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Multi-level Models and Repeated Measures

Use of lme() (nlme) instead of lmer() (lme4)

Here is demonstrated the use of lme(), from the nlme package. to handle the calculations
in Chapter 10 of the 2nd edition of “Data Analysis & Graphics Using R” (Cambridge Univ
Press, Jamuary 2007). The code is introduced with a minimum of comment.

10.1 A One-Way Random Effects Model

10.1.1 Analysis with aov()

10.1.2 A More Formal Approach

10.1.3 Analysis using lme:

The modeling command takes the form:

library(nlme)

ant111b.lme <- lme(fixed=harvwt ˜ 1, random = ˜1|site,

data=ant111b)

The only fixed effect is the overall mean. The parameter setting random = ∼1|site
fits random variation between sites. Variation between the individual units that are nested
within sites, i.e., between parcels, are by default treated as random. Here is the default
output:

> options(digits=4)

> ant111b.lme

Linear mixed-effects model fit by REML

Data: ant111b

Log-restricted-likelihood: -47.21

Fixed: harvwt ˜ 1

(Intercept)

4.292

Random effects:

Formula: ˜1 | site

(Intercept) Residual

StdDev: 1.539 0.76

1
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Number of Observations: 32

Number of Groups: 8

Notice that lme() gives, not the components of variance, but the standard deviations
(StdDev) which are their square roots. Observe that, according to lme(), σ̂2

W = 0.762 =

0.578, and σ̂2
L = 1.5392 = 2.369.

Notice also that lme() does not give the mean square at any level higher than level 0,
not even in this balanced case.

Fitted values and residuals in lme()

The level 1 fitted values from lme() are known as BLUPs (Best Linear Unbiased Predic-
tors). Among linear unbiased predictors of the site means, the BLUPs are designed to have
the smallest expected error mean square.

Relative to the site means, the BLUPs are pulled in toward the overall mean. The most
extreme site means will on average, because of random variation, be more extreme than
the corresponding “true” means for those sites. For the simple model considered here, the
ith fitted value is given by

ŷi = ŷi +
nσ̂2

L

nσ̂2
L + σ̂2

W

(ŷ − ŷi).

Using the variance component estimates, we can obtain the BLUPs for the corn yield data
at each site as follows:

> s2W <- 0.578; s2L <- 2.37; n <- 4

> sitemeans <- with(ant111b, sapply(split(harvwt, site), mean))

> grandmean <- mean(sitemeans)

> shrinkage <- (n*s2L)/(n*s2L+s2W)

> yhat <- grandmean + shrinkage*(sitemeans - grandmean)

> yhat

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN

4.851 4.212 2.217 6.764 4.801 3.108 5.455 2.925

> ##

> ## More directly, use predict() with the lme object

> unique(predict(ant111b.lme))

[1] 4.851 4.212 2.217 6.764 4.801 3.108 5.455 2.925

> ##

> ## Compare with site means

> sitemeans

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN

4.885 4.207 2.090 6.915 4.832 3.036 5.526 2.841

Note that, by default, the fitted values adjust for all random effects except the residual,
i.e., they are calculated at level 1. The level 0 fitted effect, i.e., not adjusting for any of the
random effects, is the overall mean.

Residuals can be also defined on several levels. At level 0, they are the differences
between the observed responses and the overall mean. At level 1, they are the differences
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between the observed responses and the fitted values at level 1 (which are the BLUPs for
the sites).

*Uncertainty in the variance components

It is straightforward to get 95% confidence intervals for the model parameters, using the
function intervals():

> intervals(ant111b.lme)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 3.14 4.29 5.45

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: site

lower est. upper

sd((Intercept)) 0.882 1.54 2.68

Within-group standard error:

lower est. upper

0.573 0.760 1.008

The only fixed effect is the overall mean yield. The standard error for the overall mean,
allowing the calculation of a confidence interval, was discussed above.

Details for the site random effect then follow, though for the standard deviation rather
than the variance. Based on these 95% confidence intervals, σ2

L could be anywhere be-
tween 0.8822 ' 0.78 and 2.682 ' 7.2.

Similarly, based on the 95% confidence interval for σW , the component of variance σ2
W

could be anywhere between 0.5732 ' 0.33 and 1.0082 ' 1.02.

Handling more than two levels of random variation

The lme() function can handle variation at several levels. Suppose, for example, that
house prices (price) were available at samples of 3 bedroom bungaloes within samples
of suburbs (suburb) located within a number of different American cities (city). We
now have three levels of variation: level 3 is house, level 2 is suburb, and level 1 is city.
Prices differ between cities, and between suburbs within cities, and between houses within
suburbs.

