
Chapter 12 Exercises 1

Data Analysis & Graphics Using R, 2nd edn – Solutions to Exercises (May 1, 2010)

Preliminaries

> library(DAAG)

Exercise 1
Carry out the principal components analysis of Section Subsection 12.1.2, separately for
males and females. Compare the loadings for the first and second principal components
in these new analyses with the loadings obtained in Subsection 12.1.2.

We do the analysis (i) for all observations; (ii) for females; (iii) for males.

> all.pr <- princomp(na.omit(possum[, -(1:5)]))

> femp.pr <- princomp(na.omit(possum[possum$sex=="f", -(1:5)]))

> malep.pr <- princomp(na.omit(possum[possum$sex=="m", -(1:5)]))

One way to compare the separate loadings is to plot each set in turn against the loadings
for all observations. We put the code into a function so that we can easily do the plot for
each component in turn. The settings for the two elements of signs allow us to switch
the signs of all elements, for males and females separately. Loadings that differ only in a
change of sign in all elements are equivalent.

> compare.loadings <- function(i=1, all.load=loadings(all.pr),

+ fload=loadings(femp.pr),

+ mload=loadings(malep.pr), signs=c(1,1)){

+ alli <- all.load[,i]

+ fi <- fload[,i]*signs[1]

+ mi <- mload[,i]*signs[2]

+ plot(range(alli), range(c(fi, mi)), type="n")

+ chw <- par()$cxy[1]

+ points(alli, fi, col="red")

+ text(alli, fi, lab=row.names(fload), adj=0, xpd=T, col="red",

+ pos=2, cex=0.8)

+ points(alli, mi, col="blue")

+ text(alli, mi, lab=row.names(mload), adj=0, xpd=T, col="blue",

+ pos=4, cex=0.8)

+ abline(0,1)

+ }

Now compare the loadings for the first and second principal components. From exami-
nation of the results for default settings for signs, it is obvious that a switch of sign is
needed for the female loadings.

> par(mfrow=c(1,2))

> compare.loadings(1) # Compare loadings on 1st pc

> compare.loadings(2, signs=c(-1,1)) # Compare loadings on 2nd pc

> par(mfrow=c(1,1))

2

−0.5 −0.4 −0.3 −0.2 −0.1

−
0.

6
−

0.
2

0.
2

0.
4

range(alli)

ra
ng

e(
c(

fi,
 m

i))

●

●

●

●

●

●

●

●●

hdlngth
skullw

totlngth

taill

footlgth

earconch

eye

chestbelly

●

●

●

●

●

●

●

●●

hdlngth

skullw

totlngth

taill

footlgth

earconch

eye

chestbelly

−0.6 −0.4 −0.2 0.0 0.2

−
0.

6
−

0.
2

0.
2

0.
4

range(alli)

ra
ng

e(
c(

fi,
 m

i))

●
●

●

●

●

●

●●

●

hdlngthskullw

totlngth

taill

footlgth

earconch

eyechest

belly

●● ●
●

●

●

●● ●

hdlngthskullwtotlngthtaill

footlgth

earconch

eyechestbelly

Figure 1: Loadings for females (red) and loadings for males(blue), plotted against loadings
for the total data set.

Exercise 2
In the discriminant analysis for the possum data (Subsection 12.2.4), determine, for each
site, the means of the scores on the first and second discriminant functions. Plot the means
for the second discriminant function against the means for the first discriminant function.
Identify the means with the names of the sites.

We need only omit the rows that have missing values in columns 6-14. (The variable age,
in column 4, has two missing values, which are need not concern us.) Hence the use, in
the code that follows, of ccases to identify rows that have no missing values in these
columns. Here is the code used to do the discriminant function calculations:

> library(MASS)

> ccases <- complete.cases(possum[,6:14])

> possum.lda <- lda(site ~ hdlngth+skullw+totlngth+ taill+footlgth+

+ earconch+eye+chest+belly, data=possum[ccases,])

We calculate the means of the scores thus:

> possum.fit <- predict(possum.lda)

> avfit <- aggregate(possum.fit$x, by=list(possum[ccases, "site"]),

+ FUN=mean)

