
Lattice and Other Graphics in R

J H Maindonald

Centre for Mathematics and Its Applications
Australian National University.

c© J. H. Maindonald 2009. Permission is given to make copies for personal study and class use. April 4, 2009

Languages shape the way we think, and determine what we can think about.
[Benjamin Whorf.]

S has forever altered the way people analyze, visualize, and manipulate data... S is an elegant, widely
accepted, and enduring software system, with conceptual integrity, thanks to the insight, taste, and
effort of John Chambers.
[From the citation for the 1998 Association for Computing Machinery Software award.]

2

John H. Maindonald, Centre for Mathematics & Its Applications, Mathematical Sciences Institute,
Australian National University, Canberra ACT 0200, Australia, john.maindonald@anu.edu.au

http://www.maths.anu.edu.au/~johnm

There will be occasional references to
DAAGUR: Maindonald, J. H. & Braun, J. B. 2007. Data Analysis & Graphics Using R. An Example-
Based Approach. Cambridge University Press, Cambridge, UK, 2007.
http://www.maths.anu.edu.au/~johnm/r-book.html

Useful Web Sites for Australasian R Users:

CRAN (Comprehensive R Archive Network): http://cran.r-project.org
To obtain R and associated packages, use the nearest mirror.
http://mirror.aarnet.edu.au/pub/CRAN or http://cran.ms.unimelb.edu.au/.
Windows, Linux, Unix and MacOS X versions are available, at no cost.
R homepage: http://www.r-project.org/
Wikipedia: http://en.wikipedia.org/wiki/R_(programming_language)
R-downunder: http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder

For other useful web pages, click on the menu item R help, and look under Resources on the
browser window that pops up.

Source of Information on R Graphics:

Helpful books on R graphics, with web sites that give code, are:

Paul Murrell: R Graphics. Chapman and Hall/CRC 2006.
(http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html)

Deepayan Sarkar: Lattice. Multivariate Data Visualization with R. Springer 2008.
(http://lmdvr.r-forge.r-project.org).

The CRAN Graphics task view (http://cran.ms.unimelb.edu.au/web/views/Graphics.html)
has summary information on a rich variety of R graphics packages.

Note also Hadley Wickham’s forthcoming book on ggplot2. A draft is available from http://had.
co.nz/ggplot2.

john.maindonald@anu.edu.au
http://www.maths.anu.edu.au/~johnm
http://www.maths.anu.edu.au/~johnm/r-book.html
http://cran.r-project.org
http://mirror.aarnet.edu.au/pub/CRAN
http://cran.ms.unimelb.edu.au/
http://www.r-project.org/
http://en.wikipedia.org/wiki/R_(programming_language)
http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://lmdvr.r-forge.r-project.org
http://cran.ms.unimelb.edu.au/web/views/Graphics.html
http://had.co.nz/ggplot2
http://had.co.nz/ggplot2

Contents

1 Preliminaries 5
1.1 Installation of R and of R Packages . 5

1.1.1 Installation of packages from the command line 5
1.2 The R Commander . 6
1.3 The R Commander GUI . 6

2 Base Graphics 9
2.1 plot() and allied functions . 9

2.1.1 Fine control – parameter settings . 9
2.1.2 Adding points, lines and text – examples . 11

2.2 Plotting Mathematical Symbols . 12
2.3 Summary . 12
2.4 Exercises . 12

3 Lattice Graphics 15
3.1 Lattice Graphics . 15

3.1.1 Groups within data, and/or columns in parallel 18
3.1.2 Lattice Parameters and Graphics Features . 19
3.1.3 Setting that are not available using simpleTheme() 20
3.1.4 Keys – auto.key, key & legend . 21
3.1.5 Panel functions and interaction with plots . 21
3.1.6 Interaction with lattice plots – focus, interact, unfocus 22
3.1.7 Arbitrary placement of labels . 23
3.1.8 Multiple graphs on a single graphics page . 23
3.1.9 Plots that Show Distributions . 24

4 The ggplot2 Package 27
4.1 Examples . 27
4.2 Dynamic Graphics – the rgl package . 29

5 References and Bibliography 31
5.1 Books and Papers on R . 31
5.2 Web-Based Information . 31
5.3 Graphics . 32

3

4 CONTENTS

Chapter 1

Preliminaries

The “preliminaries” that are discussed here will extend to using the R Commander menu to draw
graphs!

1.1 Installation of R and of R Packages

Installation of R First download and install R from a CRAN site, e.g.
http://cran.ms.unimelb.edu.au/ or
http://mirror.aarnet.edu.au/pub//CRAN/

Windows an MacOS X users should download the relevant executable,
(e.g. R-2.7.0-win32.exe for Windows, or R-2.7.0.dmg for MacOS X),
and open the downloaded file (e.g., click on it) to start insallation

Installation of R Packages (Windows & MacOS X)

Start R (e.g., click on the R icon). Then use the relevant menu item
to install packages via an internet connection.
This is (usually) easier than downloading, then installing.

Locating packages The CRAN task views may be a good first place to go.

For installation, follow the instructions in the text box. For installing packages, Windows users
will first need to specify a mirror. In Australia, specify the Australian mirror.

A fresh install is typically required to take advantage of new major releases (e.g. moving from a
2.6 series release to a 2.7 series release) when they appear. For working through these notes, version
2.7.0 or later should be installed.

1.1.1 Installation of packages from the command line

For packages where there are dependencies, installation from the command line may be an attractive
way to go. First, start R, perhaps by clicking on an R icon. Make sure that you have a live internet
connection.

For the R Commander, enter:

install.packages("Rcmdr", dependencies=TRUE)

Doing the installation this way ensures that other packages that R Commander may want get installed
at the same time. One of those packages is the rgl 3D graphics package that I will describe briefly.
Other graphics packages that this installs are scatterplot3d, vcd (visualization of categorical data) and
colorspace (for generation of color palettes, etc).

5

http://cran.ms.unimelb.edu.au/
http://mirror.aarnet.edu.au/pub//CRAN/

6 CHAPTER 1. PRELIMINARIES

A further package that will be discussed here, the ggplot2 package, is not an R commander
suggested package, and requires separate installation. Enter, at the command line:

install("ggplot2", dependencies=TRUE)

1.2 The R Commander

1.3 The R Commander GUI

The R commander gives a graphical user interface (GUI) to a wide range of abilities, in the base R
system and in R packages. This includes graphical abilities, in the lattice and rgl packages as well as
in base graphics.

To start the R commander, start up R and enter:1

library(Rcmdr)

This opens an R Commander script window, with the output window underneath. This window can
be closed by clicking on the × in the top left corner. If thus closed, enter Commander() to reopen it
again later in the session.

The R Commander GUI – a guide to getting started

Once the points that will now be noted are understood, use of the R Commander should for the most
part be straightforward.

From GUI to writing code: The R commander displays the code that it generates. Users can
take this code, modify it, and re-run it. The code can be run either from the R Commander script
window or from the R console window (if open).

The active data set: The R commander has the notion of an active data set. Here are alternative
ways to make a data set active. Start by clicking on the Data drop-down menu. Then

• Click on Active data set, and pick from among data sets, if any, in the workspace.

• Click on Import data, and follow instructions, to read in data from a file. The data set is read
into the workspace, at the same time becoming the active data set.

