
Chapter 10 Exercises 1

Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (May 1, 2010)

Preliminaries

> library(lme4)

> library(DAAG)

The final two sentences of Exercise 1 are challenging! Exercises 1 & 2 should be asterisked.

Exercise 1
Repeat the calculations of Subsection 2.3.5, but omitting results from two vines at random.
Here is code that will handle the calculation:

n.omit <- 2

take <- rep(TRUE, 48)

take[sample(1:48,2)] <- FALSE

kiwishade.lmer <- lmer(yield ~ shade + (1|block) + (1|block:plot),

data = kiwishade,subset=take)

vcov <- show(VarCorr(kiwishade.lmer))

gps <- vcov[, "Groups"]

print(vcov[gps=="block:plot", "Variance"])

print(vcov[gps=="Residual", "Variance"])

Repeat this calculation five times, for each of n.omit = 2, 4, 6, 8, 10, 12 and 14. Plot (i)
the plot component of variance and (ii) the vine component of variance, against number
of points omitted. Based on these results, for what value of n.omit does the loss of vines
begin to compromise results? Which of the two components of variance estimates is more
damaged by the loss of observations? Comment on why this is to be expected.

For convenience, we place the central part of the calculation in a function. On slow
machines, the code may take a minute or two to run.

> trashvine <- function(n.omit=2)

+ {

+ k <- k+1

+ n[k] <- n.omit

+ take <- rep(T, 48)

+ take[sample(1:48, n.omit)] <- F

+ kiwishade$take <- take

+ kiwishade.lmer <- lmer(yield ~ shade + (1 | block) + (1|block:plot),

+ data = kiwishade, subset=take)

+ varv <- as.numeric(attr(VarCorr(kiwishade.lmer), "sc")^2)

+ varp <- as.numeric(VarCorr(kiwishade.lmer)$`block:plot`)
+ c(varp, varv)

+ }

> varp <- numeric(35)

> varv <- numeric(35)

> n <- numeric(35)

> k <- 0

> for(n.omit in c( 2, 4, 6, 8, 10, 12, 14))

+ for(i in 1:5){

+ k <- k+1
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+ vec2 <- trashvine(n.omit=n.omit)

+ n[k] <- n.omit

+ varp[k] <- vec2[1]

+ varv[k] <- vec2[2]

+ }

We plot the results:
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Figure 1: Within, and between plots variance estimates, as functions of the number of
vines that were omitted at random

As the number of vines that are omitted increases, the variance estimates can be
expected to show greater variability. The effect should be most evident on the between
plot variance. Inaccuracy in estimates of the between plot variance arise both from
inaccuracy in the within plot sums of squares and from loss of information at the between
plot level.

At best it is possible only to give an approximate d.f. for the between plot estimate
of variance (some plots lose more vines than others), which complicates any evaluation
that relies on degree of freedom considerations.

Exercise 2
Repeat the previous exercise, but now omitting 1, 2, 3, 4 complete plots at random.

> trashplot <- function(n.omit=2)

+ {

+ k <- k+1

+ n[k] <- n.omit

+ plotlev <- levels(kiwishade$plot)

+ use.lev <- sample(plotlev, length(plotlev)-n.omit)

+ kiwishade$take <- kiwishade$plot %in% use.lev

+ kiwishade.lmer <- lmer(yield ~ shade + (1 | block) + (1|block:plot),

+ data = kiwishade, subset=take)

+ varv <- as.numeric(attr(VarCorr(kiwishade.lmer), "sc")^2)

+ varp <- as.numeric(VarCorr(kiwishade.lmer)$`block:plot`)
+ c(varp, varv)

+ }

> varp <- numeric(20)
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> varv <- numeric(20)

> n <- numeric(20)

> k <- 0

> for(n.omit in 1:4)

+ for(i in 1:5){

+ k <- k+1

+ vec2 <- trashplot(n.omit=n.omit)

+ n[k] <- n.omit

+ varp[k] <- vec2[1]

+ varv[k] <- vec2[2]

+ }

Again, we plot the results:
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Figure 2: Within, and between plots variance estimates, as functions of the number of
whole plots (each consisting of four vines) that were omitted at random.

Omission of a whole plot loses 3 d.f. out of 36 for estimation of within plot effects, and
1 degree of freedom out of 11 for the estimation of between plot effects, i.e., a slightly
greater relative loss. The effect on precision will be most obvious where the d.f. are
already smallest, i.e., for the between plot variance. The loss of information on complete
plots is inherently for serious, for the estimation of the between plot variance, than the
loss of partial information (albeit on a greater number of plots) as will often happen in
Exercise 1.

