
Chapter 1 Exercises 1

Data Analysis & Graphics Using R, 3rd edn – Solutions to Selected Exercises
(April 29, 2010)

Preliminaries

> library(DAAG)

Exercise 1
The following table gives the size of the floor area (ha) and the price ($000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.
. . . . . .
Type these data into a data frame with column names area and sale.price.

(a) Plot sale.price versus area.

(b) Use the hist() command to plot a histogram of the sale prices.

(c) Repeat (a) and (b) after taking logarithms of sale prices.

The Aranda house price data are also in a data frame in the DAAG package, called
houseprices.

(a) Omitted

(b) Omitted

(c) The following code demonstrates the use of the log="y" argument to cause plot
to use a logarithmic scale on the y axis, but with axis tick labels that are specified
in the original units.

> plot(sale.price ~ area, data=houseprices, log="y",

+ pch=16, xlab="Floor Area", ylab="Sale Price",

+ main="(c) log(sale.price) vs area")

The following puts a logarithmic scale on the x-axis of the histogram.

> hist(log(houseprices$sale.price),

+ xlab="Sale Price (logarithmic scale)",

+ main="(d) Histogram of log(sale.price)")

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

700 900 1100 1300

15
0

20
0

30
0

(c) log(sale.price) vs area

Floor Area

Sa
le

 P
ric

e

(d)  Histogram of log(sale.price)

Sale Price (logarithmic scale)

Fr
eq

ue
nc

y

4.6 5.0 5.4 5.8

0
1

2
3

4
5

6

Figure 1: Plots for Exercise
2c.

Here is an alternative that prints x-axis labels in the original units:
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> logbreaks <- hist(log(houseprices$sale.price))$breaks

> hist(log(houseprices$sale.price), xlab="Sale Price",

+ axes=FALSE, main="Aranda House Price Data")

> axis(1, at=logbreaks,labels=round(exp(logbreaks),0),

+ tick=TRUE)

> axis(2, at=seq(0,6), tick=TRUE)

> box()

Exercise 2
The orings data frame gives data on the damage that had occurred in US space shuttle
launches prior to the disastrous Challenger launch of January 28, 1986. Only the ob-
servations in rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in
deciding whether to proceed with the launch.
Create a new data frame by extracting these rows from orings, and plot total incidents
against temperature for this new data frame. Obtain a similar plot for the full data set.

Use the following to extract rows that hold the data that were presented in the pre-
launch charts:

> orings86 <- orings[c(1,2,4,11,13,18), ]

Points are best shown with filled symbols in the first plot, and with open symbols in the
second plot. (Why?)

Exercise 6
Create a data frame called Manitoba.lakes that contains the lake’s elevation (in meters
above sea level) and area (in square kilometers) as listed below. Assign the names of
the lakes using the row.names() function.

. . . .

Plot lake area against elevation, identifying each point by the name of the lake. Because
of the outlying value of area, use of a logarithmic scale is advantageous.

(a) Use the following code to plot log2(area) versus elevation, adding labeling in-
formation:

attach(Manitoba.lakes)
plot(log2(area) ~ elevation, pch=16, xlim=c(170,280))
# NB: Doubling the area increases log2(area) by 1.0

text(log2(area) ~ elevation,
labels=row.names(Manitoba.lakes), pos=4)

text(log2(area) ~ elevation, labels=area, pos=2)
title("Manitoba's Largest Lakes")
detach(Manitoba.lakes)

Devise captions that explain the labeling on the points and on the y-axis. It will
be necessary to explain how distances on the scale relate to changes in area.

(b) Repeat the plot and associated labeling, now plotting area versus elevation, but
specifying log="y" in order to obtain a logarithmic y-scale. [NB: The log="y"
setting is automatic, after its initial use with plot(), for the subsequent use of
text(). ie, having specified a log scale for the y-axis in the plot() statement, the
same representation on a logarithmic scale is used for the text() command.]
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A better choice of x-axis limits would be c(170, 260)
Note that the data are also in the data frame Manitoba.lakes that is included with

the DAAG package. Before running the code, specify

> attach(Manitoba.lakes)

The following code extracts the lake areas from the Manitoba.lakes data frame and
attaches the lake names to the entries of the resulting vector.

area.lakes <- Manitoba.lakes[[2]]
names(area.lakes) <- row.names(Manitoba.lakes)

Exercise 7
Look up the help for the R function dotchart(). Use this function to display the data
in area.lakes.

> area.lakes <- Manitoba.lakes[[2]]

> names(area.lakes) <- row.names(Manitoba.lakes)

> dotchart(area.lakes, pch=16, main="Areas of Large Manitoba Lakes",

+ xlab="Area (in square kilometers)")

Exercise 11
Run the following code:

gender <- factor(c(rep("female", 91), rep("male", 92)))
table(gender)
gender <- factor(gender, levels=c("male", "female"))
table(gender)
gender <- factor(gender, levels=c("Male", "female"))

# Note the mistake
# The level was "male", not "Male"

table(gender)
rm(gender) # Remove gender

Explain the output from the final table(gender).

