
Chapter 4 Exercises 1

Data Analysis & Graphics Using R – Solutions to Exercises (December 11, 2006)

Preliminaries

> library(DAAG)

Exercise 2
Draw graphs that show, for degrees of freedom between 1 and 100, the change in the 5%
critical value of the t-statistic. Compare a graph on which neither axis is transformed
with a graph on which the respective axis scales are proportional to log(t-statistic) and
log(degrees of freedom). Which graph gives the more useful visual indication of the
change in the 5% critical value of the t-statistic changes with increasing degrees of free-
dom?

> par(mfrow = c(1, 2))

> nu <- 1:100

> plot(nu, qt(0.975, nu), type = "l")

> plot(log(nu), qt(0.975, nu), type = "l", xaxt = "n")

> axis(1, at = log(nu), labels = paste(nu))

> par(mfrow = c(1, 1))
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Figure 1: Plot of two-sided
95% critical value for a t-
statistic (a) against degrees
of freedom and (b) against
log(degrees of freedom).

The second graph, because it makes it possible to see the large changes with low
degrees of freedom, gives the more useful visual indication.

Exercise 6
Here we generate random normal numbers with a sequential dependence structure.

y1 <- rnorm(51)
y <- y1[-1] + y1[-51]
acf(y1) # acf is `autocorrelation function' (see Ch. 9)
acf(y)

Repeat this several times. There should be no consistent pattern in the acf plot for
different random samples y1. There will be a fairly consistent pattern in the acf plot for
y, a result of the correlation that is introduced by adding to each value the next value in
the sequence.
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Figure 2: Autocorrelation function (a) for independently and identically distributed nor-
mal deviates and (b) for sequentially correlated deviates.

Exercise 7
Create a function that does the calculations in the first two lines of the previous exercise.
Put the calculation in a loop that repeats 25 times. Calculate the mean and variance
for each vector y that is returned. Store the 25 means in the vector av, and store the 25
variances in the vector v. Calculate the variance of av.

> corfun <- function(n = 51) {

+ y1 <- rnorm(n)

+ y <- y1[-1] + y1[-n]

+ y

+ }

> av <- numeric(25)

> sdev <- numeric(25)

> for (i in 1:25) {

+ z <- corfun()

+ av[i] <- mean(z)

+ sdev[i] <- sd(z)

+ }

> var(av)

[1] 0.07033

Note: The variance of the values that are returned by corfun() is var(y1i = var(yi +
var(yi+1) = 2 Thus, compare var(av) as calculated above with var(y1i)/50 = 2/50 =
0.04. As a result of the correlation between successive values, var(av) will, on average,
be greater than this.

Exercise 10
Use mosaicplot() to display the table rareplants (Subsection 4.4.1) that was created
using code in Footnote 13. Annotate the mosaic plot to draw attention to the results
that emerged from the analysis in Subsection 4.4.1.

> oldpar <- par(mar = c(3.1, 3.1, 2.6, 1.1))

> rareplants <- matrix(c(37, 190, 94, 23, 59, 23, 10, 141, 28,

+ 15, 58, 16), ncol = 3, byrow = T, dimnames = list(c("CC",

+ "CR", "RC", "RR"), c("D", "W", "WD")))

> mosaicplot(t(rareplants), color = TRUE, main = NULL)
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Figure 3: Mosaicplot for the
rareplants data. Observe
that the matrix rareplants has
been transposed so that the
layout of the graph reflects the
layout of the table in Section
4..4.1.

For each color, i.e., row of the table, compare the heights of the rectangles. Large
positive residuals in the table of residuals on page 87 correspond to rectangles that are tall
relative to other rectangles with the same color, while large negative residuals correspond
to rectangles that are short relative to other rectangles with the same color.

Exercise 11
The table UCBAdmissions was discussed in Subsection 2.2.1. The following gives a table
that adds the 2 × 2 tables of admission data over all departments:

## UCBAdmissions is in the datasets package
## For each combination of margins 1 and 2, calculate the sum
UCBtotal <- apply(UCBAdmissions, c(1,2), sum)

What are the names of the two dimensions of this table?