Since level 1 and 2 variation must be reflected in the lme() function call, we would
analyze such data using

## house.lme <- lme(price ˜ 1, random= ˜1|city/suburb)
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10.2 Survey Data, with Clustering

10.2.1 Alternative models

We specify sex (sex) and school type (PrivPub) as fixed effects, while school (school)
and class (class) are specified as random effects. Class is nested within school; within
each school there are several classes. The model is

y =
sex effect

(fixed)
+

type (private or public)
(fixed)

+
school effect

(random)
+

class effect
(random)

+
pupil effect
(random).

The table of estimates and standard errors for the coefficients of the fixed component
is similar to that from an lm() (single level) analysis, but with an extra column that is
headed DF.

library(nlme)

> science.lme <- lme(fixed = like ˜ sex + PrivPub,

+ data = science, random = ˜ 1 | school/class,

+ na.action=na.omit)

> summary(science.lme)$tTable # Print coefficients.

Value Std.Error DF t-value p-value

(Intercept) 4.722 0.1625 1316 29.07 6.79e-144

sexm 0.182 0.0982 1316 1.86 6.35e-02

PrivPubpublic 0.412 0.1857 39 2.22 3.25e-02

Note that we have 1316 degrees of freedom for the comparison between males and
females, but only 39 degrees of freedom for the comparison between private and public
schools (there are 12 private schools, and 29 public schools. The degrees of freedom are
calculated as 12− 1 + 29− 1 = 39). The comparison is between different schools of the
different types. On the other hand, schools are made up of classes, each of which includes
both males and females. Thus the between pupils level of variation is relevant for the
comparison between sexes.

There are three variance components:1

Between schools 0.00105

Between classes 0.318

Between students 3.05

Note that the standard deviations that VarCorr(science.lme) gives for the variance
components use an approximation that can be quite inaccurate. It is important to note that
the between classes variance component is additional to the variation between students
component in the residual row, i.e. that labeled Between students.

This table is interesting in itself. It tells us that differences between classes are greater
than would be expected from differences between students alone. It also suggests we can
do the following simpler analysis that ignores the effect of schools:

1VarCorr(science.lme) # Displayed output differs slightly
# Also, try intervals(science.lme), which gives SDs that are
# the square roots of the variance components.
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> science1.lme <- lme(fixed = like ˜ sex + PrivPub, data = science,

+ random = ˜ 1 | Class, na.action=na.exclude)

> summary(science1.lme)$tTable # Table of coefficients

Value Std.Error DF t-value p-value

(Intercept) 4.722 0.1624 1316 29.07 6.20e-144

sexm 0.182 0.0982 1316 1.86 6.36e-02

PrivPubpublic 0.412 0.1857 64 2.22 3.02e-02

The variance components are, to two significant digits, the same as before. On this
occasion, the intervals() function will be used – this has the advantage of giving
approximate 95% confidence intervals. 2

lower est. upper

Variance: Class 0.190 0.321 0.54

Variance: Within 2.828 3.052 3.29

We can plot standardized residuals from the class means against fitted values, thus:

plot(science1.lme, resid(.) ˜ fitted(.) | PrivPub)

# Invokes plot.lme(), which gives a lattice-like plot

# By default, fitted values and residuals are at level 1

The residuals have a banded pattern that makes them hard to interpret. There is, however,
no obvious trend about the line y = 0.

10.2.2 Instructive, though faulty, analyses

Ignoring class as the random effect

We fit school, ignoring class, as a random effect. The estimates of the fixed effects
change little.

> science2.lme <- lme(fixed = like ˜ sex + PrivPub, data = science,

+ random = ˜ 1 | school, na.action=na.exclude)

> summary(science2.lme)$tTable

Value Std.Error DF t-value p-value

(Intercept) 4.738 0.163 1341 29.00 5.95e-144

sexm 0.197 0.101 1341 1.96 5.07e-02

PrivPubpublic 0.417 0.185 39 2.25 3.02e-02

This analysis suggests, wrongly, that the between schools component of variance is sub-
stantial. The estimated variance components are3

2## The numerical values were extracted thus:
compvars <- rbind(intervals(science1.lme, which="var-cov")[[1]]$Class,

intervals(science1.lme, which="var-cov")[[2]])ˆ2
# NB: intervals() gives SDs, which were squared to give variances.

rownames(compvars) <- c("Variance: Class", "Variance: Within")
compvars

3## The numerical values were extracted from
VarCorr(science2.lme)
## Alternatively, they can be extracted from
intervals(science2.lme)
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Between schools 0.166

Between students 3.219

This is misleading. From our earlier investigation, it is clear that the difference is between
classes, not between schools!