The output is

gender
female male

91 92

> table(gender)

gender
male female
92 91

> gender <- factor(gender, levels=c("Male", "female")) # Note the mistake

> # The level was "male", not "Male"

> table(gender)
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gender
Male female

0 91

> rm(gender) # Remove gender

Exercise 18
The Rabbit data frame in the MASS library contains blood pressure change measure-
ments on five rabbits (labeled as R1, R2, . . . , R5) under various control and treatment
conditions. Read the help file for more information. Use the unstack() function (three
times) to convert Rabbit to the following form:

Treatment Dose R1 R2 R3 R4 R5
1 Control 6.25 0.50 1.00 0.75 1.25 1.5
2 Control 12.50 4.50 1.25 3.00 1.50 1.5
3 Control 25.00 10.00 4.00 3.00 6.00 5.0
4 Control 50.00 26.00 12.00 14.00 19.00 16.0
5 Control 100.00 37.00 27.00 22.00 33.00 20.0
6 Control 200.00 32.00 29.00 24.00 33.00 18.0
7 MDL 6.25 1.25 1.40 0.75 2.60 2.4
8 MDL 12.50 0.75 1.70 2.30 1.20 2.5
9 MDL 25.00 4.00 1.00 3.00 2.00 1.5
10 MDL 50.00 9.00 2.00 5.00 3.00 2.0
11 MDL 100.00 25.00 15.00 26.00 11.00 9.0
12 MDL 200.00 37.00 28.00 25.00 22.00 19.0

Dose <- unstack(Rabbit, Dose ~ Animal)[,1]
Treatment <- unstack(Rabbit, Treatment ~ Animal)[,1]
BPchange <- unstack(Rabbit, BPchange ~ Animal)
Rabbit.df <- data.frame(Treatment, Dose, BPchange)

Exercise 20
Convert the data in iris3 (datasets package) to case-by-variable format, with column
names ”Sepal.Length”, ”Sepal.Width”, ”Petal.Length”, ”Petal.Width”, and ”Species”.

This exercise should be asterisked.
For a solution see the help page for iris or iris3. As a follow-on exercise, annotate

the code, explaining what each step does.

Exercise 21*
*The following code uses the for() looping function to plot graphs that compare the
relative population growth (here, by the use of a logarithmic scale) for the Australian
states and territories.

oldpar <- par(mfrow=c(2,4))
for (i in 2:9){
plot(austpop[, 1], log(austpop[, i]), xlab="Year",

ylab=names(austpop)[i], pch=16, ylim=c(0,10))}
par(oldpar)

Find a way to do this without looping. [Hint: Use the function sapply(), with
austpop[,2:9] as the first argument.]
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We give the code, omitting the graphs

> oldpar <- par(mfrow=c(2,4))

> sapply(2:9, function(i, df)

+ plot(df[,1], log(df[, i]),

+ xlab="Year", ylab=names(df)[i], pch=16, ylim=c(0,10)),

+ df=austpop)

> par(oldpar)

There are several subtleties here:

(i) The first argument to sapply() can be either a list (which is, technically, a type of
vector) or a vector. Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an inline function that has
two arguments. The argument i takes as its values, in turn, the sucessive elements
in the first argument to sapply

(iii) Where as here the inline function has further arguments, they area supplied as
additional arguments to sapply(). Hence the parameter df=austpop.

Note that lapply() could be used in place of sapply().
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (April 29, 2010)

Preliminaries

> library(DAAG)

Exercise 1
Use the lattice function bwplot() to display, for each combination of site and sex in
the data frame possum (DAAG package), the distribution of ages. Show the different
sites on the same panel, with different panels for different sexes.

> library(lattice)

> bwplot(age ~ site | sex, data=possum)

Exercise 3
Plot a histogram of the earconch measurements for the possum data. The distribution
should appear bimodal (two peaks). This is a simple indication of clustering, possibly
due to sex differences. Obtain side-by-side boxplots of the male and female earconch
measurements. How do these measurement distributions differ? Can you predict what
the corresponding histograms would look like? Plot them to check your answer.

> par(mfrow=c(1,2), mar=c(3.6,3.6,1.6,0.6))

> hist(possum$earconch, main="")

> boxplot(earconch ~ sex, data=possum, boxwex=0.3, horizontal=TRUE)

> par(mfrow=c(1,1))
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Figure 1: The left panel
shows a histogram of
possum ear conch mea-
surements. The right
panel shows side by side
boxplots, one for each
sex. A horizontal layout
is often advantageous.

Note the alternative to boxplot() that uses the lattice function bwplot(). Placing
sex on the left of the graphics formula leads to horizontal boxplots.

bwplot(sex ~ earconch, data=possum)

The following gives side by side histograms:

> par(mfrow=c(1,2))

> hist(possum$earconch[possum$sex == "f"], border="red", main="")

> hist(possum$earconch[possum$sex == "m"], border="blue", main="")

> par(mfrow=c(1,1))
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The histograms make it clear that sex differences are not the whole of the explanation
for the bimodality.

Alternatively, use the lattice function histogram()

> library(lattice)

> histogram(~ earconch | sex, data=possum)

Note: We note various possible alternative plots.
Density plots, in addition to their other advantages, are easy to overlay. Alternatives

1 & 2 obtain overlaid density plots:

> "Alternative 1: Overlaid density plots"

> fden <- density(possum$earconch[possum$sex == "f"])

> mden <- density(possum$earconch[possum$sex == "m"])

> xlim <- range(c(fden$x, mden$x))

> ylim <- range(c(fden$y, mden$y))

> plot(fden, col="red", xlim=xlim, ylim=ylim, main="")

> lines(mden, col="blue", lty=2)

> library(lattice)

> "Alternative 2: Overlaid density plots, using the lattice package"

> print(densityplot(~earconch, data=possum, groups=sex), main="")

Alternatives 3 and 4 give alternative forms of histogram plot.

> "Alternative 3: Overlaid histograms, using regular graphics"

> fhist <- hist(possum$earconch[possum$sex=="f"], plot=F,

+ breaks=seq(from=40,to=58,by=2))

> mhist <- hist(possum$earconch[possum$sex=="m"], plot=F,

+ breaks=seq(from=40,to=58,by=2))

> ylim <- range(fhist$density, mhist$density)

> plot(fhist, freq=F, xlim=c(40,58), ylim=ylim, border="red", main="")

> lines(mhist, freq=F, border="blue", lty=2)

Note the use of border="red" to get the histogram for females outlined in red. The
parameter setting col="red" gives a histogram with the rectangles filled in red.

