
Chapter 6 Exercises 1

Data Analysis & Graphics Using R, 2nd edn – Solutions to Exercises (May 1, 2010)

Preliminaries

> library(DAAG)

Exercise 1
The data set cities lists the populations (in thousands) of Canada’s largest cities over
1992 to 1996. There is a division between Ontario and the West (the so-called “have”
regions) and other regions of the country (the “have-not” regions) that show less rapid
growth. To identify the “have” cities we can specify

cities$have <- factor((cities$REGION=="ON")|

(cities$REGION=="WEST"))

Plot the 1996 population against the 1992 population, using different colors to distinguish
the two categories of city, both using the raw data and taking logarithms of data values,
thus:

plot(POP1996 ~ POP1992, data=cities,

col=as.integer(cities$have))

plot(log(POP1996) ~ log(POP1992), data=cities,

col=as.integer(cities$have))

Which of these plots is preferable? Explain.
Now carry out the regressions

cities.lm1 <- lm(POP1996 ~ have+POP1992, data=cities)

cities.lm2 <- lm(log(POP1996) ~ have+log(POP1992),

data=cities)

and examine diagnostic plots. Which of these seems preferable? Interpret the results.

The required plots are given below.
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Figure 1: Red circles indicate the ‘have’ cities, and black circles indicate the ‘have-not’
cities. In the left panel, data are untransformed, while the right panel uses logarithmic
scales.

The second plot is preferable, since it spreads the plotted points out more evenly, while
the first plot contains the large cluster of points in one corner. Population comparisons are
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usually best made using ratios instead of differences; differences of logarithms correspond
to logarithms of ratios, which is another reason for preferring the second plot.

We plot residuals against fitted values, first for the untransformed data and then for
the transformed data.

> par(mfrow=c(1,2))

> cities.lm1 <- lm(POP1996 ~ have+POP1992, data=cities)

> cities.lm2 <- lm(log(POP1996) ~ have+log(POP1992),

+ data=cities)

> plot(cities.lm1, which=1)

> plot(cities.lm2, which=1)

> par(mfrow=c(1,1))
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Figure 2: Plots of resid-
uals against fitted values.
The left panel is for the
model that used untrans-
formed data, while the right
panel is for the model that
used log-transformed data.

These plots indicate the need for transformation.
It is also a good idea to check plots of the residuals versus the predictors, as in

plot(resid(cities.lm2) ~ log(cities$POP1992))

plot(resid(cities.lm2) ~ cities$have)

These plots (not shown) and plots of Cook’s distance and normal probability plots (also
not shown) do not indicate any problems.

Here is the regression summary:

> summary(cities.lm2)

Call:

lm(formula = log(POP1996) ~ have + log(POP1992), data = cities)

Residuals:

Min 1Q Median 3Q Max

-0.03478 -0.01698 -0.00332 0.01836 0.04821

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.05565 0.03062 -1.82 0.083

haveTRUE 0.02254 0.01004 2.25 0.035

log(POP1992) 1.01352 0.00523 193.92 <2e-16

Residual standard error: 0.0239 on 22 degrees of freedom

Multiple R-squared: 0.999, Adjusted R-squared: 0.999

F-statistic: 2.05e+04 on 2 and 22 DF, p-value: <2e-16

This suggests that the ‘have’ cities grew faster between 1992 and 1996 than the ‘have-not’
cities.
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Exercise 2
In the data set cement (MASS package), examine the dependence of y (amount of heat
produced) on x1, x2, x3 and x4 (which are proportions of four constituents). Begin by
examining the scatterplot matrix. As the explanatory variables are proportions, do they
require transformation, perhaps by taking log(x/(100 − x))? What alternative strategies
might be useful for finding an equation for predicting heat?

First, obtain the scatterplot matrix for the untransformed cement data:
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Figure 3: Scatterplot
matrix for the cement
data.

Since the explanatory variables are proportions, a transformation such as that sug-
gested might be helpful, though the bigger issue is the fact that the sum of the explanatory
variables is nearly constant. Thus, there will be severe multicollinearity as indicated by
the variance inflation factors:

> cement.lm <- lm(y ~ x1+x2+x3+x4, data=cement)

> vif(cement.lm)

x1 x2 x3 x4

38.50 254.42 46.87 282.51

The scatterplot matrix indicated that x4 and x2 are highly correlated, so we may wish
to include just one of these variables as in

> cement.lm2 <- lm(y ~ x1+x2+x3, data=cement)

> vif(cement.lm2)

x1 x2 x3

3.251 1.064 3.142
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The multicollinearity is less severe, and we can proceed. We consult the standard diag-
nostics using

> par(mfrow=c(1,4))

> plot(cement.lm2)

> par(mfrow=c(1,1))
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Figure 4: Diagnostic plots for the model cement.lm2

Nothing seems amiss on these plots. The three variable model seems satisfactory.
Upon looking at the summary, one might argue in favour of removing the variable x3.