10.2.3 Predictive accuracy

10.3 A Multi-level Experimental Design

10.3.1 The anova table

10.3.2 Expected values of mean squares

10.3.3∗ The sums of squares breakdown

10.3.4 The variance components

10.3.5 The mixed model analysis

For a mixed model analysis, we specify that treatment (shade) is a fixed effect, that
block and plot are random effects, and that plot is nested in block. The software
works out for itself that the remaining part of the variation is associated with differences
between vines. It is not necessary to specify it separately.

For using lme(), the command is

kiwishade.lme <- lme(fixed = yield ˜ shade, random = ˜ 1 |

block/plot, data=kiwishade)

# block/shade is an alternative to block/plot

For comparison purposes with the results from the preceding section, consider:

> VarCorr(kiwishade.lme)

Variance StdDev

block = pdLogChol(1)

(Intercept) 4.04 2.01

plot = pdLogChol(1)

(Intercept) 2.19 1.48

Residual 12.18 3.49

Notice that the estimate for the block component of variance differs slightly from the esti-
mate that was obtained above.

Plots of residuals

Recall that by default, fitted values adjust for all except random variation between individ-
ual vines, i.e., they account for treatment, block and plot effects. For this, set level=2
when calculating fitted values, or the equivalent residuals. Other choices are to calculate
fitted values as treatment plus block (level=1) or as treatment effects only (level=0).
The block effects are differences between fitted values at level 1 and fitted values at level
0, while the plot effects are differences between fitted values at level 2 and fitted values at
level 1.
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The following code gives a figure (A) that shows residuals after fitting the block and
treatment effects, and takes residuals from those.

library(lattice)

xyplot(residuals(kiwishade.lme) ˜ fitted(kiwishade.lme)|block,

groups=shade, pch=1:4, layout=c(3,1), data=kiwishade,

xlab="Level 2 fitted values (Treatment + block + plot effects)",

ylab="Residuals (level 2)", aspect=1,

key=list(

points=list(pch=1:4, col=trellis.par.get("superpose.symbol")$col[1:4]),

text=list(levels(kiwishade$shade)), space="top", columns=4))

# By default, residuals and fitted values are calculated at

# the highest available of the random factors, here level 2

In the following figure (B), level 1 fitted values are subtracted from level 2 fitted values
and plotted against the treatment means.

## Simplified version of graph that shows the plot effects

ploteffects <- fitted(kiwishade.lme) - fitted(kiwishade.lme, level=1)

xyplot(ploteffects ˜ fitted(kiwishade.lme, level = 1)|block, layout=c(3,1),

data=kiwishade, groups=shade, pch=1:4, aspect=1,

key=list(

points=list(pch=1:4, col=trellis.par.get("superpose.symbol")$col[1:4]),

text=list(levels(kiwishade$shade)), space="top", columns=4))

It will help in interpreting Figure B to remember that the treatment means are, in order,

Dec2Feb Feb2May none Aug2Dec

89.92 92.77 100.20 103.23

Notice that the plot-specific effects go in opposite directions, relative to the overall treat-
ment means, in the east and north blocks.

10.3.6 Predictive accuracy

10.3.7 Different sources of variance – complication or focus of interest?

10.4 Within and Between Subject Effects

10.4.1 Model selection

For conceptual clarity, and in order to keep inference as simple as possible, we limit initial
attention to three models:

1. All possible interactions (this is likely to be more complex than we need):
## Change initial letters of levels of tinting$agegp to upper case

levels(tinting$agegp) <- toupper.initial(levels(tinting$agegp))

## Fit all interactions: data frame tinting (DAAG)

itstar.lme <- lme(log(it) ˜ tint*target*agegp*sex,

random= ˜ 1 | id, data=tinting, method="ML")
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2. All two-factor interactions (this is a reasonable guess; two-factor interactions may be
all we need):
it2.lme <- lme(log(it) ˜ (tint+target+agegp+sex)ˆ2,

random = ˜1|id, data=tinting,

method="ML")

3. Main effects only (this is a very simple model):
it1.lme <- lme(log(it)˜(tint+target+agegp+sex),

random = ˜1|id, data=tinting,

method= "ML")