Unfortunately, histogram() in the lattice package ignores the parameter groups.
With histogram(), we are limited to side by side histograms:

> "Alternative 4: Side by side histograms, using the lattice package"

> print(histogram(~earconch | sex, data=possum), main="")

Both for density plots and for histograms, do we really want the separate total areas
to be scaled to 1, as happens with the setting freq=FALSE, rather than to the total
frequencies in the respective populations? This will depend on the specific application.

Exercise 4
For the data frame ais (DAAG package), draw graphs that show how the values of the
hematological measures (red cell count, hemoglobin concentration, hematocrit, white cell
count and plasma ferritin concentration) vary with the sport and sex of the athlete.

Use for example
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> bwplot(sport ~ rcc | sex, data=ais)

Exercise 5
Using the data frame cuckoohosts, plot clength against cbreadth, and hlength against
hbreadth, all on the same graph and using a different color to distinguish the first set of
points (for the cuckoo eggs) from the second set (for the host eggs). Join the two points
that relate to the same host species with a line. What does a line that is long, relative
to other lines, imply? Here is code that you may wish to use:

attach(cuckoohosts)
plot(c(clength, hlength), c(cbreadth, hbreadth),

col=rep(1:2,c(12,12)))
for(i in 1:12)lines(c(clength[i], hlength[i]),

c(cbreadth[i], hbreadth[i]))
text(hlength, hbreadth, abbreviate(rownames(cuckoohosts),8))
detach(cuckoohosts)

A line that is long relative to other lines, as for the wren, is indicative of an unusually
large difference in egg dimensions.

Exercise 7
Install and attach the package Devore5, available from the CRAN sites. Then gain access
to data on tomato yields by typing

library(Devore5)
tomatoes <- ex10.22

This data frame gives tomato yields at four levels of salinity, as measured by electrical
conductivity (EC, in nmhos/cm).

(a) Obtain a scatterplot of yield against EC.

(b) Obtain side-by-side boxplots of yield for each level of EC.

(c) The third column of the data frame is a factor representing the four different levels
of EC. Comment upon whether the yield data are more effectively analyzed using
EC as a quantitative or qualitative factor.

> library(Devore6)

> tomatoes <- ex10.22

> plot(yield ~ EC, data=tomatoes)

> boxplot(split(tomatoes$yield, tomatoes$EC))
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Figure 2: The left panel
plots yield against EC.
The right panel shows
boxplots of yield for
each distinct value of
EC.

The data are more effectively analyzed using EC as a quantitative factor. Treating EC
as a factor would ignore the linear or near linear dependence of yield on EC.

Exercise 8
Examine the help for the function mean(), and use it to learn about the trimmed mean.
For the total lengths of female possums, calculate the mean, the median, and the 10%
trimmed mean. How does the 10% trimmed mean differ from the mean for these data?
Under what circumstances will the trimmed mean differ substantially from the mean?

> fossum <- possum[possum$sex=="f", ]

> mean(fossum$totlngth)

[1] 87.90698

> c(median=median(fossum$totlngth),

+ "trim-mean-0.1"= mean(fossum$totlngth, trim=0.1))

median trim-mean-0.1
88.50000 88.04286

The following gives an indication of the shape of the distribution:
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Figure 3: Density plot of female possum
lengths.

> totlngth <- fossum[, "totlngth"]

> plot(density(totlngth), main="")

The distribution is negatively skewed, i.e., it has a tail to the left. As a result, the
mean is substantially less than the mean. Removal of the smallest and largest 10% of
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values leads to a distribution that is more nearly symmetric. The mean is then similar
to the median. (Note that trimming the same amount off both tails of the distribution
does not affect the median.)

The trimmed mean will differ substantially from the mean when the distribution is
positively or negatively skewed.

Exercise 9
Assuming that the variability in egg length for the cuckoo eggs data is the same for all
host birds, obtain an estimate of the pooled standard deviation as a way of summarizing
this variability. [Hint: Remember to divide the appropriate sums of squares by the
number of degrees of freedom remaining after estimating the six different means.]

> sapply(cuckoos, is.factor) # Check which columns are factors

length breadth species id
FALSE FALSE TRUE FALSE

> specnam <- levels(cuckoos$species)

> ss <- 0

> ndf <- 0

> for(nam in specnam){

+ lgth <- cuckoos$length[cuckoos$species==nam]

+ ss <- ss + sum((lgth - mean(lgth))^2)

+ ndf <- ndf + length(lgth) - 1

+ }

> sqrt(ss/ndf)

[1] 0.9051987

A more cryptic solution is:

> diffs <- unlist(sapply(split(cuckoos$length, cuckoos$species),

+ function(x)x-mean(x)))

> df <- unlist(sapply(split(cuckoos$length, cuckoos$species),

+ function(x)length(x) - 1))

> sqrt(sum(diffs^2)/sum(df))
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Data Analysis & Graphics Using R – Solutions to Exercises (April 29, 2010)

Exercise 3
An experimenter intends to arrange experimental plots in four blocks. In each block there
are seven plots, one for each of seven treatments. Use the function sample() to find four
random permutations of the numbers 1 to 7 that will be used, one set in each block, to
make the assignments of treatments to plots.