(a) From the table UCBAdmissions, create mosaic plots for each faculty separately. (If
necessary refer to the code given in the help page for UCBAdmissions.)

(b) Compare the information in the table UCBtotal with the result from applying the
function mantelhaen.test() to the table UCBAdmissions. Compare the two sets
of results, and comment on the difference.

(c) The Mantel–Haenzel test is valid only if the male to female odds ratio for admission
is similar across departments. The following code calculates the relevant odds
ratios:

apply(UCBAdmissions, 3, function(x)
(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

Is the odds ratio consistent across departments? Which department(s) stand(s) out
as different? What is the nature of the difference?

[For further information on the Mantel–Haenszel test, see the help page for mantel-
haen.test.]

Use dimnames(UCBAdmissions)[1:2] to get the names of the first two dimensions,
which are Admit and Gender.
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(a) First note the code needed to give a mosaic plot for the totals; the question does
not ask for this. There is an excess of males and a deficit of females in the Admitted
category.

> par(mar = c(3.1, 3.1, 2.6, 1.1))

> UCBtotal <- apply(UCBAdmissions, c(1, 2), sum)

> mosaicplot(UCBtotal, col = TRUE)

Now obtain the mosaic plots for each department separately.

> oldpar <- par(mfrow = c(2, 3), mar = c(3.1, 3.1, 2.6, 1), cex.main = 0.8)

> for (i in 1:6) mosaicplot(UCBAdmissions[, , i], xlab = "Admit",

+ ylab = "Sex", main = paste("Department", LETTERS[i]), color = TRUE)

> par(mfrow = c(1, 1))

> par(oldpar)
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Figure 4: Mosaicplots, for each department separately. The greatest difference in the
proportions in the two vertical columns is for Department A.

(b) > apply(UCBAdmissions, 3, function(x) (x[1, 1] * x[2, 2])/(x[1,

+ 2] * x[2, 1]))

A B C D E F
0.3492 0.8025 1.1331 0.9213 1.2216 0.8279

The odds ratio (male to female admissions) is much the lowest for Department A.
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Exercise 12
*Table 3.3 (Chapter 3) contained fictitious data that illustrate issues that arise in com-
bining data across tables. Table 1 is another such set of fictitious data, designed to
demonstrate how biases that go in different directions in the two subtables may cancel
in the table to totals.

Engineering Sociology Total

Male Female Male Female Male Female
Admit 30 20 Admit 10 20 Admit 40 40
Deny 30 10 Deny 5 25 Deny 35 35

Table 1: In these data, biases that go in different directions in the two faculties have
canceled in the table of totals.

To enter the data for Table 3.3, type:

admissions <- array(c(30,30,10,10,15,5,30,10),
dim=c(2,2,2))

Similarly for Table 1. The third dimension in each table is faculty, as required for using
faculty as a stratification variable for the Mantel–Haenzel test. From the help page for
mantelhaen.test(), extract and enter the code for the function woolf(). Apply the
function woolf(), followed by the function mantelhaen.test(), to the data of each of
Tables 3.3 and 1. Explain, in words, the meaning of each of the outputs. Then apply
the Mantel–Haenzel test to each of these tables.

> admissions <- array(c(30, 30, 10, 10, 15, 5, 30, 10), dim = c(2,

+ 2, 2))

> woolf <- function(x) {

+ x <- x + 1/2

+ k <- dim(x)[3]

+ or <- apply(x, 3, function(x) (x[1, 1] * x[2, 2])/(x[1, 2] *

+ x[2, 1]))

+ w <- apply(x, 3, function(x) 1/sum(1/x))

+ 1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w))^2),

+ k - 1)

+ }

> woolf(admissions)

[1] 0.9696

The differences from homogeneity (equal odds ratios for males and females in each of
the two departments) are well removed from statistical significance.

