similar research questions, in 
paying better attention to the time course of results, in the validation of measurement 
procedures and in the further development of analytical methods for bringing together 
results from multiple trials.  Senn (2000) has wider relevance than drug trials. 

The Consequences of Methodological Defects 
Commonly shortcuts are taken.  Schulz et al.(1995) took trials that had been examined 
in 33 meta-analyses, classified them according to methodological quality, and used 
logistic  regression to estimate the bias that resulted from each methodological defect.  
The 
methodological defects examined were inadequate allocation concealment, exclusions 
after  randomisation, and lack of double-blinding.  As an indication of the split 
between categories, 
steps taken to conceal treatment allocation schedules were adequate in 79 trials, 
unclear in 150, and inadequate in 21.  By comparison with trials where steps taken to 
conceal treatment allocation schedules were adequate showed a reduction in the 
treatment effect odds ratios 
reduced by a factor of 0.67 (95% CI 0.60 - 0.75) for trials where the schedule was 
unclear, and by a factor of 0.59 (95% CI 0.48 - 0.73) in trials where the schedule was 
inadequate. 

For trials that are not double-blinded the estimated reduction in odds ratio is a factor 
of 0.83 (95 % CI 0.71 - 0.96).  Overall, the evidence is that inadequacies in 
procedures may, as other authors have claimed, lead to serious overestimates of 
treatment effects.  Crude attempts at meta-analysis that do not consider trial quality 
may overestimate treatment effects. 

I am not aware of studies of the agricultural literature that attempt to estimate bias as a 
function of methodological adequacy. 

Drug Trials 
Many different designs are used in drug trials.  One distinction is between parallel 
designs and changeover designs.  In parallel designs each patient receives one 
treatment only. In a changeover design each patient receives two or more of the 
treatments in turn, and the response is recorded following each treatment.  Thus a 
changeover design allows comparisons of the results of different treatments on the 
same patients. 
 
Here is a three-treatment parallel design, with four patients per treatment. Each cell in 
the table is a different patient. 
 

Treatment A   Treatment B   Treatment C  
A1   B1   C1 
A2   B2   C2 
A3   B3   C3 
A4   B4  C4 

 
Two possible changeover designs are 

1. Each patient receives the three treatments A, B, C.  The order is randomised. 



2. Each patient receives the four treatments A, B, C, D.  Now however we note 
that the treatments may appear in each of the orders ABC, ACB, BAC, BCA, 
CAB, CBA.  We randomly assign two patients to each of these orders of 
treatment. 

 
The changeover design may look good, until we start to worry about carry-over 
effects.  With 12 patients, either of the above designs gives 36 results, instead of the 
12 that we get from the parallel design.  In addition we can compare the effects of 
each pair of drugs by comparing effects on the same patients.  So comparisons should 
be precise.  Unfortunately however, we do have to worry about carry-over effects.  
The second design makes it possible, under certain assumptions, both to compare 
drugs and to estimate any effect from order.  We lose degrees of freedom in order to 
estimate order effects, losing some of the advantage we had gained by testing 
different drugs on the same patient. 
 

For further discussion see Senn (1998). 

Ethical Issues in Experiments with Human Subjects 
It is unethical to conduct a trial unless the outcome is in doubt.  If there is doubt, the 
proper ethical action is to initiate a clinical trial.  Consider a life-threatening disease 
where some specialists give one treatment and some another, with no convincing 
evidence to support the choice.  If one is superior to another, the patients of half the 
specialists will get the inferior treatment.  For convenience, assume this is about half 
of the patients.  The ethical approach is, for the duration of a clinical trial, to make the 
assignment randomly.  Half of the patients will still be disadvantaged, but only until 
such time as the trial shows a clear difference.   

