Here is a graph:

![Graph showing CPU time versus number of elements.](image)

Figure 2: Cpu time, versus number of elements.

On my system, the response was remarkably linear with time. The increase in time with increasing values of \(nn \) reduced slightly as \(nn \) increased.

Data Analysis & Graphics Using R, 3rd edn – Solutions to Selected Exercises

(April 29, 2010)

Preliminaries

```r
> library(DAAG)
```

Exercise 1

The following table gives the size of the floor area (ha) and the price ($000), for 15 houses sold in the Canberra (Australia) suburb of Aranda in 1999.

<table>
<thead>
<tr>
<th>Floor Area</th>
<th>Sale Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2e+06</td>
<td>700</td>
</tr>
<tr>
<td>6e+06</td>
<td>900</td>
</tr>
<tr>
<td>1e+07</td>
<td>1100</td>
</tr>
</tbody>
</table>

Type these data into a data frame with column names `area` and `sale.price`.

(a) Plot `sale.price` versus `area`.
(b) Use the `hist()` command to plot a histogram of the sale prices.
(c) Repeat (a) and (b) after taking logarithms of sale prices.

The Aranda house price data are also in a data frame in the `DAAG` package, called `houseprices`.

(a) Omitted
(b) Omitted
(c) The following code demonstrates the use of the `log="y"` argument to cause `plot` to use a logarithmic scale on the y axis, but with axis tick labels that are specified in the original units.

```r
> plot(sale.price ~ area, data=houseprices, log="y",
+      pch=16, xlab="Floor Area", ylab="Sale Price",
+      main="(c) log(sale.price) vs area")
```

The following puts a logarithmic scale on the x-axis of the histogram.

```r
> hist(log(houseprices$sale.price),
+       xlab="Sale Price (logarithmic scale)",
+       main="(d) Histogram of log(sale.price)")
```

Here is an alternative that prints x-axis labels in the original units:
Exercise 2

The **orings** data frame gives data on the damage that had occurred in US space shuttle launches prior to the disastrous Challenger launch on January 28, 1986. Only the observations in rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether to proceed with the launch.

Create a new data frame by extracting these rows from **orings**, and plot total incidents against **temperature** for this new data frame. Obtain a similar plot for the full data set.

Use the following to extract rows that hold the data that were presented in the pre-launch charts:

```
> orings86 <- orings[c(1,2,4,11,13,18), ]
```

Points are best shown with filled symbols in the first plot, and with open symbols in the second plot. (Why?)

Exercise 6

Create a data frame called **Manitoba.lakes** that contains the lake’s **elevation** (in meters above sea level) and **area** (in square kilometers) as listed below. Assign the names of the lakes using the **row.names()** function.

```
> attach(Manitoba.lakes)
```

Plot lake area against elevation, identifying each point by the name of the lake. Because of the outlying value of **area**, use of a logarithmic scale is advantageous.

(a) Use the following code to plot **log2(area)** versus **elevation**, adding labeling information:

```
> plot(log2(area) ~ elevation, pch=16, xlim=c(170,280))
> text(log2(area) ~ elevation, labels=row.names(Manitoba.lakes), pos=4)
> title("Manitoba's Largest Lakes")
> detach(Manitoba.lakes)
```

Devise captions that explain the labeling on the points and on the y-axis. It will be necessary to explain how distances on the scale relate to changes in area.

(b) Repeat the plot and associated labeling, now plotting **area** versus **elevation**, but specifying **log=y** in order to obtain a logarithmic y-scale. [NB: The \texttt{log="y"} setting is automatic, after its initial use with \texttt{plot()}, for the subsequent use of \texttt{text()}. \textit{vs.} having specified a log scale for the \texttt{y-axis} in the \texttt{plot()} statement, the same representation on a logarithmic scale is used for the \texttt{text()} command.]

Chapter 14 Exercises

```
> system.time(plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=mnear, ne=8))
user system elapsed
0.128 0.032 0.193
```

The function **count.neighbours()** has taken most of the time, on my system 3.10 seconds. We now break this down further.

```
> xn <- xy[["xn"]]
> yn <- xy[["yn"]]
> nx <- length(xn)
> h <- 1/sqrt(nx)
> system.time(
+ d <- sqrt((matrix(xn, nx, nx) - t(matrix(xn, nx, nx)))**2 +
+ (matrix(yn, nx, nx) - t(matrix(yn, nx, nx)))**2 ))
user system elapsed
0.153 0.079 0.247
```

Calculation of \texttt{d} took 1.62 seconds, whereas calculation of \texttt{nnear} tool 0.67 seconds.

(f) The focus should be on those calculations that are computationally intensive, i.e., the calculation of the distances. There are \texttt{nx*(nx-1)/2} distances that need be calculated, where the code has calculated \texttt{nx^2} distances, i.e. the distance from point 2 to point 1 as well as the distance from point 1 to point 2.

Exercise 11

This question has been reworded

Try the following, for a range of values of \texttt{n} between, e.g., \texttt{2 \times 10^5} and \texttt{10^7}. (On systems that are unable to cope with such large numbers of values, adjust the range of numbers of values accordingly.)

```
> n <- 10000; system.time(sd(rnorm(n)))
```

The first output number is the user cpu time, while the third output number is the elapsed time. Plot each of these numbers, separately, against \texttt{n}. Comment on the graphs. Is the elapsed time roughly linear with \texttt{n}? Try the computations both for an otherwise empty workspace, and with large data objects (e.g., with \texttt{10^7} or more elements) in the workspace.

On a 1.2MHz Macintosh G4 PowerBook with half a gigabyte of memory, results were:

```
> nn <- 2000000*(1:5)
> cpu <- numeric(5)
> cpu[1] <- system.time(sd(rnorm(n=nn[1])))[1]
> cpu[2] <- system.time(sd(rnorm(n=nn[2])))[1]
> cpu[3] <- system.time(sd(rnorm(n=nn[3])))[1]
> cpu[4] <- system.time(sd(rnorm(n=nn[4])))[1]
> cpu[5] <- system.time(sd(rnorm(n=nn[5])))[1]
```
$$(\text{matrix}(yn, nx, nx) - \text{t(matrix}(yn, nx, nx)))^{*2}$$

+ nnear <- apply(d <= h, 1, sum)
+ }

> plot.signal <- function(x, y, nnear, ns=8){
+ plot(x, y)
+ # plot only the points which have many such neighbors
+ ns <- 8
+ points(x[nnear > ns], y[nnear > ns], col="red", pch=16)
+ }

Here then is a sequence of calls:

> xy <- generate.data(m=100, n=800)
> nnear <- count.neighbours(xn=xy["xn"], yn=xy["yn"])
> plot.signal(x=xy["x"], y=xy["y"], nnear=nnear, ns=8)

(d) In an initial simulation, the range of values of nnear, obtained from range(nnear), was from 1 to 13. Hence, we will try setting nnear = 6 and nnear=10. For ns we will try 2/sqrt(length(xn)) and 0.5/sqrt(length(xn)).

> par(mfrow=c(2,2))
> nx <- length(xy["xn"])
> nnear <- count.neighbours(xn=xy["xn"], yn=xy["yn"], h=sqrt(0.5/nx))
> plot.signal(x=xy["x"], y=xy["y"], nnear=nnear, ns=6)
> title(main="h=sqrt(0.5/nx); ns=6")
> plot.signal(x=xy["x"], y=xy["y"], nnear=nnear, ns=10)
> title(main="h=sqrt(0.5/nx); ns=10")
> nnear <- count.neighbours(xn=xy["xn"], yn=xy["yn"], h=sqrt(2/nx))
> plot.signal(x=xy["x"], y=xy["y"], nnear=nnear, ns=6)
> title(main="h=sqrt(2/nx); ns=6")
> plot.signal(x=xy["x"], y=xy["y"], nnear=nnear, ns=10)
> title(main="h=sqrt(2/nx); ns=10")

The result is sensitive to the choice of h. Therefore, repeat the exercise with h=sqrt(0.75/nx) and h=sqrt(1/nx). The result is relatively insensitive to variation in nx.

(e) The most computationally intensive part of the calculations is the determination of the distances. This is done for all nx^2 pairs (x,y), though actually we only need the nx*(nx+1)/2 points in the upper triangle of the matrix. This makes, if nx is large, heavy demands on computer memory. Calculation of nnear, as done above, requires nx comparisons for each point, i.e., a total of nx^2 comparisons, with the result stored in a vector of length nx. These should be much cheaper than multiplications.

We now examine the costs in an actual machine run.

> system.time(xy <- generate.data(m=100, n=800))
user system elapsed
0.001 0.000 0.000

> system.time(nnear <- count.neighbours(xn=xy["xn"], yn=xy["yn"]))
user system elapsed
0.208 0.079 0.286

Chapter 1 Exercises

A better choice of x-axis limits would be c(170, 260)

Note that the data are also in the data frame Manitoba.lakes that is included with the DAAG package. Before running the code, specify

> attach(Manitoba.lakes)

The following code extracts the lake areas from the Manitoba.lakes data frame and attaches the lake names to the entries of the resulting vector.

area.lakes <- Manitoba.lakes[[2]]
names(area.lakes) <- row.names(Manitoba.lakes)

Exercise 7
Look up the help for the R function dotchart(). Use this function to display the data in area.lakes.

> area.lakes <- Manitoba.lakes[[2]]
> names(area.lakes) <- row.names(Manitoba.lakes)
> dotchart(area.lakes, pch=16, main="Areas of Large Manitoba Lakes",
+ xlab="Area (in square kilometers)")

Exercise 11
Run the following code:

gender <- factor(c(rep("female", 91), rep("male", 92)))
table(gender)
gender <- factor(gender, levels=c("male", "female"))
table(gender)
gender <- factor(gender, levels=c("Male", "female"))
Note the mistake
The level was "male", not "Male"
table(gender)
rm(gender) # Remove gender

Explain the output from the final table(gender).

The output is

gender
female male
 91 92

> table(gender)

gender
male female
92 91

> gender <- factor(gender, levels=c("Male", "female")) # Note the mistake
> # The level was "male", not "Male"
> table(gender)
gender

<table>
<thead>
<tr>
<th>Male</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>91</td>
</tr>
</tbody>
</table>

> rm(gender) # Remove gender

Exercise 18

The `Rabbit` data frame in the *MASS* library contains blood pressure change measurements on five rabbits (labeled as R1, R2, ..., R5) under various control and treatment conditions. Read the help file for more information. Use the `unstack()` function (three times) to convert `Rabbit` to the following form:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Treatment</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.25</td>
<td>0.50</td>
<td>1.00</td>
<td>0.75</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>12.50</td>
<td>4.50</td>
<td>1.25</td>
<td>3.00</td>
<td>1.50</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>25.00</td>
<td>10.00</td>
<td>4.00</td>
<td>3.00</td>
<td>6.00</td>
<td>5.0</td>
</tr>
<tr>
<td>Control</td>
<td>50.00</td>
<td>26.00</td>
<td>12.00</td>
<td>14.00</td>
<td>19.00</td>
<td>16.0</td>
</tr>
<tr>
<td>Control</td>
<td>100.00</td>
<td>37.00</td>
<td>27.00</td>
<td>22.00</td>
<td>33.00</td>
<td>20.0</td>
</tr>
<tr>
<td>Control</td>
<td>200.00</td>
<td>32.00</td>
<td>29.00</td>
<td>24.00</td>
<td>33.00</td>
<td>18.0</td>
</tr>
<tr>
<td>MDL</td>
<td>6.25</td>
<td>1.25</td>
<td>1.40</td>
<td>0.75</td>
<td>2.60</td>
<td>2.4</td>
</tr>
<tr>
<td>MDL</td>
<td>12.50</td>
<td>0.75</td>
<td>1.70</td>
<td>2.30</td>
<td>1.20</td>
<td>2.5</td>
</tr>
<tr>
<td>MDL</td>
<td>25.00</td>
<td>4.00</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.5</td>
</tr>
<tr>
<td>MDL</td>
<td>50.00</td>
<td>9.00</td>
<td>2.00</td>
<td>5.00</td>
<td>3.00</td>
<td>2.0</td>
</tr>
<tr>
<td>MDL</td>
<td>100.00</td>
<td>25.00</td>
<td>15.00</td>
<td>26.00</td>
<td>11.00</td>
<td>9.0</td>
</tr>
<tr>
<td>MDL</td>
<td>200.00</td>
<td>37.00</td>
<td>28.00</td>
<td>25.00</td>
<td>22.00</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Dose <- unstack(Rabbit, Dose ~ Animal)[,1]
Treatment <- unstack(Rabbit, Treatment ~ Animal)[,1]
BPchange <- unstack(Rabbit, BPchange ~ Animal)
Rabbit.df <- data.frame(Treatment, Dose, BPchange)

Exercise 20

Convert the data in `iris3` (*datasets* package) to case-by-variable format, with column names "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", and "Species". This exercise should be asterisked.

For a solution see the help page for `iris` or `iris3`. As a follow-on exercise, annotate the code, explaining what each step does.

Exercise 21

The following code uses the for() looping function to plot graphs that compare the relative population growth (here, by the use of a logarithmic scale) for the Australian states and territories.

```r
oldpar <- par(mfrow=c(2,4))
for (i in 2:9){
  plot(austpop[, 1], log(austpop[, i]), xlab="Year", ylab=names(austpop)[i], pch=16, ylim=c(0,10))
}
par(oldpar)
```

Find a way to do this without looping. [Hint: Use the function `sapply()`, with `austpop[,2:9]` as the first argument.]

Chapter 14 Exercises

Exercise 18

The data frame in the `MASS` library contains blood pressure change measurements on five rabbits (labeled as R1, R2, ..., R5) under various control and treatment conditions. Read the help file for more information. Use the `unstack()` function (three times) to convert `Rabbit` to the following form:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.25</td>
<td>0.50</td>
<td>1.00</td>
<td>0.75</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>12.50</td>
<td>4.50</td>
<td>1.25</td>
<td>3.00</td>
<td>1.50</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>25.00</td>
<td>10.00</td>
<td>4.00</td>
<td>3.00</td>
<td>6.00</td>
<td>5.0</td>
</tr>
<tr>
<td>Control</td>
<td>50.00</td>
<td>26.00</td>
<td>12.00</td>
<td>14.00</td>
<td>19.00</td>
<td>16.0</td>
</tr>
<tr>
<td>Control</td>
<td>100.00</td>
<td>37.00</td>
<td>27.00</td>
<td>22.00</td>
<td>33.00</td>
<td>20.0</td>
</tr>
<tr>
<td>Control</td>
<td>200.00</td>
<td>32.00</td>
<td>29.00</td>
<td>24.00</td>
<td>33.00</td>
<td>18.0</td>
</tr>
<tr>
<td>MDL</td>
<td>6.25</td>
<td>1.25</td>
<td>1.40</td>
<td>0.75</td>
<td>2.60</td>
<td>2.4</td>
</tr>
<tr>
<td>MDL</td>
<td>12.50</td>
<td>0.75</td>
<td>1.70</td>
<td>2.30</td>
<td>1.20</td>
<td>2.5</td>
</tr>
<tr>
<td>MDL</td>
<td>25.00</td>
<td>4.00</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.5</td>
</tr>
<tr>
<td>MDL</td>
<td>50.00</td>
<td>9.00</td>
<td>2.00</td>
<td>5.00</td>
<td>3.00</td>
<td>2.0</td>
</tr>
<tr>
<td>MDL</td>
<td>100.00</td>
<td>25.00</td>
<td>15.00</td>
<td>26.00</td>
<td>11.00</td>
<td>9.0</td>
</tr>
<tr>
<td>MDL</td>
<td>200.00</td>
<td>37.00</td>
<td>28.00</td>
<td>25.00</td>
<td>22.00</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Exercise 20

Convert the data in `iris3` (*datasets* package) to case-by-variable format, with column names "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", and "Species". This exercise should be asterisked.

For a solution see the help page for `iris` or `iris3`. As a follow-on exercise, annotate the code, explaining what each step does.

Exercise 21

The following code uses the for() looping function to plot graphs that compare the relative population growth (here, by the use of a logarithmic scale) for the Australian states and territories.

```r
oldpar <- par(mfrow=c(2,4))
for (i in 2:9){
  plot(austpop[, 1], log(austpop[, i]), xlab="Year", ylab=names(austpop)[i], pch=16, ylim=c(0,10))
}
par(oldpar)
```

Find a way to do this without looping. [Hint: Use the function `sapply()`, with `austpop[,2:9]` as the first argument.]

