
Chapter 5 Exercises 1

Data Analysis & Graphics Using R, 2nd edn – Solutions to Exercises (December 13, 2006)

Preliminaries

> library(DAAG)

Exercise 2
For each of the data sets elastic1 and elastic2, determine the regression of stretch on
distance. In each case determine

(i) fitted values and standard errors of fitted values and

(ii) the R2 statistic. Compare the two sets of results. What is the key difference
between the two sets of data?

Use the robust regression function rlm() from the MASS package to fit lines to the data
in elastic1 and elastic2. Compare the results with those from use of lm(). Compare
regression coefficients, standard errors of coefficients, and plots of residuals against fitted
values.

The required regressions are as follows:

> e1.lm <- lm(distance ~ stretch, data = elastic1)

> e2.lm <- lm(distance ~ stretch, data = elastic2)

The fitted values and standard errors of the fits are then:

> predict(e1.lm, se.fit = TRUE)

$fit
1 2 3 4 5 6 7

183.1 235.7 196.3 209.4 170.0 156.9 222.6

$se.fit
[1] 6.587 10.621 5.892 6.587 8.332 10.621 8.332

$df
[1] 5

$residual.scale
[1] 15.59

The R2 statistic, in each case, is obtained as follows:

> summary(e1.lm)$r.squared

[1] 0.7992

> summary(e2.lm)$r.squared

[1] 0.9808

The standard errors are somewhat smaller for the second data set than for the first,
while the R2 value is much larger for the second than the first. The main reason for the
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difference in R2 is the larger range of stretch for the second data set. There is more
variation to explain. More specifically

R2 = 1− (n− 2)s2∑
(y − ȳ2)

(1)

= 1− s2∑
(y − ȳ2)/(n− 2)

(2)

(3)

Increasing the range of values greatly increases the denominator. If the line is adequate
over the whole of the range, s2 will, as here, not change much. (For these data, in spite
of the greater range, it reduces somewhat.)

The robust regression fits can be obtained as follows:

> library(MASS)

> e1.rlm <- rlm(distance ~ stretch, data = elastic1)

> e2.rlm <- rlm(distance ~ stretch, data = elastic2)

The robust regression fits can be obtained as follows:

The residual plots can be obtained for rlm in the same was as for lm. It may however
be more insightful to overlay the rlm plots on the lm plots.

> par(mfrow = c(1, 2))

> plot(e1.lm, which = 1, add.smooth = FALSE)

> points(resid(e1.rlm) ~ fitted(e1.rlm), col = 2, pch = 2)

> plot(e2.lm, which = 1, add.smooth = FALSE)

> points(resid(e2.rlm) ~ fitted(e2.rlm), col = 2, pch = 2)

> par(mfrow = c(1, 1))
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Figure 1: Overlaid plots of residuals versus fitted values, for the dataframes elastic1
(left panel) and elastic2 (right panel). Circles are for the lm fit and triangles for the
rlm fit.

For comparison purposes, we include residual plots for the ordinary regression fits.
Note, in particular, how the robust regression has reduced the weight of the outlying
observation in the first data set. The residual at that point is larger than it was using
ordinary least-squares. The residual plots for the ordinary and robust fits are very similar
for the second data set, since there are no outlying observations.

As can be seen in the summaries below, the ordinary and robust fits for the first data
set give quite different estimates of the slope and intercept. The robust fit is more in line
with both sets of results obtained for the second data set.

Note also the downward effect of the robust regression on the residual standard error.
This is again due to the down-weighting of the outlying observation.

For further details, run the following code:
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> summary(e1.rlm)

> summary(e1.lm)

> summary(e2.rlm)

> summary(e2.lm)

Exercise 3
Using the data frame cars (datasets), plot distance (i.e. stopping distance) versus
speed. Fit a line to this relationship, and plot the line. Then try fitting and plotting a
quadratic curve. Does the quadratic curve give a useful improvement to the fit? [Readers
who have studied the relevant physics might develop a model for the change in stopping
distance with speed, and check the data against this model.]