There are strict legal requirements for trials with human (and also for animal) 
subjects.  Participants must give informed consent. Detailed requirements are set out 
in Therapeutic Goods Administration (1991) and in ICH (1996).  There are potential 
ethical issues that go beyond the considerations in these documents.  Poor trial design 
or analysis inadequacies may vitiate results, depriving future patients of the use they 
might have received from results from a well-conducted trial.  

12.4 Allocation of Resources 
Here I return to the questions I asked at the beginning. 

1. We have an experiment where a tray of fruit is the experimental unit.  What is 
the best way to increase precision – to increase the number of trays, or to 
increase the number of fruit? 

2. In a randomised trial for comparing two treatments for arthritis, with grip 
strength as the main outcome measure, what is the best way to increase 
precision – to increase the number of patients, or the number of observations 
per patient? 

3. In a randomised controlled trial for comparing two treatments for epileptic fits, 
with number of fits per two-week period as the main outcome measure, what 
is the best way to increase precision?  Do we need more patients, or more 
observations on the patients that we have? 

 



I will use the third example (from Thall & Vail 1990) for illustration.  Data are from a 
randomised controlled trial intended to test the usefulness of progabide in controlling 
epileptic fits.  For each of 28 patients in the placebo group and 31 patients in the 
progabide group, there are four sets of differences from baseline, one for each of four 
two-weekly periods2.  Here is the analysis of variance table: 

 Sum of squares d.f. Mean 
square 

Difference between 
treatments 

6.4 1 6.38 

Between patients 162.0 57 2.84 

Within patients 117.8 177 0.665 

 

If there were no between patient component of variation, additional to what can be 
explained by differences at different two-week periods for the same patient, then the 
between patients mean square and the within patients mean square would be, to within 
statistical variation, equal.  The difference between 2.84 and 0.665, i.e. 2.84-0.665 = 
2.175, is the part that is explained by the between patient component of variation.  
The between patient mean square is thus in two parts 

1. Due to the between patient component of variance = 2.175 
Then as there are four values for each patient, the between patient component 
of variance is 2

bs =  2.175/4 

2. Due to the within patient component of variance = s2 = 0.665 

The variance of the mean for one patient is then 2
bs + ms /2  = 0.665 + 0.544/m  

The second part, i.e. 0.544/m, already with m = 4 contributes a relatively small part of 
the total, variance.  There is very limited scope for reducing 2

bs + ms /2  by increasing 

m.  The variance of the mean of n patients is  ( 2
bs + ms /2 )/n.  In order to reduce it 

substantially, we need to increase n. 

We will meet the same formula in the discussion of sample size calculations for 
cluster samples.  There m is the cluster size.  The quantity that we have called 2s  will 
be written 2

ws .  (Here w = within). 

The take-away message is that we can always reduce the standard error of the mean 
(for the placebo group or for the treatment group) by increasing the number of 
patients.  The variance is inversely proportional to n, with the standard error inversely 
proportional to n .  There are severe limits to our ability to reduce this variance by 
increasing the number of observations per patient. 

Note: We have ignored the complication that the measurements are made in four 
successive two-weekly periods.  There is likely to be a relatively stronger correlation 
between successive two-week periods (between 1&2, 2&3, and 3&4), a weaker 
correlation between 1&3 and between 2&4, and a weaker correlation still between 

                                                 
2 The baseline was established by following all patients, initially, for an eight-week pre-treatment 
period.  The data are differences, on a square root scale, from (baseline count)/4. 



1&4.   The conclusions above are affected only to the extent that increasing m, while 
decreasing the variance, will not decrease it proportionately to m. 

*12.5 Two Ways to Compare Instruments for Measuring Fruit 
Firmness 
Here we extend the paired comparison idea to >2 treatments.  There are two ways one 
could do this.  There could be more than two treatments per block.  Or one can go to 
an experiment where there is one block for every pair of treatments.  Again, I want to 
start by talking about a less precise complete randomised design experiment that we 
could have, but did not, do. 