> admissions1 <- array(c(30, 30, 20, 10, 10, 5, 20, 25), dim = c(2,

+ 2, 2))

> woolf(admissions1)

[1] 0.04302

There is evidence of department-specific biases.

> mantelhaen.test(admissions)

Mantel-Haenszel chi-squared test without continuity correction
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data: admissions
Mantel-Haenszel X-squared = 0, df = 1, p-value = 1
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.4566 2.1902
sample estimates:
common odds ratio

1

The estimate of the common odds ratio is 1.

> mantelhaen.test(admissions1)

Mantel-Haenszel chi-squared test with continuity correction

data: admissions1
Mantel-Haenszel X-squared = 0.0141, df = 1, p-value = 0.9053
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.4481 1.8077
sample estimates:
common odds ratio

0.9

The common odds ratio is given as 0.9. However, because the odds ratio is not homoge-
neous within each of the two departments, this overall figure can be misleading.

Exercise 14
The function overlapDensity() in the DAAG package can be used to visualize the
unpaired version of the t-test. Type in

attach(two65)
overlapDensity(ambient, heated) # Included with our DAAG package
detach(two65)

in order to observe estimates of the stretch distributions of the ambient (control) and
heated (treatment) elastic bands.

> attach(two65)

> overlap.density(ambient, heated)

> detach(two65)
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Figure 5: Estimated densities
for ambient and heated bands,
overlaid.

The densities look quite similar, except that the controls are more widely spread. To
get an idea of the sorts of differences that may appear in repeated random sampling, try

> par(mfrow = c(2, 2))

> for (i in 1:4) {

+ y1 <- rnorm(10)

+ y2 <- rnorm(11)

+ overlap.density(y1, y2)

+ }

> par(mfrow = c(1, 1))
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Figure 6: Estimated densities
for simulated random normal
samples, of the same size as
the ambient and heated sam-
ples.
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Exercise 15*
*For constructing bootstrap confidence intervals for the correlation coefficient, it is advis-
able to work with the Fisher z-transformation of the correlation coefficient. The following
lines of R code show how to obtain a bootstrap confidence interval for the z-transformed
correlation between chest and belly in the possum data frame. The last step of the
procedure is to apply the inverse of the z-transformation to the confidence interval to
return it to the original scale. Run the following code and compare the resulting interval
with the one computed without transformation. Is the z-transform necessary here?

z.transform <- function(r) .5*log((1+r)/(1-r))
z.inverse <- function(z) (exp(2*z)-1)/(exp(2*z)+1)
possum.fun <- function(data, indices) {
chest <- data$chest[indices]
belly <- data$belly[indices]
z.transform(cor(belly, chest))}
possum.boot <- boot(possum, possum.fun, R=999)
z.inverse(boot.ci(possum.boot, type="perc")$percent[4:5])
# See help(bootci.object). The 4th and 5th elements of
# the percent list element hold the interval endpoints.

> library(boot)

> z.transform <- function(r) 0.5 * log((1 + r)/(1 - r))

> z.inverse <- function(z) (exp(2 * z) - 1)/(exp(2 * z) + 1)

> possum.fun <- function(data, indices) {

+ chest <- data$chest[indices]

+ belly <- data$belly[indices]

+ z.transform(cor(belly, chest))

+ }

> possum.boot <- boot(possum, possum.fun, R = 999)

> z.inverse(boot.ci(possum.boot, type = "perc")$percent[4:5])

[1] 0.4630 0.7117

Exercise 16
The 24 paired observations in the data set mignonette were from five pots. The obser-
vations are in order of pot, with the numbers 5, 5, 5, 5, 4 in the respective pots. Plot the
data in a way that shows the pot to which each point belongs. Also do a plot that shows,
by pot, the differences between the two members of each pair. Do the height differences
appear to be different for different pots?