Exercise 18

The `Rabbit` data frame in the `MASS` library contains blood pressure change measurements on five rabbits (labeled as R1, R2, ..., R5) under various control and treatment conditions. Read the help file for more information. Use the `unstack()` function (three times) to convert `Rabbit` to the following form:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.25</td>
<td>0.50</td>
<td>1.00</td>
<td>0.75</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>12.50</td>
<td>4.50</td>
<td>1.25</td>
<td>3.00</td>
<td>1.50</td>
<td>1.5</td>
</tr>
<tr>
<td>Control</td>
<td>25.00</td>
<td>10.00</td>
<td>4.00</td>
<td>3.00</td>
<td>6.00</td>
<td>5.0</td>
</tr>
<tr>
<td>Control</td>
<td>50.00</td>
<td>26.00</td>
<td>12.00</td>
<td>14.00</td>
<td>19.00</td>
<td>16.0</td>
</tr>
<tr>
<td>Control</td>
<td>100.00</td>
<td>37.00</td>
<td>27.00</td>
<td>22.00</td>
<td>33.00</td>
<td>20.0</td>
</tr>
<tr>
<td>Control</td>
<td>200.00</td>
<td>32.00</td>
<td>29.00</td>
<td>24.00</td>
<td>33.00</td>
<td>18.0</td>
</tr>
<tr>
<td>MDL</td>
<td>6.25</td>
<td>1.25</td>
<td>1.40</td>
<td>0.75</td>
<td>2.60</td>
<td>2.4</td>
</tr>
<tr>
<td>MDL</td>
<td>12.50</td>
<td>0.75</td>
<td>1.70</td>
<td>2.30</td>
<td>1.20</td>
<td>2.5</td>
</tr>
<tr>
<td>MDL</td>
<td>25.00</td>
<td>4.00</td>
<td>1.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.5</td>
</tr>
<tr>
<td>MDL</td>
<td>50.00</td>
<td>9.00</td>
<td>2.00</td>
<td>5.00</td>
<td>3.00</td>
<td>2.0</td>
</tr>
<tr>
<td>MDL</td>
<td>100.00</td>
<td>25.00</td>
<td>15.00</td>
<td>26.00</td>
<td>11.00</td>
<td>9.0</td>
</tr>
<tr>
<td>MDL</td>
<td>200.00</td>
<td>37.00</td>
<td>28.00</td>
<td>25.00</td>
<td>22.00</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Dose <- unstack(Rabbit, Dose ~ Animal)[,1]
Treatment <- unstack(Rabbit, Treatment ~ Animal)[,1]
BPchange <- unstack(Rabbit, BPchange ~ Animal)
Rabbit.df <- data.frame(Treatment, Dose, BPchange)
End

are mixed in with points that are noise.

with the same limits as the y-values for the signal.

Generate y-values for noise; follow with signal values.

Determine the range of x- and y-values for the signal

Samples 100 values that will be x-values for the signal

that will be entirely noise

Generate y-values for noise; follow with signal values.

y-values for noise are sampled from a uniform distribution,

with the same limits as the y-values for the signal.

Randomly permute the points, so that points that are signal

are mixed in with points that are noise.

The above has generated data, from which to recover the signal.

##2 determine number of neighbors within

Chapter 1 Exercises

We give the code, omitting the graphs

```r
> oldpar <- par(mfrow=c(2,4))
> sapply(2:9, function(i, df)
+   plot(df[,i], log(df[, i]),
+    xlab="Year", ylab=names(df)[i], pch=16, ylim=c(0,10)),
+    df=austpop)
> par(oldpar)
```

There are several subtleties here:

(i) The first argument to `sapply()` can be either a list (which is, technically, a type of vector) or a vector. Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an inline function that has two arguments. The argument i takes as its values, in turn, the successive elements in the first argument to `sapply`

(iii) Where as here the inline function has further arguments, they are supplied as additional arguments to `sapply()`. Hence the parameter `df=austpop`.

Note that `lapply()` could be used in place of `sapply()`.
Preliminaries

> library(DAAG)

Exercise 1

Use the lattice function `bwplot()` to display for each combination of site and sex in the data frame `possum` (DAAG package), the distribution of ages. Show the different sites on the same panel with different panels for different sexes.

```r
> library(lattice)
> bwplot(age ~ site | sex, data = possum)
```

Exercise 3

Plot a histogram of the earconch measurements for the `possum` data. The distribution should appear bimodal (two peaks). This is a simple indication of clustering, possibly due to sex differences. Obtain side-by-side boxplots of the male and female earconch measurements. How do these measurement distributions differ? Can you predict what the corresponding histograms would look like? Plot them to check your answer.

```r
> par(mfrow = c(1, 2), mar = c(3.6, 3.6, 1.6, 0.6))
> hist(possum$earconch, main = "")
> boxplot(possum$earconch ~ sex, data = possum, boxwex = 0.3, horizontal = TRUE)
> par(mfrow = c(1, 1))
```

![Figure 1](image.png)

Figure 1: The left panel shows a histogram of possum ear conch measurements. The right panel shows side by side boxplots, one for each sex. A horizontal layout is often advantageous.

Note the alternative to `boxplot()` that uses the `lattice` function `bwplot()`. Placing `sex` on the left of the graphics formula leads to horizontal boxplots.

`bwplot(sex ~ earconch, data = possum)`

The following gives side by side histograms:

```r
> par(mfrow = c(1, 2))
> hist(possum$earconch[possum$sex == "f"], border = "red", main = "")
> hist(possum$earconch[possum$sex == "m"], border = "blue", main = "")
> par(mfrow = c(1, 1))
```

Chapter 14 Exercises

Exercise 10

*The following code concatenates `(x, y)` data values that are random noise to data pairs that contain a ‘signal’, randomly permutes the pairs of data values, and finally attempts to reconstruct the signal:

```r
### Thanks to Markus Hegland (ANU), who wrote the initial version
## 1 Generate the data
# ....
# Code is displayed below (with annotations),
# and is therefore omitted here.
# ....
## 1 End
## 2 determine number of neighbors within
# a distance <= h = 1/sqrt(length(xn))
# ....
# Annotated code is shown below
# ....
## 2 End
## 3 Plot data, with reconstructed signal overlaid.
# ....
# Annotated code is shown below
# ....
## 3 End
```

(a) Run the code and observe the graph that results.

(b) Work through the code, and write notes on what each line does.

(c) Split the code into three functions, bracketed respectively between lines that begin `##1`, `##2`, and lines that begin `##3`. The first function should take parameters `m` and `n`, and return a list `xy` that holds data that will be used subsequently. The second function should take vectors `xn` and `yn` as parameters, and return values of `nnear`, i.e., for each point, it will give the number of other points that lie within a circle with the point as center and with radius `h`. The third function will take as parameters `x`, `y`, `nnear` and the constant `ns` such that points with more than `ns` near neighbours will be identified as part of the signal. Run the first function, and store the output list of data values in `xy`.

(d) Run the second and third functions with various different settings of `h` and `ns`. Comment on the effect of varying `h`. Comment on the effect of varying `ns`.

(e) Which part of the calculation is most computationally intensive? Which makes the heaviest demands on computer memory?

(f) Suggest ways in which the calculation might be made more efficient.
To save the workspace contents into the file *archive.RData*, type

```r
> save.image(file="archive.RData")
```

We can now type

```r
> rm(list=ls())
```

The following will again make available all objects that were in the workspace:

```r
> attach("archive.RData", warn.conflicts=FALSE)
```

To see the contents of this “database”, type

```r
> ls(name="file:archive.RData")
```

`character(0)`

Providing no other databases have been attached in the meantime, an alternative is `ls(pos=2)`.

Type the name of an object that is in the database (choose one that is not too large) to demonstrate that all such objects are now available.

Note the use of `detach("file:archive.RData")` to detach the database.

Exercise 9

Determine the number of days, according to R, between the following dates:

(a) January 1 in the year 1700, and January 1 in the year 1800
(b) January 1 in the year 1998, and January 1 in the year 2007

```r
> as.Date("1/1/1800","%d/%m/%Y") - as.Date("1/1/1700","%d/%m/%Y")
```

Time difference of 36524 days

```r
> as.Date("1/1/2007","%d/%m/%Y") - as.Date("1/1/1998","%d/%m/%Y")
```

Time difference of 3287 days

The histograms make it clear that sex differences are not the whole of the explanation for the bimodality.

Alternatively, use the `lattice` function `histogram()`

```r
> library(lattice)
> histogram(~earconch | sex, data=possum)
```

Note: We note various possible alternative plots.

Density plots, in addition to their other advantages, are easy to overlay. Alternatives 1 & 2 obtain overlaid density plots:

```r
> "Alternative 1: Overlaid density plots"
> ifden <- density(possum$earconch[possum$sex == "f"])
> mden <- density(possum$earconch[possum$sex == "m"])
> xlim <- range(c(ifden$x, mden$x))
> ylim <- range(c(ifden$y, mden$y))
> plot(ifden, col="red", xlim=xlim, ylim=ylim, main="")
> lines(mden, col="blue", lty=2)
> 
> library(lattice)
> "Alternative 2: Overlaid density plots, using the lattice package"
> print(densityplot(~earconch, data=possum, groups=sex), main="")
```

Alternatives 3 and 4 give alternative forms of histogram plot.

```r
> "Alternative 3: Overlaid histograms, using regular graphics"
> fhist <- hist(possum$earconch[possum$sex=="f"], plot=F,
+ breaks=seq(from=40, to=58, by=2))
> mhist <- hist(possum$earconch[possum$sex=="m"], plot=F,
+ breaks=seq(from=40, to=58, by=2))
> ylim <- range(fhist$density, mhist$density)
> plot(fhist, freq=F, xlim=c(40,58), ylim=ylim, border="red", main="")
> lines(mhist, freq=F, border="blue", lty=2)
```

Note the use of `border="red"` to get the histogram for females outlined in red. The parameter setting `col="red"` gives a histogram with the rectangles filled in red.

Unfortunately, `histogram()` in the lattice package ignores the parameter `groups`.

With `histogram()`, we are limited to side by side histograms:

```r
> "Alternative 4: Side by side histograms, using the lattice package"
> print(histogram(~earconch | sex, data=possum, main="")
```

Both for density plots and for histograms, do we really want the separate total areas to be scaled to 1, as happens with the setting `freq=FALSE`, rather than to the total frequencies in the respective populations? This will depend on the specific application.

Exercise 4

For the data frame *ais* (*DAAG* package), draw graphs that show how the values of the hematological measures (red cell count, hemoglobin concentration, hematocrit, white cell count and plasma ferritin concentration) vary with the sport and sex of the athlete.

Use for example
Chapter 2 Exercises

Exercise 5
Using the data frame cuckoohosts, plot clength against cbreadth, and hlength against hbreadth, all on the same graph and using a different color to distinguish the first set of points (for the cuckoo eggs) from the second set (for the host eggs). Join the two points that relate to the same host species with a line. What does a line that is long, relative to other lines, imply? Here is code that you may wish to use:

```r
attach(cuckoohosts)
pplot(c(clength, hlength), c(cbreadth, hbreadth),
col=rep(1:2,c(12,12)))
for(i in 1:12)lines(c(clength[i], hlength[i]),
c(cbreadth[i], hbreadth[i]))
text(hlength, hbreadth, abbreviate(rownames(cuckoohosts),8))
detach(cuckoohosts)
```

A line that is long relative to other lines, as for the wren, is indicative of an unusually large difference in egg dimensions.

Chapter 14 Exercises

Exercise 7
Install and attach the package Devore5, available from the CRAN sites. Then gain access to data on tomato yields by typing

```r
library(Devore5)
tomatoes <- ex10.22
```

This data frame gives tomato yields at four levels of salinity, as measured by electrical conductivity (EC, in mmhos/cm).

(a) Obtain a scatterplot of yield against EC.

(b) Obtain side-by-side boxplots of yield for each level of EC.

(c) The third column of the data frame is a factor representing the four different levels of EC. Comment upon whether the yield data are more effectively analyzed using EC as a quantitative or qualitative factor.

```r
> library(Devore6)
> tomatoes <- ex10.22
> plot(yield ~ EC, data=tomatoes)
> boxplot(split(tomatoes$yield, tomatoes$EC))
```

Exercise 7
Enter the following, and explain the steps that are performed to obtain the result:

```r
## Use of split() and sapply(): data frame science (DAAG)
with(science, sapply(split(school, PrivPub),
function(x)length(unique(x))))
```

The data frame science becomes, for the duration of the calculation

```r
sapply(split(school, PrivPub),
function(x)length(unique(x)))
```

a “database” where the objects school and PrivPub can be found.

The statement split(school, PrivPub) creates a list that has two elements, one for each of the two levels of PrivPub. Each list element holds the codes that identifies the schools. The function sapply() operates on each of these list elements in turn. It replaces the vector of codes by a vector of unique codes. The length of that vector is then the number of schools, and of course this is done separately for Private and Public schools.

Exercise 8
Save the objects in your workspace, into an image (.RData) file, with the name archive.RData. Then remove all objects from the workspace. Demonstrate how, without loading the image file, it is possible to list the objects that were included in archive.RData and to recover a deleted object that is again required.
Notice that `strsplit()` does accept a vector of character strings as input, and that it returns one list element for each character string in the vector.

Exercise 4
For the data frame `Cars93`, get the information provided by `summary()` for each level of `Type`. (Use `split()`.)

First, note the column names:

```r
> names(Cars93)
[1] "Manufacturer" "Model" "Type"
[7] "MPG.city" "MPG.highway" "AirBags"
[10] "DriveTrain" "Cylinders" "EngineSize"
[13] "Horsepower" "RPM" "Rev.per.mile"
[16] "Man.trans.avail" "Fuel.tank.capacity" "Passengers"
[19] "Length" "Wheelbase" "Width"
[22] "Turn.circle" "Rear.seat.room" "Luggage.room"
[25] "Weight" "Origin" "Make"
```

The code that gives the summaries is:

```r
lapply(split(Cars93, Cars93$Type), summary)
```

The output runs over many pages. To present only the first two sets of summaries, for the first five columns of the data frame, specify:

```r
> lapply(split(Cars93[, 1:5], Cars93$Type), summary)[1:2]
```

Exercise 5
Determine the number of cars, in the data frame `Cars93`, for each `Origin` and `Type`.

```r
> table(Cars93$Origin, Cars93$Type)
     Compact Large Midsize Small Sporty Van
 USA      7    11    10    7    8    5
 non-USA    9     0    12    14    6    4
```

Exercise 6
In the data frame `Insurance` (MASS package):

(a) determine the number of rows of information for each age category (Age) and car type (Group);

(b) determine the total number of claims for each age category and car type;

```r
> library(MASS)
> sapply(Insurance, function(x)sum(is.na(x)))
```

The data are more effectively analyzed using EC as a quantitative factor. Treating EC as a factor would ignore the linear or near linear dependence of yield on EC.

Exercise 8
Examine the help for the function `mean()`, and use it to learn about the trimmed mean. For the total lengths of female possums, calculate the mean, the median, and the 10% trimmed mean. How does the 10% trimmed mean differ from the mean for these data? Under what circumstances will the trimmed mean differ substantially from the mean?

```r
> fpossum <- possum[possum$sex=="f", ]
> mean(fpossum$totLength)
[1] 87.90698
> c(median=median(fpossum$totLength),
+ "trim-mean-0.1"= mean(fpossum$totLength, trim=0.1))
median trim-mean-0.1
88.50000 88.04286
```

The following gives an indication of the shape of the distribution:

```r
> totLength <- fpossum[, "totLength"]
> plot(density(totLength), main="")
```

The distribution is negatively skewed, i.e., it has a tail to the left. As a result, the mean is substantially less than the mean. Removal of the smallest and largest 10% of
values leads to a distribution that is more nearly symmetric. The mean is then similar to the median. (Note that trimming the same amount off both tails of the distribution does not affect the median.)

The trimmed mean will differ substantially from the mean when the distribution is positively or negatively skewed.