The experiment I now describe was designed to compare instruments, known as 
penetrometers, for measuring fruit firmness.  My description, and the data that I will 
present, come from the larger experiment described in Harker et al. (1996).  Dr. 
Harker had charge of the experiment. I helped design it, and did the analysis. 

A dial records the pressure that is needed for the probe, fixed via a spring to the 
handle, to penetrate the fruit.  The aim of the experiment was to compare four 
different designs of penetrometer, plus another piece of equipment designed on a 
different principle that was known as a twist tester.  I will describe and compare two 
experiments – the experiment we in fact did, and a different simpler experiment that 
we could have done.  Just for simplicity, let’s assume that there were four machines to 
compare.   In the experiment we actually did, we compared either 10 or 13 device-
operator combinations. 

A Complete Randomised Design 
Here is an experiment that we might have done (Fig. 17): 

3 3 1 1 1 4

3 3 1 1 1 4
3 3 1 1 1 43 3 1 1 1 4

4 2 2 2 4 3

4 2 2 2 4 3
4 2 2 2 4 34 2 2 2 4 3

Fig. 17: A Complete Randomised Design for comparing four instruments for measuring 
fruit firmness.  In order to improve accuracy for the result for each fruit we make four 
measurements per fruit.  

The experimental procedure is to take 12 fruit, and divide them up randomly into four sets of 
three.  The first set is tested with penetrometer 1, the second with penetrometer 2, and so on.  
In the technical jargon, this is a completely randomised design.  I’ve made four measurements 
for each treatment unit.  We could get one average for each fruit, making the data very easy to 
analyse.  

The All Possible Pairs Experiment 
Here (Fig. 18) is the “all possible pairs” experiment that we in fact did, though we had 
9 (in 1991) or 13 (in 1992) device-operator combinations, rather than just 4 devices: 
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2 3 4

Fig.  18 : A design for an experiment to compare four instruments for measuring 
fruit firmness.  The design makes each of the six possible pairs of comparisons: 
1 versus 2, 1 versus 3, and so on.  Each measurement was repeated twice on 
each fruit, allowing an assessment of the variability for one instrument on the 
same fruit.

 
Each of the measurements was taken twice.  This was not strictly necessary. The “all possible 
pairs” experiment has a built-in redundancy that allows us to assess repeatability. In addition 
to the direct comparison between 1 and 2, there are the comparisons : 

1 versus 3 and 3 versus 2  (Then y1 - y2 = y1 - y3 + y3 - y2.) 
1 versus 4 and 4 versus 2 
1 versus 3, 3 versus 4, and 4 versus 2 
1 versus 4, 4 versus 3, and 3 versus 2 

The details are not important.  What is important is that are several different ways in 
which we can get a comparison between machine 1 and machine 2. This built-in 
redundancy would have allowed us to get an estimate of the standard error of 
treatment effects, even if we’d done just one repeat of the total experiment. 

So both experiments satisfy the requirement of demonstrable repeatability, at least to 
the extent that we could assess the consistency of results when the experiment was 
repeated by the same group of scientists on the same batch of fruit on the same day. 
Fig. 19 shows one set of results: 
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Fig. 19: Results from an experiment that compared device-operator 
combinations for measuring fruit firmness. Results were for firmness 
of apples at harvest, 1991.   

This demonstrated what was already known, that one can get a huge variation 
between hand operators.  Operators are, though, relatively consistent within 
themselves.  The EPT pressure tester, which is also hand operated, seems less affected 



by the operator, at least for the relatively firm apples.  We were however rather more 
interested in the variability.  We’ll look at that shortly.  