• Click on New data set . . . , then entering data via a spreadsheet-like interface.

• Click on Data in packages, click on Read Data from Package, then identify one of the attached
packages and choose a data set from among those that are included with the package.

• A further possibility is to load data from an R image (.RData) file; click on Load data set . . .

Creating graphs: To draw graphs, click on the Graphs drop-down menu. Then

• Click on Scatterplot . . . to obtain a scatterplot. This uses the function scatterplot() from
the car package, which is an option rich interface to functions that are in base graphics.

• Click on X Y conditioning plot . . . for lattice scatterplots and panels of scatterplots.

• Click on 3D graph to obtain a 3D scatterplot, using the R Commander function scatter3d()
that is an interface to functions in the rgl package.

1At startup, the R Commander checks whether all the suggested packages, needed to use all its features, are available.
If some are missing, then upon starting up, the R commander offers to install them. For installing such packages, there
must be a live internet connection.

1.3. THE R COMMANDER GUI 7

Statistics (& fitting models): Click on the Statistics drop down menu to get submenus that give
summary statistics and/or carry out various statistical tests. This includes (under Contingency tables)
tables of counts and (under Means) One-way ANOVA. Also, click here to get access to the Fit models
submenu.

*Models: Click here to extract information from model objects once they have been fitted. (NB:
To fit a model, go to the Statistics drop down menu, and click on Fit models).

8 CHAPTER 1. PRELIMINARIES

Chapter 2

Base Graphics

Base Graphics implements a relatively “traditional” style of graphics:

Plots go to one or more pages of a graphics device (screen, or hardcopy)

plot(), etc. Sets up figure region, with user region inside, usually starts the graph.
Other functions that initiate a graph include hist() and boxplot().
Typically, it also creates the main part, or all, of the graph.
Use points(), lines(), text(), mtext(), axis(), rug(), identify(), etc.,
to add to the graph.

Plot y vs x with(women, plot(height, weight)) # Older syntax
plot(weight ∼ height, data=women) # Newer syntax (graphics formula)

Caveat Some base graphics functions do not take a data parameter

To see some of the possibilities that traditional (or base) R graphics offers, enter

demo(graphics)

Press the Enter key to move to each new graph.

2.1 plot() and allied functions

Here are two examples.

library(DAAG)
attach(elasticband) # R can now find distance & stretch

plot(distance ~ stretch)
plot(ACT ~ year , data=austpop , type="l")
plot(ACT ~ year , data=austpop , type="b")
detach(elasticband)

Figure 2.1 demonstrates some of the features of base graphics. Base graphics is highly flexible,
but often requires a great deal of attention to detail. There are annoying inconsistencies.

2.1.1 Fine control – parameter settings

Users who execute the code given above for Figure 2.1 will notice that the layout is different; there
will be bigger margins, and the tick labels and the axis labels will be further out. To get the layout
shown, there were some small changes to parameter settings:

Invoke once device is open , and before starting the plot

oldpar <- par(mar = rep(2,4), xaxs="i", yaxs="i", mgp=c(1.5 ,0.75 ,0))

9

10 CHAPTER 2. BASE GRAPHICS

##A: Set up plotting region, but (type="n") do not plot. Suppress axes & axis labels
plot(0 ~ 0, xlim=c(0, 26.5), ylim=c(−0.05, 34.25), xlab="", ylab="", type="n", axes=FALSE)

##B: Plot symbols 0 − 25. Overlay with numbers 0 − 25

● ●

grayscale <− gray(seq(from=0.1, by=0.05, length=13))
xpos <− seq(from=1, by=2, length=13); ypos <− rep(23,13); ypos2 <− ypos−2
points(ypos ~ xpos, cex=3, col=grayscale, pch=0:12)

● ● ● ● ●

points(ypos2 ~ xpos, cex=3, col=rev(grayscale), pch=13:25)

0 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25

text(ypos ~ xpos, labels=paste(0:12), cex=0.75)
text(ypos2 ~ xpos, labels=paste(13:25), cex=0.75)

##C: Enlarged and/or coloured symbols or text
xpos <− c(21.5, 23.5, 25.5); ypos <− rep(18, 3); ypos2 <− ypos−2
points(ypos ~ xpos, pch=0:2, cex=4:2, col=gray(c(.2, .4, .6)))

●

text(ypos2 ~ xpos, labels=letters[1:3], cex=2:4, col=gray(c(.2, .4, .6))) a b c
##D: Positioning of label with respect to a point
xpos <− c(22.5, 21.5, 22.5, 23.5)
ypos <− c(10, 11, 12, 11)
points(ypos ~ xpos, pch=16, cex=1.5, col=gray((1:4)/5))

●

●

●

●

posText <− c("below (pos=1)", "left (2)", "above (3)", "right (4)") below (pos=1)

left (2)

above (3)

right (4)

text(ypos ~ xpos, posText, pos=1:4)

##E: Sides (margins) are numbered 1, ...4. Label them acordingly

S
id

e
4

Side 1

S
id

e
2

Side 3

mtext(side=4, line=0.5, text="Side 4", adj=1) # Flush right on margin (Flush left: adj=0)
Center labels in margins 1 to 3
for (i in 1:3) mtext(side=i, line=0.5, text=paste("Side",i))
Label selected plotting positions

labpos <− c(0, 10:12, 16, 18, 21, 23)
for (pos in labpos) axis(side=4, at=pos, las=2)

0

10
11
12

16

18

21

23

Figure 2.1: Here are illustrated a number of features of traditional graphics plots. The code reproduces
the points, labels, ticks, tick labels and axis labels, but not the printing of the code in the figure region.

2.1. PLOT() AND ALLIED FUNCTIONS 11

The existing parameter settings are stored in oldpar, so that they can be restored later. Margins are
reduced in size (mar = rep(2,4)) so that each margin has room for two lines of text only. The figure
area will take in the exact x- and y-limits (xaxs="i", yaxs="i"), rather than extending slightly
beyond those limits. The margin parameters are set so that labels will be printed 1.5 lines out from
the margin, tick labels 0.75 lines out from the margin, and ticks right on the margin.

Here are some of the more common settings:

- Plotting symbols: pch (choice of symbol); cex (”character expansion”); col (color). Thus
par(cex=1.2) increases the plot symbol size 20% above the default.

- Lines: lty (line type); lwd (line width); col (color).

- Axis limits: xlim; ylim. (Assuming xaxs="r", x-axis limits are by default extended by 4%
relative to the data limits. Specify xaxs="i" to make the default an exact fit to the data limits.
For the y-axis, replace xaxs by yaxs and x by y.)

- Axis annotation and labels: cex.axis (character expansion for axis annotation, independently
of cex); cex.labels (size of the axis labels); mgp (margin line for the axis title, axis labels, and
axis line; default is mgp=c(3, 1, 0)).

- Graph margins: mar (inner margins, clockwise from the bottom; the out of the box default is
mar=c(5.1, 4.1, 4.1, 2.1), in lines out from the axis); oma (outer margins, relevant when
there are multiple graphs on the one graphics page).

- Plot shape: pty="s" gives a square plot (must be set using par()).

- Multiple graphs on the one graphics page: Specify par(mfrow=c(m,n)) to get an m rows by n
columns layout of graphs on a page.

