
Chapter 14 Exercises 1

Data Analysis & Graphics Using R, 2nd edn – Solutions to Exercises (December 13, 2006)

Preliminaries

> library(DAAG)

Exercise 1
Compare the different outputs from help.search("print"), apropos(print) and
methods(print). Look up the help for each of these three functions, and use what you
find to explain the different outputs.

help.search() searches the documentation for a match in the name, or alias (i.e., an
alternative name for a function or other object) or title or keyword.

apropos() searches for object or alias names where there is a partial match. For
example, try help.search("str"). [Note also the function find(), which is an alias for
apropos() in which the default parameters are set to find “simple words”.]

methods(print) finds all available print methods, i.e., all the different functions that
may, depending on the class of object that is to be printed, be called when the generic
print function is used.

Now that the number of functions and associated documentation is so extensive,
consider limiting the search by using, e.g., help.search("print", package="base"),
rather than help.search("print")

Exercise 2
Identify as many R functions as possible that are specifically designed for manipulations
with text strings.

Try apropos("str"). Some objects (e.g., fitdistr or structure) clearly have nothing
to do with strings. Look up the help for those that do seem possible string manipulation
functions. Look under See Also: to find other related functions that may not have the
letters “str” in their names. Try also apropos("char"). Once these steps are complete,
this should identify most possibilities.

Another recourse may be to type in help.start(), and click on Search Engine & Keywords.

Exercise 3
Test whether strsplit() is vectorized, i.e., does it accept a vector of character strings as
input, then operating in parallel on all elements of the vector?

Try applying strsplit() to a vector of character strings. For example:

> strsplit(c("eggs'nbacon", "bacon'neggs"), "'n")

[[1]]
[1] "eggs" "bacon"

[[2]]
[1] "bacon" "eggs"
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Notice that strsplit() does accept a vector of character strings as input, and that it
returns one list element for each character string in the vector.

Exercise 4
For the data frame Cars93, get the information provided by summary() for each level of
Type. (Use split().)

First, note the column names:

> names(Cars93)

[1] "Manufacturer" "Model" "Type"
[4] "Min.Price" "Price" "Max.Price"
[7] "MPG.city" "MPG.highway" "AirBags"
[10] "DriveTrain" "Cylinders" "EngineSize"
[13] "Horsepower" "RPM" "Rev.per.mile"
[16] "Man.trans.avail" "Fuel.tank.capacity" "Passengers"
[19] "Length" "Wheelbase" "Width"
[22] "Turn.circle" "Rear.seat.room" "Luggage.room"
[25] "Weight" "Origin" "Make"

The code that gives the summaries is:

lapply(split(Cars93, Cars93$Type), summary)

The output runs over many pages. To present only the first two sets of summaries, for
the first five columns of the data frame, specify.

> lapply(split(Cars93[, 1:5], Cars93$Type), summary)[1:2]

Exercise 5
Determine the number of cars, in the data frame Cars93, for each Origin and Type.

> table(Cars93$Origin, Cars93$Type)

Compact Large Midsize Small Sporty Van
USA 7 11 10 7 8 5
non-USA 9 0 12 14 6 4

Exercise 6
In the data frame Insurance (MASS package):

(a) determine the number of rows of information for each age category (Age) and car
type (Group);

(b) determine the total number of claims for each age category and car type;

(a) > library(MASS)

> sapply(Insurance, function(x) sum(is.na(x)))
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District Group Age Holders Claims
0 0 0 0 0

> table(Insurance$Group, Insurance$Age)

<25 25-29 30-35 >35
<1l 4 4 4 4
1-1.5l 4 4 4 4
1.5-2l 4 4 4 4
>2l 4 4 4 4

As the default for table() is to omit mention of NA’s, it is good practice to make
a check, such as included in the statement above, on the number of NA’s in each
column.

