
Notes on Lattice Graphics1

J H Maindonald

Lattice Graphics:

Lattice Lattice is a flavour of trellis graphics
(the S-PLUS flavour was the original)

Grid grid is a low-level graphics system. It was used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

Lattice Lattice syntax is consistent and tightly regulated
syntax For lattice, graphics formulae are mandatory.

Lattice (trellis) graphics functions allow the use of the layout on the page to reflect meaningful
aspects of data structure. Different levels of a factor may appear in different panels. Or they may
appear in the same panel, distinguished by color and/or symbol. If lines or smooth curves are added,
there is a different line or curve for each different group.

Similar considerations apply when columns of data are plotted in parallel. Different columns may
appear in different panels. Or they may appear in the same panel, distinguished by color and/or
symbol.

To see some of the possibilities that lattice graphics offers, enter

library(lattice)
demo(lattice)

1 Lattice Graphics vs Base Graphics

Contrast the different ways that base and lattice graphics are designed to operate.

• In base graphics, a graphics page (possibly the first of a sequence of pages) opens when a device
is opened. Plots then go to the page or pages. For a screen device, plots go to the screen. For
a hardcopy device, plots usually go, in the first place, to a file.

• Lattice functions create trellis objects. Objects can be created even if no device is open. Such
objects can be updated. Objects are plotted (by this time, a device must be open), either when
output from a lattice function goes to the command line (thus implicitly invoking the print()
command), or by the explicit use of print().

The updating feature allows the graphics object to be built up in steps, or even modified. Additionally,
abilities that were added relatively late in lattice’s development make it possible to adds new features
to the “printed” page, after a style of use that is common in base graphics.

1 c© J. H. Maindonald 2008. Permission is given to make copies for personal study and class use. (June 9, 2008)

2 GROUPS WITHIN DATA, AND/OR COLUMNS IN PARALLEL 2

The lattice package comes already installed with all the binary distributions that are supplied from
CRAN (Comprehensive R Archive Network: http://mirror.aarnet.edu.au/pub//CRAN/). For use
in an R session, it must first be attached.

library(lattice)

Now compare:

plot(ACT ~ year , data=austpop) # Base graphics

xyplot(ACT ~ year , data=austpop) # Lattice graphics

In both cases, if these are typed from the command line, a graph is plotted. The reason is different
in the two cases:

• plot() gives a graph as a side effect of the command.

• xyplot() generates a graphics object. As this is ouptut to the command line, the object is
“printed”, i.e., a graph appears.

The following makes this clear: The following makes clear the difference between the two functions:

invisible(plot(ACT ~ year , data=austpop)) # A graph is plotted

invisible(xyplot(ACT ~ year , data=austpop)) # Graph does appear

The function invisible() suppresses the command line printing. Hence invisible(xyplot(...))
does not yield a graph.

Inside a function, xyplot(...) prints a graph only if it appears as the return value from the
function, i.e. usually, as the final line. In a file that is sourced, no graph will appear. Inside a function
(except as mentioned), or in a file that is sourced, there must be an explicit print(), i.e.

print(xyplot(ACT ~ year , data=austpop))

2 Groups within Data, and/or Columns in Parallel

Here are selected lines from the data set grog (DAAGxtras package):

Beer Wine Spirit Country Year
1 5.24 2.86 1.81 Australia 1998
2 5.15 2.87 1.77 Australia 1999

. . . .
9 4.57 3.11 2.15 Australia 2006

10 4.50 2.59 1.77 NewZealand 1998
11 4.28 2.65 1.64 NewZealand 1999

. . . .
18 3.96 3.09 2.20 NewZealand 2006

There are three drinks (liquor products), shown in different columns, and two countries, occupying
rows that are indexed by the factor Country. The lattice function xyplot() can accommodate any
of the following possibilities:

• Different symbols and/or colors are used for different drinks, within the one panel. Different
panels must then be used for different countries, as in Figure 1.2 Or if different countries are
shown in the same panel, then different panels must be used for the different drinks.