Type help(par) to get a (very extensive) complete list.
In most (not all) instances, the change can be made either in a call to a plotting function (eg,

plot(), points()), or using par(). If made in a call to a plotting function, the change applies only
to that call. If made using par(), changes remain in place until changed again, or until a new device
is opened.

2.1.2 Adding points, lines and text – examples

Here is a simple example (Figure 2.2) that uses the function text() to label the points on a plot.

●

●

●

●

●

0 50 100 200

0
50

0
10

00
15

00

Body weight (kg)

B
ra

in
 w

ei
gh

t (
g)

Potar monkey

Gorilla

Human

Rhesus monkey

Chimp

Figure 2.2: Plot of brain weight against
body weight, for selected primates.

> ## Data used in plot

> primates # DAAG package

Bodywt Brainwt
Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

Code that gives the above plot is:

12 CHAPTER 2. BASE GRAPHICS

attach(primates)
plot(Bodywt , Brainwt , xlim=c(0, 250),

xlab="Body weight (kg)", ylab="Brain weight (g)")
Specify xlim so that there is room for the labels

text(x=Bodywt , y=Brainwt , labels=rownames(primates), pos =4)
Alternatives are pos=1 (below), 2 (left), 3 (above)

detach(primates)

2.2 Plotting Mathematical Symbols

Lattice, as well as base graphics users, can take advantage of the features described here.
Both text() and mtext() will take an expression rather than a text string, as in the x-axis label

of Figure 2.3. Observe that an arbitrary character string can appear as a variable in an expression.
The operator ’*’ juxtaposes the separate elements of the “expression”.

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●
● ●

●

●
●

●
●

●●

●●
●

●●
●

●

●

●
●
●

●
●● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

4.0 4.5 5.0 5.5 6.0 6.5

12
14

16
18

Red cell count (1012L−−1)

H
em

ag
lo

bi
n

(g ⋅⋅
da

L
−−1

)

Figure 2.3: Hemaglobin concentration vs red cell count, for 202
Australian athletes. The SI symbol ’daL’ is ’decaliters’.

par(family="Times")
plot(hg ~ rcc , data=ais ,

xlab=expression("Red cell count ("
* 10^12 * italic(l)^{-1}
* ")"),

ylab=expression("Hemaglobin ("
* g*dot(" ")
* daL^{-1} * ")"))

Note that = must appear as ==, as in:

Code used for plot:

r <- seq(0.1, 8.0, by=0.1)
plot(r, pi * r^2, xlab=expression(Radius == r),

ylab=expression(Area == pi*r^2), type="l")
NB: Use ==, within an expression , to print =

2.3 Summary

The functions plot(), points(), lines(), text(), mtext(), axis(), identify() etc. form
a suite that plots points, lines and text.

Note the alternatives plot(x, y), plot(y ∼ x)

2.4 Exercises

1. Check the distributions of head lengths (hdlngth) in the possum data set. Compare the following
forms of display:

a) a histogram (hist(possum$hdlngth));

b) a stem and leaf plot (stem(qqnorm(possum$hdlngth));

c) a normal probability plot (qqnorm(possum$hdlngth)); and

2.4. EXERCISES 13

d) a density plot (plot(density(possum$hdlngth)).

What are the advantages and disadvantages of these different forms of display?

2. For the columns of the data frame nihills, examine the distribution using histograms, density
plots and normal probability plots.

Repeat the exercise with the logarithms of the data values.

3. Use mfrow() to set up the layout for a 3 by 4 array of plots. In the top 4 rows, show normal
probability plots for four separate ‘random’ samples of size 10, all from a normal distribution.
In the middle 4 rows, display plots for samples of size 100. In the bottom four rows, display
plots for samples of size 1000. Comment on how the appearance of the plots changes as the
sample size changes.

4. (a) The function runif() can be used to generate a sample from a uniform distribution, by
default on the interval 0 to 1. Try x <- runif(10), and print out the numbers you get.
Then repeat exercise 6 above, but taking samples from a uniform distribution rather than
from a normal distribution. What shape do the points follow?

(b) Repeat exercise (a), but for other distributions such as chi-square (rchisq()) and t (rt())
(try, e.g., degrees of freedom 1, 5 and 40).

5. The data set LakeHuron (datasets package) has mean July average water surface elevations, in
feet, IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1875-1972.
Use the following to create a data frame that has the same information:

huron <- data.frame(year=as(time(LakeHuron), "vector"),
mean.height=LakeHuron)

a) Plot mean.height against year.

b) Use identify() to determine which years correspond to the lowest and highest mean levels.
That is, type

identify(huron$year , huron$mean.height , labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To
quit, press both mouse buttons simultaneously.

c) As in the case of many time series, the mean levels are correlated from year to year. To see
how each year’s mean level is related to the previous year’s mean level, use

lag.plot(huron$mean.height)

This plots the mean level at year i against the mean level at year i-1.

d) *Now explain why the following code achieves the same effect:

plot(LakeHuron)
identify(LakeHuron , labels=time(LakeHuron))

e) *Use the function acf() to plot the autocorrelation function. Compare with the result from
the pacf() (partial autocorrelation). What are the graphs telling you? (For an explanation of
the autocorrelation function, look up “Autocorrelation” on Wikepedia.)

14 CHAPTER 2. BASE GRAPHICS

Chapter 3

Lattice Graphics

3.1 Lattice Graphics

Lattice Graphics:

Lattice Lattice is a flavour of trellis graphics
(the S-PLUS flavour was the original implementation)

Grid grid is a low-level graphics system. It was used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

Lattice Lattice syntax is consistent and tightly regulated
syntax For lattice, graphics formulae are mandatory.

Lattice (trellis) graphics functions allow the use of the layout on the page to reflect meaningful
aspects of data structure. Different levels of a factor may appear in different panels. Or they may
appear in the same panel, distinguished by color and/or symbol. If lines or smooth curves are added,
there is a different line or curve for each different group.

Similar considerations apply when columns of data are plotted in parallel. Different columns may
appear in different panels. Or they may appear in the same panel, distinguished by color and/or
symbol.

The lattice package comes already installed with all the binary distributions that are supplied
from CRAN (Comprehensive R Archive Network: http://mirror.aarnet.edu.au/pub//CRAN/).

To see some of the possibilities that lattice graphics offers, enter

library(lattice) # For use , the lattice package must be attached

demo(lattice)

The lattice package implements a trellis style of graphics, as in the S+ implementation of the S
language.

Lattice graphics versus base graphics – xyplot() versus plot()

A Brainwt versus Bodywt scatterplot for the primates data, such as was given earlier, might alter-
natively have been obtained using the function the function xyplot() from the lattice package. The
following, when typed on the command line, give a plot on the graphics device:

Plot Brainwt vs Bodywt , data frame primates (DAAG)

plot(Brainwt ~ Bodywt , data=primates) # base graphics

15

http://mirror.aarnet.edu.au/pub//CRAN/

16 CHAPTER 3. LATTICE GRAPHICS

’base ’ graphics use the abilities of the graphics package

library(lattice)
xyplot(Brainwt ~ Bodywt , data=primates) # lattice

The mechanism that yields the plot is different in the two cases:

• plot() gives a graph as a side effect of the command.