(b) > attach(Insurance)

> tapply(Claims, list(Group, Age), sum)

<25 25-29 30-35 >35
<1l 67 70 56 346
1-1.5l 105 169 197 979
1.5-2l 46 124 153 540
>2l 11 41 47 200

> detach(Insurance)

Exercise 7
Enter the following, and explain the steps that are performed to obtain the result:

## Use of split() and sapply(): data frame science (DAAG)
with(science, sapply(split(school, PrivPub),

function(x)length(unique(x))))

The data frame science becomes, for the duration of the calculation

sapply(split(school, PrivPub),
function(x)length(unique(x)))

a “database” where the objects school and PrivPub can be found.
The statement split(school, PrivPub) creates a list that has two elements, one

for each of the two levels of PrivPub. Each list element holds the codes that identifies
the schools. The function sapply() operates on each of these list elements in turn. It
replaces the vector of codes by a vector of unique codes. The length of that vector is
then the number of schools, and of course this is done separately for Private and Public
schools.

Exercise 8
Save the objects in your workspace, into an image (.RData) file, with the name
archive.RData. Then remove all objects from the workspace. Demonstrate how, without
loading the image file, it is possible to list the objects that were included in archive.RData
and to recover a deleted object that is again required.
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To save the workspace contents into the file archive.RData, type

> save.image(file = "archive.RData")

We can now type

> rm(list = ls())

The following will again make available all objects that were in the workspace:

> attach("archive.RData", warn.conflicts = FALSE)

To see the contents of this “database”, type

> ls(name = "file:archive.RData")

[1] "count.neighbours" "cpu" "d" "enoise"
[5] "generate.data" "h" "iperm" "m"
[9] "maxys" "minys" "n" "nn"
[13] "nnear" "ns" "nx" "plot.signal"
[17] "sig" "x" "xn" "xsignal"
[21] "xy" "y" "yn" "ysignal"

Providing no other databases have been attached in the meantime, an alternative is
ls(pos=2).

Type the name of an object that is in the database (choose one that is not too large!)
to demonstrate that all such objects are now available.

Note the use of detach("file:archive.RData") to detach the database.

Exercise 9
Determine the number of days, according to R, between the following dates:

(a) January 1 in the year 1700, and January 1 in the year 1800

(b) January 1 in the year 1998, and January 1 in the year 2007

> as.Date("1/1/1800", "%d/%m/%Y") - as.Date("1/1/1700", "%d/%m/%Y")

Time difference of 36524 days

> as.Date("1/1/2007", "%d/%m/%Y") - as.Date("1/1/1998", "%d/%m/%Y")

Time difference of 3287 days
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Exercise 10
*The following code concatenates (x, y) data values that are random noise to data pairs
that contain a ‘signal’, randomly permutes the pairs of data values, and finally attempts
to reconstruct the signal:

### Thanks to Markus Hegland (ANU), who wrote the initial version
##1 Generate the data
# . . . .
# Code is displayed below (with annotations),
# and is therefore omitted here.
# . . . .
##1 End

##2 determine number of neighbors within
# a distance <= h = 1/sqrt(length(xn))
# . . . .
# Annotated code is shown below
# . . . .
##2 End

##3 Plot data, with reconstructed signal overlaid.
# . . . .
# Annotated code is shown below
# . . . .
##3 End

(a) Run the code and observe the graph that results.

(b) Work through the code, and write notes on what each line does.
[The key idea is that points that are part of the signal will, on average, have more
near neighbours than points that are noise.]

(c) Split the code into three functions, bracketed respectively between lines that begin
##1, lines that begin ##2, and lines that begin ##3. The first function should take pa-
rameters m and n, and return a list xy that holds data that will be used subsequently.
The second function should take vectors xn and yn as parameters, and return values
of nnear, i.e., for each point, it will give the number of other points that lie within
a circle with the point as center and with radius h. The third function will take as
parameters x, y, nnear and the constant ns such that points with more than ns near
neighbours will be identified as part of the signal. Run the first function, and store
the output list of data values in xy.

(d) Run the second and third functions with various different settings of h and ns.
Comment on the effect of varying h. Comment on the effect of varying ns.

(e) Which part of the calculation is most computationally intensive? Which makes the
heaviest demands on computer memory?