> mignonette$pot <- rep(1:5, c(5, 5, 5, 5, 4))

> attach(mignonette)

> plot(cross ~ self, type = "n")

> text(cross ~ self, labels = paste(pot), col = pot, lwd = 2)

> detach(mignonette)
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Figure 7: Plot of cross versus
self, with points identified by
pot.

> "Alternative to above"

> plot(cross ~ self, col = pot, lwd = 2)

> text(cross ~ self, labels = paste(pot), pos = 1, cex = 0.8)

> library(lattice)

> print(stripplot(pot ~ I(cross - self), data = mignonette, pch = 15))
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Figure 8: Alternative plot
of cross versus self, with
points identified by pot.

x

> summary(lm(I(cross - self) ~ factor(pot), data = mignonette))

Call:
lm(formula = I(cross - self) ~ factor(pot), data = mignonette)

Residuals:
Min 1Q Median 3Q Max

-8.525 -3.694 0.725 3.386 7.850

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.275 2.418 0.11 0.91
factor(pot)2 5.250 3.419 1.54 0.14
factor(pot)3 -2.350 3.419 -0.69 0.50
factor(pot)4 6.100 3.419 1.78 0.09
factor(pot)5 2.444 3.626 0.67 0.51

Residual standard error: 5.41 on 19 degrees of freedom
Multiple R-Squared: 0.311, Adjusted R-squared: 0.166
F-statistic: 2.14 on 4 and 19 DF, p-value: 0.115

The evidence for a difference between pots is not convincing. Nevertheless a careful
analyst, when checking for a systematic difference between crossed and selfed plants,
would allow for a pot effect. (This requires the methods that are discussed in Chapter
10.)
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Exercise 18
Use the function rexp() to simulate 100 random observations from an exponential distri-
bution with rate 1. Use the bootstrap (with 99999 replications) to estimate the standard
error of the median. Repeat several times. Compare with the result that would be
obtained using the normal approximation, i.e.

√
π/(2n).

> med.fn <- function(x, index) median(x[index])

> x <- rexp(100)

> x.boot <- boot(x, statistic = med.fn, R = 99999)

> x.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = x, statistic = med.fn, R = 99999)

Bootstrap Statistics :
original bias std. error

t1* 0.6141 0.02902 0.1356

We see that the normal approximation is over-estimating the standard error slightly.
For large exponential samples (with rate 1), the standard error of the median is 1/

√
n.

Exercise 19
Low doses of the insecticide toxaphene may cause weight gain in rats. A sample of 20 rats
are given toxaphene in their diet, while a control group of 8 rats are not given toxaphene.
Assume further that weight gain among the treated rats is normally distributed with
a mean of 60g and standard deviation 30g, while weight gain among the control rats
is normally distributed with a mean of 10g and a standard deviation of 50g. Using
simulation, compare confidence intervals for the difference in mean weight gain, using
the pooled variance estimate and the Welch approximation. Which type of interval is
correct more often?
Repeat the simulation experiment under the assumption that the standard deviations are
40g for both samples. Is there a difference between the two types of intervals now? Hint:
Is one of the methods giving systematically larger confidence intervals? Which type of
interval do you think is best?

> "Welch.pooled.comparison" <- function(n1 = 20, n2 = 8, mean1 = 60,

+ mean2 = 10, sd1 = 30, sd2 = 50, nsim = 1000) {

+ Welch.count <- logical(nsim)

+ pooled.count <- logical(nsim)

+ Welch.length <- numeric(nsim)

+ pooled.length <- numeric(nsim)

+ mean.diff <- mean1 - mean2

+ for (i in 1:1000) {

+ x <- rnorm(n1, mean = mean1, sd = sd1)

+ y <- rnorm(n2, mean = mean2, sd = sd2)

+ t1conf.int <- t.test(x, y)$conf.int

+ t2conf.int <- t.test(x, y, var.equal = TRUE)$conf.int
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+ t1correct <- (t1conf.int[1] < mean.diff) & (t1conf.int[2] >

+ mean.diff)