> for(i in 1:4)print(sample(1:7))

[1] 5 6 7 4 1 3 2
[1] 1 4 7 3 5 2 6
[1] 6 1 3 4 2 7 5
[1] 3 4 1 6 2 5 7

> ## Store results in the columns of a matrix
> ## The following is mildly cryptic
> sapply(1:4, function(x)sample(1:7))

[,1] [,2] [,3] [,4]
[1,] 1 5 1 4
[2,] 4 6 5 2
[3,] 7 7 3 5
[4,] 3 4 6 3
[5,] 5 1 2 7
[6,] 6 2 4 6
[7,] 2 3 7 1

Exercise 4
Use y <- rnorm(100) to generate a random sample of size 100 from a normal distribution.

(a) Calculate the mean and standard deviation of y.

(b) Use a loop to repeat the above calculation 25 times. Store the 25 means in a vector
named av. Calculate the standard deviation of the values in av.

(c) Create a function that performs the calculations described in (b). Run the function
several times, showing each of the distributions of 25 means in a density plot.

(a) > av <- numeric(25)
> sdev <- numeric(25)

(b) > for(i in 1:25){
+ y <- rnorm(100)
+ av[i] <- mean(y)
+ sdev[i] <- sd(y)
+ }
> sd(av)

[1] 0.09311444
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(c) > avfun <- function(m=50, n=25){
+ for(i in 1:25){
+ y <- rnorm(50)
+ av[i] <- mean(y)
+ }
+ sd(av)
+ }

It is insightful to run the function several times, and see how the value that is
returned varies.

Exercise 8
The function pexp(x, rate=r) can be used to compute the probability that an exponential
variable is less than x. Suppose the time between accidents at an intersection can be
modeled by an exponential distribution with a rate of .05 per day. Find the probability
that the next accident will occur during the next 3 weeks.

We require the probability that the time to the next accident is less than or equal to 21
days.

> pexp(21, .05)

[1] 0.6500623

Note that the rate is both the waiting time from an arbitrary time to the next accident,
and the “interarrival” time between accidents. The expected time to the next accident is
unaffected by whether or not an accident has just occurred.

Exercise 9
Use the function rexp() to simulate 100 exponential random numbers with rate .2. Obtain
a density plot for the observations. Find the sample mean of the observations. Compare
with the the population mean. (The mean for an exponential population is 1/rate.)
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Figure 1: Density plot, for 100 random val-
ues from an exponential distribution with
rate = 0.2

> ## Code
> z <- rexp(100, .2)
> plot(density(z, from=0), main="")

Notice the use of the argument from=0, to
prevent density() from giving a positive
density estimate to negative values.

Compare mean(z) = 4.47 with 1/0.2 = 5.
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Exercise 11
The following data represent the total number of aberrant crypt foci (abnormal growths
in the colon) observed in 7 rats that had been administered a single dose of the carcinogen
azoxymethane and sacrificed after six weeks:

87 53 72 90 78 85 83

Enter these data and compute their sample mean and variance. Is the Poisson model
appropriate for these data. To investigate how the sample variance and sample mean
differ under the Poisson assumption, repeat the following simulation experiment several
times:

x <- rpois(7, 78.3)
mean(x); var(x)

> y <- c(87, 53, 72, 90, 78, 85, 83)
> c(mean=mean(y), variance=var(y))

mean variance
78.28571 159.90476

Then try

> x <- rpois(7, 78.3)
> c(mean=mean(x), variance=var(x))

mean variance
84.28571 33.23810

variance as that observed for these data, making it doubtful that these data are from a
Poisson distribution.

Exercise 12*
*A Markov chain is a data sequence which has a special kind of dependence. For example,
a fair coin is tossed repetitively by a player who begins with $2. If ‘heads’ appear, the
player receives one dollar; otherwise, she pays one dollar. The game stops when the
player has either $0 or $5. The amount of money that the player has before any coin flip
can be recorded – this is a Markov chain. A possible sequence of plays is as follows:

Player’s fortune: 2 1 2 3 4 3 2 3 2 3 2 1 0
Coin Toss result: T H H H T T H T H T T T

Note that all we need to know in order to determine the player’s fortune at any time is
the fortune at the previous time as well as the coin flip result at the current time. The
probability of an increase in the fortune is .5 and the probability of a decrease in the
fortune is .5. The transition probabilities can be summarized in a transition matrix:

P =





1 0 0 0 0 0
.5 0 .5 0 0 0
0 .5 0 .5 0 0
0 0 .5 0 .5 0
0 0 0 .5 0 .5
0 0 0 0 0 1
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Exercise 12*, continued

The (i, j) entry of this matrix us the probability of making a change from the value i
to the value j. Here, the possible values of i and j are 0, 1, 2, . . . , 5. According to the
matrix, there is a probability of 0 of making a transition from $2 to $4 in one play, since
the (2,4) element is 0; the probability of moving from $2 to $1 in one transition is 0.5,
since the (2,1) element is 0.5.
The following function can be used to simulate N values of a Markov chain sequence,
with transition matrix P :

Markov <- function (N=100, initial.value=1, P)
{

X <- numeric(N)
X[1] <- initial.value + 1 # States 0:5; subscripts 1:6
n <- nrow(P)
for (i in 2:N){
X[i] <- sample(1:n, size=1, prob=P[X[i-1], ])}
X - 1

}

Simulate 15 values of the coin flip game, starting with an initial value of $2. Repeat the
simulation several times.

Code that may be used for these calculations is:

> P <- matrix(c(1, rep(0,5), rep(c(.5,0,.5, rep(0,4)),4), 0,1),
+ byrow=TRUE,nrow=6)
> Markov(15, 2, P)
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Data Analysis & Graphics Using R, 3rd edition – Solutions to Exercises (April 30, 2010)

Preliminaries

> library(DAAG)

Exercise 2
Draw graphs that show, for degrees of freedom between 1 and 100, the change in the 5%
critical value of the t-statistic. Compare a graph on which neither axis is transformed
with a graph on which the respective axis scales are proportional to log(t-statistic) and
log(degrees of freedom). Which graph gives the more useful visual indication of the
change in the 5% critical value of the t-statistic changes with increasing degrees of free-
dom?