Exercise 9
Assuming that the variability in egg length for the cuckoo eggs data is the same for all host birds, obtain an estimate of the pooled standard deviation as a way of summarizing this variability. [Hint: Remember to divide the appropriate sums of squares by the number of degrees of freedom remaining after estimating the six different means.]

```r
> sapply(cuckoos, is.factor)  # Check which columns are factors

length breadth species  id
FALSE FALSE TRUE FALSE

> specnam <- levels(cuckoos$species)
> ss <- 0
> ndf <- 0
> for(nam in specnam){
+  lgth <- cuckoos$length[cuckoos$species==nam]
+  ss <- ss + sum((lgth - mean(lgth))^2)
+  ndf <- ndf + length(lgth) - 1
+ }
> sqrt(ss/ndf)
[1] 0.9051987

A more cryptic solution is:

```r
> diffs <- unlist(sapply(split(cuckoos$length, cuckoos$species),
+ function(x)x-mean(x)))
> df <- unlist(sapply(split(cuckoos$length, cuckoos$species),
+ function(x)length(x) - 1))
> sqrt(sum(diffs^2)/sum(df))
```

Exercise 1
Compare the different outputs from `help.search("print")`, `apropos(print)` and `methods(print)`. Look up the help for each of these three functions, and use what you find to explain the different outputs.

help.search() searches the documentation for a match in the name, or alias (i.e., an alternative name for a function or other object) or title or keyword.

apropos() searches for object or alias names where there is a partial match. For example, try `help.search("str")`. [Note also the function find(), which is an alias for apropos() in which the default parameters are set to find “simple words”].

methods(print) finds all available print methods, i.e., all the different functions that may, depending on the class of object that is to be printed, be called when the generic print function is used.

Now that the number of functions and associated documentation is so extensive, consider limiting the search by using, e.g., `help.search("print", package="base")`, rather than `help.search("print")`

Exercise 2
Identify as many R functions as possible that are specifically designed for manipulations with text strings.

Try `apropos("str")`. Some objects (e.g., `fitdistr` or `structure`) clearly have nothing to do with strings. Look up the help for those that do seem possible string manipulation functions. Look under See Also: to find other related functions that may not have the letters "str" in their names. Try also `apropos("char")`. Once these steps are complete, this should identify most possibilities.

Another recourse may be to type in `help.start()`, and click on Search Engine & Keywords.

Exercise 3
Test whether `strsplit()` is vectorized, i.e., does it accept a vector of character strings as input, then operating in parallel on all elements of the vector?

Try applying `strsplit()` to a vector of character strings. For example:

```r
> strsplit(c("eggs", "bacon", "eggs"), "\n")
[[1]]
[1] "eggs" "bacon"
[[2]]
[1] "bacon" "eggs"
```

Exercise 10


Preliminaries

> library(DAAG)

Exercise 1

Compare the different outputs from `help.search("print")`, `apropos(print)` and `methods(print)`. Look up the help for each of these three functions, and use what you find to explain the different outputs.

help.search() searches the documentation for a match in the name, or alias (i.e., an alternative name for a function or other object) or title or keyword.

apropos() searches for object or alias names where there is a partial match. For example, try `help.search("str")`. [Note also the function find(), which is an alias for apropos() in which the default parameters are set to find “simple words”].

methods(print) finds all available print methods, i.e., all the different functions that may, depending on the class of object that is to be printed, be called when the generic print function is used.

Now that the number of functions and associated documentation is so extensive, consider limiting the search by using, e.g., `help.search("print", package="base")`, rather than `help.search("print")`

Exercise 2

Identify as many R functions as possible that are specifically designed for manipulations with text strings.

Try `apropos("str")`. Some objects (e.g., `fitdistr` or `structure`) clearly have nothing to do with strings. Look up the help for those that do seem possible string manipulation functions. Look under See Also: to find other related functions that may not have the letters "str" in their names. Try also `apropos("char")`. Once these steps are complete, this should identify most possibilities.

Another recourse may be to type in `help.start()`, and click on Search Engine & Keywords.

Exercise 3

Test whether `strsplit()` is vectorized, i.e., does it accept a vector of character strings as input, then operating in parallel on all elements of the vector?

Try applying `strsplit()` to a vector of character strings. For example:

```r
> strsplit(c("eggs", "bacon", "eggs"), ")
[[1]]
[1] "eggs" "bacon"
[[2]]
[1] "bacon" "eggs"
```
Omission of the two outliers has made very little difference. The graph below shows the comparisons.

Figure 1: The left panel compares the two sets of loadings on the first principal component, while the right panel makes the comparison for the second principal component.

Now compare the two sets of regression coefficients.

The coefficients for the first principal component agree fairly well. For other principal components, there is little agreement. As these are not statistically significant, this is of no consequence.
Exercise 8
The function `pexp(x, rate=r)` can be used to compute the probability that an exponential variable is less than x. Suppose the time between accidents at an intersection can be modeled by an exponential distribution with a rate of 0.05 per day. Find the probability that the next accident will occur within the next 21 days.

```r
> pexp(21, .05)
[1] 0.6500623
```

Note that the rate is both the waiting time from an arbitrary time to the next accident and the "interarrival" time between accidents. The expected time to the next accident is unaffected by whether or not an accident has just occurred.

Exercise 9
Use the function `rexp()` to simulate 100 exponential random numbers with rate 2. Obtain a density plot for the observations. Compare with the population mean. (The mean for an exponential population is 1/rate.)

```
> z <- rexp(100, 2)
> plot(density(z, from=0), main="")
```

Notice the use of the argument `from=0`, to prevent `density()` from giving a positive density estimate to negative values.

Compare `mean(z) = 4.47` with `1/2 = 5`.

---

Chapter 13 Exercises

Exercise 1
Repeat the principal components calculation omitting the points that appear as outliers in Figure 13.1, and redo the regression calculation. What differences are apparent in loadings for the first two principal components and/or in the regression results?

The following repeats the calculations that are described in the text.

```
> not.na <- complete.cases(socsupport[,9:19])
> not.na[36] <- FALSE
> ss.pr <- princomp(as.matrix(socsupport[not.na, 9:19]), cor=TRUE)
> ss.lm <- lm(BDI[not.na] ~ ss.pr$scores[, 1:6], data=socsupport)
> attach(socsupport)
> plot(BDI[not.na] ~ ss.pr$scores[,1], col=as.numeric(gender[not.na]),
+ pch=as.numeric(gender[not.na]),
+ xlab="1st principal component", ylab="BDI")
> topleft <- par()$usr[c(1,4)]
> legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
> detach(socsupport)
```

Examination of Figure 13.1 makes it clear that we need to omit points for which BDI is greater than 35. We determine the relevant row numbers:

```
> (1:95)[socsupport$BDI>35]
[1] 36 68 95
```

Row 36 had already been omitted. We need, additionally, to omit rows 68 and 95. The following repeats the calculations given above, but now with observations 36, 68 and 95 omitted:

```
> not3.na <- complete.cases(socsupport[,9:19])
> not3.na[c(36,68,95)] <- FALSE
> ss3.pr <- princomp(as.matrix(socsupport[not3.na, 9:19]), cor=TRUE)
> ss3.lm <- lm(BDI[not3.na] ~ ss3.pr$scores[, 1:6], data=socsupport)
> attach(socsupport)
> plot(BDI[not3.na] ~ ss3.pr$scores[,1], col=as.numeric(gender[not3.na]),
+ pch=as.numeric(gender[not3.na]),
+ xlab="1st principal component", ylab="BDI")
> topleft <- par()$usr[c(1,4)]
> legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
> detach(socsupport)
```

The following (shown in the left panel below) compares the loadings, with (x-axis) and without (y-axis) rows 68 and 95.
> one.lda <- lda(arch ~ (logwid+loglen+logpet)*location, CV=TRUE, + data=leafshape)
> two.lda <- lda(arch ~ (logwid+loglen+logpet)*location, CV=TRUE, + data=leafshape)
> three.lda <- lda(arch ~ (logwid+loglen+logpet)*latitude, CV=TRUE, + data=leafshape)
> four.lda <- lda(arch ~ (logwid+loglen+logpet)*latitude, CV=TRUE, + data=leafshape)
> table(leafshape$arch, one.lda$class)
   0  1
0 173 19
1  25  69
> table(leafshape$arch, two.lda$class)
   0  1
0 177 15
1  24  70
> table(leafshape$arch, three.lda$class)
   0  1
0 179 13
1  22  72
> table(leafshape$arch, four.lda$class)
   0  1
0 177 15
1  24  70

The smallest cross-validated relative error was for the third model.

Additional Exercises A number of additional exercises are included in the laboratory exercises that are available from the web page [http://www.maths.anu.edu.au/~johnm/courses/dm](http://www.maths.anu.edu.au/~johnm/courses/dm)

---

Chapter 3 Exercises

**Exercise 11**
The following data represent the total number of aberrant crypt foci (abnormal growths in the colon) observed in 7 rats that had been administered a single dose of the carcinogen azoxymethane and sacrificed after six weeks:

87 53 72 90 78 85 83

Enter these data and compute their sample mean and variance. Is the Poisson model appropriate for these data? To investigate how the sample variance and sample mean differ under the Poisson assumption, repeat the following simulation experiment several times:

```r
x <- rpois(7, 78.3)
mean(x); var(x)
```

```r
g y <- c(87, 53, 72, 90, 78, 85, 83)
g (mean=mean(y), variance=var(y))
```

```r
mean variance
78.28571 159.90476
```

Then try

```r
x <- rpois(7, 78.3)
g (mean=mean(x), variance=var(x))
```

```r
mean variance
84.28571 33.23810
```

variance as that observed for these data, making it doubtful that these data are from a Poisson distribution.

**Exercise 12**
A Markov chain is a data sequence which has a special kind of dependence. For example, a fair coin is tossed repetitively by a player who begins with $S$. If ‘heads’ appear, the player receives one dollar; otherwise, she pays one dollar. The game stops when the player has either $S$ or $0$. The amount of money that the player has before any coin flip can be recorded – this is a Markov chain. A possible sequence of plays is as follows:

<table>
<thead>
<tr>
<th>Player’s fortune:</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coin Toss result:</td>
<td>T</td>
<td>H</td>
<td>H</td>
<td>T</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Note that all we need to know in order to determine the player’s fortune at any time is the fortune at the previous time as well as the coin flip result at the current time. The probability of an increase in the fortune is .5 and the probability of a decrease in the fortune is .5. The transition probabilities can be summarized in a transition matrix:

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & .5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & .5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & .5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 
\end{bmatrix}
\]
Exercise 12*, continued

The (i, j) entry of this matrix is the probability of making a change from the value i to the value j. Here, the possible values of i and j are 0, 1, 2, ..., 5. According to the matrix, there is a probability of 0 of making a transition from $s_2$ to $s_4$ in one play, since the (2,4) element is 0; the probability of moving from $s_2$ to $s_1$ in one transition is 0.5, since the (2,1) element is 0.5.

The following function can be used to simulate $N$ values of a Markov chain sequence, with transition matrix $P$:

```r
Markov <- function (N=100, initial.value=1, P) {
 X <- numeric(N)
 X[1] <- initial.value + 1 # States 0:5; subscripts 1:6
 n <- nrow(P)
 for (i in 2:N){
 X[i] <- sample(1:n, size=1, prob=P[X[i-1],])
 }
 X
}
```

Simulate 15 values of the coin flip game, starting with an initial value of $s_2$. Repeat the simulation several times.

Code that may be used for these calculations is:

```r
> P <- matrix(c(1, rep(0.5), rep(c(0.5, 0.5, rep(0.4), 4), 0, 1), + byrow=TRUE, nrow=6)
> Markov(15, 2, P)
```

Exercise 6*

The data set `leafshape` has three leaf measurements: `blade.len` (blade length), `blade.width` (blade width), and `petiole` (petiole length). These are available for each of two plant architectures, in each of six locations. (The data set `leafshape` that we encountered in Section 12.2.1 is a subset of the data set `leafshape`.) Use logistic regression to develop an equation for predicting architecture, given leaf dimensions and location. Compare the alternatives: (i) different discriminant functions for different locations; (ii) the same coefficients for the leaf shape variables, but different intercepts for different locations; (iii) the same coefficients for the leaf shape variables, with an intercept that is a linear function of latitude; (iv) the same equation for all locations. Interpret the equation that is finally chosen as discriminant function.

We use the variables `log.wid`, `log.len` and `log.pet`.

```r
> names(leafshape)[4] <- "latitude"
> one.glm <- glm(arch ~ (log.wid+log.len+log.pet)*latitude, + family=binomial, data=leafshape)
> two.glm <- glm(arch ~ (log.wid+log.len+log.pet)*location, + family=binomial, data=leafshape)
> three.glm <- glm(arch ~ (log.wid+log.len+log.pet)*latitude, + family=binomial, data=leafshape)
> four.glm <- glm(arch ~ (log.wid+log.len+log.pet)*latitude, + family=binomial, data=leafshape)
> anova(four.glm, three.glm, two.glm, one.glm)
```

Analysis of Deviance Table

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Dev Df</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>281</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>278</td>
<td>188 3</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>277</td>
<td>186 1</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>262</td>
<td>148 15</td>
<td>38.3</td>
</tr>
</tbody>
</table>

It may however, in view of uncertainty about the adequacy of the asymptotic chi-squared approximation for the deviance changes, be better to fit the models using `lda()`, and choose the model that has the smallest cross-validated relative error.
Exercise 5
Create a version of Figure 12.5B that shows the discriminant line. In the example of Subsection 12.2.1, investigate whether use of logpet, in addition to logwid and loglen, improve discrimination?

Here are the discriminant function calculations:

```r
> leaf17.lda <- lda(arch ~ logwid + loglen, data = leafshape17)
> leaf17.fit <- predict(leaf17.lda)
> leaf17.lda$prior
 0 1
 0.6721 0.3279
> leaf17.lda$scaling
 LD1
 logwid 0.1555
 loglen 3.0658
> leaf17.lda$means
 logwid loglen
 0 1.4292 2.460
 1 1.8662 2.994
```

The information needed to reconstruct the discriminant function is provided by `leaf17.lda$prior`, `leaf17.lda$means` and `leaf17.lda$scaling`. First we calculate a grand mean, from that the constant term for the discriminant function, and then do a plot (see below) that checks that we are correctly recovering the discriminant function scores. Calculations can be done without matrix multiplication, but are tedious to write down. The following assumes a knowledge of matrix multiplication, for which the symbol is `%*%`

```r
> gmean <- leaf17.lda$prior%*%leaf17.lda$means
> const <- as.numeric(gmean%*%leaf17.lda$scaling)
> z <- as.matrix(leafshape17[,c(5,7)])/%*%leaf17.lda$scaling - const
```

Note that R distinguishes between a k by k matrix and a numeric constant. The final two lines are a check that the discriminant function has been correctly calculated. It has the form \( ax + by - c = z \), where the discriminant line is given by \( z = 0 \). The equation of the line is then \( y = -\frac{a}{b}x + \frac{c}{b} \). We have

```r
> slope <- -leaf17.lda$scaling[1]/leaf17.lda$scaling[2]
> intercept <- const/leaf17.lda$scaling[2]
```

We now show the plot that checks that we have correctly recovered the discriminant function scores, with the requested plot alongside.

```r
> par(mfrow=c(1,2))
> plot(x, leaf17.fit$x[,1]); abline(0,1)
> mtext(side=3, line=1, "Check that z=leaf17.fit$x[,1]")
> plot(loglen ~ logwidth, data=leafshape17, xlab="log(leaf width)",
+ ylab="log(leaf length)", pch=leafshape17$arch+1)
> abline(intercept, slope)
> mtext(side=3, line=1, "Fig.12.4B, with discriminant line")
> par(mfrow=c(1,1))
```

Exercise 2
Draw graphs that show, for degrees of freedom between 1 and 100, the change in the 5% critical value of the t-statistic. Compare a graph on which neither axis is transformed with a graph on which the respective axis scales are proportional to log(df) and log(degrees of freedom). Which graph gives the more useful visual indication of the change in the 5% critical value of the t-statistic changes with increasing degrees of freedom?

```r
> par(mfrow=c(1,2))
> nu <- 1:100
> plot(nu, qt(0.975,nu), type="l")
> plot(log(nu), qt(0.975,nu), type="l",xaxt="n")
> axis(1,at=as.numeric(paste(nu)))
> par(mfrow=c(1,1))
```

Figure 1: Plot of two-sided 95% critical value for a t-statistic (a) against degrees of freedom and (b) against log(degrees of freedom).

The second graph, because it makes it possible to see the large changes with low degrees of freedom, gives the more useful visual indication.

Exercise 6
Here we generate random normal numbers with a sequential dependence structure.

```r
y1 <- rnorm(51)
y1[1] <- y1[-1] + y1[-51]
acf(y1) # acf is 'autocorrelation function' (see Ch. 9)
```

Repeat this several times. There should be no consistent pattern in the acf plot for different random samples y1. There will be a fairly consistent pattern in the acf plot for y, a result of the correlation that is introduced by adding to each value the next value in the sequence.
Exercise 7
Create a function that does the calculations in the first two lines of the previous exercise. Put the calculation in a loop that repeats 25 times. Calculate the mean and variance for each vector \( y \) that is returned. Store the 25 means in the vector \( \text{av} \), and store the 25 variances in the vector \( \text{v} \). Calculate the variance of \( \text{av} \).