> avfit

Group.1 LD1 LD2 LD3 LD4 LD5

1 1 4.410258 0.5562407 0.3158968 -0.16740921 -0.06321562

2 2 3.878929 -1.8590986 -0.5402922 0.41948633 0.25835075

3 3 -2.607240 0.6692914 0.5402569 1.06684989 -0.52208918

4 4 -2.554674 1.9662845 -1.3030039 0.23392921 0.57195394

5 5 -3.947575 0.1797326 0.5989668 -0.02540586 0.23510820

6 6 -4.282095 -0.8074082 1.0298269 -0.22913147 0.10259697

7 7 -2.720364 -0.3520005 -1.0986765 -0.29476669 -0.31962856

Chapter 12 Exercises 3

LD6

1 0.005639874

2 -0.022792076

3 0.050718350

4 0.221235010

5 -0.396622367

6 0.302748367

7 -0.033106804

The matrix avfit has 7 rows (one for each site) and 6 columns (one for each of the six dis-
criminant functions). The row labels can be obtained from the data frame possumsites.
Here then is the plot:

> plot(avfit[,"LD1"], avfit[,"LD2"], xlab="1st discriminant function",

+ ylab="2nd discriminant function")

> chw <- par()$cxy[1]

> text(avfit[,"LD1"]+0.5*chw, avfit[,"LD2"], labels=row.names(possumsites),

+ adj=0, xpd=TRUE)

●

●

●

●

●

●

●

−4 −2 0 2 4

−
2

−
1

0
1

2

1st discriminant function

2n
d

di
sc

rim
in

an
t f

un
ct

io
n

Cambarville

Bellbird

Allyn River

Whian Whian

Byrangery

Conondale

Bulburin

Figure 2: Plot of the sec-
ond discriminant function
against the first discrimi-
nant function, for the pos-
sum data frame. The dis-
criminant functions are de-
signed to discriminate be-
tween sites.

Cambarville and Bellbird seem distinguised from the other sites.

4

Exercise 3
The data frame possumsites (DAAG package) holds latitudes, longitudes, and altitudes,
for the seven sites. The following code, which assumes that the oz package is installed,
locates the sites on a map that shows the Eastern Australian coastline and nearby state
boundaries.

library(DAAG); library(oz)

oz(sections=c(3:5, 11:16))

attach(possumsites)

points(latitude, longitude)

chw <- par()$cxy[1]

chh <- par()$cxy[2]

posval <- c(2, 4, 2, 2, 4, 2, 2)

text(latitude+(3-posval)*chw/4, longitude,

row.names(possumsites), pos=posval)

Do the site means that were calculated in Exercise 2 relate in any obvious way to geo-
graphical position, or to altitude?

Cambarville and Bellbird, which were distinguished from the main cluster in the plot in
Exercise 2, are the southernmost sites.

Exercise 5
Create a version of Figure 12.5B that shows the discriminant line. In the example of
Subsection 12.2.1, investigate whether use of logpet, in addition to logwid and loglen,
improve discrimination?

Here are the discriminant function calculations:

> leaf17.lda <- lda(arch ~ logwid + loglen, data = leafshape17)

> leaf17.fit <- predict(leaf17.lda)

> leaf17.lda$prior

0 1

0.6721311 0.3278689

> leaf17.lda$scaling

LD1

logwid 0.1555083

loglen 3.0658277

> leaf17.lda$means

logwid loglen

0 1.429422 2.460128

1 1.865537 2.993948

The information needed to reconstruct the discriminant function is provided by leaf17.lda$prior,
leaf17.lda$means and leaf17.lda$scaling. First we calculate a grand mean, from
that the constant term for the discriminant function, and then do a plot (see below) that
checks that we are correctly recovering the discriminant function scores. Calculations
can be done without matrix multiplication, but are tedious to write down. The following
assumes a knowledge of matrix multiplication, for which the symbol is %*%:

Chapter 12 Exercises 5

> gmean <- leaf17.lda$prior%*%leaf17.lda$means

> const <- as.numeric(gmean%*%leaf17.lda$scaling)

> z <- as.matrix(leafshape17[,c(5,7)])%*%leaf17.lda$scaling - const

Note that R distinguishes between a 1 by 1 matrix and a numeric constant. The final
two lines are a check that the discriminant function has been correctly calculated. It has
the form ax + by − c = z, where the discriminant line is given by z = 0. The equation of
the line is then y = −a/bx + c/b. We have

> slope <- -leaf17.lda$scaling[1]/leaf17.lda$scaling[2]

> intercept <- const/leaf17.lda$scaling[2]

We now show the plot that checks that we have correctly recovered the discriminant
function scores, with the requested plot alongside.