> par(mfrow=c(1,2))
> nu <- 1:100
> plot(nu, qt(0.975,nu), type="l")
> plot(log(nu), qt(0.975,nu), type="l",xaxt="n")
> axis(1,at=log(nu),labels=paste(nu))
> par(mfrow=c(1,1))
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Figure 1: Plot of two-sided
95% critical value for a t-
statistic (a) against degrees
of freedom and (b) against
log(degrees of freedom).

The second graph, because it makes it possible to see the large changes with low
degrees of freedom, gives the more useful visual indication.

Exercise 6
Here we generate random normal numbers with a sequential dependence structure.

y1 <- rnorm(51)
y <- y1[-1] + y1[-51]
acf(y1) # acf is �autocorrelation function' (see Ch. 9)
acf(y)

Repeat this several times. There should be no consistent pattern in the acf plot for
different random samples y1. There will be a fairly consistent pattern in the acf plot for
y, a result of the correlation that is introduced by adding to each value the next value in
the sequence.
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Figure 2: Autocorrelation function (a) for independently and identically distributed nor-
mal deviates and (b) for sequentially correlated deviates.

Exercise 7
Create a function that does the calculations in the first two lines of the previous exercise.
Put the calculation in a loop that repeats 25 times. Calculate the mean and variance
for each vector y that is returned. Store the 25 means in the vector av, and store the 25
variances in the vector v. Calculate the variance of av.

> corfun <- function(n=51){
+ y1 <- rnorm(n)
+ y <- y1[-1]+y1[-n]
+ y
+ }
> av <- numeric(25)
> sdev <- numeric(25)
> for(i in 1:25){
+ z <- corfun()
+ av[i] <- mean(z)
+ sdev[i] <- sd(z)
+ }
> var(av)

[1] 0.0741

Note: The variance of the values that are returned by corfun() is var(y1i = var(yi +
var(yi+1) = 2 Thus, compare var(av) as calculated above with var(y1i)/50 = 2/50 =
0.04. As a result of the correlation between successive values, var(av) will, on average,
be greater than this.

Exercise 10
Use mosaicplot() to display the table rareplants (Subsection 4.4.1) that was created
using code in Footnote 11. Annotate the mosaic plot to highlight the results that emerged
from the analysis in Subsection 4.4.1.

The data are:
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> rareplants <- matrix(c(37,190,94,
+ 23,59,23,
+ 10,141,28,
+ 15,58,16), ncol=3, byrow=T,
+ dimnames=list(c("CC","CR","RC","RR"), c("D","W","WD")))

D W WD

C
C

C
R

R
C

R
R

Figure 3: Mosaicplot for the
rareplants data. Observe that
the matrix rareplants has been
transposed so that the layout of
the graph reflects the layout of the
table in Section 4..4.1.

> oldpar <- par(mar=c(3.1,3.1,2.6,1.1))
> mosaicplot(t(rareplants),
+ color=TRUE, main=NULL)
> par(oldpar)

For each color, i.e., row of the table, compare the heights of the rectangles. Large
positive residuals in the table of residuals on page 87 correspond to rectangles that are tall
relative to other rectangles with the same color, while large negative residuals correspond
to rectangles that are short relative to other rectangles with the same color.

Exercise 11
The table UCBAdmissions was discussed in Subsection 2.2.1. The following gives a table
that adds the 2 × 2 tables of admission data over all departments:

## UCBAdmissions is in the datasets package
## For each combination of margins 1 and 2, calculate the sum
UCBtotal <- apply(UCBAdmissions, c(1,2), sum)

What are the names of the two dimensions of this table?

(a) From the table UCBAdmissions, create mosaic plots for each faculty separately. (If
necessary refer to the code given in the help page for UCBAdmissions.)

(b) Compare the information in the table UCBtotal with the result from applying the
function mantelhaen.test() to the table UCBAdmissions. Compare the two sets
of results, and comment on the difference.

(c) The Mantel–Haenzel test is valid only if the male to female odds ratio for admission
is similar across departments. The following code calculates the relevant odds
ratios:

apply(UCBAdmissions, 3, function(x)
(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
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Exercise 11, continued

Is the odds ratio consistent across departments? Which department(s) stand(s) out
as different? What is the nature of the difference?

[For further information on the Mantel–Haenszel test, see the help page for mantel-
haen.test.]

Use dimnames(UCBAdmissions)[1:2] to get the names of the first two dimensions,
which are Admit and Gender.

(a) First note the code needed to give a mosaic plot for the totals; the question does
not ask for this. There is an excess of males and a deficit of females in the Admitted
category.

> par(mar=c(3.1,3.1,2.6,1.1))
> UCBtotal <- apply(UCBAdmissions, c(1,2), sum)
> mosaicplot(UCBtotal,col=TRUE)

Now obtain the mosaic plots for each department separately.

> oldpar <- par(mfrow=c(2,3), mar=c(3.1,3.1,2.6,1), cex.main=0.8)
> for(i in 1:6)
+ mosaicplot(UCBAdmissions[,,i], xlab = "Admit", ylab = "Sex",
+ main = paste("Department", LETTERS[i]), color=TRUE)
> par(mfrow=c(1,1))
> par(oldpar)
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Figure 4: Mosaicplots, for each department separately. The greatest difference in the
proportions in the two vertical columns is for Department A.

(b) > apply(UCBAdmissions, 3, function(x)(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

A B C D E F
0.3492 0.8025 1.1331 0.9213 1.2216 0.8279
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The odds ratio (male to female admissions) is much the lowest for Department A.