• xyplot() generates a graphics object. As this is output to the command line, the object is
“printed”, i.e., a graph appears.

The following illustrates the difference between the two functions:

invisible(plot(Brainwt ~ Bodywt , data=primates)) # Graph appears

invisible(xyplot(Brainwt ~ Bodywt , data=primates)) # No graph

The function invisible() suppresses command line printing, so that invisible(xyplot(...)) does
not yield a graph.

Inside a function, xyplot(...) prints a graph only if it is the return value from the function, i.e.
usually, is on the final line. In a file that is sourced (use source(), no graph will appear. Inside a
function (except as mentioned), or in a file that is sourced, there must be an explicit print(), i.e.

print(xyplot(ACT ~ year , data=austpop))

Lattice functions create trellis objects. Trellis objects can be created even if no device is open.
Such objects can be updated. Objects are plotted (by this time, a device must be open), either
when output from a lattice function goes to the command line (thus implicitly invoking the print()
command), or by the explicit use of print().

By successively updating a trellis graphics object, it can be built up and/or modified in steps.
Additionally, it is possible to add to a ‘printed” or displayed graphics page. Subsection 3.1.5 will
show how to do this.

Panels of scatterplots – the use of xyplot()

Graphics functions in the lattice package, are designed to allow row by column layouts of panels.
Different panels are for different subsets of the data. Additionally, points can be distinguished, within
panels, according to some further grouping within the data.

The ais dataset (DAAG) has data on elite Australian athletes who trained at the Australian
Institute of Sport. Data were collected with a view to studying possible differences in blood charac-
teristics, between athletes in endurance-related events and those in power-related events. The help
page for ais has details of the measurements, including a variety of blood cell counts.

Here is a breakdown, by sex and sport, of numbers:

> with(ais , table(sex ,sport))
sport

sex B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo
f 13 7 4 23 22 9 11 4 7 0
m 12 12 0 0 15 13 18 11 4 17

There are 202 athletes in total, all from the Australian Institute of Sport.
Figure 3.1 demonstrates the use of xyplot(). The plot is restricted to rowers and swimmers. The

two panels distinguish the two sports, while different plotting symbols (on a color device, different
colors will be used) distinguish females from males. Here is suitable code:

trellis.device(color=FALSE)
xyplot(ht ~ wt | sport , groups=sex , pch=c(4,1), aspect=1, data=ais ,

auto.key=list(columns =2), subset=sport%in%c("Row","Swim"))
dev.off() # Close device

trellis.device () # Start new device , by default with color=TRUE

3.1. LATTICE GRAPHICS 17

wt

ht

160

170

180

190

50 60 70 80 90

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Row

50 60 70 80 90

●

●

●

●
●

●

●
●

●

●

●

●
●

Swim

f
m ●

Figure 3.1: Height (ht) versus Weight (wt), for two categories of athlete. The different plotting
symbols distinguish males from females.

In the graphics formula ht ~ wt | sport, the vertical bar indicates that what follows, in this
case sport, is a conditioning variable or factor. The graphical information is broken down according
to the factor levels or distinct values. The parameter aspect controls the ratio of dimensions in the
y and x directions.

The setting auto.key=list(columns=2) generates a simple key, with the two key items side by
side in two columns rather than one under another in a single column as happens with the default
setting columns=1.

Selected lattice functions

dotplot(factor ~ numeric ,..) # 1-dim. Display

stripplot(factor ~ numeric ,..) # 1-dim. Display

barchart(character ~ numeric ,..)
histogram(~ numeric ,..)
densityplot(~ numeric ,..) # Density plot

bwplot(factor ~ numeric ,..) # Box and whisker plot

qqmath(factor ~ numeric ,..) # normal probability plots

splom(~ dataframe ,..) # Scatterplot matrix

parallel(~ dataframe ,..) # Parallel coordinate plots

cloud(numeric ~ numeric * numeric , ...) # 3D surface

wireframe(numeric ~ numeric * numeric , ...) # 3D scatterplot

In each instance, users can add conditioning variables.
Further points to note about the lattice package are:

• Because the lattice package implements the trellis style of graphics, several of the functions that
control stylistic features (color, plot characters, line type, etc.) have trellis (where lattice might
have seemed more natural) as part of their name.

• Lattice graphics functions cannot be mixed (or not easily) with the graphics functions discussed
earlier in Section 2.1.2. It is not possible to use points(), lines(), text(), etc., to add
features to a plot that has been created using a lattice graphics function. Instead, it is necessary
to use functions that are special to lattice – lpoints(), llines(), ltext(), larrows() and
lsegments()

18 CHAPTER 3. LATTICE GRAPHICS

A
m

ou
nt

 c
on

su
m

ed
 (

pe
r

pe
rs

on
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ●

● ● ● ● ●
●

NewZealand

Beer Spirit Wine●

Figure 3.2: Australian and New Zealand apparent per person annual consumption (in liters) of the
pure alcohol content of liquor products, for 1998 to 2006.

3.1.1 Groups within data, and/or columns in parallel

Here are selected lines from the data set grog (DAAGxtras package):

Beer Wine Spirit Country Year
1 5.24 2.86 1.81 Australia 1998
2 5.15 2.87 1.77 Australia 1999

. . . .
9 4.57 3.11 2.15 Australia 2006

10 4.50 2.59 1.77 NewZealand 1998
11 4.28 2.65 1.64 NewZealand 1999

. . . .
18 3.96 3.09 2.20 NewZealand 2006

There are three liquor products (drinks), in different columns, and two countries, occupying dif-
ferent rows that are indexed by the factor Country. The function xyplot() can accommodate any of
the following:

• Different symbols and/or colors, in the one panel, distinguish drinks. Different panels distinguish
countries, as in Figure 3.2.1 If different countries are in the same panel, then drinks must be
separated across different panels.

• Use a 3 drinks × 2 countries, or 2 countries × 3 drinks layout of panels.

Where plots are superposed in the one panel and, e.g., regression lines or smooth curves are fitted,
this is done separately for each different set of points. Different colors, and/or by different symbols
and/or line styles, can be used to make the necessary distinctions.

Code for Figure 3.2 is:

Simple version of plot

grogplot <- xyplot(Beer+Spirit+Wine ~ Year | Country , data=grog ,

1The data (dataset grog, from DAAGxtras) are 1998 – 2006 Australian and New Zealand apparent per person annual
consumption (in liters) of the pure alcohol content. Data, based on Australian Bureau of Statistics and Statistics New
Zealand figures, are obtained by dividing estimates of total available alcohol by number of persons aged 15 or more.

3.1. LATTICE GRAPHICS 19

outer=FALSE , auto.key=list(columns =3))
Enhance , and print enhanced code

update(grogplot , ylim=c(0,5.5),
xlab="", ylab="Amount consumed (per person)",
par.settings=simpleTheme(pch=c(1,3 ,4)))

The footnote2has alternative code that updates the object, then uses an explicit print().
Observe that:

• Use of Beer+Spirit+Wine gives plots for each of Beer, Spirit and Wine. The effect of
outer=FALSE is that these appear in the same panel.

• Conditioning by country (| Country) gives separate panels for separate countries.

• The function simpleTheme() sets up a “theme” that can be used to control point and line
settings.