2The data (dataset grog, from DAAGxtras) are 1998 – 2006 Australian and New Zealand apparent per person annual
consumption (in liters) of the pure alcohol content of Beer, Wine and Spirit. Data, based on Australian Bureau of
Statistics and Statistics New Zealand figures, are obtained by dividing estimates of total available alcohol by number
of persons aged 15 or more.

http://mirror.aarnet.edu.au/pub//CRAN/

2 GROUPS WITHIN DATA, AND/OR COLUMNS IN PARALLEL 3

• Use a 3 drinks × 2 countries, or 2 countries × 3 drinks layout of panels.

Where plots are superposed in the one panel and, e.g. regression lines or smooth curves are fitted,
this will be done separately for each different set of points. The separate sets may be distinguished
by colour, and/or they may be distinguished by different symbols and/or line styles.

A
m

ou
nt

 c
on

su
m

ed
 (

pe
r

pe
rs

on
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ● ● ● ● ● ●

●

NewZealand

Beer Spirit Wine●

Figure 1: Australian
and New Zealand ap-
parent per person an-
nual consumption (in
liters) of the pure al-
cohol content of liquor
products, for 1998 to
2006.

Simplified code for Figure 1 is:

xyplot(Beer+Spirit+Wine ~ Year | Country , data=grog , outer=FALSE ,
auto.key=list(columns =3))

To obtain various enhancements that give Figure 1, specify:

grogplot <-
xyplot(Beer+Spirit+Wine ~ Year | Country , data=grog , outer=FALSE ,

auto.key=list(columns =3))
update(grogplot , ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",
par.settings=simpleTheme(pch=c(1,3 ,4)))

The footnote3has alternative code that updates the object, then uses an explicit print().
Observe that:

• Use of Beer+Spirit+Wine gives plots for each of Beer, Spirit and Wine. With outer=FALSE,
these appear in the same panel.

• Conditioning by country (| Country) gives separate panels for separate countries.

• The function simpleTheme() is convenient for setting or changing point and line settings.

The plot superimposes the separate plots (two panels each):

xyplot(Beer ~ Year | Country , data=grog) # Plot for Beer

xyplot(Spirit ~ Year | Country , data=grog) # Plot for Spirit

xyplot(Wine ~ Year | Country , data=grog) # Plot for Wine

For separate panels for the three liquor products (different levels of Country can now use the same
panel), specify outer=TRUE:

xyplot(Beer+Spirit+Wine ~ Year , groups=Country , outer=TRUE ,
data=grog , auto.key=list(columns =2))

3## Update trellis object, then print

frillyplot <-

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

print(frillyplot)

3 LATTICE PARAMETERS AND GRAPHICS FEATURES 4

Here is a summary of the syntax:

Overplot (a single panel) Separate panels (conditioning)
Levels of a factor Beer ∼ Year, groups=Country Beer ∼ Year | Country

Beer+Wine+Spirit ∼ Year,
Columns in parallel outer=FALSE outer=TRUE

3 Lattice Parameters and Graphics Features

Lattice parameter settings

1. Changes to the defaults for points and lines are most easily made using the function
simpleTheme() (in recent versions of lattice).

2. Axis, axis tick, tick label and axis label parameters are conveniently set using the parameter
scales in the function call.

3. Lattice objects can be created, then updated to incorporate changes to parameter settings.

4. Note also the parameters aspect (aspect ratio) and layout (# rows × # columns × # pages).

3.1 Point, line and fill color settings

Lattice point, line & related settings
First use simpleTheme() to create a “theme” with the new settings:

miscSettings <- simpleTheme(pch = c(1,3,4), cex=1.25)

Alternatives are then:

(i) Supply the “theme” to par.settings in the function call.

xyplot(Beer+Spirit+Wine ~ Year | Country, outer=FALSE,
auto.key=list(columns=3), data=grog,
par.settings=miscSettings)

[This stores the settings with the object. These stored settings over-ride the global settings at
the time of printing.]