Exercise 3
The data set Gun (MEMSS package) reports on the numbers of rounds fired per minute,
by each of nine teams of gunners, each tested twice using each of two methods. In the
nine teams, three were made of men with slight build, three with average, and three with
heavy build. Is there a detectable difference, in number of rounds fired, between build
type or between firing methods? For improving the precision of results, which would be
better – to double the number of teams, or to double the number of occasions (from 2 to
4) on which each team tests each method?

It probably does not make much sense to look for overall differences in Method; this
depends on Physique. We therefore nest Method within Physique.
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> library(MEMSS)

> Gun.lmer <- lmer(rounds~Physique/Method +(1|Team), data=Gun)

> summary(Gun.lmer)

Linear mixed model fit by REML

Formula: rounds ~ Physique/Method + (1 | Team)

Data: Gun

AIC BIC logLik deviance REMLdev

143.0 155.6 -63.48 133.5 127.0

Random effects:

Groups Name Variance Std.Dev.

Team (Intercept) 1.0909 1.0444

Residual 2.1797 1.4764

Number of obs: 36, groups: Team, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) 23.5889 0.4922 47.92

Physique.L -0.9664 0.8525 -1.13

Physique.Q 0.1905 0.8525 0.22

PhysiqueSlight:MethodM2 -8.4500 0.8524 -9.91

PhysiqueAverage:MethodM2 -8.1000 0.8524 -9.50

PhysiqueHeavy:MethodM2 -8.9833 0.8524 -10.54

Correlation of Fixed Effects:

(Intr) Phys.L Phys.Q PS:MM2 PA:MM2

Physique.L 0.000

Physique.Q 0.000 0.000

PhysqSl:MM2 -0.289 0.353 -0.204

PhysqAv:MM2 -0.289 0.000 0.408 0.000

PhysqHv:MM2 -0.289 -0.353 -0.204 0.000 0.000

A good way to proceed is to determine the fitted values, and present these in an interaction
plot:

> Gun.hat <- fitted(Gun.lmer)

> interaction.plot(Gun$Physique, Gun$Method, Gun.hat)

Differences between methods, for each of the three physiques, are strongly attested. These
can be estimated within teams, allowing 24 degrees of freedom for each of these compar-
isons.

Clear patterns of change with Physique seem apparent in the plot. There are however
too few degrees of freedom for this effect to appear statistically significant. Note however
that the parameters that are given are for the lowest level of Method, i.e., for M1. Making
M2 the baseline shows the effect as closer to the conventional 5% significance level.

The component of variance at the between teams level is of the same order of mag-
nitude as the within teams component. Its contribution to the variance of team means
(1.0442) is much greater than the contribution of the within team component (1.4762/4;
there are 4 results per team). If comparison between physiques is the concern; it will
be much more effective to double the number of teams; compare (1.0442+1.4762/4)/2
(=0.82) with 1.0442+1.4762/8 (=1.36).
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Exercise 4
*The data set ergoStool (MEMSS package) has data on the amount of effort needed to
get up from a stool, for each of nine individuals who each tried four different types of
stool. Analyse the data both using aov() and using lme(), and reconcile the two sets of
output. Was there any clear winner among the types of stool, if the aim is to keep effort
to a minimum?

For analysis of variance, specify

> aov(effort~Type+Error(Subject), data=ergoStool)

Call:

aov(formula = effort ~ Type + Error(Subject), data = ergoStool)

Grand Mean: 10.25

Stratum 1: Subject

Terms:

Residuals

Sum of Squares 66.5

Deg. of Freedom 8

Residual standard error: 2.883141

Stratum 2: Within

Terms:

Type Residuals

Sum of Squares 81.19444 29.05556

Deg. of Freedom 3 24

Residual standard error: 1.100295

Estimated effects may be unbalanced

For testing the Type effect for statistical significance, refer (81.19/3)/(29.06/24) (=22.35)
with the F3,24 distribution. The effect is highly significant.

This is about as far as it is possible to go with analysis of variance calculations. When
Error() is specified in the aov model, R has no mechanism for extracting estimates.
(There are mildly tortuous ways to extract the information, which will not be further
discussed here.)

For use of lmer, specify

> summary(lmer(effort~Type + (1|Subject), data=ergoStool))

Linear mixed model fit by REML

Formula: effort ~ Type + (1 | Subject)

Data: ergoStool

AIC BIC logLik deviance REMLdev

133.1 142.6 -60.57 122.1 121.1

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 1.7755 1.3325

Residual 1.2106 1.1003

Number of obs: 36, groups: Subject, 9
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Fixed effects:

Estimate Std. Error t value

(Intercept) 8.5556 0.5760 14.854

TypeT2 3.8889 0.5187 7.498

TypeT3 2.2222 0.5187 4.284

TypeT4 0.6667 0.5187 1.285

Correlation of Fixed Effects:

(Intr) TypeT2 TypeT3

TypeT2 -0.450

TypeT3 -0.450 0.500

TypeT4 -0.450 0.500 0.500

Observe that 1.1002952 (Residual StdDev) is very nearly equal to 29.06/24 obtained from
the analysis of variance calculation.