The reason for specifying method="ML", i.e. use the maximum likelihood estimation
criterion, is that we can then do the equivalent of an analysis of variance comparison:

anova(itstar.lme, it2.lme, it1.lme)

Here is the outcome:

Model df AIC BIC logLik Test L.Ratio p-value

itstar.lme 1 26 8.15 91.5 21.93

it2.lme 2 17 -3.74 50.7 18.87 1 vs 2 6.11 0.7288

it1.lme 3 8 1.14 26.8 7.43 2 vs 3 22.88 0.0065

Notice that df is now used for degrees of freedom, where Df was used in connection with
summary.aov(). earlier. Such inconsistencies should, in time, be removed.

The p-value for comparing model 1 with model 2 is 0.73, while that for comparing
model 2 with model 3 is 0.0065. This suggests that the model that limits attention to two-
factor interactions is adequate. (Note also that the AIC statistic favors model 2. The BIC
statistic, which is an alternative to AIC, favors the model that has main effects only. The
BIC’s penalty for model complexity can be unduly severe when the number of residual
degrees of freedom is small. See Hastie et al., 2001, p. 208.)

10.4.2 Estimates of model parameters

For exploration of parameter estimates in the model that includes all two-factor interac-
tions, we re-fit the model used for it2.lme, but now using method="REML" (restricted
maximum likelihood estimation), and examine the estimated effects. The parameter esti-
mates that come from the REML analysis are in general preferable, because they avoid or
reduce the biases of maximum likelihood estimates.)

> it2.reml <- update(it2.lme, method="REML")

> summary(it2.reml)$tTable

Value Std.Error DF t-value p-value

(Intercept) 3.6191 0.130 145 27.82 5.3e-60

tint.L 0.1609 0.044 145 3.64 3.8e-04

tint.Q 0.0210 0.045 145 0.46 6.4e-01

targethicon -0.1181 0.042 145 -2.79 6.0e-03

agegpOlder 0.4712 0.233 22 2.02 5.5e-02

sexm 0.0821 0.233 22 0.35 7.3e-01

tint.L:targethicon -0.0919 0.046 145 -2.00 4.8e-02

tint.Q:targethicon -0.0072 0.048 145 -0.15 8.8e-01
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tint.L:agegpOlder 0.1308 0.049 145 2.66 8.7e-03

tint.Q:agegpOlder 0.0697 0.052 145 1.34 1.8e-01

tint.L:sexm -0.0979 0.049 145 -1.99 4.8e-02

tint.Q:sexm 0.0054 0.052 145 0.10 9.2e-01

targethicon:agegpOlder -0.1389 0.058 145 -2.38 1.9e-02

targethicon:sexm 0.0779 0.058 145 1.33 1.8e-01

agegpOlder:sexm 0.3316 0.326 22 1.02 3.2e-01

Consider the relative amounts of evidence for the different sets of comparisons, and the
consequences for the standard errors in the computer output.

• Numbers of individuals:
> attach(tinting)

> uid <- unique(tinting$id)

> subs <- match(uid, tinting$id)

> table(sex[subs], agegp[subs])

Younger Older

f 9 4

m 4 9

Standard errors in the computer output, for comparisons made at this level, are in the
range 0.23 - 0.32.

• Numbers of comparisons between levels of tint or target: Each of these com-
parisons is made at least as many times as there are individuals, i.e., at least 26 times.
Standard errors in the computer output, for comparisons made at this level, are in the
range 0.042 - 0.058.

10.5 Repeated Measures in Time

10.5.1 Example – random variation between profiles

The following code shows data from investigations designed to assess the feasibility of a
proposed 119 kilometer human powered flight from the island of Crete – in the initial phase
of the Daedalus project. After an initial 5-minute warm-up period and 5-minute recovery
period, the power requirements from the athletes were increased, at two-minute intervals,
in steps of around 30 watts.

## Plot points and fitted lines (panel A)

library(lattice)

xyplot(o2 ˜ wattsPerKg, groups=id, data=humanpower1,

panel=function(x,y,subscripts,groups,...){

u <- lm(y˜groups*x);

hat <- fitted(u)

panel.superpose(x,y,subscripts,groups)

panel.superpose(x,hat,subscripts,groups, type="l")

},

xlab="Watts per kilogram",

ylab=expression("Oxygen intake ("*ml.minˆ{-1}*.kgˆ{-1}*")"))
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The model that will be fitted is

yij = α + βxij + a + bxij + eij

where i refers to individual, and j to observation j for that individual, α and β are fixed, a

and b have a joint bivariate normal distribution, each with mean 0, independently of the eij

which are i.i.d. normal. Each point in the figure given by the following code is a realization
of an (α + a, β + b) pair.