(ii) Supply the “theme” to trellis.par.set(), prior to plotting:

trellis.par.set(miscSettings)
xyplot(Beer+Spirit+Wine ~ Year | Country, outer=FALSE,

auto.key=list(columns=3), data=grog)

[Makes the change globally, until a new trellis device is opened]

The function simpleTheme() creates a “theme”, i.e., a list of parameter settings, in a form that can
be supplied: (i) in the argument par.settings in the graphics function call; or (ii) in the argument
theme in a call to trellis.par.set(), prior to calling the graphics function; or (iii) in the argument
theme to trellis.device().

Note the use of the function trellis.device() to open a new graphics device. By default, it has
retain=FALSE, so that parameters are reset to their defaults for the relevant device.

The following changes the plotting symbols to symbols 1, 3 and 4, as in Figure 1. It also increases
the size of points by 25%:

miscSettings <- simpleTheme(pch = c(1,3,4), cex =1.25)

3 LATTICE PARAMETERS AND GRAPHICS FEATURES 5

xyplot(Beer+Spirit+Wine ~ Year | Country , outer=FALSE ,
auto.key=list(columns =3), data=grog , ylim=c(0,5.5),
par.settings=miscSettings ,
xlab="", ylab="Alcohol consumption (per person)")

Where there are a small number of points, it can be helpful to show them as large solid dots. The
following affects all subsequent plots, until changed or until a new device is opened:

trellis.par.set(simpleTheme(pch = 16, cex =2))

When there are a large number of points, it may be helpful to set the background transparency alpha
(c.f., also, alpha.points and alpha.line) to a value less than 1, so that regions where there are
many overlapping points can be readily identified.

Where changes go beyond what simpleTheme() allows, it is necessary to know the names under
which settings are stored. To inspect these, type:

> names(trellis.par.get ())
[1] "fontsize" "background" "clip"

. . .
[28] "par.sub.text"

The settings that are of interest can then be inspected individually. Section 14.12 of DAAGUR has
brief details. For a visual display that shows default settings for points, lines and fill colour, try the
following:

trellis.device(color=FALSE)
show.settings ()
trellis.device(color=TRUE)
show.settings ()

The following sets the fontsize. Note that there are separate settings for text and symbols:

trellis.par.set(list(fontsize = list(text = 7, points = 4)))

3.2 Parameters that affect axes, tick marks, and axis labels

Axis, tick, tick label and axis label settings – the scales argument

• Tick positions and tick labels:

jobplot <- xyplot(Ontario+BC ~ Date, data=jobs)
Half-length ticks, each quarter, Label years, Add key

tpos <- seq(from=95, by=0.25, to=97)
tlabs <- rep(c("Jan95", "", "Jan96", "", "Jan97"),

c(1,3,1,3,1))
update(jobplot, auto.key=list(columns=2), xlab="",

scales=list(tck=0.5, x=list(at=tpos, labels=tlabs)))

A logarithmic scale, and/or relation="sliced"

• Use a Logarithmic scale (here, natural logarithmic)

logplot <- xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,
xlab="", scales=list(y=list(log="e")))

• Slice the scale

update(logplot, scales=list(y=list(relation="sliced")))

Scales may have relation="fixed", or relation="sliced", or relation="free"

3 LATTICE PARAMETERS AND GRAPHICS FEATURES 6

Figure 2: Labor force numbers (1000s) for various regions of Canada. Labels on the vertical axis show
both numbers and loge of numbers. Distances between ticks are 0.02 on the loge scale, i.e., a change
of almost exactly 2%.