```r
> corfun <- function(n=51)
+ { y1 <- rnorm(n)
+ y <- y1[-1] * y1[-n]
+ y
+ }
> av <- numeric(25)
> sdev <- numeric(25)
> for(i in 1:25){
+ z <- corfun()
+ av[i] <- mean(z)
+ sdev[i] <- sd(z)
+ }
> var(av)
[1] 0.0741
```

Note: The variance of the values that are returned by \( \text{corfun}() \) is \( \text{var}(y_1) = \text{var}(y_1 + \text{var}(y_{1:i}) = 2 \) Thus, compare \( \text{var}(\text{av}) \) as calculated above with \( \text{var}(y_1/50 = 0.41 \). As a result of the correlation between successive values, \( \text{var}(\text{av}) \) will, on average, be greater than this.

Exercise 10
Use \texttt{mosaicplot()} to display the table \texttt{rareplants} (Subsection 4.4.1) that was created using code in Footnote 11. Annotate the mosaic plot to highlight the results that emerged from the analysis in Subsection 4.4.1.

The data are:

```
\begin{verbatim}
Cambarville Bellbird Allyn River Whian Whian Byrangery Conondale Bulburin
Cambarville and Bellbird seem distinguished from the other sites.
\end{verbatim}
```
In the discriminant analysis for the possum data (Subsection 12.2.4), determine, for each site, the means of the scores on the first and second discriminant functions. Plot the means for the second discriminant function against the means for the first discriminant function. Identify the means with the names of the sites.

We need only omit the rows that have missing values in columns 6-14. (The variable age, in column 4, has two missing values, which are need not concern us.) Hence the use, in the code that follows, of ccases to identify rows that have no missing values in these columns. Here is the code used to do the discriminant function calculations:

```r
library(MASS)
ccases <- complete.cases(possum[,6:14])
possum.lda <- lda(site ~ hdlngth+skullw+totlngth+taill+footlgth+
 earconch+eye+chest+belly, data=possum[ccases,])
```

We calculate the means of the scores thus:

```r
possum.fit <- predict(possum.lda)
> avfit <- aggregate(possum.fit$x, by=list(possum[ccases, "site"]),
 + FUN=mean)
```

![Figure 1: Loadings for females (red) and loadings for males (blue), plotted against loadings for the total data set.](image)

Exercise 2

What are the names of the two dimensions of this table?

For each color, i.e., row of the table, compare the heights of the rectangles. Large positive residuals in the table of residuals on page 87 correspond to rectangles that are tall relative to other rectangles with the same color, while large negative residuals correspond to rectangles that are short relative to other rectangles with the same color.

Exercise 11

The table UCBAdmissions was discussed in Subsection 2.2.1. The following gives a table that adds the 2 x 2 tables of admission data over all departments:

```r
For each combination of margins 1 and 2, calculate the sum
UCBtotal <- apply(UCBAdmissions, c(1,2), sum)
```

What are the names of the two dimensions of this table?

(a) From the table UCBAdmissions, create mosaic plots for each faculty separately. (If necessary refer to the code given in the help page for mosaicplot.)

(b) Compare the information in the table UCBtotal with the result from applying the function mantelhaen.test() to the table UCBAdmissions. Compare the two sets of results, and comment on the difference.

(c) The Mantel–Haenel test is valid only if the male to female odds ratio for admission is similar across departments. The following code calculates the relevant odds ratios:

```r
apply(UCBAdmissions, 3, function(x)
 (x[1,1]*x[2,2]/(x[1,2]*x[2,1])))
```
Exercise 11, continued

Is the odds ratio consistent across departments? Which department(s) stand(s) out as different? What is the nature of the difference?

[For further information on the Mantel-Haenszel test, see the help page for `mantel-haen.test`]

Use `dimnames(UCBAdmissions)[1:2]` to get the names of the first two dimensions, which are `Admit` and `Gender`.

(a) First note the code needed to give a mosaic plot for the totals; the question does not ask for this. There is an excess of males and a deficit of females in the `Admitted` category.

```r
> par(mar=c(3.1,3.1,2.6,1.1))
> UCBtotal <- apply(UCBAdmissions, c(1,2), sum)
> mosaicplot(UCBtotal, col=TRUE)
```

Now obtain the mosaic plots for each department separately.

```r
> oldpar <- par(mfrow=c(2,3), mar=c(3.1,3.1,2.6,1), cex.main=0.8)
> for(ii in 1:6)
+ mosaicplot(UCBAdmissions[,ii], xlab = "Admit", ylab = "Sex",
+ main = paste("Department", LETTERS[ii]), color=TRUE)
```

(b) `apply(UCBAdmissions, 3, function(x)(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))`

```
A B C D E F
0.3492 0.8025 1.1331 0.9213 1.2216 0.8279
```

Figure 4: Mosaicplots, for each department separately. The greatest difference in the proportions in the two vertical columns is for Department A.

Chapter 12 Exercises


Preliminaries

> library(DAAG)

Exercise 1

Carry out the principal components analysis of Section Subsection 12.1.2, separately for males and females. Compare the loadings for the first and second principal components in these new analyses with the loadings obtained in Subsection 12.1.2.

We do the analysis (i) for all observations; (ii) for females; (iii) for males.

```r
> all.pr <- princomp(na.omit(possum[, -(1:5)]))
> fem.pr <- princomp(na.omit(possum[possum$sex=="f", -(1:5)]))
> male.pr <- princomp(na.omit(possum[possum$sex=="m", -(1:5)]))
```

One way to compare the separate loadings is to plot each set in turn against the loadings for all observations. We put the code into a function so that we can easily do the plot for each component in turn. The settings for the two elements of `signs` allow us to switch the signs of all elements for males and females separately. Loadings that differ only in a change of sign in all elements are equivalent.

```r
> compare.loadings <- function(i=1, all.load=loadings(all.pr),
+ fl.load=loadings(fem.pr),
+ mlo.load=loadings(male.pr), signs=c(1,1)) {
+ all.i <- all.load[,i]
+ fi <- fl.load[,i]*signs[1]
+ mi <- mlo.load[,i]*signs[2]
+ plot(range(all.i), range(c(f[i, mi])), type="n")
+ chw <- par()$cxy[1]
+ points(all.i, fi, col="red")
+ text(all.i, fi, lab=row.names(fl.load), adj=0, xpd=T, col="red",
+ pos=2, cex=0.8)
+ points(all.i, mi, col="blue")
+ text(all.i, mi, lab=row.names(mlo.load), adj=0, xpd=T, col="blue",
+ pos=4, cex=0.8)
+ abline(0,1)
+ }
```

Now compare the loadings for the first and second principal components. From examination of the results for default settings for `signs`, it is obvious that a switch of sign is needed for the female loadings.

```r
> par(mfrow=c(1,2))
> compare.loadings(1)
> compare.loadings(2, signs=c(-1,1))
> par(mfrow=c(1,1))
```
Chapter 11 Exercises

5 0.01048  5 0.26  0.28  0.012
6 0.00827  6 0.25  0.27  0.011
7 0.00717  7 0.24  0.26  0.011
8 0.00530  8 0.23  0.25  0.011
9 0.00441 14 0.20  0.24  0.011
10 0.00359 15 0.19  0.23  0.011
11 0.00276 19 0.18  0.23  0.011
12 0.00257 22 0.17  0.22  0.011
13 0.00221 25 0.16  0.22  0.011
14 0.00211 27 0.16  0.22  0.011
15 0.00165 33 0.14  0.21  0.010
16 0.00110 36 0.14  0.20  0.010
17 0.00083 43 0.13  0.20  0.010
18 0.00055 47 0.13  0.20  0.010
19 0.00037 53 0.12  0.20  0.010
20 0.00010 62 0.12  0.20  0.010

Figure 3 shows the graph that is obtained by plotting this tree. For making a decision on the size of tree however, it is convenient to work from the information given by the function printcp().

> plotcp(spam.rpart)

Setting cp=0.0001 ensures, when the random number seed is set to 21, that the cross-validated relative error reaches a minimum, of 0.1958, at nsplit=43. Pruning to get the tree that is likely to have best predictive power can use cp=0.001. Adding the SE to the minimum cross-validated relative error gives 0.2. The smallest tree with an SE smaller than this is at nsplit=36; setting cp=0.0012 will give this tree.

Here then are the two prunings:

> spam.rpart1 <- prune(spam.rpart, cp=0.001) # Minimum predicted error
> spam.rpart2 <- prune(spam.rpart, cp=0.0012) # 1 SE pruning

Additional Exercises A number of additional exercises are included in the laboratory exercises that are available from the web page http://www.maths.anu.edu.au/~johnm/courses/dm

Chapter 4 Exercises

The odds ratio (male to female admissions) is much the lowest for Department A.

Exercise 12
Table 3.3 (Chapter 3) contained fictitious data that illustrate issues that arise in combining data across tables. Table 1 is another such set of fictitious data, designed to demonstrate how biases that go in different directions in the two subtables may cancel in the table to totals.

<table>
<thead>
<tr>
<th></th>
<th>Engineering</th>
<th>Sociology</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>Admit</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Deny</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>Admit</td>
<td>40</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Deny</td>
<td>35</td>
<td>35</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 1: In these data, biases that go in different directions in the two faculties have canceled in the table of totals.

To enter the data for Table 3.3, type:

admissions <- array(c(30,30,10,10,15,5,30,10), dim=c(2,2))

Similarly for Table 1. The third dimension in each table is faculty, as required for using faculty as a stratification variable for the Mantel–Haenzel test. From the help page for mantelhaen.test(), extract and enter the code for the function woolf() and apply the function woolf() followed by the function mantelhaen.test() to the data of each of Tables 3.3 and 1. Explain, in words, the meaning of each of the outputs. Then apply the Mantel–Haenzel test to each of these tables.

> admissions <- array(c(30,30,10,10,15,5,30,10), dim=c(2,2,2))
> woolf(admissions)
[1] 0.96955

The differences from homogeneity (equal odds ratios for males and females in each of the two departments) are well removed from statistical significance.

> admissions1 <- array(c(30,30,20,10,5,20,25), dim=c(2,2,2))
> woolf(admissions1)
[1] 0.04302

There is evidence of department-specific biases.

> mantelhaen.test(admissions)
Mantel-Haenszel chi-squared test without continuity correction

data: admissions
Mantel-Haenszel X-squared = 0, df = 1, p-value = 1
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.4566 2.1902
sample estimates:
common odds ratio
1

The estimate of the common odds ratio is 1.

Mantel-Haenszel chi-squared test with continuity correction

data: admissions1
Mantel-Haenszel X-squared = 0.0141, df = 1, p-value = 0.9053
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.4481 1.8077
sample estimates:
common odds ratio
0.9

The common odds ratio is given as 0.9. However, because the odds ratio is not homogeneous within each of the two departments, this overall figure can be misleading.

Exercise 13
The function overlapDensity() in the DAAG package can be used to visualize the unpaired version of the t-test. Type in:

```r
attach(two65)
overlapDensity(ambient, heated) # Included with our DAAG package
detach(two65)
```

in order to observe estimates of the stretch distributions of the ambient (control) and heated (treatment) elastic bands.

Exercise 4
Copy down the email spam data set from the web site given in Section 10.2. Carry out a tree-based regression using all 57 available explanatory variables. Determine the change in the cross-validation estimate of predictive accuracy.

We set the random number seed to 21, to allow users to reproduce our results. In most other contexts, it will be best not to set a seed. The file spam.shortnames is available for copying from the web address http://wwwmaths.anu.edu.au/~johnm/r-book/xtra-data. The data frame spam is created thus:

```r
> spam <- read.table("spambase.data", header=FALSE, sep=" ")
> nam <- scan("spam.shortnames", what="")
> names(spam) <- nam
```

Now load rpart and proceed with the calculations.

```r
> set.seed(21)
> spam.rpart <- rpart(yesno~., data=spam, cp=0.0001, method="class")
> printcp(spam.rpart)
```

Classification tree:

```r
rpart(formula = yesno ~ ., data = spam, method = "class", cp = 1e-04)
```

Variables actually used in tree construction:

1) address bang crl.av crl.long crl.tot
data dollar edu email font
free george hp internet leftparen
money n1999 n6500 our over
re remove semicolon technology will
you your

Root node error: 1813/4601 = 0.39

n= 4601

<table>
<thead>
<tr>
<th>CP</th>
<th>nsplit</th>
<th>rel error</th>
<th>xerror</th>
<th>xstd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.47656</td>
<td>1.00</td>
<td>1.00</td>
<td>0.018</td>
</tr>
<tr>
<td>2</td>
<td>0.14892</td>
<td>1.00</td>
<td>0.52</td>
<td>0.015</td>
</tr>
<tr>
<td>3</td>
<td>0.04302</td>
<td>1.00</td>
<td>0.37</td>
<td>0.014</td>
</tr>
<tr>
<td>4</td>
<td>0.03089</td>
<td>1.00</td>
<td>0.29</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Chapter 11 Exercises

Exercise 3
Use tree-based regression to predict re78 in the data frame nsw74pred1 that is in our DAAG package. Compare the predictions with the multiple regression predictions in Chapter 6.

In order to reproduce the same results as given here, do:

> set.seed(21)

Code for the initial calculation is:

```r
> nsw.rpart <- rpart(re78 ~ ., data = nsw74psid1, cp = 0.001)
> plotcp(nsw.rpart)
```

It is obvious that cp=0.002 will be adequate. At this point, the following is a matter of convenience, to reduce the printed output:

```r
> nsw.rpart <- prune(nsw.rpart, cp = 0.002)
> printcp(nsw.rpart)
```

Regression tree:

```r
> nsw.rpart
```

Variables actually used in tree construction:

- [1] age educ re74 re75

Root node error: 6.5e+11/2675 = 2.4e+08

n= 2675

<table>
<thead>
<tr>
<th>CP</th>
<th>nsplit</th>
<th>rel error</th>
<th>xerror</th>
<th>xstd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.346</td>
<td>1.00</td>
<td>1.00</td>
<td>0.046</td>
</tr>
<tr>
<td>2</td>
<td>0.1101</td>
<td>0.66</td>
<td>0.66</td>
<td>0.039</td>
</tr>
<tr>
<td>3</td>
<td>0.0409</td>
<td>0.55</td>
<td>0.56</td>
<td>0.033</td>
</tr>
<tr>
<td>4</td>
<td>0.0318</td>
<td>0.50</td>
<td>0.52</td>
<td>0.038</td>
</tr>
<tr>
<td>5</td>
<td>0.0158</td>
<td>0.47</td>
<td>0.51</td>
<td>0.038</td>
</tr>
<tr>
<td>6</td>
<td>0.0106</td>
<td>0.46</td>
<td>0.49</td>
<td>0.038</td>
</tr>
<tr>
<td>7</td>
<td>0.0105</td>
<td>0.45</td>
<td>0.48</td>
<td>0.038</td>
</tr>
<tr>
<td>8</td>
<td>0.0063</td>
<td>0.44</td>
<td>0.47</td>
<td>0.033</td>
</tr>
<tr>
<td>9</td>
<td>0.0057</td>
<td>0.43</td>
<td>0.46</td>
<td>0.033</td>
</tr>
<tr>
<td>10</td>
<td>0.0039</td>
<td>0.42</td>
<td>0.46</td>
<td>0.033</td>
</tr>
<tr>
<td>11</td>
<td>0.0036</td>
<td>0.42</td>
<td>0.46</td>
<td>0.033</td>
</tr>
<tr>
<td>12</td>
<td>0.0032</td>
<td>0.42</td>
<td>0.47</td>
<td>0.034</td>
</tr>
<tr>
<td>13</td>
<td>0.0028</td>
<td>0.41</td>
<td>0.48</td>
<td>0.034</td>
</tr>
<tr>
<td>14</td>
<td>0.0027</td>
<td>0.41</td>
<td>0.47</td>
<td>0.034</td>
</tr>
<tr>
<td>15</td>
<td>0.0023</td>
<td>0.40</td>
<td>0.48</td>
<td>0.034</td>
</tr>
<tr>
<td>16</td>
<td>0.0020</td>
<td>0.40</td>
<td>0.48</td>
<td>0.034</td>
</tr>
<tr>
<td>17</td>
<td>0.0020</td>
<td>0.40</td>
<td>0.48</td>
<td>0.034</td>
</tr>
</tbody>
</table>

The minimum cross-validated relative error is at nsplit=12. The one standard error limit is 0.498 (=0.463+0.035). The one standard error rule suggests taking nsplit=5.

If we go with the one standard error rule, we have a residual variance equal to 24284318 × 0.49177 = 12031699.

For the estimate of residual variance from the calculations of Section 6.x, we do the following.

Chapter 4 Exercises

Exercise 14*
For constructing bootstrap confidence intervals for the correlation coefficient, it is advisable to work with the Fisher z-transformation of the correlation coefficient. The following lines of R code show how to obtain a bootstrap confidence interval for the z-transformed correlation between chest and belly in the possum data frame. The last step of the procedure is to apply the inverse of the z-transformation to the confidence interval to return it to the original scale. Run the following code and compare the resulting interval with the one computed without transformation. Is the z-transform necessary here?

```r
z.transform <- function(r) .5*log((1+r)/(1-r))
z.inverse <- function(z) (exp(2*z)-1)/(exp(2*z)+1)
possum.fun <- function(data, indices) {
 chest <- data$chest[indices]
 belly <- data$belly[indices]
 z.transform(cor(belly, chest))
}
possum.boot <- boot(possum, possum.fun, R=999)
z.inverse(boot.ci(possum.boot, type="perc")$percent[4:5])
```

> [1] 0.4768 0.7045

Exercise 15
The 24 paired observations in the data set mignonette were from five pots. The observations are in order of pot, with the numbers 5, 5, 5, 4, 4 in the respective pots. Plot the data in a way that shows the pot to which each point belongs. Also do a plot that shows, by pot, the differences between the two members of each pair. Do the height differences appear to be different for different pots?
We plot the tree from (a) that shows the cross-validated relative error, and the tree obtained from (c).

Exercise 2
The data set `mifem` is part of the larger data set in the data frame `monica` that we have included in our `DAAG` package. Use tree-based regression to predict mortality in this larger data set. What is the most immediately striking feature of your analysis? Should this be a surprise?