The data can be plotted using

> plot(dist ~ speed, data = cars, xlab = "stopping distance", pch = 16)

The linear model can be fit, and a line added, as follows:

> cars.lm <- lm(dist ~ speed, data = cars)

> abline(cars.lm)

One way of fitting a quadratic curve to the data is as follows:

> cars.lm2 <- lm(dist ~ speed + I(speed^2), data = cars)

The following overlays the quadratic curve:

> xval <- pretty(cars$speed, 50)

> hat2 <- predict(cars.lm2, newdata = list(speed = xval))

> lines(xval, hat2, col = "red", lty = 2, lwd = 2)

Here is the graph
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Figure 2: Quadratic curve fit-
ted to car data.

Based on what we’ve seen so far, the quadratic curve does not appear to fit the data
much better than the line. Checking the summary and the p-value might lead us to
believe that the quadratic term is not needed:

> summary(cars.lm2)

Call:
lm(formula = dist ~ speed + I(speed^2), data = cars)
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Residuals:
Min 1Q Median 3Q Max

-28.72 -9.18 -3.19 4.63 45.15

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.470 14.817 0.17 0.87
speed 0.913 2.034 0.45 0.66
I(speed^2) 0.100 0.066 1.52 0.14

Residual standard error: 15.2 on 47 degrees of freedom
Multiple R-Squared: 0.667, Adjusted R-squared: 0.653
F-statistic: 47.1 on 2 and 47 DF, p-value: 5.85e-12

The relevant physics suggests that stopping distance is, in fact, a nonlinear function
of speed. An over-simplified model is

distance = k speed2

where k is a constant, which is inversely related to the acceleration (actually decelera-
tion), which is assumed constant here. Because of the unrealistic assumption that k is
independent of the deceleration, this model should be used only as a start. The actual
deceleration will not be constant, and there is likely a fair bit of noise associated with it.
Note that the error term, which we have not specified, is likely to be a function of speed.

Also, we have not consulted a residual plot. In view of the non-significant quadratic
term, we examine the residual plot for the model with a linear term.

> plot(cars.lm, which = 1, panel = panel.smooth)
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Figure 3: Plot of residuals ver-
sus fitted values, for the cars
data.

In view of the clear trend in the plot of residuals, it might be safest to include the
quadratic term.

Note however that the error variance (even after the trend from the residuals is taken
out) is not constant, but increases with the fitted values. Alternatives are to try a
weighted least-squares fit, or to try a variance-stabilizing transformation. If we are for-
tunate, a variance-stabilizing transformation may also reduce any trend that may be
present. In particular, a square-root transformation seems to work well:
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> cars.lm3 <- lm(sqrt(dist) ~ speed, data = cars)

> plot(cars.lm3, which = 1, panel = panel.smooth)
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Figure 4: Residuals from the
regression of the square root of
distance on speed, for the car
data.

Incidentally, the square root transformation is also indicated by the Box-Cox proce-
dure (see exercise 5). This is seen from the output to either of

> boxcox(dist ~ speed, data = cars)

> boxcox(dist ~ I(speed^2), data = cars)

Exercise 5
In the data set pressure (datasets), examine the dependence of pressure on temperature.
[The relevant theory is that associated with the Claudius-Clapeyron equation, by which
the logarithm of the vapor pressure is approximately inversely proportional to the abso-
lute temperature. For further details of the Claudius-Clapeyron equation, search on the
internet, or look in a suitable reference text.]

First we ignore the Claudius-Clapeyron equation, and try to transform pressure. When the
logarithmic transformation is too extreme, as happens in this case, a power transformation with
a positive exponent may be a candidate. A square root transformation is a possibility:

> pressure$K <- pressure$temperature + 273

> p.lm <- lm(I(pressure^0.5) ~ K, data = pressure)

> plot(p.lm, which = 1)

A systematic search for a smaller exponent is clearly required.