Month

N
um

be
r

of
 w

or
ke

rs

1737

(7.46)

1772

(7.48)

1808

(7.5)

1845

(7.52)

Jan95 Jul95 Jan96 Jul96

BC

1366

(7.22)

1394

(7.24)

1422

(7.26)

Alberta

973

(6.88)

992

(6.9)

1012

(6.92)

Jan95 Jul95 Jan96 Jul96

Prairies

5115

(8.54)

5219

(8.56)

5324

(8.58)

5432

(8.6)

Ontario

Jan95 Jul95 Jan96 Jul96

3165

(8.06)

3229

(8.08)

3294

(8.1)

Quebec

934

(6.84)

953

(6.86)

973

(6.88)

Atlantic

The data frame jobs (DAAG) has numbers in the Canadian labour force, for each of six different
regions, by month over January 1995 to December 1996. The regions appear as columns of the data
frame jobs. The following plots these in parallel, on the one panel:

xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ~ Date , data=jobs ,
ylab="Number of jobs", type="b", outer=FALSE ,
auto.key=list(space="right", lines=TRUE))

To get a good visual indication of relative changes over time, however, a “sliced” logarithmic scale
is needed. The following saves for later enhancement a simplified of the plot shown in Figure 2, giving
it the name jobs.xyplot:

Save the graphics object , for later updating

jobs.xyplot <-
xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ~ Date ,

data=jobs , type="b", layout=c(3,2), ylab="Number of jobs",
scales=list(y=list(relation="sliced", log=TRUE)), outer=TRUE)

The sliced scale gives each panel the slice of the scale that is needed for points in that panel. A
logarithmic scale makes equal relative changes equidistant.

The labeling can be greatly improved. In Figure 2 the y-axis label shows number of jobs, with
the logarithms of the numbers given in parentheses. Additionally, dates of the form Jan95 label the
x-axis. In the following code, observe the use of update() to specify tick positions and tick labels for
the graphics object jobs.xyplot.

ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 100))
ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")
Create a date object ’startofmonth ’; use this instead of ’Date ’

atdates <- seq(from=95, by=0.5, length =5)
datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length =5), "%b%y")
update(jobs.xyplot , xlab="", between=list(x=0.5, y=1),

3 LATTICE PARAMETERS AND GRAPHICS FEATURES 7

Red cell count (1012.L−−1)

B
lo

od
 c

el
l t

o
pl

as
m

a
ra

tio
 (

%
)

36

38

40

42

44

46

48

4.0 4.5 5.0

●

●

●

●

●

●

●
●

●
● ●

●

●

f

4.0 4.5 5.0

●

●

●

●

●

●

●

●

●

●

●

●

m

B_Ball Swim●

aisBS <- subset(ais ,

sport %in% c("B_Ball", "Swim"))

basic.xyplot <-

xyplot(hg ~ rcc | sex ,

groups=sport[drop=TRUE],

data=aisBS)

Simplified Code

update(basic.xyplot ,

type=c("p","r"),

auto.key=list(lines=TRUE ,

columns =2))

For a smooth curve , specify

type=c("p","smooth ")

Figure 3: Blood cell to plasma ratio (hc) versus red cell count (rcc), by sex (different panels) and
sport (distinguished within each panel). The argument type=c("p", "r") displays both points
("p") and regression lines ("r").

scales=list(x=list(at=atdates , labels=datelabs),
y=list(at=ylabpos , labels=ylabels), tck =0.6))

Notice the use of between=list(x=0.5, y=1) to add horizontal and vertical space between the panels.
The addition of extra vertical space ensures that the tick labels do not overlap. Specifying tck=0.6
reduces the length of axis ticks to 60% of the default. This can be a vector of length 2.

3.3 A further example

The dataset ais (DAAG) has a number of physical and biological measurements on 202 athletes at
the Australian Insitute of Sport. See help(ais) for details of the measurements, which include a
variety of blood cell counts. Data are for ten different sports. Here is a breakdown of numbers:

> with(ais , table(sex ,sport))
sport

sex B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo
f 13 7 4 23 22 9 11 4 7 0
m 12 12 0 0 15 13 18 11 4 17

The data were collected with the aim of examining possible differences in blood characteristics, be-
tween athletes in endurance-related events and those in power-related events.