For separate panels for the three liquor products (different levels of Country can now use the same
panel), specify outer=TRUE:

xyplot(Beer+Spirit+Wine ~ Year , groups=Country , outer=TRUE ,
data=grog , auto.key=list(columns =2))

Here is a summary:
Overplot (a single panel) Separate panels

Break data down a/c to levels of the factor Country:
Beer ∼ Year, groups=Country Beer ∼ Year | Country

Plot columns in parallel, as in Beer+Wine+Spirit ∼ Year:
outer=FALSE outer=TRUE

3.1.2 Lattice Parameters and Graphics Features

Point, line and fill color settings, using simpleTheme()

The function simpleTheme() creates a “theme”, i.e., a list of parameter settings, in a form that can
be supplied: (i) in the argument par.settings in the graphics function call; or (ii) in the argument
theme in a call to trellis.par.set(), prior to calling the graphics function. A further possibility
is to include an argument theme when using trellis.device() to start a new device. This has the
default retain=FALSE, with the result that unless otherwise specified, parameters are reset to their
defaults for the relevant device.

The following creates two “themes”:

settings1 <- simpleTheme(pch = c(1,3,4), cex =1.25)
settings2 <- simpleTheme(pch = c(1,3,4), alpha =0.5)

Use of settings1 may be appropriate when the number of points is small, while settings2 may be
appropriate when there are many points and there is extensive over-plotting. Here, alpha controls
the background transparency (c.f., also, alpha.points and alpha.line). Use of a value less than 1
helps in showing the density of points in regions where there is extensive overlapping.

The following gives the symbols and size of symbol used in Figure 3.2:

2## Update trellis object, then print

frillyplot <-

update(grogplot, ylim=c(0,5.5), xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

print(frillyplot)

20 CHAPTER 3. LATTICE GRAPHICS

grogplot0 <- xyplot(Beer+Spirit+Wine ~ Year | Country , outer=FALSE ,
data=grog , ylim=c(0 ,5.5))

grogplot <- update(grogplot0 , par.settings=settings1)
print(grogplot)

The settings are stored as part of the graphics object grogplot.
Consider now the use of trellis.par.set() to change the settings globally, so that they remain

in place until there is a further change or a new device is opened.

trellis.par.set(settings2)

Then print(grogplot) will use settings1 which are stored as part of the object, while print(grogplot0)
will use the global settings2.

3.1.3 Setting that are not available using simpleTheme()

For changes that go beyond what simpleTheme() allows, it is necessary to know the names under
which settings are stored. To inspect these, type:

> names(trellis.par.get ())
[1] "fontsize" "background" "clip"

. . .
[28] "par.sub.text"

For a visual display that shows default settings for points, lines and fill colour, try the following:

trellis.device(color=FALSE)
show.settings ()
trellis.device(color=TRUE)
show.settings ()

The following sets the fontsize. Notice the separate settings for text and symbols:

trellis.par.set(list(fontsize = list(text = 7, points = 4)))

Parameters that affect axes, tick marks, and axis labels

These are readily manipulated by use of the scales argument to the lattice function. The following
plots quarterly labor force numbers, in six regions of Canada, over 1995-1996. The code is:

Create a simplified version of the graphics object

jobs.xyplot <-
xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ~ Date ,

data=jobs , type="b", layout=c(3,2), ylab="Number of jobs",
scales=list(y=list(relation="sliced", log=TRUE)),
outer=TRUE)

Update jobs.xyplot , with various enhancements

ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 100))
ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")
Create a date object ’startofmonth ’; use this instead of ’Date ’

atdates <- seq(from=95, by=0.5, length =5)
datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length =5), "%b%y")
update(jobs.xyplot , xlab="", between=list(x=0.5, y=0.5),

scales=list(x=list(at=atdates , labels=datelabs),
y=list(at=ylabpos , labels=ylabels), tck =0.6))

3.1. LATTICE GRAPHICS 21

The enhancements are:

• The y-axis labels show number of jobs, with log(number) in parentheses underneath.

• Dates of the form Jan95 label the x-axis.

• Tick marks are reduced in length (tck=0.6, i.e., 60% of the default).

Notice also the use of between=list(x=0.5, y=0.5) to add horizontal and vertical space between
the panels, ensuring that the tick labels do not overlap.

3.1.4 Keys – auto.key, key & legend

The argument auto.key=TRUE gives a basic key that identifies colors, plotting symbols and names for
the groups. For greater flexibility, auto.key can be a list. Settings that are often useful are:

• points, lines: in each case set to TRUE or FALSE.

• columns: number of columns of keys.

• x and y, which are coordinates with respect to the whole display area. Use these with corner,
which is one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1) and c(0,1).

• space: one of "top", "bottom", "left", "right".

Use of auto.key sets up the call key=simpleKey(). If not otherwise specified, colors, plotting
symbols, and line type use the current trellis settings for the device. Unless the argument text is
supplied, levels(groups) provides the legends. If necessary, use legend=NULL when updating, to
remove an existing key and allow the addition of a different key.

3.1.5 Panel functions and interaction with plots

Each lattice command that creates a graph has its own panel function. Thus xyplot() has the panel
function panel.xyplot(). The following are equivalent:

xyplot(ACT ~ year , data=austpop)
xyplot(ACT ~ year , data=austpop , panel=panel.xyplot)

The user’s own function can be substituted for panel.xyplot(). Panel functions that may be
used, either in combination with functions such as panel.xyplot() or separately, include:

• panel.points(), panel.lines() and a number of other such functions that are documented
on the same help page as panel.points();

• panel.abline(), panel.curve(), panel.rug(), panel.average() and a number of other func-
tions that are documented on the same help page as panel.abline().

Interaction with lattice plots – the playwith package

For using playwith, the GTK+ toolkit must be installed. For details, go to the website http://
playwith.googlecode.com/.

For installing the playwith package type, from the command line:

install.packages("playwith", dependencies=TRUE)

Now type, for example

library(DAAGxtras)
library(playwith)
playwith(xyplot(age ~ distance , data=hotspots),

labels=hotspots$name)

http://playwith.googlecode.com/
http://playwith.googlecode.com/

22 CHAPTER 3. LATTICE GRAPHICS

Plate 3.4 was then obtained as described in the figure caption.
An alternative is

gph <- xyplot(age ~ distance , data=hotspots)
playwith(update(gph), labels=hotspots$name)

The menu that appears to the left of the graph can be used to initiate single click identification,
to add annotation or arrows, or to mark out a rectangle on the graph for zooming in or out. If labels
are not specified, row names are used.

Note also the function latticist() in the latticist package. When called with a data frame as
argument, this opens a window that has graphical summary information on the columns of the data
frame. Additionally, the window gives a graphical user interface to the creation of further lattice plots
from the data frame. As when playwith() is used as a wrapper for a call to a lattice function, various
annotation features are available.

3.1.6 Interaction with lattice plots – focus, interact, unfocus

As described here, interaction starts with the use of trellis.focus() to focus down to the relevant
“viewport”, by default a panel. It may be called without arguments. If there is only one panel, it is
then selected immediately. If there is more than one panel, the user chooses a panel by clicking on it.

Other choices of name include "panel", "strip", name="legend" and "toplevel". For name="legend";
side should be indicated.