Accuracy 
I will make a comparison with the other type of experiment, the experiment we did 
not do.  If we’d used a complete randomised design, it would have taken 3.7 times as 
many fruit to get the same precision, for comparing means of device-operator 
combinations.  People would have been punching away at penetrometers almost four 
times as long.  Here are details: 

  Number of Fruit 

  All possible 
pairs design 

Complete 
Randomised 
Design 

Kiwifruit 
1991 

Harvest 90 90 × 9.3 

 Storage 90 90 × 7.3 

Apples 1991 Harvest 90 90 × 1.5 

 Storage 90 90 × 3.7 

Kiwifruit 
1992 

Harvest 156 156 × 5.6 

 Storage 156 156 × 1.7 

Apples 1992 Harvest 156 156 × 1.1 

 Storage 156 156 × 2.6 

Table 1:  Comparison of number of fruit required in “all possible pairs” design with 
number required in a (less efficient) complete randomised design. 

 
Observe that when fruit are firmer, within fruit variation is relatively more similar to between 
fruit variation.  So the gain from the “all possible pairs” design is less marked. 

Which instrument was the most accurate? 
 

 Harvest Storage 

 1991 1992 1991 1992 

Instron .11 .17 
(.10) 

.18 
(.10) 

.10 

M. Press .13 
(.10) 

– .072 
 

– 

Hand .082 .10 .071 .082 
(.062) 

EPT .085 – .080 – 



(.07) 
Twist – .073 – .092 

Table 2: The above figures are standard deviation estimates, when 
there are repeated within fruit measurements using that device.  The 
bracketed figures are robust estimates of standard deviation.  These are 
given only if the robust estimate is more than 10% less than the crude 
estimate. 

 

Points to emerge are that the hand machines do well, providing one stays with a single 
operator, and that the Instron seems prone to occasional aberrant readings. 

What did we learn? 
Experimentation is guided learning.  What did we learn? 

One important point was that we’d not thought too carefully about the way that 
firmness may vary around the equator of the apple or kiwifruit.  The indications from 
our results are that such variation is inconsequential, and certainly much smaller than 
fruit to fruit variation.  However I’m sure that some of the variation is systematic 
within fruit variation.  If we knew more about it, we could come up with a more 
precise design.  Someone (Roger Harker or someone else) may in future do such an 
experiment.  For the present, much more interesting experiments are occupying his 
attention. Thus he has been fixing small radio receivers inside teeth, to record the 
noises that people make when they bite.   

These results can help illuminate what other researchers have found or failed to find. 
Thus Bongers (1992) found no operator differences.  But 

• Bongers used soft apples (50 - 58N) 
• Bongers used an imprecise design. 

 
There are many reasons why researchers may fail to find an effect!  Be careful how 
you interpret negative results.  Two other older papers did find operator differences.  

12.6 Multiple Factors 
In the above, we have focused on the kinds of complication that arise when we 
introduce multiple levels of variation, albeit in a fairly simple way.  We may also 
have multiple factors.  In fact, experiments that examine all combinations (or perhaps 
a subset of combination) of levels of several factors in a systematic way have huge 
advantages over experiments that vary levels of one factor at a time. Replication can 
be reduced to a minimum (e.g. two replications of the total experiment), or may not 
even be necessary, when there are three or more factors.  Technically, what happens is 
that high-order interactions, i.e. highly complicated forms of interaction between 
factors that are assumed unlikely, are used to estimate the random error.  This is a 
conservative procedure; it will tend to over-estimate the error variance. 

Hidden Replication in Multi-Factor Experiments 
Replication is not an end in itself.  It is designed to ensure that there are enough degrees of 
freedom to estimate variances that are relevant to the calculation of standard errors of 
parameter estimates and of fitted values.  Especially in multi-factor experiments, it is often 
possible to get the needed degrees of freedom from within the experimental design, without 



formal replication of the total design.  The degrees of freedom that one needs are available 
from within a design in which each combination of factor levels may occur once only.  It may 
be helpful to speak of this as `hidden replication'. 
In multi-factor experiments that have many factors, some factors, and/or their interactions, 
will have little or no effect.  Suppose that each combination of factor levels has a separate 
experimental setup.  Then degrees of freedom that correspond to factor interactions and main 
effects that appear negligible are available for the estimation of error.  There is a risk that the 
error estimate will be biased upwards because these factors or interactions really did have 
some small effect.  Often, the benefits outweigh any actual or potential loss of precision. 