Figure 3 plots blood cell to plasma ratio (%) against red cell count, for two sports only. The two
sports appear within the one panel, distinguished by different symbols and/or colours. Females and
males appear in separate panels. Figure 3 shows a suitable plot, adding also regression lines. Again,
note the creation of an initial basic plot, which is then updated. Code is:

basic1 <- xyplot(hc ~ rcc | sex , groups=sport[drop=TRUE],
data=subset(ais , sport %in% c("B_Ball", "Swim")),
xlab="", ylab="Blood cell to plasma ratio (%)")

basic2 <- update(basic1 , par.settings=simpleTheme(pch = c(1,3),
scales=list(tck =0.5), lty=1:2, lwd =1.5))

update(basic2 , type=c("p", "r"), auto.key=list(columns=2, lines=TRUE),
xlab=expression("Red cell count (10"^{12}*"."*L^{-1}*")"))

Again, there are details that require explanation:

4 PANEL FUNCTIONS AND INTERACTION WITH PLOTS 8

• type=c("p","r") gives both points and fitted regression lines.

• In groups=sport[drop=TRUE], the drop=TRUE is optional. If not included there will be one
legend item for each of the 10 sports. Subsetting a factor leaves the levels attribute unchanged,
even if some of the levels are no longer present in the data.

• As in base graphics, graphical annotation (tick labels, axis labels, labels on points, etc.) can be
given using the function expression(). In this context,“expression” is broadly defined; thus
expressions can have terms that are character strings. See help(plotmath).

3.4 Keys – auto.key, key & legend

The argument auto.key=TRUE gives a basic key that identifies colors, plotting symbols and names for
the groups. For greater flexibility, auto.key can be a list. Settings that are often useful are:

• points, lines: in each case set to TRUE or FALSE.

• columns: number of columns of keys.

• x and y, which are coordinates with respect to the whole display area. Use these with corner,
which is one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1) and c(0,1).

• space: one of "top", "bottom", "left", "right".

Use of auto.key sets up the call key=simpleKey(). If not otherwise specified, colors, plotting
symbols, and line type use the current trellis settings for the device. Unless text is supplied as a
parameter, levels(groups) provides the legends.

When updating, use legend=NULL to remove an existing key, prior to adding a different key.

4 Panel Functions and Interaction with Plots

Further flexibility is added, in the creation of plots, by the use of a user’s own panel functions. A
number of panel functions are provided that can be incorporated. A further possibility is interaction
with the panels, or other graphics features, of a graph that has just been printed.

4.1 Panel functions

Each lattice command that creates a graph has its own panel function. Thus xyplot() has the panel
function panel.xyplot(). The following are equivalent:

xyplot(ACT ~ year , data=austpop)
xyplot(ACT ~ year , data=austpop , panel=panel.xyplot)

The user’s own function can be substituted for panel.xyplot(). Panel functions that may be
used, either in combination with functions such as panel.xyplot() or separately, include:

• panel.points, panel.lines() and a number of other such functions that are documented on
the same help page as panel.points);

• panel.abline(), panel.curve(), panel.rug(), panel.average() and a number of other func-
tions that are documented on the same help page as panel.abline().

The following gives a version of Figure 3 in which the lines for the two sports are parallel:

xyplot(hg ~ rcc | sex , groups=sport[drop=TRUE], data=aisBS ,
auto.key=list(lines=TRUE , columns =2), aspect=1,
strip=strip.custom(factor.levels=c("Female","Male")),

In place of level names c("f", "m"), use c(" Female", "Male")

panel=function(x, y, groups , subscripts , ...){

4 PANEL FUNCTIONS AND INTERACTION WITH PLOTS 9

panel.superpose(x,y, groups=groups ,
subscripts=subscripts , ...)