Exercise 12
*Table 3.3 (Chapter 3) contained fictitious data that illustrate issues that arise in com-
bining data across tables. Table 1 is another such set of fictitious data, designed to
demonstrate how biases that go in different directions in the two subtables may cancel
in the table to totals.

Engineering Sociology Total

Male Female Male Female Male Female
Admit 30 20 Admit 10 20 Admit 40 40
Deny 30 10 Deny 5 25 Deny 35 35

Table 1: In these data, biases that go in different directions in the two faculties have
canceled in the table of totals.

To enter the data for Table 3.3, type:

admissions <- array(c(30,30,10,10,15,5,30,10),
dim=c(2,2,2))

Similarly for Table 1. The third dimension in each table is faculty, as required for using
faculty as a stratification variable for the Mantel–Haenzel test. From the help page for
mantelhaen.test(), extract and enter the code for the function woolf(). Apply the
function woolf(), followed by the function mantelhaen.test(), to the data of each of
Tables 3.3 and 1. Explain, in words, the meaning of each of the outputs. Then apply
the Mantel–Haenzel test to each of these tables.

> admissions <- array(c(30, 30, 10, 10, 15, 5, 30, 10),
+ dim=c(2, 2, 2))
> woolf <- function(x) {
+ x <- x + 1 / 2
+ k <- dim(x)[3]
+ or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
+ w <- apply(x, 3, function(x) 1 / sum(1 / x))
+ 1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)
+ }
> woolf(admissions)

[1] 0.9696

The differences from homogeneity (equal odds ratios for males and females in each of
the two departments) are well removed from statistical significance.

> admissions1 <- array(c(30, 30, 20, 10, 10, 5, 20, 25),
+ dim=c(2, 2, 2))
> woolf(admissions1)

[1] 0.04302

There is evidence of department-specific biases.

> mantelhaen.test(admissions)
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Mantel-Haenszel chi-squared test without continuity
correction

data: admissions
Mantel-Haenszel X-squared = 0, df = 1, p-value = 1
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.4566 2.1902
sample estimates:
common odds ratio

1

The estimate of the common odds ratio is 1.

> mantelhaen.test(admissions1)

Mantel-Haenszel chi-squared test with continuity correction

data: admissions1
Mantel-Haenszel X-squared = 0.0141, df = 1, p-value = 0.9053
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.4481 1.8077
sample estimates:
common odds ratio

0.9

The common odds ratio is given as 0.9. However, because the odds ratio is not homoge-
neous within each of the two departments, this overall figure can be misleading.

Exercise 13
The function overlapDensity() in the DAAG package can be used to visualize the
unpaired version of the t-test. Type in

attach(two65)
overlapDensity(ambient, heated) # Included with our DAAG package
detach(two65)

in order to observe estimates of the stretch distributions of the ambient (control) and
heated (treatment) elastic bands.
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Figure 5: Estimated densities for am-
bient and heated bands, overlaid.

> attach(two65)
> overlapDensity(ambient, heated)
> detach(two65)
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The densities look quite similar, except that the controls are more widely spread. To
get an idea of the sorts of differences that may appear in repeated random sampling, try

> par(mfrow=c(2,2))
> for(i in 1:4){
+ y1 <- rnorm(10)
+ y2 <- rnorm(11)
+ overlapDensity(y1,y2)
+ }
> par(mfrow=c(1,1))

Exercise 14*
*For constructing bootstrap confidence intervals for the correlation coefficient, it is advis-
able to work with the Fisher z-transformation of the correlation coefficient. The following
lines of R code show how to obtain a bootstrap confidence interval for the z-transformed
correlation between chest and belly in the possum data frame. The last step of the
procedure is to apply the inverse of the z-transformation to the confidence interval to
return it to the original scale. Run the following code and compare the resulting interval
with the one computed without transformation. Is the z-transform necessary here?

z.transform <- function(r) .5*log((1+r)/(1-r))
z.inverse <- function(z) (exp(2*z)-1)/(exp(2*z)+1)
possum.fun <- function(data, indices) {
chest <- data$chest[indices]
belly <- data$belly[indices]
z.transform(cor(belly, chest))}
possum.boot <- boot(possum, possum.fun, R=999)
z.inverse(boot.ci(possum.boot, type="perc")$percent[4:5])
# See help(bootci.object). The 4th and 5th elements of
# the percent list element hold the interval endpoints.

> library(boot)

> z.transform <- function(r) .5*log((1+r)/(1-r))
> z.inverse <- function(z) (exp(2*z)-1)/(exp(2*z)+1)
> possum.fun <- function(data, indices) {
+ chest <- data$chest[indices]
+ belly <- data$belly[indices]
+ z.transform(cor(belly, chest))}
> possum.boot <- boot(possum, possum.fun, R=999)
> z.inverse(boot.ci(possum.boot, type="perc")$percent[4:5])

[1] 0.4768 0.7045

Exercise 15
The 24 paired observations in the data set mignonette were from five pots. The obser-
vations are in order of pot, with the numbers 5, 5, 5, 5, 4 in the respective pots. Plot the
data in a way that shows the pot to which each point belongs. Also do a plot that shows,
by pot, the differences between the two members of each pair. Do the height differences
appear to be different for different pots?
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Figure 6: Plot of cross versus self,
with points identified by pot.