```r
> mifem.rpart <- rpart(outcome ~ ., data=mifem, method="class")
> plot(mifem.rpart)
> text(mifem.rpart)
```

Figure 2: Classification tree for mifem data.

Those who were not hospitalised were very likely to be dead! Check by examining the table:

```r
> table(mifem$hosp, mifem$outcome)
live dead
y 3522 920
n 2352 2022
```

> summary(lm(I(cross - self) ~ factor(pot), data=mignonette))

Call:
`lm(formula = I(cross - self) ~ factor(pot), data = mignonette)`

Residuals:
  Min 1Q Median 3Q Max
-8.525 -3.694 0.725 3.386 7.850

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.275 2.418 0.11 0.91
factor(pot)2 5.250 3.419 1.54 0.14
factor(pot)3 -2.350 3.419 -0.69 0.50
factor(pot)4 6.100 3.419 1.78 0.09
factor(pot)5 2.444 3.626 0.67 0.51

Residual standard error: 5.41 on 19 degrees of freedom
Chapter 11 Exercises

Exercise 1
Refer to the head.injury data frame.

(a) Use the default setting in rpart() to obtain a tree-based model for predicting occurrence of clinically important brain injury, given the other variables.

(b) How many splits gives the minimum cross-validation error? Prune the tree using the 1 standard error rule.

Exercise 17
Use the function rexp() to simulate random observations from an exponential distribution with rate 1. Use the bootstrap (with 99999 replications) to estimate the standard error of the median. Repeat several times. Compare with the result that would be obtained using the normal approximation, i.e. \( \sqrt{\pi/n} \).

Exercise 18
Low doses of the insecticide toxaphene may cause weight gain in rats. A sample of 20 rats are given toxaphene in their diet, while a control group of 8 rats are not given toxaphene. Assume further that weight gain among the treated rats is normally distributed with a mean of 60g and standard deviation 30g, while weight gain among the control rats is normally distributed with a mean of 10g and a standard deviation of 50g. Using simulation, compare confidence intervals for the difference in mean weight gain, using the pooled variance estimate and the Welch approximation. Which type of interval is correct more often?

Multiple R-squared: 0.311, Adjusted R-squared: 0.166
F-statistic: 2.14 on 4 and 19 DF, p-value: 0.115

The evidence for a difference between pots is not convincing. Nevertheless a careful analyst, when checking for a systematic difference between crossed and selfed plants, would allow for a pot effect. (This requires the methods that are discussed in Chapter 10.)
+ Welch.count <- logical(nsim)
+ pooled.count <- logical(nsim)
+ Welch.length <- numeric(nsim)
+ pooled.length <- numeric(nsim)
+ mean.diff <- mean1-mean2
+ for (ii in 1:1000) {
+   x <- rnorm(n1, mean=mean1, sd=sd1)
+   y <- rnorm(n2, mean=mean2, sd=sd2)
+   t1conf.int <- t.test(x, y)$conf.int
+   t2conf.int <- t.test(x, y, var.equal=TRUE)$conf.int
+   t1correct <- (t1conf.int[1] < mean.diff) & (t1conf.int[2] > mean.diff)
+   Welch.count[ii] <- t1correct
+   pooled.count[ii] <- t2correct
+   Welch.length[ii] <- diff(t1conf.int)
+   pooled.length[ii] <- diff(t2conf.int)
+ }
+ c("Welch.proportion.correct"=mean(Welch.count),
+   "pooled.proportion.correct"=mean(pooled.count),
+   "Welch.length.avg" = mean(Welch.length),
+   "pooled.length.avg" = mean(pooled.length))
+
Exercise 30*

Experiment with the pair65 example and plot various views of the likelihood function, either as a surface using the persp() function or as one-dimensional profiles using the curve() function. Is there a single maximizer: Where does it occur?

First, check the mean and the SD.

> with(pair65, heated-ambient)
[1] 19 8 4 1 6 10 6 -3 6
> mean(with(pair65, heated-ambient))
[1] 6.333

Chapter 10 Exercises

SexMale 1.277 0.186 6.9
MEANSES 2.237 0.504 4.4
SES 2.508 0.186 13.5
MinorityYes:SexMale -0.462 0.376 -1.2
MinorityYes:MEANSES 1.439 0.684 2.1
MinorityYes:SES -1.101 0.319 -3.5
SexMale:MEANSES 0.574 0.574 1.0
SexMale:SES -0.517 0.264 -2.0
MinorityYes:SexMale:MEANSES -0.713 0.903 -0.8
MinorityYes:SexMale:SES 0.110 0.468 0.2

Correlation of Fixed Effects:
MinorityYes -0.346
SexMale -0.481 0.268
MEANSES -0.095 0.066 0.054
SES -0.017 0.031 0.007 -0.355
MinorityYes:SM 0.207 -0.671 -0.433 -0.030 -0.010
MinorityYes:MEANSES 0.091 0.161 -0.043 -0.510 0.271 -0.142
MinorityYes:SES 0.008 0.117 -0.012 0.211 -0.584 -0.089 -0.446
SM:MEANSES -0.044 -0.035 -0.141 -0.540 0.315 0.092 0.366 -0.181
SM:SES 0.010 -0.017 -0.081 0.262 -0.703 0.045 -0.194 0.409 -0.430
MY:SM:MEANSES -0.033 -0.140 0.096 0.316 -0.205 0.120 -0.651 0.332 -0.576 0.280
MinorityYes:SM:SES -0.011 -0.076 0.056 -0.144 0.397 0.122 0.300 -0.678 0.241 -0.567 -0.473

The between school component of variance (1.585²) is 2.51, compared with a within school component that equals 35.79. To get confidence intervals (strictly Bayesian credible intervals) for these variance estimates, specify:

> Math.Ach.mcmc <- mcmc.sample(Math.Ach.lmer, n=10000)
> HPDInterval(VarCorr(Math.Ach.mcmc, type="varcov"))

<table>
<thead>
<tr>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.626</td>
<td>2.954</td>
</tr>
<tr>
<td>34.698</td>
<td>37.061</td>
</tr>
</tbody>
</table>

attr("Probability")

[1] 0.95

The 95% confidence interval for the between school component of variance ranged, in my calculation, from 1.64 to 3.0. The confidence interval excludes 0.

The number of results for school varies between 14 and 67. Thus, the relative contribution to class means is 5.51 and a number that is at most 5.982429²/14 = 2.56.
Fixed effects:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>8.556</td>
<td>0.576</td>
<td>14.85</td>
</tr>
<tr>
<td>TypeT2</td>
<td>3.889</td>
<td>0.519</td>
<td>7.50</td>
</tr>
<tr>
<td>TypeT3</td>
<td>2.222</td>
<td>0.519</td>
<td>4.28</td>
</tr>
<tr>
<td>TypeT4</td>
<td>0.667</td>
<td>0.519</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Correlation of Fixed Effects:

<table>
<thead>
<tr>
<th></th>
<th>TypeT2</th>
<th>TypeT3</th>
<th>TypeT4</th>
<th>(Intercept)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TypeT2</td>
<td>-0.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TypeT3</td>
<td>0.500</td>
<td>-0.450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TypeT4</td>
<td>0.500</td>
<td>0.500</td>
<td>-0.450</td>
<td></td>
</tr>
</tbody>
</table>

Within schools, the correlation of fixed effects is very nearly equal to 0.500.

School should be treated as a random effect if the intention is to generalize results to other comparable schools. If the intention is to apply them to other pupils or classes within those same schools, it should be taken as a fixed effect.

For the analysis of these data, both SES and MEANSES should be included in the model. Then the coefficient of MEANSES will measure between school effects, while the coefficient of SES will measure within school effects.

Exercise 5

In the data set MathAchieve (MEMSS package), the factors Minority (levels yes and no) and sex, and the variable SES (socio-economic status) are clearly fixed effects. Discuss how the decision whether to treat School as a fixed or as a random effect might depend on the purpose of the study. Carry out an analysis that treats School as a random effect. Are differences between schools greater than can be explained by within school variation?

Chapter 4 Exercises

> sd(with(pair65, heated-ambient))

[1] 6.103

Now create and use a function that calculates the likelihood, given mu and sigma

> funlik <- function(mu, sigma, x=with(pair65, heated-ambient))
> + prod(dnorm(x, mu, sigma))

Next, calculate a vector of values of mu, and a vector of values of sigma

> muval <- seq(from=2, to=12, by=0.5) # Values about mu=6.33
> sigma <- seq(from=1, to=15, by=0.5) # Values about mu=6.10

Now calculate an array of loglikelihoods

> loglikArray <- function(mu, sigma, d=with(pair65, heated-ambient))
> + xx <- matrix(0, nrow=length(mu), ncol=length(sigma))
> + for (j in seq(along=sigma))
> + for (i in seq(along=mu))
> + xx[i,j] <- log(funlik(mu[i], sigma[j], d))
> + xx
> + loglik <- loglikArray(mu=muval, sigma=sigval)

Now create a perspective plot

> persp(x=muval, y=sigval, loglik)

A wider range of values of mu, and a narrower range of values of sigma, seems preferable:

> muval <- seq(from=1, to=14, by=0.5)
> sigma <- seq(from=3, to=12, by=0.2)
> loglik <- loglikArray(mu=muval, sigma=sigval)
> persp(x=muval, y=sigval, loglik)

Try also

> contour(muval, sigval, loglik)
> filled.contour(muval, sigval, loglik)

Exercise 22

Suppose the mean reaction time to a particular stimulus has been estimated in several previous studies, and it appears to be approximately normally distributed with mean 0.35 seconds and standard deviation 0.1 seconds. On the basis of 10 new observations, the mean reaction time is estimated to be 0.45 seconds with an estimated standard deviation of 0.15 seconds. Based on the sample information, what is the maximum likelihood estimator for the true mean reaction time? What is the Boyes’ estimate of the mean reaction time?

Following Section 4.2.2 the posterior density of the mean is normal with mean

\[
\mu_y = \frac{\mu_0 + \mu_0 \sigma^2 / \sigma_0^2}{n + \sigma^2 / \sigma_0^2}
\]

and variance

\[
\frac{\sigma^2}{n + \sigma^2 / \sigma_0^2}
\]

where, here

\[
\mu_0 = 0.35, \sigma_0 = 0.1, \quad \bar{y} = 0.45, n = 10, \sigma = 0.15
\]

Thus the posterior mean and variance of the mean are:
Exercise 4

The data set `ergoStool` (MEMSS package) has data on the amount of effort needed to get up from a stool, for each of nine individuals who each tried four different types of stool. Analyse the data both using `aov()` and using `lmer()`, and reconcile the two sets of output. Was there any clear winner among the types of stool, if the aim is to keep effort to a minimum?

For analysis of variance, specify

```r
> aov(effort ~ Type + Error(Subject), data = ergoStool)
Call:
aov(formula = effort ~ Type + Error(Subject), data = ergoStool)
Grand Mean: 10.25

Stratum 1: Subject
Terms: Residuals
Sum of Squares 66.5
Deg. of Freedom 8

Residual standard error: 2.883

Stratum 2: Within
Terms: Type Residuals
Sum of Squares 81.19 29.06
Deg. of Freedom 3 24

Residual standard error: 1.100
Estimated effects may be unbalanced
```

For testing the `Type` effect for statistical significance, refer $(81.19/3)/(29.06/24) = 22.35$ with the $F_{3,24}$ distribution. The effect is highly significant.

This is about as far as it is possible to go with analysis of variance calculations. When `Error()` is specified in the `aov` model, R has no mechanism for extracting estimates. (There are mildly tortuous ways to extract the information, which will not be further discussed here.)

For use of `lmer`, specify

```r
> summary(lmer(effort ~ Type + (1 | Subject), data = ergoStool))

Linear mixed model fit by REML
Formula: effort ~ Type + (1 | Subject)
Data: ergoStool
AIC BIC logLik deviance REMLdev
133 143 -60.6 122 121
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 1.78 1.33
Residual 1.21 1.10
Number of obs: 36, groups: Subject, 9
```

The posterior mean is the Bayes’ estimate of the mean.
> library(MEMSS)
> Gun.lmer <- lm(rounds~Physique/Method +(1|Team), data=Gun)
> summary(Gun.lmer)

Linear mixed model fit by REML
Formula: rounds ~ Physique/Method + (1 | Team)
Data: Gun

AIC BIC logLik deviance REMLdev
143 156 -63.5 134 127

Random effects:
Groups     Name        Variance Std.Dev.
Team       (Intercept) 1.09   1.04
Residual               2.18   1.48
Number of obs: 36, groups: Team, 9

Fixed effects:
                     Estimate Std. Error t value
(Intercept)          23.589     0.492  47.9
Physique.L           -0.966     0.853  -1.1
Physique.Q           -0.191     0.853   0.2
PhysiqueSlight:MethodM2  -8.450   0.852  -9.9
PhysiqueAverage:MethodM2  -8.100   0.852  -9.5
PhysiqueHeavy:MethodM2   -8.983   0.852 -10.5

Correlation of Fixed Effects:
Physique.L              0.000
Physique.Q             -0.289   0.353 -0.204
PhysiqueSlight:MethodM2 -0.289   0.000  0.408  0.000
PhysiqueAverage:MethodM2 -0.289 -0.353 -0.204   0.000   0.000

A good way to proceed is to determine the fitted values, and present these in an interaction plot:

> Gun.hat <- fitted(Gun.lmer)
> interaction.plot(Gun$Physique, Gun$Method, Gun.hat)

Differences between methods, for each of the three physiques, are strongly attested. These can be estimated within teams, allowing 24 degrees of freedom for each of these comparisons.

Clear patterns of change with Physique seem apparent in the plot. There are however too few degrees of freedom for this effect to appear statistically significant. Note however that the parameters that are given are for the lowest level of Method, i.e., for M1. Making M2 the baseline shows the effect as closer to the conventional 5% significance level.

The component of variance at the between teams level is of the same order of magnitude as the within teams component. Its contribution to the variance of team means (1.044^2) is much greater than the contribution of the within team component (1.476^2/4; there are 4 results per team). If comparison between physiques is the concern; it will be much more effective to double the number of teams; compare (1.044^2+1.476^2/4)/2 (=0.82) with 1.044^2+1.476^2/8 (=1.36).

Chapter 5 Exercises


Preliminaries

> library(DAAG)

Exercise 2

For each of the data sets elastic1 and elastic2, determine the regression of stretch on distance. In each case determine
(i) fitted values and standard errors of fitted values and
(ii) the $R^2$ statistic. Compare the two sets of results. What is the key difference between the two sets of data?

Use the robust regression function rlm() from the MASS package to fit lines to the data in elastic1 and elastic2. Compare the results with those from use of lm(). Compare regression coefficients, standard errors of coefficients, and plots of residuals against fitted values.

The required regressions are as follows:

> e1.lm <- lm(distance ~ stretch, data=elastic1)
> e2.lm <- lm(distance ~ stretch, data=elastic2)

The fitted values and standard errors of the fits are then:

> predict(e1.lm, se.fit=TRUE)

$fit

$df
[1] 5

$residual.scale
[1] 15.59

The $R^2$ statistic, in each case, is obtained as follows:

> summary(e1.lm)$r.squared
[1] 0.7992

> summary(e2.lm)$r.squared
[1] 0.9808

The standard errors are somewhat smaller for the second data set than for the first, while the $R^2$ value is much larger for the second than the first. The main reason for the
difference in $R^2$ is the larger range of stretch for the second data set. There is more variation to explain. More specifically

$$R^2 = 1 - \frac{(n-2)s^2}{\sum(y - y')^2}$$

(1)

$$= 1 - \frac{s^2}{\sum(y - y')^2/(n-2)}$$

(2)

Increasing the range of values greatly increases the denominator. If the line is adequate over the whole of the range, $s^2$ will, as here, not change much. (For these data, in spite of the greater range, it reduces somewhat.)

The robust regression fits can be obtained as follows:

```r
> library(MASS)
> e1.rlm <- rlm(distance ~ stretch, data=elastic1)
> e2.rlm <- rlm(distance ~ stretch, data=elastic2)
```

The residual plots can be obtained for `rlm` in the same was as for `lm`. It may however be more insightful to overlay the `rlm` plots on the `lm` plots.

```r
> par(mfrow=c(1,2))
> plot(e1.lm, which=1, add.smooth=FALSE)
> points(resid(e1.rlm) ~ fitted(e1.rlm), col=2, pch=2)
> plot(e2.lm, which=1, add.smooth=FALSE)
> points(resid(e2.rlm) ~ fitted(e2.rlm), col=2, pch=2)
> par(mfrow=c(1,1))
```

![Residuals vs Fitted](image1.png)

Figure 1: Overlaid plots of residuals versus fitted values, for the dataframes `elastic1` (left panel) and `elastic2` (right panel). Circles are for the `lm` fit and triangles for the `rlm` fit.

For comparison purposes, we include residual plots for the ordinary regression fits. Note, in particular, how the robust regression has reduced the weight of the outlying observation in the first data set. The residual at that point is larger than it was using ordinary least-squares. The residual plots for the ordinary and robust fits are very similar for the second data set, since there are no outlying observations.

As can be seen in the summaries below, the ordinary and robust fits for the first data set give quite different estimates of the slope and intercept. The robust fit is more in line with both sets of results obtained for the second data set.

Chapter 10 Exercises

```r
> varv <- numeric(20)
> n <- numeric(20)
> k <- 0
> for(n.omit in 1:4)
+ for(i in 1:5){
+ k <- k+1
+ vec2 <- trashplot(n.omit=n.omit)
+ n[k] <- n.omit
+ varp[k] <- vec2[1]
+ varv[k] <- vec2[2]
+ }
```

Again, we plot the results:

![Residuals vs Fitted](image2.png)

Figure 2: Within, and between plots variance estimates, as functions of the number of whole plots (each consisting of four vines) that were omitted at random.

Omission of a whole plot loses 3 d.f. out of 36 for estimation of within plot effects, and 1 degree of freedom out of 11 for the estimation of between plot effects, i.e., a slightly greater relative loss. The effect on precision will be most obvious where the d.f. are already smallest, i.e., for the between plot variance. The loss of information on complete plots is inherently for serious, for the estimation of the between plot variance, than the loss of partial information (albeit on a greater number of plots) as will often happen in Exercise 1.

Exercise 3

The data set Gun (MEMSS package) reports on the numbers of rounds fired per minute, by each of nine teams of gunners, each tested twice using each of two methods. In the nine teams, three were made of men with slight build, three with average, and three with heavy build. Is there a detectable difference, in number of rounds fired, between build type or between firing methods? For improving the precision of results, which would be better – to double the number of teams, or to double the number of occasions (from 2 to 4) on which each team tests each method?

It probably does not make much sense to look for overall differences in Method; this depends on Physique. We therefore nest Method within Physique.
+ vec2 <- trashvine(n.omit=n.omit)
+ n[k] <- n.omit
+ varp[k] <- vec2[1]
+ varv[k] <- vec2[2]
+ }

We plot the results:

![Figure 1: Within, and between plots variance estimates, as functions of the number of vines that were omitted at random](image)

As the number of vines that are omitted increases, the variance estimates can be expected to show greater variability. The effect should be most evident on the between plot variance. Inaccuracy in estimates of the between plot variance arise both from inaccuracy in the within plot sums of squares and from loss of information at the between plot level.

At best it is possible only to give an approximate d.f. for the between plot estimate of variance (some plots lose more vines than others), which complicates any evaluation that relies on degree of freedom considerations.

### Exercise 2

Repeat the previous exercise, but now omitting 1, 2, 3, 4 complete plots at random.