b <- coef(lm(y ~ groups[subscripts] + x))
lcol <- trellis.par.get()$superpose.line$col
lty <- trellis.par.get()$superpose.line$lty
panel.abline(b[1], b[3], col=lcol[1], lty=lty [1])
panel.abline(b[1]+b[2], b[3], col=lcol[2],

lty=lty [2])
})

When there are groups within panels, panel.xyplot() calls panel.superpose(). The customized
panel function has the structure:

panel=function(x, y, groups , subscripts , ...){
panel.superpose(x,y, groups=groups ,

subscripts=subscripts , ...)
. . . .
panel.abline(b[1], b[3], col=lcol[1], lty=lty [1])
panel.abline(b[1]+b[2], b[3], col=lcol[2],

lty=lty [2])
})

As the function panel.superpose() lacks an option to fit and display multiple parallel lines, the
user must supply the needed code. The following calculates the regression slope estimates:

b <- coef(lm(y ~ groups[subscripts] + x))
NB: groups (but not x and y) must be subscripted

The lines are then drawn one at a time, taking care that the line settings agree with those that will
appear in the key.

A further enhancement (omitted from the above code) adds axis labels, using an expression for
the x-axis label.

xlab=expression("Red cell count (10"^{12}*"."*L^{-1}*")")
ylab="Blood cell to plasma ratio (%)"

4.2 Interaction with Lattice Plots

Focusing and unfocusing:

• Following the plot, call trellis.focus().

• In a multi-panel display, click on a panel to select it.

• Use functions such as panel.points(), panel.text(), panel.abline(), panel.identify().

• Call trellis.focus(), as needed, to switch panels.

• When finished, call trellis.unfocus().

For non-interactive use of trellis.focus(), turn off highlighting, i.e., the call becomes
trellis.focus(highlight=FALSE).

Use the call trellis.panelArgs() to identify the arguments that are available to panel functions
following a call to trellis.focus().

4 PANEL FUNCTIONS AND INTERACTION WITH PLOTS 10

Viewports:
A lattice plot is made up of a number of “viewports”. In the call to trellis.focus(), the default
is name="panel".

Other choices of name include "panel", "strip", name="legend" and "toplevel". For
name="legend"; side should be indicated.

Here is an example of the interactive labeling of points:

xyplot(log(Time) ~ log(Distance), groups=roadORtrack ,
data=worldRecords)

trellis.focus()
Now click (maybe twice) on a panel

panel.identify(labels=worldRecords$Place)
Click near to points that should be labeled

Right click to terminate

trellis.unfocus ()

Lattice is built on top of the grid package. This implements viewports, which are arbitrary
rectangular regions within which plotting takes place. In the course of plotting, the focus moves from
one viewport to the next, as needed to build up the plot.

The function trellis.focus() can, once the printing is complete, be used to restore focus to a
viewpoint within one of the current panels, or to the whole panel. Common choices for the parameter
name are "panel" and "strip", with column and row (by default, counting from the bottom up)
identifying the column and row in the layout. For name="legend"; side must be indicated. The
argument name="toplevel" gives access to the rectangular region within which the panels are placed.

For interactive use, the function trellis.focus() can be called without parameters. In a single
panel display, this highlights the panel. In a multi-panel display, clicking on a panel will select it. The
function trellis.unfocus() removes the highlighting and makes "toplevel" the current viewport.

Once the focus is on a panel, the user has access to the functions that were noted in the previous
subsection, and to many others besides.

The functions trellis.focus() and trellis.unfocus() can be used in a non-interactive mode.
The following prints the stripplot and a boxplot objects created in Subsection 5.1 one under the other
on the same graphics page. Following the printing of each plot, the focus is placed on the top level
viewport, and the function grid.text() (from the grid package) used to add a label:

library(DAAG)
library(grid)
Positioning will be (xmin=0, ymin =0.46 , xmax=1, ymax =1)

print(update(cuckoostrip , xlab=""), position=c(0, .46, 1 ,1))
trellis.focus("toplevel", highlight=FALSE)
grid.text("A", x=0.05, y=0.935 , gp=gpar(cex =1.15))
trellis.unfocus ()
print(cuckoobox , position=c(0, 0, 1, 0.54) , newpage=FALSE)
trellis.focus("toplevel", highlight=FALSE)
grid.text("B", x=0.05, y=0.935 , gp=gpar(cex =1.15))
trellis.unfocus ()

Observe that the rectangular regions on which the objects are printed have been chosen so that they
overlap somewhat, reducing the space between.