(f) Suggest ways in which the calculation might be made more efficient.
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(a)
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Figure 1: Graph obtained
from running the code of Ex-
ercise 10

(b) ### Thanks to Markus Hegland (ANU), who wrote the initial version
##1 Generate the data
cat("generate data \n")
n <- 800 # length of noise vector
m <- 100 # length of signal vector

## Samples 100 values that will be x-values for the signal
xsignal <- runif(m)
sig <- 0.01
enoise <- rnorm(m)*sig
ysignal <- xsignal**2+enoise # y = x^2 + noise

## Determine the range of x- and y-values for the signal
maxys <- max(ysignal)
minys <- min(ysignal)

## Precede signal x-values with 800 x-values for points
## that will be entirely noise
x <- c(runif(n), xsignal)

## Generate y-values for noise; follow with signal values.
## y-values for noise are sampled from a uniform distribution,
## with the same limits as the y-values for the signal.
y <- c(runif(n)*(maxys-minys)+minys, ysignal)
# random permutation of the data vectors

## Randomly permute the points, so that points that are signal
## are mixed in with points that are noise.
iperm <- sample(seq(x))
x <- x[iperm]
y <- y[iperm]
# normalise the data, i.e., scale x & y values to lie between 0 & 1
xn <- (x - min(x))/(max(x) - min(x))
yn <- (y - min(y))/(max(y) - min(y))

## The above has generated data, from which to recover the signal.
##1 End

##2 determine number of neighbors within
# a distance <= h = 1/sqrt(length(xn))
## These distances will be available for all points
nx <- length(xn)
# determine distance matrix

## The following is a clever way to calculate
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## sqrt((xi-xj)^2 + (yi-yj)^2), and store the result in the (i,j)
## position of d.
d <- sqrt( (matrix(xn, nx, nx) - t(matrix(xn, nx, nx)) )**2 +

(matrix(yn, nx, nx) - t(matrix(yn, nx, nx)) )**2 )
## Next, we need a threshold, such that most random points are
## will not be closer than this. Detailed investigation will
## require examination of the distribution of d. Here we choose
## 1/sqrt(nx); if this does not seem to work, it can be varied.
## Better (and here is a starting point for further exercises),
## the distribution of d can be examined empirically and/or
## theoretically.
h <- 1/sqrt(nx)

## Count the number of points that lie closer than this threshold
nnear <- apply(d <= h, 1, sum)

##2 End

##3 Plot data, with reconstructed signal overlaid.
cat("produce plots \n")
plot(x, y)
# plot only the points which have many such neighbors

## ns is another tuning constant.
ns <- 8
points(x[nnear > ns], y[nnear > ns], col="red", pch=16)

##3 End

(c) Next, the code will be split between three functions:

> generate.data <- function(m = 100, n = 800) {

+ xsignal <- runif(m)

+ sig <- 0.01

+ enoise <- rnorm(m) * sig

+ ysignal <- xsignal^2 + enoise

+ maxys <- max(ysignal)

+ minys <- min(ysignal)

+ x <- c(runif(n), xsignal)

+ y <- c(runif(n) * (maxys - minys) + minys, ysignal)

+ iperm <- sample(seq(x))

+ x <- x[iperm]

+ y <- y[iperm]

+ xn <- (x - min(x))/(max(x) - min(x))

+ yn <- (y - min(y))/(max(y) - min(y))

+ list(x = x, y = y, xn = xn, yn = yn)

+ }

> count.neighbours <- function(xn, yn, h = 1/sqrt(length(xn))) {

+ nx <- length(xn)

+ d <- sqrt((matrix(xn, nx, nx) - t(matrix(xn, nx, nx)))^2 +

+ (matrix(yn, nx, nx) - t(matrix(yn, nx, nx)))^2)

+ nnear <- apply(d <= h, 1, sum)

+ nnear

+ }

> plot.signal <- function(x, y, nnear, ns = 8) {

+ plot(x, y)

+ ns <- 8
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+ points(x[nnear > ns], y[nnear > ns], col = "red", pch = 16)

+ }

Here then is a sequence of calls:

> xy <- generate.data(m = 100, n = 800)

> nnear <- count.neighbours(xn = xy[["xn"]], yn = xy[["yn"]])

> plot.signal(x = xy[["x"]], y = xy[["y"]], nnear = nnear, ns = 8)

(d) In an initial simulation, the range of values of nnear, obtained from range(nnear),
was from 1 to 13. Hence, we will try setting nnear = 6 and nnear=10. For ns we
will try 2/sqrt(length(xn)) and 0.5/sqrt(length(xn)).