For the logit analysis, first define the logit function:

> logit <- function(x) log(x/(100-x))

Now form the transformed data frame, and show the scatterplot matrix:

> logitcement <- data.frame(logit(cement[,c("x1", "x2","x3","x4")]),

+ y=cement[, "y"])

> pairs(logitcement)
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Figure 5: Scatterplot
matrix for the logits of
the proportions.
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Notice that the relationship between x2 and x4 is now more nearly linear. This is helpful;
it is advantageous for collinearities or multicollinearities to be explicit.

Now fit the full model, and plot the diagnostics:

> logitcement.lm <- lm(y ~ x1+x2+x3+x4, data=logitcement)

> par(mfrow=c(1,4))

> plot(logitcement.lm)

> par(mfrow=c(1,1))
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Figure 6: Diagnostic plots for the model that works with logits.

This time, the multicollinearity problem is less extreme, though it is still notable.
Some observations have now influential outliers. In this problem, we may be best off not
transforming the predictors.

Exercise 3
The data frame hills2000 in our DAAG package has data, based on information from
the Scottish Running Resource web site, that updates the 1984 information in the data
set hills. Fit a regression model, for men and women separately, based on the data
in hills2000. Check whether it fits satisfactorily over the whole range of race times.
Compare the equation that you obtain with that based on the hills data frame.

> hills2K <- hills2000[, -seq(1,6)]

This eliminates the first 6 columns which contain the record times for both sexes in terms
of hours, minutes and seconds; these columns are extraneous, since we have the record
times in seconds in the time and timef variables.

We begin with the same kind of transformed model that we tried in Section 6.3 for
the hills data, examining the diagnostic plots.

> hills2K.loglm <- lm(log(time) ~ log(dist) + log(climb), data=hills2K)

> par(mfrow=c(1,4))

> plot(hills2K.loglm)

> par(mfrow=c(1,1))
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Figure 7: Diagnostic plots for hills2K.loglm

The first of the diagnostic plots (residuals versus fitted values) reveals three potential
outliers, identified as 12 Trig Trog, Chapelgill, and Caerketton. A robust fit is however
a safer guide. The plot from such a fit shows Eildon Two and Braemar as outliers.
El-Brim-Ick stands out as different primarily because there is residual curvature in the
plot.

> use <- !row.names(hills2K)%in%c("Eildon Two","Braemar")

> hills2Kr.loglm <- lm(log(time) ~ log(dist) + log(climb), data=hills2K[use, ])

> plot(hills2Kr.loglm, panel=panel.smooth, which=1)
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Figure 8: Residuals vs fitted
values for hills2Kr.loglm

There is clear evidence of curvature in the plot of residuals. Caerketton now stands
out. We will omit that also, for the time being.

Is it hepful to add the interaction term log(dist):log(climb). It turns out that
this does not remove the curvature in the plot of residuals versus fitted values.

Additional Note:
A model that uses spline curves to transform the explanatory variables does work well.
We include residuals and fitted values for the three omitted races in the plot. The code
is

> library(splines)

> use <- !row.names(hills2K)%in%c("Eildon Two","Braemar","Caerketton")

> hills2K.bs <- lm(log(time) ~ bs(dist,4)+bs(climb,4), data=hills2K[use, ])

> hat <- predict(hills2K.bs, newdata=hills2K)

> res <- log(hills2K$time)-hat

> par(mfrow=c(1,3), pty="s")

> plot(hat,res)

> text(hat[!use], res[!use], row.names(hills2K)[!use], pos=4)

> plot(hills2K.bs, panel=panel.smooth, which=1)

> termplot(hills2K.bs, partial.resid=TRUE)

> par(mfrow=c(1,1))
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Figure 9: Residuals vs fitted values, and termplots, for hills2K.bs.

The plot of residuals versus fitted values shows no evidence either of trend or of hetero-
geneity of variance. Caerketton shows the clearest evidence that is should perhaps be
identified as an outlier.

To complete the analysis, check the effect of including back in the model (i) all three
omitted points except Caerketton, and (ii) all three omitted points. If it makes little
difference, they should be included back.

(A further model that may be tried has time on the left-hand side. The plot of
residuals against fitted values then shows clear evidence of curvature.)
Additional Note: The following may be interesting. We use the spline model, derived
from the hills2K data, to determine predicted values, and compare these with predicted
values from the spline model that is fitted to the hills data.

> hills2K.bs <- lm(log(time) ~ bs(dist,4)+bs(climb,4), data=hills2K[use, ])

> hills.bs <- lm(log(time) ~ bs(dist,4)+bs(climb,4), data=hills[-18, ])

> fits <- predict(hills.bs)

> fits2 <- predict(hills2K.bs, newdata=hills[-18,])

> plot(fits, fits2, xlab="Fitted values, from hills.bs",

+ ylab="Fitted values, hills2K.bs model")

> mtext(side=3, line=1, "All fitted values are for the hills data")

> abline(0,1)

The warnings arise because some values of climb for the hills data lie outside of the
range of this variable for the hills2K data.

Exercise 4
Section 6.1 used lm() to analyze the allbacks data that are presented in Figure 6.1.
Repeat the analysis using (1) the function rlm() in the MASS package, and (2) the
function lqs() in the MASS package. Compare the two sets of results with the results in
Section 6.1.