## Calculate intercepts and slopes; plot Slopes vs Intercepts

## Uses the function lmList() from the nlme package

hp.lmList <- lmList(o2 ˜ wattsPerKg|id, data=humanpower1)

coefs <- data.frame(t(sapply(hp.lmList, coef)))

names(coefs) <- c("Intercept", "Slope")

plot(Slope ˜ Intercept, data=coefs)

abline(lm(Slope˜Intercept, data=coefs))

The model allows, for each different athlete, a random slope (for wattsPerKg) and
random intercept. We expect the correlation between the realizations of the random in-
tercept and the random slope to be close to 1. As it will turn out, this will not create
any difficulty. This is in fact easier than trying to work with one random parameter. The
necessary code is:

hp.lme <- lme(o2 ˜ I(wattsPerKg-3.214),

random = ˜ I(wattsPerKg-3.214) | id,

data=humanpower1)

Subtracting off the mean of wattsPerKg (= 3.214) is optional, but may have benefits for
the numerical optimization. The output is:

> summary(hp.lme)

Linear mixed-effects model fit by REML

Data: humanpower1

AIC BIC logLik

136.2356 143.7842 -62.11782

\fc{

Random effects:

Formula: ˜I(wattsPerKg - 3.214) | id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.470117 (Intr)

I(wattsPerKg - 3.214) 2.662602 0.997

Residual 2.031814

Fixed effects: o2 ˜ I(wattsPerKg - 3.214)

Value Std.Error DF t-value p-value

(Intercept) 46.78798 0.7781026 22 60.13086 0

I(wattsPerKg - 3.214) 13.90774 1.3545133 22 10.26770 0

Correlation:

(Intr)

I(wattsPerKg - 3.214) 0.79
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Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.99508076 -0.48513743 -0.08216073 0.45981369 2.11652299

Number of Observations: 28

Number of Groups: 5

The standard errors that are given for the fixed effects of the intercept and slope take no
account of the random between individuals components of the intercepts and slopes. The
standard errors relate to the accuracy of prediction of the mean response line for the popu-
lation from which the athletes were sampled. The slopes are drawn from a distribution with
estimated mean 13.9 and standard error

√
1.352 + 2.662 = 2.98. This standard deviation

may be compared with the standard deviation (= 3.28) of the five slopes that were fitted to
the initial fixed effects model.4

The predicted lines from this model are shown as dashed lines in the following figure:

hp.lme <- lme(o2 ˜ wattsPerKg, random = ˜wattsPerKg | id,

data=humanpower1)

hat <- predict(hp.lme)

xyplot(hat ˜ wattsPerKg, groups=id, type="l", data=humanpower1)

## Alternatively, plot different lines in different panels

xyplot(hat ˜ wattsPerKg | id, type="b", data=humanpower1)

These are the BLUPs (best linear unbiased predictors) that were discussed earlier in this
chapter. Also of interest is a plot of residuals, with the points for each individual athlete
connected with broken lines.5

10.5.2 Orthodontic measurements on chlldren

The Orthodont data frame (MASS package) has measurements on the distance between
two positions on the skull, taken every two years from age 8 until age 14, on 16 males and
11 females. The following code gives a figure that shows the pattern of change for each of
the 25 individuals. Lines have been added

xyplot(distance ˜ age | Subject, groups=Sex, data=Orthodont,

type=c("p","r"), par.strip.text=list(cex=0.75), layout=c(8,4))

A good summary of these data are the intercepts and slopes, as in the figure given by
the following code: It is good practice to use the intercept at the mean value of age, i.e.,
at age=11. This is both the mean both over all profiles and the mean for each individual
profile. Because the line for each individual profile passes through the centroid (x̄, ȳ)
for that profile, the intercept is the mean of the y-values for that profile and is estimated
independently of the slope of the profile.

ab <- t(sapply(split(Orthodont, Orthodont$Subject),

function(u)coef(lm(distance ˜ I(age-11), data=u))))

4## Derive the sd from the data frame coefs that was calculated above
sd(coefs$Slope)

5xyplot(resid(hp.lme) ˜ wattsPerKg, groups=id, type="b", data=humanpower1)
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ab <- cbind(ab, data.frame(Sex=sapply(split(as.character(Orthodont$Sex),