```r
> trashplot <- function(n.omit=2)
+ {
+ k <- k+1
+ n[k] <- n.omit
+ plotlev <- levels(kivishade$plot)
+ use.lev <- sample(plotlev, length(plotlev)-n.omit)
+ kivishade$take <- kivishade$plot %in% use.lev
+ kivishade.lmer <- lmer(yield ~ shade + (1 | block) + (1|block:plot),
+ data = kivishade, subset=take)
+ varv <- as.numeric(attrVarCorr(kivishade.lmer), "sc")^2
+ varp <- as.numeric(VarCorr(kivishade.lmer)$'block:plot')
+ c(varp, varv)
+ }
> varp <- numeric(20)
```

### Exercise 3

Using the data frame cars (datasets), plot distance (i.e. stopping distance) versus speed. Fit a line to this relationship, and plot the line. Then try fitting and plotting a quadratic curve. Does the quadratic curve give a useful improvement to the fit? [Readers who have studied the relevant physics might develop a model for the change in stopping distance with speed, and check the data against this model.]

The data can be plotted using

```r
> plot(dist ~ speed, data=cars, xlab="stopping distance", pch=16)
```

The linear model can be fit, and a line added, as follows:

```r
> cars.lm <- lm(dist ~ speed, data=cars)
> abline(cars.lm)
```

One way of fitting a quadratic curve to the data is as follows:

```r
> cars.lm2 <- lm(dist ~ speed + I(speed^2), data=cars)
```

The following overlays the quadratic curve:

Here is the graph

![Figure 2: Quadratic curve fitted to car data.](image)

Based on what we’ve seen so far, the quadratic curve does not appear to fit the data much better than the line. Checking the summary and the p-value might lead us to believe that the quadratic term is not needed:

```r
> summary(cars.lm2)
```
Call: lm(formula = dist ~ speed + I(speed^2), data = cars)

Residuals:
  Min 1Q Median 3Q Max
-28.72 -9.18 -3.19 4.63 45.15

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  2.470  14.817   0.17  0.87    
speed       0.913   2.034   0.45  0.66    
I(speed^2)  0.100   0.066   1.52  0.14    

Residual standard error: 15.2 on 47 degrees of freedom
Multiple R-squared: 0.667, Adjusted R-squared: 0.653
F-statistic: 47.1 on 2 and 47 DF, p-value: 5.85e-12

The relevant physics suggests that stopping distance is in fact a nonlinear function of speed. A simplified model is
distance = k speed^2

where k is a constant, which is inversely related to the acceleration (actually deceleration), which is assumed constant here. Because of the unrealistic assumption that k is independent of the deceleration, this model should be used only as a start. The actual deceleration will not be constant, and there is likely a fair bit of noise associated with it. Note that the error term, which we have not specified, is likely to be a function of speed.

Also, we have not consulted a residual plot. In view of the non-significant quadratic term, we examine the residual plot for the model with a linear term.

> plot(cars.lm, which=1, panel=panel.smooth)

Figure 3: Plot of residuals versus fitted values, for the cars data.

In view of the clear trend in the plot of residuals, it seems wise to include the quadratic term.

Note however that the error variance (even after the trend from the residuals is taken out) is not constant, but increases with the fitted values. Alternatives are to try a weighted least-squares fit, or to try a variance-stabilizing transformation. If we are for-
> if("exists("xbomsoi")
+ {
+ xbomsoi <-
+ with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33))
+ xbomsoi$trendSOI <- loess(xbomsoi$SOI)$y
+ xbomsoi$trendRain <- loess(xbomsoi$cuberootRain)$y}
> xbomsoi$detrendRain <-
> with(xbomsoi, cuberootRain - trend + mean(trendRain))
> xbomsoi$detrendSOI <-
+ with(xbomsoi, SOI - trend + mean(trendSOI))
> Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
+ type="Ljung-Box", lag=15)

Box-Ljung test
data: resid(lm(detrendRain ~ detrendSOI, data = xbomsoi))
X-squared = 32.86, df = 15, p-value = 0.004905
> Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
+ type="Ljung-Box", lag=25)

Box-Ljung test
data: resid(lm(detrendRain ~ detrendSOI, data = xbomsoi))
X-squared = 38.44, df = 25, p-value = 0.04192
> Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
+ type="Ljung-Box", lag=30)

Box-Ljung test
data: resid(lm(detrendRain ~ detrendSOI, data = xbomsoi))
X-squared = 46.41, df = 30, p-value = 0.02836

The p-values are:

<table>
<thead>
<tr>
<th>n=15</th>
<th>n=20</th>
<th>n=25</th>
<th>n=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.023</td>
<td>0.042</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Notice that the indication of sequential correlation is much stronger for n=15 than for larger values of n. As the number of possibilities that are canvassed increases (a greater number of lags at which there may be autocorrelations) the probability of detection of autocorrelation decreases. The small p-value for n=30 may thus seem surprising.

Exercise 5
In the data set pressure (datasets), examine the dependence of pressure on temperature. [The relevant theory is that associated with the Clausius-Clapeyron equation, by which the logarithm of the vapor pressure is approximately inversely proportional to the absolute temperature. For further details of the Clausius-Clapeyron equation, search on the internet, or look in a suitable reference text.]

First we ignore the Clausius-Clapeyron equation, and try to transform pressure. When the logarithmic transformation is too extreme, as happens in this case, a power transformation with a positive exponent may be a candidate. A square root transformation is a possibility:

```R
> pressure$K <- pressure$temperature + 273
> p.lm <- lm(I(pressure^0.5) ~ K, data=pressure)
> plot(p.lm, which=1)
```

A systematic search for a smaller exponent is clearly required.

The Clausius-Clapeyron equation suggests that log(pressure) should be a linear function of 1/K, where K is degrees kelvin.

```R
> p.lm2 <- lm(log(pressure) ~ I(1/K), data=pressure)
> plot(p.lm2, which=1)
```

Consulting the residual plot, we see too much regularity. One point appears to be an outlier, and should be checked against other data sources. Some improvement is obtained by considering polynomials in the inverse of temperature. For example, the quadratic can be fit as follows:

```R
> p.lm4 <- lm(log(pressure) ~ poly(1/K,2), data=pressure)
> plot(p.lm4, which=1)
```
The residual plot still reveals some unsatisfactory features, particularly for low temperatures. However, such low pressure measurements are notoriously inaccurate. Thus, a weighted least-squares analysis would probably be more appropriate.

**Exercise 6**

Look up the help page for the function `boxcox()` from the `MASS` package, and use this function to determine a transformation for use in connection with Exercise 5. Examine diagnostics for the regression fit following this transformation. In particular, examine the plot of residuals against temperature. Comment on the plot. What are its implications for further investigation of these data?

The Box-Cox procedure can be applied to the pressure data as follows:

```
> n <- 18
> log.L <- rep(0, n)
> # Select appropriate value of lambda

Code
> boxcox(pressure ~ k, + data=pressure)
```

This suggests a power of around 0.1, so that we might fit the model using

```
lm(I(pressure^.1) ~ K, data=pressure)
```

However, remembering that the physics suggests a transformation of temperature, we should really look at the dependence of pressure on 1/K. Thus:

The result is

```
> # Code
> boxcox(pressure ~ 1(1/K), data=pressure)
```

Data for further regions of Australia are available from the websites noted on the help page for `bomsoi`.

```
Exercise 4
In the calculation
Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
 type="Ljung-Box", lag=20)
```

try the test with lag set to values of 1 (the default), 5, 20, 25 and 30. Comment on the different results.

The calculation for a lag of 20 was given on page 296. Here are the results for the other suggested lags:
Exercise 2
Use the \texttt{ar} function to fit the second order autoregressive model to the Lake Huron time series.

\begin{verbatim}
> ar(LakeHuron, order.max=2)
Call:
ar(x = LakeHuron, order.max = 2)
Coefficients:
1 2
1.054 -0.267
Order selected 2 sigma^2 estimated as 0.508
\end{verbatim}

It might however be better not to specify the order, instead allowing the \texttt{ar()} function to choose it based on the –IC criterion. For this to be valid, it is best to specify also method = "mle". Fitting by maximum likelihood can for long series be very slow. It works well in this instance.

\begin{verbatim}
> ar(LakeHuron, method = "mle")
Call:
ar(x = LakeHuron, method = "mle")
Coefficients:
1 2
1.044 -0.250
Order selected 2 sigma^2 estimated as 0.479
\end{verbatim}

The AIC criterion chooses the order equal to 2.

Exercise 3
Repeat the analysis of Section 9.2, replacing \texttt{avrain} by: (i) \texttt{southRain}, i.e., annual average rainfall in Southern Australia; (ii) \texttt{northRain}, i.e., annual average rainfall in Northern Australia.

The following functions may be used to automate these calculations. First, here is a function that gives the time series plots.

\begin{verbatim}
> boms <-
+ function(rain="NTrain"){
+ plot(ts(bomsoi[, c(rain, "SGI")], start=1900),
+ + panel=function(y,...)panel.smooth(bomsoi$Year, y,...)) }
\end{verbatim}

Next, here is a function that automates the calculations and resulting plots, for the analysis used for all-Australian rainfall data. The parameter choices may for some areas need to be varied, but output from this function should be a good start.

\begin{verbatim}
> bomplots <-
+ function(loc="NTrain"){
+ oldpar <- par(fig=c(0,0.5,0.5,1), mar=c(3.6,3.6,1.6,0.6), mgp=c(2.25,.5,0))
+ \texttt{library(DAAG)} # loads the DAAG library
\texttt{attach(ironslag)} # attaches data frame contents to search path
\texttt{par(mfrow=c(2,2))} # enables a 2x2 layout on the graphics window
\texttt{ironslag.lm <- lm(chemical ~ magnetic)} # regresses chemical on magnetic
\texttt{chemhat <- fitted(ironslag.lm)} # assign fitted values to chemhat
\texttt{res <- resid(ironslag.lm)} # assign residuals to res

\texttt{library(DAAG)} # loads the DAAG library
\texttt{attach(ironslag)} # attaches data frame contents to search path
\texttt{plot(magnetic, res, ylab = "Residual", type = "n")} # type = "n"
\texttt{panel.smooth(magnetic, res, span = 0.95)} # plots residuals

\texttt{sqrtabs <- sqrt(abs(res))} # square root of abs(residuals)
\texttt{plot(chemhat, sqrtabs, xlab = "Predicted chemical", ylab = expression(sqrt(abs(residual))), type = "n")} # type = "n"
\texttt{panel.smooth(chemhat, sqrtabs, span = 0.95)} # plots sqrt(abs(residuals)) vs fitted values

\texttt{detach(ironslag)} # remove data frame contents from search path
\end{verbatim}

Exercise 7
Annotate the code that gives panels B and D of Figure 5.4, explaining what each function does, and what the parameters are.

\begin{verbatim}
library(DAAG) # loads the DAAG library
attach(ironslag) # attaches data frame contents to search path
par(mfrow=c(2,2)) # enables a 2x2 layout on the graphics window
ironslag.lm <- lm(chemical ~ magnetic) # regresses chemical on magnetic
chemhat <- fitted(ironslag.lm) # assign fitted values to chemhat
res <- resid(ironslag.lm) # assign residuals to res

# Figure 5.4B
plot(magnetic, res, ylab = "Residual", type = "n") # type = "n"
panel.smooth(magnetic, res, span = 0.95) # plots residuals

# Figure 5.4D
sqrtabs <- sqrt(abs(res)) # square root of abs(residuals)
plot(chemhat, sqrtabs, xlab = "Predicted chemical", ylab = expression(sqrt(abs(residual))), type = "n") # type = "n"
panel.smooth(chemhat, sqrtabs, span = 0.95) # plots sqrt(abs(residuals)) vs fitted values
\end{verbatim}

Exercise 8
The following code gives the values that are plotted in the two panels of Figure 5.5.

\begin{verbatim}
library(DAAG) # loads the DAAG library
attach(ironslag) # attaches data frame contents to search path
par(mfrow=c(2,2)) # enables a 2x2 layout on the graphics window
ironslag.lm <- lm(chemical ~ magnetic) # regresses chemical on magnetic
chemhat <- fitted(ironslag.lm) # assign fitted values to chemhat
res <- resid(ironslag.lm) # assign residuals to res

# Figure 5.4B
plot(magnetic, res, ylab = "Residual", type = "n") # type = "n"
panel.smooth(magnetic, res, span = 0.95) # plots residuals

# Figure 5.4D
sqrtabs <- sqrt(abs(res)) # square root of abs(residuals)
plot(chemhat, sqrtabs, xlab = "Predicted chemical", ylab = expression(sqrt(abs(residual))), type = "n") # type = "n"
panel.smooth(chemhat, sqrtabs, span = 0.95) # plots sqrt(abs(residuals)) vs fitted values
\end{verbatim}

Obtaining residuals from \texttt{lowess()} is problematic because the fitted data are sorted according to the predictor variable upon output. One way of obtaining residuals upon use of \texttt{lowess()} is to sort the data beforehand as below:

\begin{verbatim}
> ironsort <- ironslag[order(ironslag$magnetic),]
> attach(ironsort)
> ironsort.lw <- lowess(magnetic, chemical)
> ironsort.resid <- chemical - ironsort.lw
\end{verbatim}
Once we have the residuals (either from `loess()` or from `lowess()`), we may proceed to obtain the plots in Figure 5.5. One way is as follows:

```r
> plot(ironsort.re resid ~ magnetic, lwd=2, xlab="Magnetic", ylab="Residual")
> lines(lowess(magnetic, ironsort.re resid, f=.8), lty=2)
```

To obtain the plot in Figure 5.5B, we could then do the following:

```r
> sqtabs2 <- sqrt(abs(ironsort.re resid))
> plot(sqtabs2 ~ ironsort lw y, xlab="Predicted chemical",
+ ylab=expression(sqrt(Residual)))
> lines(lowess(ironsort lw y, sqtabs2, f=.8))
> detach(ironsort)
```

One could also use `loess()` instead of `lowess()`.

---

**Exercise 10**

Write a function which simulates simple linear regression data from the model

\[ y = 2 + 3x + \varepsilon \]

where the noise terms are independent normal random variables with mean 0 and variance 1.

Using the function, simulate two samples of size 10. Consider two designs: first, assume that the x-values are independent uniform variates on the interval \([-1,1] \); second, assume that half of the x-values are -1’s, and the remainder are 1’s. In each case, compute slope estimates, standard error estimates and estimates of the noise standard deviation. What are the advantages and disadvantages of each type of design?

```r
> ex10fun <-
+ function(x=runif(n, n=20){
+ eps <- rnorm(n)
+ y <- 2 + 3*x + eps
+ lm(y ~ x)
+ })
> summary(ex10fun())
```

Call:

`lm(formula = y ~ x)`

Residuals:

```
 Min 1Q Median 3Q Max
-1.8855 -0.6041 0.0562 0.6178 2.3180
```

Coefficients:

```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7580 0.427 6.45 4.5e-06
 x 2.1270 0.835 2.55 0.020
```

Residual standard error: 0.991 on 18 degrees of freedom

Multiple R-squared: 0.265, Adjusted R-squared: 0.224

F-statistic: 6.48 on 1 and 18 DF, p-value: 0.0202

```r
> summary(ex10fun(x=rep(c(-1,1), c(10,10))))
```
For all of the factors, there are a large number of nk's, i.e., not known. A straightforward way to handle them is to treat nk as a factor level that, as for y and n, may give information that helps predict the outcome. For ease of interpretation we will make n the reference level.