> par(mfrow = c(2, 2))

> nx <- length(xy[["xn"]])

> nnear <- count.neighbours(xn = xy[["xn"]], yn = xy[["yn"]], h = sqrt(0.5/nx))

> plot.signal(x = xy[["x"]], y = xy[["y"]], nnear = nnear, ns = 6)

> title(main = "h=sqrt(0.5/nx); ns=6")

> plot.signal(x = xy[["x"]], y = xy[["y"]], nnear = nnear, ns = 10)

> title(main = "h=sqrt(0.5/nx); ns=10")

> nnear <- count.neighbours(xn = xy[["xn"]], yn = xy[["yn"]], h = sqrt(2/nx))

> plot.signal(x = xy[["x"]], y = xy[["y"]], nnear = nnear, ns = 6)

> title(main = "h=sqrt(2/nx); ns=6")

> plot.signal(x = xy[["x"]], y = xy[["y"]], nnear = nnear, ns = 10)

> title(main = "h=sqrt(2/nx); ns=10")

The result is sensitive to the choice of h. Therefore, repeat the exercise with
h=sqrt(0.75/nx) and h=sqrt(1/nx) The result is relatively insensitive to vari-
ation in ns.

(e) The most computationally intensive part of the calculations is the determination
of the distances. This is done for all nx^2 pairs (x,y), though actually we only
need the nx*(nx+1)/2 points in the upper triangle of the matrix. This makes, if
nx is large, heavy demands on computer memory. Calculation of nnear, as done
above, requires nx comparisons for each point, i.e., a total of nx^2 comparisons,
with the result stored in a vector of length nx. These should be much cheaper than
multiplications.

We now examine the costs in an actual machine run.

> system.time(xy <- generate.data(m = 100, n = 800))

[1] 0.002 0.000 0.002 0.000 0.000

> system.time(nnear <- count.neighbours(xn = xy[["xn"]], yn = xy[["yn"]]))

[1] 0.341 0.097 0.439 0.000 0.000

> system.time(plot.signal(x = xy[["x"]], y = xy[["y"]], nnear = nnear,

+ ns = 8))

[1] 0.004 0.000 0.012 0.000 0.000

The function count.neighbours() has taken most of the time, on my system 3.10
seconds. We now break this down further.
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> xn <- xy[["xn"]]

> yn <- xy[["yn"]]

> nx <- length(xn)

> h <- 1/sqrt(nx)

> system.time(d <- sqrt((matrix(xn, nx, nx) - t(matrix(xn, nx,

+ nx)))^2 + (matrix(yn, nx, nx) - t(matrix(yn, nx, nx)))^2))

[1] 0.167 0.091 0.258 0.000 0.000

> system.time(nnear <- apply(d <= h, 1, sum))

[1] 0.175 0.008 0.182 0.000 0.000

Calculation of d took 1.62 seconds, whereas calculation of nnear tool 0.67 seconds.

(f) The focus should be on those calculations that are computationally intensive, i.e.,
the calculation of the distances. There are nx*(nx-1)/2 distances that need be
calculated, where the code has calculated nx^2 distances, i.e. the distance from
point 2 to point 1 as well as the distance from point 1 to point 2.

Exercise 11
This question has been reworded
Try the following, for a range of values of n between, e.g., 2 ×105 and 107. (On systems
that are unable to cope with such large numbers of values, adjust the range of numbers of
values accordingly.)

n <- 10000; system.time(sd(rnorm(n)))

The first output number is the user cpu time, while the third output number is the elapsed
time. Plot each of these numbers, separately, against n. Comment on the graphs. Is the
elapsed time roughly linear with n? Try the computations both for an otherwise empty
workspace, and with large data objects (e.g., with 107 or more elements) in the workspace.

On a 1.2MHz Macintosh G4 PowerBook with half a gigabyte of memory, results were:

> nn <- 2e+06 * (1:5)

> cpu <- numeric(5)

> cpu[1] <- system.time(sd(rnorm(n = nn[1])))[1]

> cpu[2] <- system.time(sd(rnorm(n = nn[2])))[1]

> cpu[3] <- system.time(sd(rnorm(n = nn[3])))[1]

> cpu[4] <- system.time(sd(rnorm(n = nn[4])))[1]

> cpu[5] <- system.time(sd(rnorm(n = nn[5])))[1]

Here is a graph:
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Figure 2: Cpu time, versus
number of elements.
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On my system, the response was remarkably linear with time. The increase in time
with increasing values of nn reduced slightly as nn increased.