5 DISPLAYS OF DISTRIBUTIONS 11

5 Displays of Distributions

5.1 Stripplots, dotplots and boxplots

Because the syntax for stripplot() and boxplot() are very similar, we demonstrate suitable code
side by side. (The function dotplot() is very similar to stripplot(), with differences that are
mainly cosmetic.) The following code creates a stripplot object and a boxplot object, for the cuckoos
data (from DAAG):4

cuckoostrip <- stripplot(species ~ length , aspect =0.5,
xlab="Cuckoo egg length (mm)", data=cuckoos)

cuckoobox <- bwplot(species ~ length , aspect =0.5,
data=cuckoos , xlab="Cuckoo egg length (mm)")

The aspect argument determines the ratio of distance in the y-direction to distance in the x-direction.
The following demonstrates the use of dotplot():

dotplot(variety ~ yield | site , data = barley , groups = year ,
xlab = "Barley Yield (bushels/acre) ", ylab = NULL ,
layout = c(1, 6), aspect = 0.5,
auto.key=list(labels=levels(barley$year), space = "right"))

Try stretching the plot vertically so that the labels do not overlap.
The argument type="h") gives a line from the origin to the point. Both a line and a point may

be given. This can be used to quite striking effect, as in the following:5

deathrate <- c(40.7 , 36 ,27 ,30.5 ,27.6 ,83.5)

hosp <- c("Cliniques of Vienna (1834 -63)\n(> 2000 cases pa)",

"Enfans Trouves at Petersburg\n(1845 -59 , 1000 -2000 cases pa)",

"Pesth (500 -1000 cases pa)",

"Edinburgh (200 -500 cases pa)",

"Frankfort (100 -200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor(hosp , levels=hosp[order(deathrate)])

dotplot(hosp ~ deathrate , xlim=c(0,110), cex=1.5,

scale=list(cex =1.25) , type=c("h","p"),

xlab=list("Death rate per 1000 ", cex =1.5),

sub="From Nightingale (1871) - data from Dr Le Fort")

5.2 Lattice Style Density Plots

earconch

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

40 45 50 55

● ●● ●●●● ●●● ● ●● ●●● ●● ●● ●
●● ●

f

40 45 50 55

●●● ●●● ●● ●● ●●●● ● ●●● ● ● ●●

m

Vic other

Figure 4: Lattice style density plot com-
paring possum earconch measurements,
separately for males and females, be-
tween Victorian and other populations.
Observe that the scatter of data values
is shown along the horizontal axis.

Here is a density plot (Figure 4), for data from the possum data set (DAAG), that compares sexes
and Vic/other populations.

4
For slightly improved labeling, precede with:

levels(cuckoos$species) <- sub(".", " ", levels(cuckoos$species), fixed=T)
5Data are from Nightingale, F. (1871): Notes on Lying-in Institutions.

6 LATTICE GRAPHICS FUNCTIONS – FURTHER POINTS 12

densityplot(~ earconch | sex , groups=Pop , data=possum ,
par.settings=simpleTheme(col=c("gray","black"),
auto.key=list(columns =2))

Where densityplot() (and histogram()) have a formula as argument, a name is not allowed on the
left of the ∼ symbol. For histogram(), the groups argument is not available.

6 Lattice graphics functions – Further Points

6.1 Help on lattice functions

For an overview, type help(Lattice). For help on the graphical parameters used by lattice functions,
see help(trellis.par.set) and help(simpleTheme). For other settings, see help(lattice.options).