```r
> for(j in 4:10)mifem[,j] <- relevel(mifem[,j], ref="n")
> mifem1.glm <- glm(outcome ~ ., family=binomial, data=mifem)
> mifem2.glm <- glm(outcome ~ .^2, family=binomial, data=mifem)
> anova(mifem1.glm, mifem2.glm)
```

### Analysis of Deviance Table

Model 1: outcome ~ age + yronset + premi + smstat + diabetes + highbp + hichol + angina + stroke

Model 2: outcome ~ (age + yronset + premi + smstat + diabetes + highbp + hichol + angina + stroke)^2

Resid. Df Resid. Dev Df Deviance
1 11 277 7 7 3
2 153 1063 7 9

```r
> CVbinary(mifem1.glm)
```

Fold: 6 10 9 5 2 7 1 4 8 3
Internal estimate of accuracy = 0.807
Cross-validation estimate of accuracy = 0.803

```r
> CVbinary(mifem2.glm)
```

Fold: 2 1 8 7 9 10 6 5 4 3
Internal estimate of accuracy = 0.839
Cross-validation estimate of accuracy = 0.775

The difference in deviance seems statistically significant (pchisq(125,159) = 0.021), but it may be unwise to trust the chi-squared approximation to the change in deviance.

It is safer to compare the cross-validated accuracy estimates, which in individual cross-validation runs were marginally lower for mifem2.glm than for mifem2.glm; 0.78 as against 0.80. Note also that there were convergence problems for the model that included all first order interaction terms.

### Chapter 5 Exercises

Call:
`lm(formula = y ~ x)`

Residuals:
```
 Min 1Q Median 3Q Max
-1.5157 -0.5944 -0.0867 0.4167 2.0823
```

Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.51600 0.2192 6.9207 1.82e-06
x 0.85000 0.2187 3.9201 9.32e-05
```

Residual standard error: 0.98 on 18 degrees of freedom
Multiple R-squared: 0.917, Adjusted R-squared: 0.912
F-statistic: 198 on 1 and 18 DF, p-value: 3.74e-11

Notice the substantial reduction in the SE for the intercept, and the even larger reduction in the SE for the slope, for the design that divides the sample points equally between the two ends of the interval.

This reduction in the SEs is of course a benefit. The disadvantage is that there is no possibility to check, with the second design, whether the assumed form of regression relationship is correct.

**Note:** The estimate and variance of the intercept are:

\[ a = \bar{y} - b \bar{x}; \quad \text{var}(a) = \sigma^2/n + \frac{\sigma^2}{n \sum(x - \bar{x})^2} \]

The estimate and variance of the intercept are:

\[ b = \frac{\sum(x - \bar{x})\bar{y}}{n \sum(x - \bar{x})^2}; \quad \text{var}(b) = \frac{\sigma^2}{n \sum(x - \bar{x})^2} \]

Here \( \sigma = 1. \)

For a uniform random variable on \([-1, 1]\), it can be shown that the variance is \( \frac{1}{3} \). It follows that \( E[\sum(x - \bar{x})^2] = \frac{1}{3} \). When sample points are divided equally between the two ends of the interval, \( \sum(x - \bar{x})^2 = n \). The ratio of the expected SE for the slope in the first design to the SE in the second design is then \( \sqrt{\frac{3}{n}} \). Here, this ratio is approximately 0.56. Asymptotically, it is approximately 0.58.
Exercise 1

The data set `cities` lists the populations (in thousands) of Canada’s largest cities over 1992 to 1996. There is a division between Ontario and the West (the so-called “have” regions) and other regions of the country (the “have-not” regions) that show less rapid growth. To identify the “have” cities we can specify

```r
cities$have <- factor((cities$REGION=="ON") | (cities$REGION=="WEST"))
```

Plot the 1996 population against the 1992 population using different colors to distinguish the two categories of city, both using the raw data and taking logarithms of data values.

```r
plot(POP1996 ~ POP1992, data=cities, col=as.integer(cities$have))
plot(log(POP1996) ~ log(POP1992), data=cities, col=as.integer(cities$have))
```

Which of these plots is preferable? Explain.

Now carry out the regressions:

```r
cities.lm1 <- lm(POP1996 ~ have+POP1992, data=cities)
cities.lm2 <- lm(log(POP1996) ~ have+log(POP1992), data=cities)
```

and examine diagnostic plots. Which of these seems preferable? Interpret the results.

The required plots are given below.

![Figure 1](image)

Figure 1: Red circles indicate the ‘have’ cities, and black circles indicate the ‘have-not’ cities. In the left panel, data are untransformed, while the right panel uses logarithmic scales.

The second plot is preferable, since it spreads the plotted points out more evenly, while the first plot contains the large cluster of points in one corner. Population comparisons are
Consider again the moths data set of Section 8.4.

(a) What happens to the standard error estimates when the poisson family is used in glm() instead of the quasipoisson family?

(b) Analyze the P moths, in the same way as the A moths were analyzed. Comment on the effect of transect length.

The highest numbers are now for SWeak and for Disturbed. The number of moths increases with transect length, by a factor of approximately 1.74 (= e^1.14) for each one meter increase in transect length.

Exercise 9

(a) The dispersion estimate was 2.69. Use of the quasipoisson family has the effect of increasing SEs by a factor of \(\sqrt{2.69}\), relative to the poisson family. See the first two lines on p. 215. SEs on p. 214-215 will thus be reduced by this factor if the poisson family is (inappropriately) specified.

(b) > sapply(split(moths$P, moths$habitat), sum)

<table>
<thead>
<tr>
<th>Bank</th>
<th>Disturbed</th>
<th>Overside</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

> moths$habitat <- relevel(moths$habitat, ref="Overside")
> P.glm <- glm(P ~ habitat + log(meters), family=quasipoisson, +
|        | data=moths)

These plots indicate the need for transformation. It is also a good idea to check plots of the residuals versus the predictors, as in

plot(resid(cities.lm2) ~ log(cities$POP1996) - have+log(Pop1992), +
|        + data=cities)

plot(resid(cities.lm2) ~ cities$habe)

These plots (not shown) and plots of Cook’s distance and normal probability plots (also not shown) do not indicate any problems.

Here is the regression summary:

> summary(cities.lm2)

Call:
| lm(formula = log(POP1996) ~ have + log(POP1992), data = cities)
| Residuals:
| Min 1Q Median 3Q Max
| -0.03478 -0.01698 -0.00332 0.01836 0.04821

Coefficients:
| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|---------|
| (Intercept) | -0.05565 | 0.03062 | -1.82 | 0.063 |
| haveTRUE | 0.02254 | 0.01004 | 2.25 | 0.026 |
| log(Pop1992) | 1.01352 | 0.00523 | 193.92 | <2e-16 |

Residual standard error: 0.0478 on 22 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 2.05e+04 on 2 and 22 DF, p-value: <2e-16

This suggests that the ‘have’ cities grew faster between 1992 and 1996 than the ‘have-not’ cities.
In the data set \texttt{cement} (\texttt{MASS} package), examine the dependence of \( y \) (amount of heat produced) on \( x_1, x_2, x_3 \) and \( x_4 \) (which are proportions of four constituents). Begin by examining the scatterplot matrix. As the explanatory variables are proportions, do they require transformation, perhaps by taking \( \log(x/(100-x)) \)? What alternative strategies might be useful for finding an equation for predicting heat?

First, obtain the scatterplot matrix for the untransformed cement data:

\[
\begin{array}{cccc}
\text{y} & \text{x1} & \text{x2} & \text{x3} \\
\text{x1} & & & \\
\text{x2} & & & \\
\text{x3} & & & \\
\end{array}
\]

![Figure 3: Scatterplot matrix for the cement data.](image)

Since the explanatory variables are proportions, a transformation such as that suggested might be helpful, though the bigger issue is the fact that the sum of the explanatory variables is nearly constant. Thus, there will be severe multicollinearity as indicated by the variance inflation factors:

\[
\begin{array}{cccc}
\text{y} & \text{x1} & \text{x2} & \text{x3} \\
\text{x1} & & & \\
\text{x2} & & & \\
\text{x3} & & & \\
\end{array}
\]

Exercise 2

In the data set (an artificial one of 3121 patients, that is similar to a subset of the data analyzed in Stiel et al. (2001)) \texttt{minor.head.injury}, obtain a logistic regression model relating \texttt{clinically.important.brain.injury} to other variables. Patients whose risk is sufficiently high will be sent for CT (computed tomography). Using a risk threshold of 0.025 (2.5%), turn the result into a decision rule for use of CT.

\[
\begin{array}{cccc}
\text{age.65} & \text{amnesia.before} & \text{basal.skull.fracture} & \text{GCS.decrease} \\
\text{[1,]} & 0 & 0 & 0 \\
\text{[2,]} & 1 & 1 & 1 \\
\text{GCS.15.2.hours} & \text{high.risk} & \text{loss.of.consciousness} & \text{[1,]} \\
\text{[1,]} & 0 & 0 & 0 \\
\text{[2,]} & 1 & 1 & 1 \\
\text{open.skull.fracture} & \text{vomiting} & \text{clinically.important.brain.injury} & \text{[1,]} \\
\text{[1,]} & 0 & 0 & 0 \\
\text{[2,]} & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{injury.glm} & \text{<-} & \text{glm}(&\text{clinically.important.brain.injury} & \text{~.} \\
\text{+}) & \text{data=}\text{head.injury, \text{family=binomial})} \\
\text{> summary(injury.glm)} \\
\text{Call:} & \text{glm(formula = clinically.important.brain.injury ~ ., \text{family = binomial,}} \\
\text{data = head.injury)} \\
\text{Deviance Residuals:} & \text{Min} & \text{Median} & \text{3Q} & \text{Max} \\
\text{-2.277} & \text{-0.351} & \text{-0.210} & \text{-0.149} & \text{3.003} \\
\text{Coefficients:} & \text{Estimate} & \text{Std. Error} & \text{z value} & \text{Pr(>|z|)} \\
\text{(Intercept)} & -4.497 & 0.163 & -27.61 & < 2e-16 \\
\text{age.65} & 1.373 & 0.183 & 7.52 & 5.6e-14 \\
\text{amnesia.before} & 0.689 & 0.172 & 4.00 & 6.4e-05 \\
\text{basal.skull.fracture} & 1.962 & 0.206 & 9.50 & < 2e-16 \\
\text{GCS.decrease} & -0.269 & 0.368 & -0.73 & 0.46515 \\
\end{array}
\]
Preliminaries

> library(DAAG)

Exercise 1

The following table shows numbers of occasions when inhibition (i.e., no flow of current across a membrane) occurred within 120 s, for different concentrations of the protein peptide-C (data are used with the permission of Claudia Haarman, who obtained these data in the course of her PhD research). The outcome yes implies that inhibition has occurred.

<table>
<thead>
<tr>
<th>conc 0.1 0.5 1 10 20 30 50 70 80 100 150</th>
<th>no</th>
<th>7</th>
<th>1</th>
<th>10</th>
<th>9</th>
<th>2</th>
<th>9</th>
<th>13</th>
<th>1</th>
<th>1</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------------------------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Use logistic regression to model the probability of inhibition as a function of protein concentration.

It is useful to begin by plotting the logit of the observed proportions against \( \log(\text{conc}) \). Concentrations are nearer to equally spaced on a scale of relative dose, rather than on a scale of dose, suggesting that it might be appropriate to work with \( \log(\text{conc}) \). In order to allow plotting of cases where no = 0 or yes = 0, we add 0.5 to each count.

![Figure 1: Plot of log((yes+0.5)/(no+0.5)), against log(conc).](image)

The plot seems consistent with the use of \( \log(\text{conc}) \) as the explanatory variable.

The code for the regression is:

```r
> p <- yes/n
> inhibit(glm <- glm(p ~ I(log(conc)), family=binomial, weights=n)
> summary(inhibit glm)
```

Call:

```
glm(formula = p ~ I(log(conc)), family = binomial, weights = n)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.251 -1.060 -0.503 0.315 1.351
```

The multicollinearity is less severe, and we can proceed. We consult the standard diagnostics using

```r
> par(mfrow=c(1,4))
> plot(cement.lm2)
> par(mfrow=c(1,1))
```

![Figure 4: Diagnostic plots for the model cement.lm2](image)

Nothing seems amiss on these plots. The three variable model seems satisfactory. Upon looking at the summary, one might argue in favour of removing the variable \( x3 \).

For the logit analysis, first define the logit function:

```r
> logit <- function(x) log(x/(100-x))
```

Now form the transformed data frame, and show the scatterplot matrix:

```r
> logitcement <- data.frame(logit(cement[,c(“x1”, “x2”, “x3”, “x4”)]), +
 y=ceement[, “y”])
> pairs(logitcement)
```

![Figure 5: Scatterplot matrix for the logits of the proportions.](image)
Chapter 6 Exercises

Notice that the relationship between \( x_2 \) and \( x_4 \) is now more nearly linear. This is helpful; it is advantageous for collinearities or multicollinearities to be explicit.

Now fit the full model, and plot the diagnostics:

```r
> logitcement.lm <- lm(y ~ x1+x2+x3+x4, data=logitcement)
> par(mfrow=c(1,4))
> plot(logitcement.lm)
> par(mfrow=c(1,1))
```

Figure 6: Diagnostic plots for the model that works with logits.

This time, the multicollinearity problem is less extreme, though it is still notable. Some observations have now influential outliers. In this problem, we may be best off not transforming the predictors.

**Exercise 4**

The data frame `hills2000` in our DAAG package has data, based on information from the Scottish Running Resource web site, that updates the 1984 information in the data set `hills`. Fit a regression model, for men and women separately, based on the data in `hills2000`. Check whether it fits satisfactorily over the whole range of race times. Compare the equation that you obtain with that based on the `hills` data frame.

We begin with the same kind of transformed model that we tried in Section 6.3 for the `hills` data, examining the diagnostic plots.

```r
> hills2000.loglm <- lm(log(time) ~ log(dist) + log(climb), data=hills2000)
> par(mfrow=c(1,4))
> plot(hills2000.loglm)
> par(mfrow=c(1,1))
```

Figure 7: Diagnostic plots for `hills2000.loglm`
Chapter 7 Exercises

The first of the diagnostic plots (residuals versus fitted values) reveals three potential outliers, identified as 12 Trig Trog, Chapelgill, and Caerketton. A robust fit is however a safer guide. The plot from such a fit shows Eldon Too and Braemar as outliers. El-Brim-Ick stands out as different primarily because there is residual curvature in the plot.

Figure 8: Residuals vs fitted values for hills2000r.loglm

There is clear evidence of curvature in the plot of residuals. Caerketton now stands out. We will omit that also, for the time being.

A possibility is to try the addition of the interaction term log(dist):log(climb). This does not remove the curvature in the plot of residuals versus fitted values.

Additional Note:
Use of spline curves to transform the explanatory variables does work well. We include residuals and fitted values for the three omitted races in the plot. The code is

> library(splines)
> use <- !rownames(hills2000) %in% c("Eildon Too", "Braemar", "Caerketton")
> hills2000r.loglm <- lm(log(time) ~ log(dist) + log(climb), +   data=hills2000[use,])
> plot(hills2000r.loglm, panel=panel.smooth, which=1)

> attach(seedrates)
> y <- model.matrix(seedrates.pol)[, 2]
> y.lm <- lm(y ~ rate + I(rate^2))
> coef(y.lm)

(Intercept) rate I(rate^2)
-1.265e+00 1.265e-02 3.917e-20

From the following output, we can infer that the first orthogonal polynomial is

\[ p_1(x) = -1.265 + 0.1265x \]

and the second orthogonal polynomial is

\[ p_2(x) = 3.742 - 0.8552x + 0.004276x^2 \]
The plot of residuals versus fitted values shows no evidence either of trend or of heterogeneity of variance. Caicqueton shows the clearest evidence that is should perhaps be identified as an outlier.

To complete the analysis, check the effect of including back in the model (i) all three omitted points except Caicqueton, and (ii) all three omitted points. If it makes little difference, they should be included back.

A further model that may be tried has time on the left-hand side. The plot of residuals against fitted values then shows clear evidence of curvature.

Addional Note: The following may be interesting. We use the spline model, derived from the hills2000 data, to determine predicted values, and compare these with predicted values from the spline model that is fitted to the hills data.

> hills2000.bs <- lm(log(time) ~ bs(dist,4)*bs(climb,4), data=hills2000[use,])
> hills.bs <- lm(log(time) ~ bs(dist,4)*bs(climb,4), data=hills[-18,])
> fits <- predict(hills.bs, newdata=hills2000.bs)
> plot(fits, fitted(hills2000.bs), main="Fitted values, from hills.bs",
+ xlab="Fitted values, hills2000.bs model")
> mtext(side=3, line=1, "All fitted values are for the hills data")
> abline(0,1)

The warnings arise because some values of climb for the hills data lie outside of the range of this variable for the hills2000 data.

Exercise 5
Section 6.1 used lm() to analyze the allbacks data that are presented in Figure 6.1. Repeat the analysis using (1) the function rlm() in the MASS package, and (2) the function log() in the MASS package. Compare the two sets of results with the results in Section 6.1.

Here are fits, w/wo intercept, using rlm()

> allbacks.rlm <- rlm(weight ~ volume+area, data=allbacks)
> summary(allbacks.rlm)

Call: rlm(formula = weight ~ volume + area, data = allbacks)

Residuals:
Min 1Q Median 3Q Max

Exercise 18*
Compare the two results

seedrates.lm <- lm(grain ~ rate + I(rate^2),
+ data=seedrates)
seedrates.pol <- lm(grain ~ poly(rate,2),
+ data=seedrates)

Check that the fitted values and residuals from the two calculations are the same, and that the t-statistic and p-value are the same for the final coefficient, i.e., the same for the coefficient labeled poly(rate, 2)2 in the polynomial regression as for the coefficient labeled I(rate^2) in the regression on rate and rate^2.