The Clausius-Clapeyron equation suggests that log(pressure) should be a linear
function of 1/K, where K is degrees kelvin.

> p.lm2 <- lm(log(pressure) ~ I(1/K), data = pressure)

> plot(p.lm2, which = 1)

Consulting the residual plot, we see too much regularity. One point appears to be an
outlier, and should be checked against other data sources. Some improvement is obtained
by considering polynomials in the inverse of temperature. For example, the quadratic
can be fit as follows:

> p.lm4 <- lm(log(pressure) ~ poly(1/K, 2), data = pressure)

> plot(p.lm4, which = 1)

The residual plot still reveals some unsatisfactory features, particularly for low temper-
atures. However, such low pressure measurements are notoriously inaccurate. Thus, a
weighted least-squares analysis would probably be more appropriate.
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Exercise 6*
Look up the help page for the function boxcox() from the MASS package, and use this
function to determine a transformation for use in connection with Exercise 5. Examine
diagnostics for the regression fit that results following this transformation. In particular,
examine the plot of residuals against temperature. Comment on the plot. What are its
implications for further investigation of these data?

The Box-Cox procedure can be applied to the pressure data as follows:

> boxcox(pressure ~ K, data = pressure)
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Figure 5: Boxcox plot, for
pressure versus degrees kelvin

This suggests a power of around 0.1.
Thus, we might fit the model using

lm(I(pressure^.1) ~ K, data=pressure)

However, remembering that the physics suggests a transformation of temperature, we
should really look at

> boxcox(pressure ~ I(1/K), data = pressure)

The result is

> boxcox(pressure ~ I(1/K), data = pressure)

−2 −1 0 1 2

−
30

0
−

10
0

0

λλ

lo
g−

Li
ke

lih
oo

d

 95%

Figure 6: Boxcox plot, for
pressure versus 1/K

This shows clearly that the logarithmic transformation is likely to be helpful. (How-
ever check the effect of the Box-Cox transformation on the trend.)
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Exercise 7
Annotate the code that gives panels B and D of Figure 5.4, explaining what each function
does, and what the parameters are.

library(DAAG) # loads the DAAG library
attach(ironslag) # attaches data frame contents to search path
par(mfrow=c(2,2)) # enables a 2x2 layout on the graphics window
ironslag.lm <- lm(chemical ~ magnetic)

# regress chemical on magnetic
chemhat <- fitted(ironslag.lm) # assign fitted values to chemhat
res <- resid(ironslag.lm) # assign residuals to res
## Figure 5.4B
plot(magnetic, res, ylab = "Residual", type = "n") # type = "n"

# Set up axes with correct ranges, do not plot
panel.smooth(magnetic, res, span = 0.95) # plots residuals

# vs predictor, & adds a lowess smooth; f=span
## Figure 5.4D
sqrtabs <- sqrt(abs(res)) # square root of abs(residuals)
plot(chemhat, sqrtabs, xlab = "Predicted chemical",

ylab = expression(sqrt(abs(residual))), type = "n")
# suppressed plot again, as above

panel.smooth(chemhat, sqrtabs, span = 0.95)
# plot sqrt(abs(residuals)) vs fitted values
# add lowess smooth, with f=span

detach(ironslag) # remove data frame contents from search path

Exercise 8
The following code gives the values that are plotted in the two panels of Figure 5.5.

## requires the data frame ironslag (DAAG)
ironslag.loess <- loess(chemical ~ magnetic, data=ironslag)
chemhat <- fitted(ironslag.loess)
res2 <- resid(ironslag.loess)
sqrtabs2 <- sqrt(abs(res2))

Using this code as a basis, create plots similar to Figure 5.5A and 5.5B. Why have we
preferred to use loess() here, rather than lowess()? [Hint: Is there a straightforward
means for obtaining residuals from the curve that lowess() gives? What are the x-values,
and associated y-values, that lowess() returns?]