> ## Code
> mignonette$pot <- rep(1:5,
+ c(5,5,5,5,4))
> attach(mignonette)
> plot(cross ~ self, type="n")
> text(cross ~ self,
+ labels=paste(pot),
+ col=pot, lwd=2)
> detach(mignonette)

> "Alternative to above"
> plot(cross ~ self, col=pot, lwd=2)
> text(cross ~ self, labels=paste(pot), pos=1, cex=0.8)

> ## Now examine height differences
> library(lattice)
> print(stripplot(pot ~ I(cross-self), data=mignonette, pch=15))
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Figure 7: Alternative plot
of cross versus self, with
points identified by pot.

x

> summary(lm(I(cross-self) ~ factor(pot), data=mignonette))

Call:
lm(formula = I(cross - self) ~ factor(pot), data = mignonette)

Residuals:
Min 1Q Median 3Q Max

-8.525 -3.694 0.725 3.386 7.850

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.275 2.418 0.11 0.91
factor(pot)2 5.250 3.419 1.54 0.14
factor(pot)3 -2.350 3.419 -0.69 0.50
factor(pot)4 6.100 3.419 1.78 0.09
factor(pot)5 2.444 3.626 0.67 0.51

Residual standard error: 5.41 on 19 degrees of freedom
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Multiple R-squared: 0.311, Adjusted R-squared: 0.166
F-statistic: 2.14 on 4 and 19 DF, p-value: 0.115

The evidence for a difference between pots is not convincing. Nevertheless a careful
analyst, when checking for a systematic difference between crossed and selfed plants,
would allow for a pot effect. (This requires the methods that are discussed in Chapter
10.)

Exercise 17
Use the function rexp() to simulate 100 random observations from an exponential distri-
bution with rate 1. Use the bootstrap (with 99999 replications) to estimate the standard
error of the median. Repeat several times. Compare with the result that would be
obtained using the normal approximation, i.e.

�
π/(2n).

> med.fn <- function(x, index) median(x[index])
> x <- rexp(100)
> x.boot <- boot(x, statistic=med.fn, R=99999) # this takes a
> # few seconds
> x.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = x, statistic = med.fn, R = 99999)

Bootstrap Statistics :
original bias std. error

t1* 0.6184 0.03152 0.08463

We see that the normal approximation is over-estimating the standard error slightly.
For large exponential samples (with rate 1), the standard error of the median is 1/

√
n.

Exercise 18
Low doses of the insecticide toxaphene may cause weight gain in rats. A sample of 20 rats
are given toxaphene in their diet, while a control group of 8 rats are not given toxaphene.
Assume further that weight gain among the treated rats is normally distributed with
a mean of 60g and standard deviation 30g, while weight gain among the control rats
is normally distributed with a mean of 10g and a standard deviation of 50g. Using
simulation, compare confidence intervals for the difference in mean weight gain, using
the pooled variance estimate and the Welch approximation. Which type of interval is
correct more often?
Repeat the simulation experiment under the assumption that the standard deviations are
40g for both samples. Is there a difference between the two types of intervals now? Hint:
Is one of the methods giving systematically larger confidence intervals? Which type of
interval do you think is best?

> "Welch.pooled.comparison" <-
+ function(n1=20, n2=8, mean1=60, mean2=10,
+ sd1=30, sd2=50, nsim=1000) {
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+ Welch.count <- logical(nsim)
+ pooled.count <- logical(nsim)
+ Welch.length <- numeric(nsim)
+ pooled.length <- numeric(nsim)
+ mean.diff <- mean1-mean2
+ for (i in 1:1000){
+ x <- rnorm(n1, mean=mean1, sd=sd1)
+ y <- rnorm(n2, mean=mean2, sd=sd2)
+ t1conf.int <- t.test(x, y)$conf.int
+ t2conf.int <- t.test(x, y, var.equal=TRUE)$conf.int
+ t1correct <- (t1conf.int[1] < mean.diff) & (t1conf.int[2] >
+ mean.diff)
+ t2correct <- (t2conf.int[1] < mean.diff) & (t2conf.int[2] >
+ mean.diff)
+ Welch.count[i] <- t1correct
+ pooled.count[i] <- t2correct
+ Welch.length[i] <- diff(t1conf.int)
+ pooled.length[i] <- diff(t2conf.int)
+ }
+ c("Welch.proportion.correct"=mean(Welch.count),
+ "pooled.proportion.correct"=mean(pooled.count),
+ "Welch.length.avg" = mean(Welch.length),
+ "pooled.length.avg" = mean(pooled.length))
+ }
> Welch.pooled.comparison()

Welch.proportion.correct pooled.proportion.correct
0.952 0.897

Welch.length.avg pooled.length.avg
82.446 61.577

> Welch.pooled.comparison(sd1=40, sd2=40)

Welch.proportion.correct pooled.proportion.correct
0.939 0.947

Welch.length.avg pooled.length.avg
69.951 67.286

Exercise 20*
Experiment with the pair65 example and plot various views of the likelihood function,
either as a surface using the persp() function or as one-dimensional profiles using the
curve() function. Is there a single maximizer: Where does it occur?

First, check the mean and the SD.

> with(pair65, heated-ambient)

[1] 19 8 4 1 6 10 6 -3 6

> mean(with(pair65, heated-ambient))

[1] 6.333
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> sd(with(pair65, heated-ambient))

[1] 6.103

Now create and use a function that calculates the likelihood, given mu and sigma

> funlik <- function(mu, sigma, x=with(pair65, heated-ambient))
+ prod(dnorm(x, mu, sigma))

Next, calculate a vector of values of mu, and a vector of values of sigma

> muval <- seq(from=2, to=12, by=0.5) # Values about mu=6.33
> sigval <- seq(from=1, to=15, by=0.5) # Values about mu=6.10

Now calculate an array of logliklihoods

> loglikArray <- function(mu, sigma, d=with(pair65, heated-ambient)){
+ xx <- matrix(0, nrow=length(mu), ncol=length(sigma))
+ for (j in seq(along=sigma)) for (i in seq(along=mu))
+ xx[i,j] <- log(funlik(mu[i], sigma[j], d))
+ xx
+ }
> loglik <- loglikArray(mu=muval, sigma=sigval)