Thus consider an experiment where a fixed amount of water is put in a jar in a microwave 
oven and heated.  The main aim is to check out the effect of position on the turntable – near 
the centre or on the edge. Rather than just repeating it, you do it once in a red plastic container 
and once in a yellow plastic container. If as you expect the different colour of the containers 
makes no difference, this is just as good as repeating it with the same colour of container.  At 
the same time you have checked out that the colour of the plastic really does make no 
difference.  Perhaps there was a sneaking suspicion that the two plastics were slightly 
different materials.  
 
Or consider heating water in an electric jug for varying times. The increase in temperature is 
measured.  The results are set out in a table: 

Time (sec.) . .  
Temperature change (°C) . . . 

 
Over a small range of times, one expects the temperature increase to be proportional to the 
time in the oven, resulting in a straight line relationship.  So the different points on the line 
can all be seen as checking out the relationship. Having the different points is as good as 
having replicates all at the one temperature, providing the points are obtained quite 
independently of one another. The pattern must be regular enough that departures from it 
stand out with reasonable clarity. 
 
Note however that the measurement at different times of effects that develop or evolve over 
time (e.g. growth) does not give hidden replication.  The points are not independent.  The 
present measurement depends to an extent on the measurement at the previous time-point. 
 
Question: Which of the following have satisfactory hidden replication? 

1. Apples, all of similar firmness, are dropped from ever greater heights and the extent of 
bruising noted.   
[Question:  Suppose two  assessments, by two different technicians, are available for each 
apple. Does that have anything to do with replication?] 

2. Asparagus plants are set out in plots 1, 2, ..., side by side along a row, with one plot for each 
different level of fertilizer.  There is a random allocation of fertilizer level to plot. 

3. Asparagus plants are set out in plots 1, 2, ..., side by side along a row.  Plot 1 gets the highest 
level of fertiliser, plot 2 gets the next highest level, and so on. 

4. The design is as in 3., but this is repeated for several rows. A coin is tossed to decide the end 
of each row at which to start with the highest level of fertilizer.  
[Should there be an equal number of rows in each direction?] 

5. Two graphs, one for each variety of apple, show how a  biochemical measurement changes as 
the season progresses.  The aim is to compare the patterns of change for the two varieties.  
Each result, for each variety at each time, is a single bulked measurement from 10 apples. 

6. In a spacing trial, apple trees are arranged in concentric circles, in such a way that the inter-
tree spacing increases as one moves out from the centre. 

7. The layout 6 is repeated several times.   
[Is this really necessary?] 



Large is good. Is larger better? 
One should not make experiments too large.  Very large experiments bring a seriously 
increased risk that the experiment will not go according to plan.  On balance, unless it 
takes a long time to give results, it is usually best to spread resources over several 
experiments.  The experimenter may learn something from the initial experiments that 
leads to carrying out quite different subsequent experiments.   

In general reduction in the number of replicates, providing it can be achieved while 
still retaining enough degrees of freedom to estimate error, is preferable to reducing 
the number of factors. Unless the experimental methodology is well established, or 
cheap to repeat, it is well to do a pilot experiment first. This is particularly important 
for large experiments. The initial experiment may aim to identify major effects only. 
Various elaborations on 2n factorial experiments are available for this purpose. 

The initial experiment may aim to identify major effects only.  It may try to narrow 
down the range of factors to be investigated.  Various elaborations on 2n factorial 
experiments are popular for this purpose. 

*12.7 Fractional factorial designs 
Many of the designs used in industry, and suitable also for laboratory use, are an 
adaptation of the 2n factorial design.  These designs are useful for exploration, for 
determining which factors should be examined further.  They are not usually intended 
to provide final answers. 
 