Obtaining residuals from lowess() is problematic because the fitted data are sorted
according to the predictor variable upon output.

One way of obtaining residuals upon use of lowess() is to sort the data beforehand
as below:

> ironsort <- ironslag[order(ironslag$magnetic), ]

> attach(ironsort)

> ironsort.lw <- lowess(magnetic, chemical)

> ironsort.resid <- chemical - ironsort.lw$y

Once we have the residuals (either from loess() or from lowess()), we may proceed
to obtain the plots in Figure 5.5. One way is as follows:
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> plot(ironsort.resid ~ magnetic, lwd = 2, xlab = "Magnetic", ylab = "Residual")

> lines(lowess(magnetic, ironsort.resid, f = 0.8), lty = 2)

To obtain the plot in Figure 5.5B, we could then do the following:

> sqrtabs2 <- sqrt(abs(ironsort.resid))

> plot(sqrtabs2 ~ ironsort.lw$y, xlab = "Predicted chemical", ylab = expression(sqrt(Residual)))

> lines(lowess(ironsort.lw$y, sqrtabs2, f = 0.8))

> detach(ironsort)

One could also use loess() instead of lowess().

Exercise 10
Write a function which simulates simple linear regression data from the model

y = 2 + 3x + ε

where the noise terms are independent normal random variables with mean 0 and variance
1.
Using the function, simulate two samples of size 10. Consider two designs: first, assume
that the x-values are independent uniform variates on the interval [−1, 1]; second, assume
that half of the x-values are -1’s, and the remainder are 1’s. In each case, compute slope
estimates, standard error estimates and estimates of the noise standard deviation. What
are the advantages and disadvantages of each type of design?

> ex10fun <- function(x = runif(n), n = 20) {

+ eps <- rnorm(n)

+ y <- 2 + 3 * x + eps

+ lm(y ~ x)

+ }

> summary(ex10fun())

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-2.670 -0.582 -0.247 0.454 3.073

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.010 0.552 3.64 0.0019
x 3.098 1.012 3.06 0.0067

Residual standard error: 1.18 on 18 degrees of freedom
Multiple R-Squared: 0.342, Adjusted R-squared: 0.306
F-statistic: 9.37 on 1 and 18 DF, p-value: 0.00674

> summary(ex10fun(x = rep(c(-1, 1), c(10, 10))))

Call:
lm(formula = y ~ x)
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Residuals:
Min 1Q Median 3Q Max

-1.590 -0.564 -0.309 0.550 1.902

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.902 0.225 8.44 1.1e-07
x 2.931 0.225 13.01 1.4e-10

Residual standard error: 1.01 on 18 degrees of freedom
Multiple R-Squared: 0.904, Adjusted R-squared: 0.898
F-statistic: 169 on 1 and 18 DF, p-value: 1.36e-10

Notice the substantial reduction in the SE for the intercept, and the even larger reduction
in the SE for the slope, for the design that divides the sample points equally between the
two ends of the interval.

This reduction in the SEs is of course a benefit. The disadvantage is that there is
no possibility to check, with the second design, whether the assumed form of regression
relationship is correct.

Note: The estimate and variance of the intercept are:

a = ȳ − bx̄; var[a] = σ2/n +
σ2

n
∑

(x− x̄)2

The estimate and variance of the intercept are:

b =
∑

(x− x̄)ȳ
n

∑
(x− x̄)2

var[b] =
σ2

n
∑

(x− x̄)2

Here σ = 1.

For a uniform random variable on [-1, 1], it can be shown that the variance
is 1

3 . It follows that E[
∑

(x − x̄)2] = n−1
3 . When sample points are divided

equally between the two ends of the interval,
∑

(x− x̄)2 = n. The ratio of the
expected SE for the slope in the first design to the SE in the second design

is then
√

(n−1)
3n . Here, this ratio is approximately 0.56. Asymptotically, it is

approximately 0.58.