Use of panel.text() to label points

Following a call to trellis.focus(), panel functions can be used to supplement plots. Use trellis.panelArgs()
to extract arguments that are available to panel functions following such a call. The following adds
text labels:

xyplot(Brainwt ~ Bodywt , data=primates)
trellis.focus("panel", row=1, column=1, clip.off=TRUE ,

highlight=FALSE) # Non -interactive use

xyetc <- trellis.panelArgs ()
panel.text(x=xyetc$x, y=xyetc$y, labels=row.names(primates), pos=3)
trellis.unfocus ()

For non-interactive use, be sure to call trellis.focus() with the argument highlight=FALSE.

Use of panel.identify() to label points interactively

Here is an example of interactive labeling.

Use of xyplot (): data frame tinting (DAAG)

library(lattice)
xyplot(it ~ csoa | sex , data=tinting)
trellis.focus("panel", column=1, row =1)
panel.identify(labels=as.character(tinting$target))
Now click near points as required.

Terminate by right clicking inside the panel.

Now interact with panel 2

trellis.focus("panel", row=1, column =2)
panel.identify(labels=as.character(tinting$target))
Click , ..., and right click

By default, the x and y arguments to the function panel.identify() are taken to be those that were
supplied to the lattice function, here xyplot().

Functions that may be called include panel.lines() and related functions, and panel.abline()
and related functions, as described earlier.

3.1. LATTICE GRAPHICS 23

3.1.7 Arbitrary placement of labels

The following uses the focus/unfocus mechanism to add to an existing graph:

stripplot(species ~ length , xlab="", data=cuckoos)
trellis.focus(name="toplevel", highlight=FALSE)
panel.text("Stripplot of cuckoo data", x=0.05 , y=0.95)

Here , x=0.05 translates to x=unit (0.05 ," npc"); the range is (0,1)

trellis.unfocus ()

The following uses the grid function textGrob() to create a text object which is then supplied to
the lattice function:

library(grid)
stripplot(species ~ length , xlab="", data=cuckoos ,

legend=list(top=list(fun=textGrob ,
args=list(label="Stripplot", x=0))))

Here , x=0 is equivalent to x=unit(0,"npc"); the range is (0,1)

3.1.8 Multiple graphs on a single graphics page

Note first, for comparison, the use of the base graphics parameter fig to mark out a rectangular
region where the graph will appear. For example:

par(fig = c(0, 1, 0.38, 1)) # xleft , xright , ybottom , ytop

Plot graph A

par(fig = c(0, 1, 0, 0.38) , new=TRUE)
Plot graph B

par(fig = c(0, 1, 0, 1) # Reset to default

The initial par(fig = c(0, 1, 0.38, 1)) marks out a plot region that occupied the total width of
the graphics page, started 38% of the way up, and extended to the top of the page. The subsequent
par(fig=c(0, 1, 0, 0.38), new=TRUE) marked out the lower 38% of the page . The effect of
new=TRUE is, counter-intuitively, “assume a new page is already open; do not open a new page”.

For lattice graphs, the location of the graph can be determined by the argument position, when
print() is called. The following demonstrates its use:

cuckoos.strip <- stripplot(species ~ length , xlab="", data=cuckoos)
print(cuckoos.strip , position=c(0 ,0.5,1 ,1))

xleft , ybottom , xright , ytop

cuckoos.bw <- bwplot(species ~ length , xlab="", data=cuckoos)
print(cuckoos.bw, position=c(0,0,1,0.5), newpage=FALSE)

Note the use of newpage=FALSE for the second plot.

Base and trellis plots on the same graphics page

The following uses the base graphics command mtext() to label a lattice plot:

plot (0:1, 0:1, type="n", bty="n", axes=FALSE , xlab="", ylab="")
mtext(side=3, line=3, "Lattice bwplot (i.e., boxplot)")
cuckoos.bw <- bwplot(species~length , data=cuckoos)
print(cuckoos.bw, newpage=FALSE)

24 CHAPTER 3. LATTICE GRAPHICS

3.1.9 Plots that Show Distributions

Stripplots, dotplots and boxplots

Because the syntax for stripplot() and boxplot() are very similar, we demonstrate suitable code
side by side. (The function dotplot() is very similar to stripplot(), with differences that are
mainly cosmetic.) The following code creates plots using the cuckoos data (from DAAG):3

stripplot(species ~ length , aspect =0.5, data=cuckoos ,
xlab="Cuckoo egg length (mm)")

bwplot(species ~ length , aspect =0.5, data=cuckoos ,
xlab="Cuckoo egg length (mm)")

The aspect argument determines the ratio of distance in the y-direction to distance in the x-direction.

Lattice Style Density Plots

Here is a density plot (Figure 3.3), for data from the possum data set (DAAG), that compares sexes
and Vic/other populations.

densityplot(~ earconch | sex , groups=Pop , data=possum ,
par.settings=simpleTheme(col=c("gray","black"),
auto.key=list(columns =2))

Where densityplot() (and histogram()) have a formula as argument, a name is not allowed on the
left of the ∼ symbol.

earconch

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

40 45 50 55

● ●● ●●●● ●●● ● ●● ●●● ●● ●● ●
●● ●

f

40 45 50 55

●●● ●●● ●● ●● ●●●● ● ●●● ● ● ●●

m

Vic other

Figure 3.3: Lattice style density plot
comparing possum earconch measure-
ments, separately for males and fe-
males, between Victorian and other
populations. Observe that the scatter
of data values is shown along the hori-
zontal axis.

Where densityplot() (and histogram()) have a formula as argument, a name is not allowed on
the left of the ∼ symbol. For histogram(), which is otherwise similar to densityplot(), the groups
argument is not available.

Further comments on Stripplots and Dotplots

Unless care is taken with the dimensions of the graphics page and/or the font size, labels for the levels
of yield in the following plot will overlap.

dotplot(variety ~ yield | site , data = barley , groups = year ,
xlab = "Barley Yield (bushels/acre) ", ylab = NULL ,
layout = c(1, 6), aspect = 0.5,
auto.key=list(labels=levels(barley$year), space = "right"))

3## For slightly improved labeling, precede with:

levels(cuckoos$species) <- sub(".", " ", levels(cuckoos$species), fixed=T)

3.1. LATTICE GRAPHICS 25

Try stretching the plot vertically so that the labels do not overlap.
The argument type="h") gives a line from the origin to the point. Both a line and a point may

be given. This can be used to striking effect, as in the following:4

deathrate <- c(40.7 , 36 ,27 ,30.5 ,27.6 ,83.5)

hosp <- c("Cliniques of Vienna (1834 -63)\n(> 2000 cases pa)",

"Enfans Trouves at Petersburg\n(1845 -59 , 1000 -2000 cases pa)",

"Pesth (500 -1000 cases pa)",

"Edinburgh (200 -500 cases pa)",

"Frankfort (100 -200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor(hosp , levels=hosp[order(deathrate)])

dotplot(hosp ~ deathrate , xlim=c(0,110), cex=1.5,

scale=list(cex =1.25) , type=c("h","p"),

xlab=list("Death rate per 1000 ", cex =1.5),

sub="From Nightingale (1871) - data from Dr Le Fort")

4Data are from Nightingale, F. (1871): Notes on Lying-in Institutions.