Consider for example a 24 design.  There are four factors, each at two levels.  For 
example, you are studying the heating of water in a microwave oven.  The four factors 
are: 

1. Location on turntable: Centre / Outside 

2. Is container covered: Yes / No 

3. Nature of material of container: Plastic / Glass 

4. Shape of container: Tall and narrow / Low and squat 

There are 2 × 2 × 2 × 2 = 16 combinations, and it would be quite reasonable to look at 
all 16 combinations of factor levels. 

With factorial experiments where the number of factors is large (say > 5), replication 
happens without planning for it.  It is likely that one or more of the factors will have 
negligible effect.  Results from repeating the experiment over levels of that factor give 
what are, in effect, 
replicate results.  Or if all main effects are substantial, certain of the interaction effects 
will be so small that they can be neglected.  This makes it possible, by mathematical 
juggling, to get `effective replication'. Factorial experiments have surprising bonuses. 

Often 2n experiments are used for initial `look see' purposes.  The aim is to pick out 
the one or two factors, or perhaps combinations of two factors, that have the major 
effect.  Even with just three or four factors, it may not be necessary to replicate – 
second and/or third order interactions can be used to estimate “error”.  The aim will 
be to determine which factor effects and interactions have a substantial effect and 
should be investigated first. 
In fact for an initial `look see' we might decide, in the above experiment in heating water in a 
microwave oven, that we'd like to get away with fewer units.  We'd like to know which 



factors should be investigated further.  It is possible to do an experiment, using just half of the 
full sixteen units, that will provide limited information.  Such an experiment is known as a 
half factorial of a 24.  The trick lies in knowing which eight, out of the total of 16 
combinations of factor levels, should be chosen. 

There are various elaborations of 2n  designs that add a small number of further design 
points.  An additional central point, with each factor midway between its low and high 
levels, is often used. 

*12.8 Further Issues in the Design and Analysis of Experiments 

Response surface designs 
Where two or more factors are quantitative, results are appropriately presented as a 
response surface.  Special design considerations arise, on which there is a large 
literature. 

The analysis should try to identify such features of the shape of the response surface 
as the data allow.  Often it is possible to make only gross distinctions, to determine 
whether it is shaped like a plane, like a saucer, like a hill, like a saddle, or like a hill 
with a plateau.  

If the fitted surface is three-dimensional and provides a good fit to the shape of the 
response surface consider presenting it as a contour plot.  Contour plots give level 
contours on the surface.  Problems of perspective make it difficult or impossible to 
read precise information from wireframe diagrams.  Contour plots may be a better 
alternative. 
Researchers will often use significance tests to compare results from design points, two at a 
time.  This makes for numerous tests, and loses the power that response surface analysis 
offers to detect effects.  It also treats the design points as though they are somehow special.  
Usually they have been chosen only to give a reasonable spread over the ranges of factor 
levels that are of interest.  The experiment was looking for the total pattern of response, and 
chose these particular design points as narrow windows into a view of the response surface.  
The aim of the analysis should be to enlarge these windows as much as possible, to get a 
picture of the whole surface. 

Analysis of Unbalanced Experimental Data 
Often the unbalance results from a small number of missing values. One then inputs 
these as missing values and the analysis proceeds as normal.  Estimates are unbiased, 
but analysis of variance residual mean squares are biased downwards. 

REML (Residual Maximum Likelihood) provides an output similar to analysis of 
variance when the unbalance is too great for the satisfactory use of an analysis of 
variance with missing values. 

Where the unbalance is severe, Quantile-Quantile plots provide a means for 
identifying data points that stand out as different from the rest. 