Also the Stratum 1 mean square of 66.5/8 (=8.3125) from the analysis of variance
output is very nearly equal to 1.33252 +1.1002952/4 (= 2.078) from the lme output.

Exercise 5*
In the data set MathAchieve (MEMSS package), the factors Minority (levels yes and no)
and sex, and the variable SES (socio-economic status) are clearly fixed effects. Discuss
how the decision whether to treat School as a fixed or as a random effect might depend
on the purpose of the study? Carry out an analysis that treats School as a random effect.
Are differences between schools greater than can be explained by within school variation?

School should be treated as a random effect if the intention is to generalize results to
other comparable schools. If the intention is to apply them to other pupils or classess
within those same schools, it should be taken as a fixed effect.

For the analysis of these data, both SES and MEANSES should be included in the
model. Then the coefficient of MEANSES will measure between school effects, while the
coefficient of SES will measure within school effects.

> library(MEMSS)

> MathAch.lmer <- lmer(MathAch ~ Minority*Sex*(MEANSES+SES) + (1|School),

+ data=MathAchieve)

> options(width=90)

> MathAch.lmer

Linear mixed model fit by REML

Formula: MathAch ~ Minority * Sex * (MEANSES + SES) + (1 | School)

Data: MathAchieve

AIC BIC logLik deviance REMLdev

46344 46441 -23158 46308 46316

Random effects:

Groups Name Variance Std.Dev.

School (Intercept) 2.5118 1.5849

Residual 35.7895 5.9824

Number of obs: 7185, groups: School, 160

Fixed effects:

Estimate Std. Error t value

(Intercept) 12.7992 0.1791 71.45

MinorityYes -2.6055 0.2791 -9.33

SexMale 1.2773 0.1862 6.86

MEANSES 2.2365 0.5039 4.44
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SES 2.5085 0.1853 13.54

MinorityYes:SexMale -0.4623 0.3757 -1.23

MinorityYes:MEANSES 1.4385 0.6837 2.10

MinorityYes:SES -1.1007 0.3188 -3.45

SexMale:MEANSES 0.5741 0.5740 1.00

SexMale:SES -0.5166 0.2643 -1.95

MinorityYes:SexMale:MEANSES -0.7132 0.9034 -0.79

MinorityYes:SexMale:SES 0.1103 0.4683 0.24

Correlation of Fixed Effects:

(Intr) MnrtyY SexMal MEANSE SES MnY:SM MY:MEA MY:SES SM:MEA SM:SES MY:SM:M

MinorityYes -0.346

SexMale -0.481 0.268

MEANSES -0.095 0.066 0.054

SES -0.017 0.031 0.007 -0.355

MnrtyYs:SxM 0.207 -0.671 -0.433 -0.030 -0.010

MnY:MEANSES 0.091 0.161 -0.043 -0.510 0.271 -0.142

MnrtyYs:SES 0.008 0.117 -0.012 0.211 -0.584 -0.089 -0.446

SxM:MEANSES 0.044 -0.035 -0.141 -0.540 0.315 0.092 0.366 -0.181

SexMale:SES 0.010 -0.017 -0.081 0.252 -0.703 0.045 -0.194 0.409 -0.430

MY:SM:MEANS -0.033 -0.140 0.096 0.316 -0.205 0.120 -0.651 0.332 -0.576 0.280

MnrY:SM:SES -0.011 -0.076 0.056 -0.140 0.397 0.122 0.300 -0.678 0.241 -0.567 -0.473

> options(width=68)

The between school component of variance (1.5852) is 2.51, compared with a within school
component that equals 35.79. To get confidence intervals (strictly Bayesian credible
intervals) for these variance estimates, specify:

> MathAch.mcmc <- mcmcsamp(MathAch.lmer, n=10000)

> HPDinterval(VarCorr(MathAch.mcmc, type="varcov"))

lower upper

[1,] 1.638323 2.966406

[2,] 34.700599 37.072491

attr(,"Probability")

[1] 0.95

The 95% confidence interval for the between school component of variance extended, in
my calculation, from 1.64 to 3.0. The confidence interval excludes 0.

The number of results for school varies between 14 and 67. Thus, the relative contri-
bution to class means is 5.51 and a number that is at most 5.9824292/14 = 2.56.