26 CHAPTER 3. LATTICE GRAPHICS

Figure 3.4: This playwith GUI window was generated by wrapping the call to xyplot() in the function
playwith(), then clicking on Identify. Click near to a point to see its label. A second click adds the
label to the graph.

Chapter 4

The ggplot2 Package

This package, by Hadley Wickham, implements the graphics language that is described in Wilkinson’s
Grammar of Graphics. A draft of Hadley Wickham’s book that describes the package is available
from http://had.co.nz/ggplot2/. In contrast to base graphics, the syntax is consistent. It is much
less stylized than lattice, and accordingly easier to adapt.

The examples that are given here will use the wrapper function qplot() (quickplot) that is de-
signed for creating simple ggplot graphics objects. It has remarkably wide-ranging abilities.

4.1 Examples

Australian rain data

Figure 4.1 plots annual rainfall for South-East Australia.

400

500

600

700

800

900

1900 1920 1940 1960 1980 2000

●

●

●

●

●
●

●

●●

●
●●

●●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●

●

●
●

●●
●

●●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

A
nn

ua
l r

ai
nf

al
l,

S
E

 A
us

t

Year

A:

400

500

600

700

800

900

1900 1920 1940 1960 1980 2000

●

●

●

●

●
●

●

●●

●
●●

●●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●

●

●
●

●●
●

●●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

A
nn

ua
l r

ai
nf

al
l,

S
E

 A
us

t

Year

B:

400

500

600

700

800

900

1900 1920 1940 1960 1980 2000

●

●

●

●

●
●

●

●●

●
●●

●●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●

●

●
●

●●
●

●●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

A
nn

ua
l r

ai
nf

al
l,

S
E

 A
us

t

Year

C:

Figure 4.1: Annual rainfall,
from 1901 to 2008, for the
Murray-Darling basin region
of Australia. The curve is
fitted using the default loess
smoother. The pointwise
standard error bands assume
that errors about the curve
are independent; this is un-
likely to be strictly true. To
suppress the bands, specify
se=FALSE.

Here is the code.

27

http://had.co.nz/ggplot2/

28 CHAPTER 4. THE GGPLOT2 PACKAGE

library(DAAGxtras)
library(ggplot2)
Default loess smooth , with SE bands added.

quickplot(Year , seRain , data=bomregions , geom=c("point","smooth"),
span =0.1, xlab="", ylab="Av. rainfall , M-D basin")

Try also the following:

library(splines)
quickplot(Year , seRain , data=bomregions , geom=c("point", "quantile"),

formula = y ~ ns(x,5), quantiles=c(0.2 ,0.5 ,0.8))

The normal spline basis ns(x,5) is supplied to the function that fits the quantiles, so that 5 d.f. spline
curves are fitted at the 20%, 50% and 80% quantiles.

Physical measurements of Australian athletes

Figure 4.2 plots height against weight, for the ais data. Boxplots that show the distributions of
heights, and two-dimensional density contour estimates have been added. Figure 4.2 shows boxplots
(geom="boxplot"), by sport (given as the x-variable) and sex (separate panels): The code is:

Weight (kg)

H
ei

gh
t (

cm
)

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●●●

●
●●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

150

160

170

180

190

200

40 60 80 100 120 40 60 80 100 120

f m

Figure 4.2: Height versus weight, by sex, for Australian athletes in the ais data set. Boxplots that
show the distributions of heights, and two-dimensional density contours have been added.

Overlay scatterplots with boxplots and with density contours

quickplot(wt, ht, xlab="Weight (kg)", ylab="Height (cm)", data=ais ,
geom=c("boxplot", "point", "density2d"),
facets = . ~ sex)

The facets argument takes the form row.var col.var, where row.var indexes the rows of panels,
col.var indexes columns. and . is used as a placeholder when there is one row or one column only.

Try also:

Two panels (columns): sexes have different colors and symbols

aisBS <- subset(ais , sport %in% c("Row","Swim"))

4.2. DYNAMIC GRAPHICS – THE RGL PACKAGE 29

aisBS$sport <- factor(aisBS$sport)
quickplot(wt, ht, data=aisBS , type="point",

colour=sex , shape=sex ,
facets = . ~ sport)

Single panel: distinguish sexes by colors; sports by symbols

quickplot(wt, ht, data=aisBS , type="point",
colour=sex , shape=sport)

To get different colours for different levels of sport, specify colour=sport, For different plotting
symbols, specify shape=sport. For different sizes of symbol, specify size=sport. Two of these may
appear together. For example:

quickplot(wt, ht, data=aisBS , type="point",
colour=sex , shape=sex , size=I(2.5),
facets = . ~ sport)

Single panel: distinguish sexes by colors; sports by symbols

quickplot(wt, ht, data=aisBS , type="point",
colour=sex , shape=sport , size=I(2.5))

Single panel: distinguish sexes by colors; sports by symbol size

quickplot(wt, ht, data=aisBS , type="point",
colour=sex , size=sport)

Possible choices of geom, additional to those already demonstrated, are "path" (join points),
"line" (join points), "histogram", and "density".

Note the difference between:

size=I(2.5),used to make points somewhat larger than otherwise.

size=2.5, which specifies a mapping from the vector with the single element 2.5 to all points
in the data. This does change the point size, but it adds adds an extraneous key. (This is
analagous to the use of size=sport to specify a mapping from sport to size.)

Thus also, to make all points red, specify color=I("red"), not color="red"
Note also the following:

Change the base pointsize for text to 8

theme_set(theme_gray(base_size =8)) # Gray theme

theme_set(theme_bw(base_size =8)) # Black and white theme

Modify the pointsize

update_geom_defaults("point", aes(cex =1.25))

The function aes() generates aesthetic mappings. These map variables in the data to visual properties
(aesthetics) of geoms.

Consult the web page http://had.co.nz/ggplot/ for up to date information on ggplot2.

4.2 Dynamic Graphics – the rgl package

This provides three-dimensional dynamic graphics. Try the following code. It uses functions in the
Rcmdr package – scatter3d() and identify3d(). These may be more convenient for novices than
the rgl functions that they call.

The Rcmdr and rgl packages must be installed

library(Rcmdr) # This makes scatter3d () available

The call to open3d () is optional , but see below

open3d ()
par3d(cex =0.6) # Optional. Requires an rgl device to be open

with(nihills , scatter3d(x=log(dist), y=log(climb), z=log(time),

http://had.co.nz/ggplot/

30 CHAPTER 4. THE GGPLOT2 PACKAGE

grid=FALSE , surface.col="gray",
point.col="black", axis.scales=FALSE))

with(nihills , identify3d(x=log(dist), y=log(climb), z=log(time),
labels=row.names(nihills), col="gray40"))

NB: Use the middle or right mouse button to drag a rectangle

around any pony that is to be labeled.

Following the call to identify3d(), use the middle (or maybe right) mouse button to drag a rectangle
around any point that is to be labeled. To cease identifying points, make a middle (or right) click on
an empty region of the plot. Use rgl.snapshot() to save the current plot into a file.

Chapter 5

References and Bibliography

5.1 Books and Papers on R

Crawley, M.J. 2005. Statistics – An Introduction with R. Wiley.

Crawley, M.J. 2007. The R Book. Wiley.

Dalgaard, P. 2002. Introductory Statistics with R. Springer-Verlag, New York.
[An excellent R-based introductory statistics text]

Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Sage Books.
(web page http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html)
[This is particularly aimed at classical types of regression calculations.]