Quantile-Quantile Plots 
Normal probability and other quantile-quantile (Q-Q) plots check whether data follow 
some assumed distribution.  Normal probability plots check whether the data follow a 
normal distribution.  They are often used to examine residuals from regression or 
from analysis of variance.  The data values, or the values of the residuals are taken in 
order.  Assume there are n values.  Along the x-axis one marks the normal deviates 
that correspond to cumulative probabilities (i-0.375)/(n+0.25), i = 1, 2 . . . , n. The 



lowest data value is plotted against the first of these points, the next lowest against the 
next point, and so on.  If the data really are from a Normal distribution then, aside 
from random sampling variation, the points lie close to a straight line.  The effect of 
random sampling variation is a difficulty in the use of these plots when the number n 
of sample points is small.  One needs to calibrate the eye by examining a number of 
plots of data that have been generated to be random normal.  Fig. 19 shows two 
probability plots, one for random normal data and the other for data in which one 
value is clearly an outlier. 
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Fig. 20: Normal probability plots: for random normal data, 
and for data with outlier. 

 
 
Here are a couple of specific possibilities for the appearance that a normal probability 
plot may present: 

1. The points lie on a curve rather than on a line.  This is what one expects if the 
distribution is e.g. lognormal or gamma rather than Normal. 

2. The points fall on two or more distinct lines or curves. This is what one 
expects if the data is from two or more distributions, e.g. two Normal 
distributions with different means and/or with different variances. 

Where the data is from two Normal distributions with quite different means one 
expects two well separated parallel lines, one for a set of ``low'' data values, and one 
for a set of ``high'' data values. 

Where one distribution has both a larger mean and a larger standard deviation than the 
other, the points tend to separate out onto two lines.  The second of the lines will have 
a higher slope than the first.  If most points are from one distribution, with just a small 
number of points from another distribution, they may show up as `outliers'. 

Datasets of perhaps six or nine points allow only very limited inferences, of the type 
just noted.  The patterns must be very clear if they are to stand out above against 
random variation. 

The best way to get an idea of the effect of sampling variation on a Q-Q plot is to take 
repeated samples of the requisite size from a Normal distribution, and examine the Q-
Q plots.  Examination of repeated plots for random normal samples helps calibrate the 
eye!  In small samples, the plot may be quite irregular.  In large samples, it will be 
close to a line. 



Specific forms of Spatial Dependence 
If spatial or temporal variation can be modelled, this has implications both for design 
and analysis.  Row and column designs are a generalization of Latin squares that are 
appropriate when plot effects can be expressed as the sum of a row and of a column 
effect.  Row and column designs aim to allow for field fertility gradients in both the 
row and column directions.  See Williams & Matheson (1997) and John & Williams 
(1995).  Software is available that will generate efficient row and column designs.  
More generally, in experiments that have a spatial layout (e.g. in field or storage 
chamber or sensory experiments), plots that are close together may be more similar 
than those that are widely separated in ways that can be modelled.  Here the design 
issues seem not to have been much explored.  

12.9 Design Questions – Examples to Ponder 
1. A commercial supplier of processed chicken intends to change its order forms, to make them more 
customer friendly.  It has three alternative new form designs to test.  Design a comparative trial, which 
can be implemented with minimum interference with current procedures, for deciding between the 
three forms.  What would you use as outcome variables? 

2. Several of your customers have complained about the form and have offered help from their staff in 
improving it.  One of them suggests an experiment with a block design, i.e. each person who orders 
chicken tries out all three forms.  Can you make this work?  They do not, of course, want to fill out 
three different forms for the same order.  In any case, this would probably not work, as it might be 
much easier to fill in whichever form were filled out after the first. 

3. A commercial firm, with a number of branches nationwide, is considering sending regular 
newsletters to customers, believing that this will lead to increased sales and greater customer loyalty. 
However they want to be sure that the newsletters do serve their intended purpose, and are prepared to 
undertake an experiment where the initial mailings go only to a subset of customers. The firm is willing 
to wait for up to a year for results.  Customers in the same city might become aware of any different 
treatment for other customers in the same city, and this might limit your choice of design.  What design 
would you suggest? 

4. An advertising firm wishes to determine which of two TV advertisements is more effective. Suggest 
a design for an experiment. 
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