> par(mfrow=c(1,2))

> plot(z, leaf17.fit$x[,1]); abline(0,1)

> mtext(side=3, line=1, "Check that z=leaf17.fit$x[,1]")

> plot(loglen ~ logwid, data=leafshape17, xlab="log(leaf width)",

+ ylab="log(leaf length)", pch=leafshape17$arch+1)

> abline(intercept, slope)

> mtext(side=3, line=1, "Fig.12.4B, with discriminant line")

> par(mfrow=c(1,1))

●●
●

●●
●●●

●●●●
●●●●
●●●
●●

●●
●
●●●●

●●●
●●●●

●●●

●

●

●

●
●●

●●●●

●●
●
●

●
●

●●

●●●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

z

le
af

17
.fi

t$
x[

, 1
]

Check that z=leaf17.fit$x[,1]

●
● ●

●●
● ●●

● ●●●
● ●●● ●● ●● ●● ●●

●●●● ●● ●
●●● ●

●● ●

●

●

●

1.0 1.5 2.0 2.5 3.0

2.
0

2.
5

3.
0

3.
5

log(leaf width)

lo
g(

le
af

 le
ng

th
)

Fig.12.4B, with discriminant line

Figure 3: The left
panel is a check
that calculations
are correct. The
right panel repro-
duces Figure 11.4B,
adding the dis-
criminant function
line.

Exercise 6*
The data set leafshape has three leaf measurements – bladelen (blade length), bladewid
(blade width), and petiole (petiole length). These are available for each of two plant
architectures, in each of six locations. (The data set leafshape17 that we encountered in
Section 12.2.1 is a subset of the data set leafshape.) Use logistic regression to develop
an equation for predicting architecture, given leaf dimensions and location. Compare
the alternatives: (i) different discriminant functions for different locations; (ii) the same
coefficients for the leaf shape variables, but different intercepts for different locations; (iii)
the same coefficients for the leaf shape variables, with an intercept that is a linear function
of latitude; (iv) the same equation for all locations. Interpret the equation that is finally
chosen as discriminant function.

We use the variables logwid, loglen and logpet.

6

> names(leafshape)[4] <- "latitude"

> one.glm <- glm(arch ~ (logwid+loglen+logpet)*location,

+ family=binomial, data=leafshape)

> two.glm <- glm(arch ~ (logwid+loglen+logpet)+location,

+ family=binomial, data=leafshape)

> three.glm <- glm(arch ~ (logwid+loglen+logpet)*latitude,

+ family=binomial, data=leafshape)

> four.glm <- glm(arch ~ (logwid+loglen+logpet)+latitude,

+ family=binomial, data=leafshape)

> anova(four.glm, three.glm, two.glm, one.glm)

Analysis of Deviance Table

Model 1: arch ~ (logwid + loglen + logpet) + latitude

Model 2: arch ~ (logwid + loglen + logpet) * latitude

Model 3: arch ~ (logwid + loglen + logpet) + location

Model 4: arch ~ (logwid + loglen + logpet) * location

Resid. Df Resid. Dev Df Deviance

1 281 193.31

2 278 187.78 3 5.530

3 277 186.30 1 1.481

4 262 148.00 15 38.298

It may however, in view of uncertainty about the adequacy of the asymptotic chi-
squared approximation for the deviance changes, be better to fit the models using lda(),
and choose the model that has the smallest cross-validated relative error:

> one.lda <- lda(arch ~ (logwid+loglen+logpet)*location, CV=TRUE,

+ data=leafshape)

> two.lda <- lda(arch ~ (logwid+loglen+logpet)+location, CV=TRUE,

+ data=leafshape)

> three.lda <- lda(arch ~ (logwid+loglen+logpet)*latitude, CV=TRUE,

+ data=leafshape)

> four.lda <- lda(arch ~ (logwid+loglen+logpet)+latitude, CV=TRUE,

+ data=leafshape)

> table(leafshape$arch, one.lda$class)

0 1

0 174 18

1 24 70

> table(leafshape$arch, two.lda$class)

0 1

0 177 15

1 24 70

> table(leafshape$arch, three.lda$class)

0 1

0 179 13

1 22 72

> table(leafshape$arch, four.lda$class)

Chapter 12 Exercises 7

0 1

0 177 15

1 24 70

The smallest cross-validated relative error was for the third model.

Additional Exercises A number of additional exercises are included in the laboratory
exercises that are available from the web page http:www.maths.anu.edu.au/~johnm/

courses/dm