+ t2correct <- (t2conf.int[1] < mean.diff) & (t2conf.int[2] >

+ mean.diff)

+ Welch.count[i] <- t1correct

+ pooled.count[i] <- t2correct

+ Welch.length[i] <- diff(t1conf.int)

+ pooled.length[i] <- diff(t2conf.int)

+ }

+ c(Welch.proportion.correct = mean(Welch.count), pooled.proportion.correct = mean(pooled.count),

+ Welch.length.avg = mean(Welch.length), pooled.length.avg = mean(pooled.length))

+ }

> Welch.pooled.comparison()

Welch.proportion.correct pooled.proportion.correct Welch.length.avg
0.954 0.885 82.808

pooled.length.avg
62.009

> Welch.pooled.comparison(sd1 = 40, sd2 = 40)

Welch.proportion.correct pooled.proportion.correct Welch.length.avg
0.941 0.940 70.565

pooled.length.avg
67.770

Exercise 21*
Experiment with the pair65 example and plot various views of the likelihood function,
either as a surface using the persp() function or as one-dimensional profiles using the
curve() function. Is there a single maximizer: Where does it occur?

First, check the mean and the SD.

> with(pair65, heated - ambient)

[1] 19 8 4 1 6 10 6 -3 6

> mean(with(pair65, heated - ambient))

[1] 6.333

> sd(with(pair65, heated - ambient))

[1] 6.103

Now create and use a function that calculates the likelihood, given mu and sigma

> funlik <- function(mu, sigma, x = with(pair65, heated - ambient)) prod(dnorm(x,

+ mu, sigma))

Next, calculate a vector of values of mu, and a vector of values of sigma

> muval <- seq(from = 2, to = 12, by = 0.5)

> sigval <- seq(from = 1, to = 15, by = 0.5)
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Now calculate an array of logliklihoods

> loglikArray <- function(mu, sigma, d = with(pair65, heated -

+ ambient)) {

+ xx <- matrix(0, nrow = length(mu), ncol = length(sigma))

+ for (j in seq(along = sigma)) for (i in seq(along = mu)) xx[i,

+ j] <- log(funlik(mu[i], sigma[j], d))

+ xx

+ }

> loglik <- loglikArray(mu = muval, sigma = sigval)

Now create a perspective plot

> persp(x = muval, y = sigval, loglik)

A wider range of values of mu, and a narrower range of values of sigma, seems preferable:

> muval <- seq(from = -1, to = 14, by = 0.5)

> sigval <- seq(from = 3, to = 12, by = 0.2)

> loglik <- loglikArray(mu = muval, sigma = sigval)

> persp(x = muval, y = sigval, loglik)

Try also

> contour(muval, sigval, loglik)

> filled.contour(muval, sigval, loglik)

Exercise 22*
Suppose the mean reaction time to a particular stimulus has been estimated in several
previous studies, and it appears to be approximately normally distributed with mean 0.35
seconds with standard deviation 0.1 seconds. On the basis of 10 new observations, the
mean reaction time is estimated to be 0.45 seconds with an estimated standard deviation
of 0.15 seconds. Based on the sample information, what is the maximum likelihood
estimator for the true mean reaction time? What is the Bayes’ estimate of the mean
reaction time.

Following Section 4.2.2 the posterior density of the mean is normal with mean

nȳ + µ0σ
2/σ2

0

n + σ2/σ2
0

and variance
σ2

n + σ2/σ2
0

where, here
µ0 = 0.35, σ0 = 0.1, ȳ = 0.45, n = 10, σ = 0.15

Thus the posterior mean and variance of the mean are:

> print(c(mean = (10 * 0.45 + 0.35 * 0.15^2/0.1^2)/(10 + 0.15^2/0.1^2)))

mean
0.4316

> print(c(variance = 0.1^2/(10 + 0.15^2/0.1^2)))

variance
0.0008163

The posterior mean is the Bayes’ estimate of the mean.