Regress the second column of model.matrix(seedrates.pol) on rate and I(rate^2), and similarly for the third column of model.matrix(seedrates.pol). Hence express the first and second orthogonal polynomial terms as functions of rate and rate^2.

The following shows that the fitted values and residuals are the same for the two calculations. The t-statistic and p-value are also the same for the final coefficient.

> seedrates.lm <- lm(grain ~ rate + I(rate^2), data=seedrates)
> seedrates.pol <- lm(grain ~ poly(rate, 2), data=seedrates)
> fitted(seedrates.lm)-fitted(seedrates.pol)
> resid(seedrates.lm)-resid(seedrates.pol)
Chapter 7 Exercises

Exercise 14

The ozone data frame holds data for nine months only, on ozone levels at the Halley Bay station between 1956 and 2000. (See Christie (2000) and Shanklin (2001) for the scientific background. Up to date data are available from the web page http://www.nerc-bas.ac.uk/public/icd/jds/ozone/.) Replace zeros by missing values. Determine, for each month, the number of missing values. Plot the October levels against Year, and fit a smooth curve. At what point does there seem to be clear evidence of a decline? Plot the data for other months also. Do other months show a similar pattern of decline?

A simple way to replace 0's by missing value codes is the following:

```
> names(ozone) # these names are all but the first 8
 [1] "Year" "Aug" "Sep" "Oct" "Nov" "Dec" "Jan" "Feb" "Mar" "Apr" "Annual"
> Ozone <- ozone
> for (i in 2:11) {
+ Ozone[Ozone[,i]==0, i] <- NA
+ }
```

One way to count up the monthly missing values is the following:

```
> sapply(Ozone[, -c(1,11)], function(x) sum(is.na(x)))
Aug Sep Oct Nov Dec Jan Feb Mar Apr
 21 8 0 0 0 0 0 11
```

A plot of the October ozone levels against Year can be obtained as follows:

```
> plot(Year, Ozone[,11], xlab="Year", ylab="October ozone levels (DU)",
 ylim=c(150, 300), pch=16, cex=0.5)
> lines(lowess(Year, Ozone[,11]), col="red")
```

We see that ozone level is decreasing throughout the period, but there is an acceleration in the mid- to late-1970s.

To plot the data for the other months, we can do the following:

```
> Ozone <- Ozone
> for (i in 1:10) {
+ Ozone[Ozone[,i]==0, i] <- NA
+ }
```

A plot of the October ozone levels against Year can be obtained as follows:

```
> plot(Year, Ozone[,11], xlab="Year", ylab="October ozone levels (DU)",
 ylim=c(150, 300), pch=16, cex=0.5)
> lines(lowess(Year, Ozone[,11]), col="red")
```

We see that ozone level is decreasing throughout the period, but there is an acceleration in the mid- to late-1970s.

To plot the data for the other months, we can do the following:

```
> Ozone <- Ozone
> for (i in 1:10) {
+ Ozone[Ozone[,i]==0, i] <- NA
+ }
```

A plot of the October ozone levels against Year can be obtained as follows:

```
> plot(Year, Ozone[,11], xlab="Year", ylab="October ozone levels (DU)",
 ylim=c(150, 300), pch=16, cex=0.5)
> lines(lowess(Year, Ozone[,11]), col="red")
```

Comparison of the coefficients of the intercept and no-intercept with the lm() counterparts reveals larger differences in coefficient estimates for the intercept models. The robust method has given smaller coefficient standard errors than lm().

The influence of the outlying observation (the 13th) is reduced using the robust method; therefore, on the residual plots we see this observation featured even more prominently as an outlier than on the corresponding plots for the lm() fits.

We next consider the lqs() approach. By default, lqs() employs a resistant regression method called least trimmed squares regression (lts), an idea due to Rousseeuw.
The method minimizes the sum of the $k$ smallest squared residuals, where $k$ is usually taken to be slightly larger than 50% of the sample size. This approach removes all of the influence of outliers on the fitted regression line.

```r
> library(MASS)
> allbacks.lqs <- lqs(weight ~ volume + area, data=allbacks)
> allbacks.lqs$coefficients # intercept model
(Intercept) volume area
 -59.6232 0.7737 0.4709
```

The robust coefficient estimates of volume and area are similar to the corresponding coefficient estimates for the `lm()` fit.

Here are plots of residuals against fitted values, for the two models.

```r
> par(mfrow=c(1,2))
> plot(allbacks.lqs$residuals ~ allbacks.lqs$fitted.values)
> mtext(side=3, line=1, "lqs(), intercept included")
> plot(allbacks.lqs0$residuals ~ allbacks.lqs0$fitted.values)
> mtext(side=3, line=1, "lqs(), no intercept")
> par(mfrow=c(1,1))
```

Figure 11: Residuals vs fitted values, for the `lqs()` models with & without intercept.

Because the outlying observation (13) is now not used at all in the final regression coefficient estimates, it has no influence. Neither does observation 11, another outlier. Both points plot farther away from the reference line at 0 than in the corresponding `lm()` residual plots.

**Exercise 7**

Check the variance inflation factors for `bodywt` and `lsize` for the model `brainwt ~ bodywt + lsize`, fitted to the `litters` data set. Comment.

We can use the function `vif()` to determine the variance inflation factors for the litters data as follows:

```r
> litters.lm <- lm(brainwt ~ bodywt + lsize, data=litters)
> vif(litters.lm)
```

There are no extreme outliers. Observation 19 is a mild outlier which exerts moderate influence. This should not be of major concern. The plot of the residuals versus the fitted values does indicate that some of the nonlinearity has not been satisfactorily modeled.

**Exercise 12**

Continuing to refer to exercise 8, obtain plots of the spline basis curves for the 5-degree-of-freedom case. That is, plot the relevant column of the model matrix against $y$.

The first basis function is a constant, to include an intercept in the model. (Note that this implies that there are actually 6 degrees of freedom in the model.) The remaining basis functions are plotted as follows:

```r
> X5 <- model.matrix(geo.sp15)
> plot(X5[,2] ~ geophones$distance, type="l")
> lines(X5[,3] ~ geophones$distance, col=3)
> lines(X5[,4] ~ geophones$distance, col=4)
> lines(X5[,5] ~ geophones$distance, col=5)
> lines(X5[,6] ~ geophones$distance, col=6)
```

Figure 7: Spline basis functions.

We could also use `matplot()` for this problem.

```r
matplot(geophones$distance, X5[,1], type="l")
```
We fit the 4-, 5-, and 6-degree-of-freedom spline models to the geophones data as follows:

```r
> geo.sp14 <- lm(thickness ~ ns(distance, df=4), data=geophones)
> geo.sp15 <- lm(thickness ~ ns(distance, df=5), data=geophones)
> geo.sp16 <- lm(thickness ~ ns(distance, df=6), data=geophones)
```

The fitted curves are plotted thus:

```r
> plot(geophones)
> lines(spline(geophones$distance, predict(geo.sp14), col=1))
> lines(spline(geophones$distance, predict(geo.sp15), col=2, lty=2))
> lines(spline(geophones$distance, predict(geo.sp16), col=3, lty=4))
> bottomleft <- par()
> legend(bottomleft[1], bottomleft[2], lty=c(1:2, 4), col=1:3,
> legend=c("4 df", "5 df", "6 df"), xjust=0, yjust=0)
```

The 6-degree-of-freedom case gives the best fit to the data; it captures some of the curvature at the large distance values, while retaining smoothness in other regions. The 5-degree-of-freedom case is smoother than the quartic, while capturing similar amounts of curvature in the large distance region.

The 95% confidence bounds for the 5-degree-of-freedom case can be obtained and plotted as follows:

```r
> plot(geophones, pty="s")
> lines(spline(geophones$distance, predict(geo.sp15), col=2))
> lines(spline(geophones$distance, predict(geo.sp16), interval="confidence")[,"lwr"],
> col=2)
> lines(spline(geophones$distance, predict(geo.sp16), interval="confidence")[,"upr"],
> col=2)
```

The data frame `table.b3` in the `MPV` package contains data on gas mileage and eleven other variables for a sample of 32 automobiles.

10. A scatterplot of litter size versus body weight would confirm that the two variables have a relation which is close to linear. The effect is to give inflated standard errors in the above regression, though not enough to obscure the relationship between brain weight and body weight and litter size completely.

It is hazardous to make predictions of brain weight for pigs having body weight and litter size which do not lie close to the line relating these variables.

### Exercise 10

(a) Construct a scatterplot of `y` (mpg) versus `x1` (displacement). Is the relationship between these variables nonlinear?

(b) Use the `xyplot()` function, and `x11` (type of transmission) as a `group` variable. Is a linear model reasonable for these data?

(c) Plot the residuals against the variable `x7` (number of transmission speeds), again using `x11` as a `group` variable. Is there anything striking about this plot?

### Exercise 11

Check the diagnostic plots for the results of exercise 8 for the 5-degree-of-freedom case. Are there any influential outliers?

The standard diagnostics for the 5-degree-of-freedom spline model fit to the geophones data can be plotted using

```r
> library(MPV)
> plot(y ~ x1, data=table.b3)
```
Chapter 7 Exercises

Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (May 1, 2010)

Preliminaries
> library(DAAG)
> library(splines)

Exercise 1
Re-analyze the sugar weight data of Subsection 7.1.1 using the \( \log(\text{weight}) \) in place of weight.

From the scatterplot in Figure 7.1, it is clear that the treatment variances are not constant. Perhaps a logarithmic transformation will stabilize the variances.

> sugar.log.aov <- aov(log(weight) ~ trt, data=sugar)
> summary.lm(sugar.log.aov)

Residuals:
Min 1Q Median 3Q Max
-0.03463 -0.00872 0.03918 0.07069

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.122 0.0574 71.90 9.1e-13
trtA -0.2902 0.0811 -3.58 0.0072
trtB -0.2011 0.0811 -2.48 0.0382
trtC -0.5229 0.0811 -6.44 0.0002

Residual standard error: 0.0994 on 8 degrees of freedom
Multiple R-squared: 0.843, Adjusted R-squared: 0.784

> summary.lm(sugarlog.aov)

Call:
aov(formula = log(weight) ~ trt, data = sugar)

Residuals:
Min 1Q Median 3Q Max
-0.03463 -0.00872 0.03918 0.07069

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.122 0.0574 71.90 9.1e-13
trtA -0.2902 0.0811 -3.58 0.0072
trtB -0.2011 0.0811 -2.48 0.0382
trtC -0.5229 0.0811 -6.44 0.0002

From the anova summary, we see that the second model is preferable. The standard diagnostics are given below.

> summary(cuckoos.lm2)

Call:
lm(formula = length ~ breadth + species, data = cuckoos)

Residuals:
Min 1Q Median 3Q Max
-2.3734 -0.4911 -0.0682 0.5298 2.5447

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.5156 3.0177 3.15 0.00207
speciesmeadow.pipit -0.3031 0.3114 -0.97 0.33241
speciespied.wagtail -0.0132 0.3145 -0.04 0.96650
speciesrobin -1.2391 0.3530 -3.51 0.00064

Residual standard error: 0.837 on 113 degrees of freedom
Multiple R-squared: 0.419, Adjusted R-squared: 0.388

Exercise 8
Apply spline regression to the geophones data frame. Specifically, regress thickness against distance, and check the fits of 4-, 5- and 6-degree-of-freedom cases. Which case gives the best fit to the data? How does this fitted curve compare with the polynomial curves obtained in the previous exercise? Calculate pointwise confidence bounds for the 5-degree-of-freedom case.
Chapter 7 Exercises

angle:car3 -0.0217 0.0112 -1.93 0.0654

Residual standard error: 0.0701 on 23 degrees of freedom
Multiple R-squared: 0.941, Adjusted R-squared: 0.934
F-statistic: 123 on 3 and 23 DF, p-value: 2.65e-14

We can see from the diagnostics below that observation 17 is still somewhat influential, but it is no longer an outlier. All of the data are accommodated by this new model reasonably well.

Figure 3: Diagnostic plots for toycars.lm2

Exercise 5

The data frame **cuckoos** holds data on the lengths and breadths of eggs of cuckoos, found in the nests of six different species of host birds. Fit models for the regression of length on breadth that have:

A: a single line for all six species.

B: different parallel lines for the different host species.

C: separate lines for the separate host species.

Use the `anova()` function to print out the sequential analysis of variance table. Which of the three models is preferred? Print out the diagnostic plots for this model. Do they show anything worthy of note? Examine the output coefficients from this model carefully, and decide whether the results seem grouped by host species. How might the results be summarized for reporting purposes?

```r
> cuckoos.lm <- lm(length ~ breadth, data=cuckoos) # one line
> cuckoos.lm2 <- lm(length ~ breadth + species, data=cuckoos) # parallel lines
> cuckoos.lm3 <- lm(length ~ breadth + species + species:breadth, data=cuckoos) # different lines
> anova(cuckoos.lm, cuckoos.lm2, cuckoos.lm3)

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>length ~ breadth</th>
<th>breadth + species</th>
<th>breadth + species:breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res.Df</td>
<td>RSS</td>
<td>Df</td>
<td>Sum of Sq</td>
</tr>
<tr>
<td>1</td>
<td>118</td>
<td>101.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>113</td>
<td>79.1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>108</td>
<td>75.0</td>
<td>5</td>
</tr>
</tbody>
</table>
```

Residual standard error: 0.0994 on 8 degrees of freedom
Multiple R-squared: 0.843, Adjusted R-squared: 0.784
F-statistic: 14.3 on 3 and 8 DF, p-value: 0.00141

On the log scale, the differences from control remain discernible. However the plot should be compared with plots from random normal data. This should be repeated several times. There will be occasional samples that show changes in variability of the observed residuals that are of the extent observed for these data.

![Figure 1: Plot of residuals versus fitted values, for the log(sugar weight) data.](image)

**Exercise 3**

Use the method of Section 7.3 to determine, formally, whether there should be different regression lines for the data frames `elastic1` and `elastic2` from Exercise 1 in Section 5.11.

It will be convenient to work with a single data frame:

```r
> elastic2$expt <- rep(2, length(elastic2$stretch))
> elastic1$expt <- rep(1, length(elastic1$stretch))
> elastic <- rbind(elastic1, elastic2)
> elastic$expt <- factor(elastic$expt)
```

We fit three models as follows:

```r
> e.lm1 <- lm(distance ~ stretch, data=elastic) # a single line
> e.lm2 <- lm(distance ~ stretch + expt, data=elastic)
> e.lm3 <- lm(distance ~ stretch + expt + stretch:expt, data=elastic)
```

The following sequential analysis of variance table indicates that there is mild evidence against the two lines having the same intercept.

```r
> anova(e.lm1, e.lm2, e.lm3)
```
Analysis of Variance Table

Model 1: distance ~ stretch
Model 2: distance ~ stretch + expt
Model 3: distance ~ stretch + expt + stretch:expt

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2549</td>
<td>1</td>
<td>3.26</td>
<td>0.098</td>
<td>0.909</td>
</tr>
<tr>
<td>2</td>
<td>2017</td>
<td>1</td>
<td>352</td>
<td>0.034</td>
<td>0.855</td>
</tr>
<tr>
<td>3</td>
<td>1978</td>
<td>1</td>
<td>39</td>
<td>0.836</td>
<td>0.366</td>
</tr>
</tbody>
</table>

Recall, however, from Exercise 5.1, that observation 7 is an influential outlier. Let’s check to see what happens to the three models when this observation is deleted:

Model 1: distance ~ stretch + angle + car
Model 2: distance ~ stretch + angle:car + car
Model 3: distance ~ stretch + angle:car + stretch:expt + car

Analysis of Variance Table

Model 1: distance ~ angle + car
Model 2: distance ~ angle + angle:car + car
Model 3: distance ~ angle + angle:car + stretch:expt + car

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1205</td>
<td>1</td>
<td>26.5</td>
<td>1.79</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>1042</td>
<td>1</td>
<td>42.2</td>
<td>0.46</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Now, we see that there is really very little evidence of a difference between the two lines. Observation 7 seems different in character from other observations.

Exercise 4

The data frame toy cars consists of 27 observations on the distance (in meters) traveled by one of three different toy cars on a smooth surface, starting from rest at the top of a 16-inch-long ramp tilted at varying angles (measured in degrees). Because of differing frictional effects for the three different cars, we seek three regression lines relating distance traveled to angle.

(a) As a first try, fit the model in which the three lines have the same slope but have different intercepts.

(b) Note the value of $R^2$ from the summary table. Examine the diagnostic plots carefully. Is there an influential outlier? How should it be treated?

(c) The physics of the problem actually suggests that the three lines should have the same intercept (very close to 0, in fact), and possibly differing slopes, where the slopes are inversely related to the coefficient of dynamic friction for each car. Fit the model, and note that the value of $R^2$ is slightly lower than that for the previously fitted model. Examine the diagnostic plots. What has happened to the influential outlier? In fact, we have exhibited an example where taking $R^2$ too seriously could be somewhat hazardous; in this case, a more carefully thought out model can accommodate all of the data satisfactorily. Maximizing $R^2$ does not necessarily give the best model!