Several of the help pages for lattice functions are shared between more than one function. For
example, xyplot(), dotplot(), barchart(), stripplot() and bwplot() share the same help page.
As a consequence. typing example(bwplot) has the same effect as typing example(xyplot).

6.2 Selected Lattice Functions

Functions that have already been demonstrated are xyplot(), stripplot(), dotplot(), densityplot()
and bwplot(). Other ”high level” functions include:

barchart(character ~ numeric,..)
histogram(~ numeric,..) # NB: does not accept groups parameter
densityplot(~ numeric,..) # Density plot; does allow groups
bwplot(factor ~ numeric,..) # Box and whisker plot
qqmath(factor ~ numeric,..) # normal probability plots
Bivariate
qq(factor ~ numeric, ...) # comparing two empirical distributions

(Two factor levels identify the 2 distns)
Multivariate
cloud(numeric ~ numeric * numeric, ...) # 3D surface
wireframe(numeric ~ numeric * numeric, ...) # 3D scatterplot
levelplot(numeric ~ numeric * numeric, ...) # cf image() in base graphics
contourplot(numeric ~ numeric * numeric, ...) # contour plot
Hypervariate
splom(~ dataframe,..) # Scatterplot matrix
parallel(~ dataframe,..) # Parallel coordinate plots
Miscellaneous
rfs() # Residual and fitted value plot (also see ’oneway’)
tmd() # Tukey Mean-Difference plot

In each instance, users can add conditioning variables.

Reference

Sarkar, D. 2008. Lattice. Multivariate Data Visialization with R. Springer.
This is the definitive account of the lattice implementation of trellis graphics. It merits careful
study.

Index of Functions

as.Date, 6

barchart, 12
boxplot, 11
bwplot, 11, 12

c, 3–8, 10–12
cloud, 12
coef, 9
contourplot, 12

demo, 1
densityplot, 12
dotplot, 11, 12

example, 12
exp, 6
expression, 7–9

factor, 11
format, 6
function, 8, 9

gpar, 10
grid.text, 10

help, 7, 8, 12
histogram, 12

image, 12
invisible, 2

levelplot, 12
levels, 8, 11
library, 1, 2, 10
list, 3–8, 11, 12
lm, 9
log, 6, 10

names, 5

order, 11

panel.abline, 8, 9
panel.average, 8
panel.curve, 8
panel.identify, 9, 10
panel.lines, 8
panel.points, 9
panel.rug, 8
panel.superpose, 9
panel.text, 9
panel.xyplot, 8, 9

parallel, 12
paste, 6
plot, 2
pretty, 6
print, 1–3, 10

qq, 12
qqmath, 12

rep, 5
rfs, 12
round, 6

seq, 5, 6
show.settings, 5
simpleKey, 8
simpleTheme, 3–5, 7, 12
splom, 12
strip.custom, 8
stripplot, 11, 12
sub, 11
subset, 7

table, 7
tmd, 12
trellis.device, 4, 5
trellis.focus, 9, 10
trellis.panelArgs, 9
trellis.par.get, 5, 9
trellis.par.set, 4, 5
trellis.unfocus, 9, 10

unlist, 6
update, 3, 5–7, 10

wireframe, 12
with, 7

xyplot, 2–8, 10, 12

13

	Lattice Graphics vs Base Graphics
	Groups within Data, and/or Columns in Parallel
	Lattice Parameters and Graphics Features
	Point, line and fill color settings
	Parameters that affect axes, tick marks, and axis labels
	A further example
	Keys -- auto.key, key & legend

	Panel Functions and Interaction with Plots
	Panel functions
	Interaction with Lattice Plots

	Displays of Distributions
	Stripplots, dotplots and boxplots
	Lattice Style Density Plots

	Lattice graphics functions -- Further Points
	Help on lattice functions
	Selected Lattice Functions