Here are fits, w/wo intercept, using rlm()

> allbacks.rlm <- rlm(weight ~ volume+area, data=allbacks)

> summary(allbacks.rlm)

Call: rlm(formula = weight ~ volume + area, data = allbacks)

Residuals:

Min 1Q Median 3Q Max
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-80.86 -22.18 -9.58 34.54 232.26

Coefficients:

Value Std. Error t value

(Intercept) 9.239 40.316 0.229

volume 0.701 0.042 16.641

area 0.514 0.070 7.311

Residual standard error: 39.4 on 12 degrees of freedom

> allbacks.rlm0 <- rlm(weight ~ volume+area-1, data=allbacks)

> summary(allbacks.rlm0)

Call: rlm(formula = weight ~ volume + area - 1, data = allbacks)

Residuals:

Min 1Q Median 3Q Max

-86.0 -20.6 -10.3 36.1 231.8

Coefficients:

Value Std. Error t value

volume 0.711 0.018 38.511

area 0.517 0.062 8.288

Residual standard error: 39.7 on 13 degrees of freedom

Here are plots of residuals against fitted values, for the two models.

> par(mfrow=c(1,2))

> plot(allbacks.rlm, which=1) # residual plot

> mtext(side=3, line=1, "rlm(), intercept included")

> plot(allbacks.rlm0, which=1) # residual plot

> mtext(side=3, line=1, "rlm(), no intercept")

> par(mfrow=c(1,2))
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Figure 10: Residuals vs fitted
values, for the rlm() models
with & without intercept.

Comparison of the coefficients of the intercept and no-intercept with the lm() coun-
terparts reveals larger differences in coefficient estimates for the intercept models. The
robust method has given smaller coefficient standard errors than lm().

The influence of the outlying observation (the 13th) is reduced using the robust
method; therefore, on the residual plots we see this observation featured even more promi-
nently as an outlier than on the corresponding plots for the lm() fits.

We next consider the lqs() approach. By default, lqs() employs a resistant re-
gression method called least trimmed squares regression (lts), an idea due to Rousseeuw
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(1984) (“Least median of squares regression.” Journal of the American Statistical Associ-
ation 79: 871–888). The method minimizes the sum of the k smallest squared residuals,
where k is usually taken to be slightly larger than 50% of the sample size. This approach
removes all of the influence of outliers on the fitted regression line.

> library(MASS)

> allbacks.lqs <- lqs(weight ~ volume+area, data=allbacks)

> allbacks.lqs$coefficients # intercept model

(Intercept) volume area

-59.6232 0.7737 0.4709

> allbacks.lqs0 <- lqs(weight ~ volume+area-1, data=allbacks)

> coefficients(allbacks.lqs0) # no-intercept model

volume area

0.7117 0.4849

The robust coefficient estimates of volume and area are similar to the corresponding
coefficient estimates for the lm() fit.

Here are plots of residuals against fitted values, for the two models.

> par(mfrow=c(1,2))

> plot(allbacks.lqs$residuals ~ allbacks.lqs$fitted.values)

> mtext(side=3, line=1, "lqs(), intercept included")

> plot(allbacks.lqs0$residuals ~ allbacks.lqs0$fitted.values)

> mtext(side=3, line=1, "lqs(), no intercept")

> par(mfrow=c(1,1))
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Figure 11: Residuals vs fitted
values, for the lqs() models
with & without intercept.

Because the outlying observation (13) is now not used at all in the final regression
coefficient estimates, it has no influence. Neither does observation 11, another outlier.
Both points plot farther away from the reference line at 0 than in the corresponding lm()

residual plots.

Exercise 6
Check the variance inflation factors for bodywt and lsize for the model
brainwt ~ bodywt + lsize, fitted to the litters data set. Comment.

We can use the function vif() to determine the variance inflation factors for the litters
data as follows:

> litters.lm <- lm(brainwt ~ bodywt + lsize, data=litters)

> vif(litters.lm)
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bodywt lsize

11.33 11.33

A scatterplot of litter size versus body weight would confirm that the two variables
have a relation which is close to linear. The effect is to give inflated standard errors in the
above regression, though not enough to obscure the relationship between brain weight
and body weight and litter size completely.

It is hazardous to make predictions of brain weight for pigs having body weight and
litter size which do not lie close to the line relating these variables.

Exercise 9

(a) > library(MPV)

> plot(y ~ x1, data=table.b3)

The scatterplot is suggests a curvilinear relationship.

(b) > library(lattice)

> xyplot(y ~ x1, group=x11, data=table.b3)

This suggests that the apparent nonlinearity is better explained by the two types
of transmission.

(c) > b3.lm <- lm(y ~ x1*x11, data=table.b3)

> par(mfrow=c(1,4), pty="s")

> plot(b3.lm)

Observation 5 is influential, but it is not an outlier.

(d) > xyplot(resid(b3.lm) ~ x7, group=x11, data=table.b3)

This plot demonstrates that observation 5 is quite special. It is based on the only car
in the data set with a 3-speed manual transmission.