Orthodont$Subject),function(x)x[1])))

names(ab) <- c("ybar", "b", "Sex")

sex <- as.character(ab$Sex)

plot(ab[, 1], ab[, 2], col=c(Female="red", Male="blue")[sex],

pch=c(Female=1, Male=3)[sex], xlab="Intercept", ylab="Slope")

use <- ab$ybar %in% range(ab$ybar) | ab$b %in% range(ab$b) |

ab$b == min(ab$b[sex=="Male"])

text(ab[use, 1], ab[use, 2], rownames(ab)[use], pos=4, xpd=TRUE)

One slope appears an outlier from the main body of the data. Hence, we omit the smallest
and the largest values from the sample of male slopes, before doing a t-test.6The output is

Two Sample t-test

data: b[Sex == "Male" & !extreme.males] and b[Sex == "Female"]

t = 2.87, df = 23, p-value = 0.008593

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.0742 0.4560

sample estimates:

mean of x mean of y

0.745 0.480

Now consider a random effects model. We will fit two models, one assuming that the
slopes are the same and the other allowing for different slopes. We will omit the same two
males as before:

orthsame.lme <- lme(distance ˜ Sex + I(age-11),

random = ˜ I(age-11) | Subject,

data=Orthodont, subset=!extreme.males, method="ML")

orthdiff.lme <- update(orthsame.lme,

fixed = distance ˜ Sex * I(age-11))

Now use the anova() function to compare these models:

> anova(orthsame.lme, orthdiff.lme)

Model df AIC BIC logLik Test L.Ratio p-value

orthsame.lme 1 7 419.1 437.3 -202.6

orthdiff.lme 2 8 414.6 435.4 -199.3 1 vs 2 6.537 0.0106

The estimates of fixed effects from the REML model are in general preferable to those
from the full maximum likelihood (ML) model:

> orthdiffr.lme <- update(orthsame.lme, method="REML")

> summary(orthdiffr.lme)

Linear mixed-effects model fit by REML

6attach(ab)
extreme.males <- b %in% range(b[Sex=="Male"])
t.test(b[Sex=="Male" & !extreme.males], b[Sex=="Female"], var.equal=TRUE)
# Specify var.equal=TRUE, to allow comparison with anova output

detach(ab)
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Data: Orthodont

Subset: !extreme.males

AIC BIC logLik

418.9 439.5 -201.5

Random effects:

Formula: ˜I(age - 11) | Subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.8636 (Intr)

I(age - 11) 0.2209 0.216

Residual 1.2772

Fixed effects: distance ˜ Sex + I(age - 11) + Sex:I(age - 11)

Value Std.Error DF t-value p-value

(Intercept) 24.933 0.4956 71 50.31 0.0000

SexFemale -2.291 0.7760 25 -2.95 0.0068

I(age - 11) 0.856 0.0947 71 9.04 0.0000

SexFemale:I(age - 11) -0.381 0.1465 71 -2.60 0.0113

Correlation:

(Intr) SexFml I(-11)

SexFemale -0.639

I(age - 11) 0.110 -0.070

SexFemale:I(age - 11) -0.071 0.124 -0.646

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.32968 -0.38808 0.01614 0.41296 3.19724

Number of Observations: 100

Number of Groups: 27

The output gives 71 degrees of freedom for the difference in slopes where there should be
23, as in the t-test that was carried out earlier. The comparison that used anova() gave
the degrees of freedom correctly.

Correlation between successive times

We have not checked for sequential correlation at the successive time points. This can
be done with plot(ACF(orthdiff.lme), alpha = 0.025), which causes the
inclusion of dotted lines that show the critical values for a two-sided test at a level of α =
0.05. The autocorrelation estimate is an average across all profiles. A correlation of -0.5 at
lag one does then show up as statistically significant.

The function corAR1() may be used to fit a correlation at lag 1:

> orthdiffAR1.lme <- update(orthdiff.lme,

+ correlation=corAR1(form=˜age|Subject))

> anova(orthdiff.lme, orthdiffAR1.lme)
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Model df AIC BIC logLik Test L.Ratio p-value

orthdiff.lme 1 8 414.6 435.4 -199.3

orthdiffAR1.lme 2 9 416.6 440.0 -199.3 1 vs 2 3.411e-13 1

The estimated correlation is zero, which sits oddly with the indications from the plot of
the autocorrelation function. Where inclusion of a sequential correlation does improve the
modeling at the within time covariate level, the effect may be to improve sensitivity for
comparisons at the between groups level.