Kuhnert, P. and Venables, W. 2005. An Introduction to R: Software for Statistical Modelling
& Computing. CSIRO Australia. Available from
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip

Ihaka, R. & Gentleman, R. 1996. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5: 299-314.

Maindonald, J. H. & Braun, J. B. 2007. Data Analysis & Graphics Using R. An Example-Based
Approach. Cambridge University Press, Cambridge, UK, 2007.
(web page http://www.maths.anu.edu.au/~johnm/r-book.html
[This is aimed at researchers who have had some previous exposure to statistics, and at applied
statisticians.]

Venables, W.N. and Ripley, B.D. 2000. S Programming. Springer-Verlag, New York.
[This treats both R and S-PLUS.]

Venables, W.N. and Ripley, B.D., 4th edn 2002. Modern Applied Statistics with S. Springer.
[This demands a relatively high level of sophistication. This treats both R and S-PLUS.]

5.2 Web-Based Information

See Documentation on the web page http://www.r-project.org

Note the R Wiki (http://wiki.r-project.org/rwiki/doku.php) and the help information listed
under Other (http://www.r-project.org/other-docs.html).

For examples of R graphs, see http://addictedtor.free.fr/graphiques/.

31

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip
http://www.maths.anu.edu.au/~johnm/r-book.html
http://www.r-project.org
http://wiki.r-project.org/rwiki/doku.php
http://www.r-project.org/other-docs.html
http://addictedtor.free.fr/graphiques/

32 CHAPTER 5. REFERENCES AND BIBLIOGRAPHY

R News: Successive issues of R News contain much useful information. These can be copied down
from one of the CRAN sites.

Contributed Documentation: There is an extensive collection of user-written documents on R
that can be accessed by going to this same mirror site, and clicking (under Documentation) on
Contributed. See also the links that John Fox gives on the web page for his book that is noted
under the reference for his book.

Books: See http://www.R-project.org/doc/bib/R.bib for a list that is updated regularly.

5.3 Graphics

Cleveland, W. S. 1985. The Elements of Graphing Data. Wadsworth, Monterey, California.

Chen, C., Hrdle, W. and Unwin A. 2008. Handbook of Data Visualization. Springer, in press.

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal
of Agricultural Research 35: 121-141.

Murrell, P. 2005. R Graphics. Chapman & Hall/CRC.
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html.
[This is a detailed exposition of the R graphics systems, with examples of their use.]

Tufte, E. R. 1983. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
Connecticut, U.S.A.

Tufte, E. R. 1990. Envisioning Information. Graphics Press, Cheshire, Connecticut, U.S.A.

Tufte, E. R. 1997. Visual Explanations. Graphics Press, Cheshire, Connecticut, U.S.A.

Wainer, H. 1997. Visual Revelations. Springer-Verlag, New York

Large and Possibly Sparse Data

Go to the website http://user2007.org/program/. Scroll down to ”Large data and Programming
Competition Winners”.

Unwin, A., Theus, M. and Hofmann, H. 2006. Graphics of Large Datasets. Springer, NY 2006

Literature on trellis (lattice) graphics

Cleveland, W. S. 1993. Visualizing Data. Hobart Press, Summit, New Jersey.

Sarkar, D. 2008. Lattice. Multivariate Data Visialization with R. Springer.
[This is the definitive reference on Lattice graphics.]

The grammar of graphics in R (ggplot2)

Wilkinson, L. 2005. The Grammar of Graphics. Springer, 2005.

http://www.R-project.org/doc/bib/R.bib
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html.
http://user2007.org/program/

Index of Functions

acf, 13
aes, 29
as, 13
as.character, 22
as.Date, 20
attach, 9, 12
axis, 9, 12

barchart, 17
boxplot, 9, 24
bwplot, 17, 23, 24

c, 9–12, 16, 19–21, 23–25, 28
cloud, 17
Commander, 6

data.frame, 13
defaults, 29
demo, 9, 15
density, 13
densityplot, 17, 24
detach, 9, 12
dev.off, 16
dot, 12
dotplot, 17, 24, 25

exp, 20
expression, 12

factor, 25, 29
format, 20

help, 11
hist, 9
histogram, 17, 24

I, 29
identify, 9, 12, 13
identify3d, 29, 30
install, 6
install.packages, 5, 21
invisible, 16
italic, 12

lag.plot, 13
larrows, 17
latticist, 22

levels, 21, 24
library, 6, 9, 15, 16, 21–23, 28, 29
lines, 9, 12, 17
list, 16, 17, 19–21, 23–25
llines, 17
log, 20, 21, 29, 30
lpoints, 17
lsegments, 17
ltext, 17

mfrow, 13
mtext, 9, 10, 12, 23

names, 20
ns, 28

open3d, 29
order, 25

pacf, 13
panel.abline, 21, 22
panel.average, 21
panel.curve, 21
panel.identify, 22
panel.lines, 21, 22
panel.points, 21
panel.rug, 21
panel.text, 22, 23
panel.xyplot, 21
par, 9, 11, 12, 23
par.get, 20
par.set, 19, 20
par3d, 29
parallel, 17
paste, 10, 20
playwith, 21, 22, 34
PLOT, 11
plot, 3, 9–13, 15, 16, 23
points, 9–12, 17
pretty, 20
print, 16, 19, 20, 23

qplot, 27
qqmath, 17
qqnorm, 12
quickplot, 28, 29

33

34 INDEX OF FUNCTIONS

rep, 9, 10
rev, 10
rgl.snapshot, 30
round, 20
row.names, 22, 30
rownames, 12
rug, 9
runif, 13

scatter3d, 6, 29
scatterplot, 6
seq, 10, 12, 20
show.settings, 20
simpleKey, 21
simpleTheme, 3, 19, 20, 24
splom, 17
stripplot, 17, 23, 24
sub, 24
subset, 28

table, 16
text, 9, 10, 12, 17
textGrob, 23
theme bw, 10, 29
theme gray, 10, 29
theme set, 10, 29
time, 13
trellis.device, 16, 19, 20
trellis.focus, 22, 23
trellis.panelArgs, 22
trellis.unfocus, 22, 23

unit, 23
unlist, 20
update, 19, 20, 22
update geom defaults, 10, 29

wireframe, 17
with, 9, 16, 29, 30

xyplot, 15, 16, 18–22, 34

	Preliminaries
	Installation of R and of R Packages
	Installation of packages from the command line

	The R Commander
	The R Commander GUI

	Base Graphics
	gray40plot() and allied functions
	Fine control – parameter settings
	Adding points, lines and text – examples

	Plotting Mathematical Symbols
	Summary
	Exercises

	Lattice Graphics
	Lattice Graphics
	Groups within data, and/or columns in parallel
	Lattice Parameters and Graphics Features
	Setting that are not available using simpleTheme()
	Keys – auto.key, key & legend
	Panel functions and interaction with plots
	Interaction with lattice plots – focus, interact, unfocus
	Arbitrary placement of labels
	Multiple graphs on a single graphics page
	Plots that Show Distributions

	The ggplot2 Package
	Examples
	Dynamic Graphics – the rgl package

	References and Bibliography
	Books and Papers on R
	Web-Based Information
	Graphics