Now create a perspective plot

> persp(x=muval, y=sigval, loglik)

A wider range of values of mu, and a narrower range of values of sigma, seems preferable:

> muval <- seq(from=-1, to=14, by=0.5)
> sigval <- seq(from=3, to=12, by=0.2)
> loglik <- loglikArray(mu=muval, sigma=sigval)
> persp(x=muval, y=sigval, loglik)

Try also

> contour(muval, sigval, loglik)
> filled.contour(muval, sigval, loglik)

Exercise 22*
Suppose the mean reaction time to a particular stimulus has been estimated in several
previous studies, and it appears to be approximately normally distributed with mean 0.35
seconds with standard deviation 0.1 seconds. On the basis of 10 new observations, the
mean reaction time is estimated to be 0.45 seconds with an estimated standard deviation
of 0.15 seconds. Based on the sample information, what is the maximum likelihood
estimator for the true mean reaction time? What is the Bayes’ estimate of the mean
reaction time.

Following Section 4.2.2 the posterior density of the mean is normal with mean

nȳ + µ0σ2/σ2
0

n+ σ2/σ2
0

and variance
σ2

n+ σ2/σ2
0

where, here
µ0 = 0.35,σ0 = 0.1, ȳ = 0.45, n = 10,σ = 0.15

Thus the posterior mean and variance of the mean are:
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> print(c(mean = (10 * 0.45 + 0.35 * 0.15^2/0.1^2)/(10 + 0.15^2/0.1^2)))

mean
0.4316

> print(c(variance = 0.1^2/(10 + 0.15^2/0.1^2)))

variance
0.0008163

The posterior mean is the Bayes’ estimate of the mean.
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (April 30, 2010)

Preliminaries

> library(DAAG)

Exercise 2
For each of the data sets elastic1 and elastic2, determine the regression of stretch on
distance. In each case determine
(i) fitted values and standard errors of fitted values and

(ii) the R2 statistic. Compare the two sets of results. What is the key difference
between the two sets of data?

Use the robust regression function rlm() from the MASS package to fit lines to the data
in elastic1 and elastic2. Compare the results with those from use of lm(). Compare
regression coefficients, standard errors of coefficients, and plots of residuals against fitted
values.

The required regressions are as follows:

> e1.lm <- lm(distance ~ stretch, data=elastic1)
> e2.lm <- lm(distance ~ stretch, data=elastic2)

The fitted values and standard errors of the fits are then:

> predict(e1.lm, se.fit=TRUE)

$fit
1 2 3 4 5 6 7

183.1 235.7 196.3 209.4 170.0 156.9 222.6

$se.fit
[1] 6.587 10.621 5.892 6.587 8.332 10.621 8.332

$df
[1] 5

$residual.scale
[1] 15.59

The R2 statistic, in each case, is obtained as follows:

> summary(e1.lm)$r.squared

[1] 0.7992

> summary(e2.lm)$r.squared

[1] 0.9808

The standard errors are somewhat smaller for the second data set than for the first,
while the R2 value is much larger for the second than the first. The main reason for the
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difference in R2 is the larger range of stretch for the second data set. There is more
variation to explain. More specifically

R2 = 1− (n− 2)s2�
(y − ȳ2)

(1)

= 1− s2�
(y − ȳ2)/(n− 2)

(2)

(3)

Increasing the range of values greatly increases the denominator. If the line is adequate
over the whole of the range, s2 will, as here, not change much. (For these data, in spite
of the greater range, it reduces somewhat.)

The robust regression fits can be obtained as follows:

> library(MASS)
> e1.rlm <- rlm(distance ~ stretch, data=elastic1)
> e2.rlm <- rlm(distance ~ stretch, data=elastic2)

The robust regression fits can be obtained as follows:

The residual plots can be obtained for rlm in the same was as for lm. It may however
be more insightful to overlay the rlm plots on the lm plots.

> par(mfrow=c(1,2))
> plot(e1.lm, which=1, add.smooth=FALSE)
> points(resid(e1.rlm) ~ fitted(e1.rlm), col=2, pch=2)
> plot(e2.lm, which=1, add.smooth=FALSE)
> points(resid(e2.rlm) ~ fitted(e2.rlm), col=2, pch=2)
> par(mfrow=c(1,1))
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Figure 1: Overlaid plots of residuals versus fitted values, for the dataframes elastic1
(left panel) and elastic2 (right panel). Circles are for the lm fit and triangles for the
rlm fit.

For comparison purposes, we include residual plots for the ordinary regression fits.
Note, in particular, how the robust regression has reduced the weight of the outlying
observation in the first data set. The residual at that point is larger than it was using
ordinary least-squares. The residual plots for the ordinary and robust fits are very similar
for the second data set, since there are no outlying observations.

As can be seen in the summaries below, the ordinary and robust fits for the first data
set give quite different estimates of the slope and intercept. The robust fit is more in line
with both sets of results obtained for the second data set.
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Note also the downward effect of the robust regression on the residual standard error.
This is again due to the down-weighting of the outlying observation.

For further details, run the following code:

> summary(e1.rlm)
> summary(e1.lm)
> summary(e2.rlm)
> summary(e2.lm)

Exercise 3
Using the data frame cars (datasets), plot distance (i.e. stopping distance) versus
speed. Fit a line to this relationship, and plot the line. Then try fitting and plotting a
quadratic curve. Does the quadratic curve give a useful improvement to the fit? [Readers
who have studied the relevant physics might develop a model for the change in stopping
distance with speed, and check the data against this model.]

The data can be plotted using

> plot(dist ~ speed, data=cars, xlab="stopping distance", pch=16)

The linear model can be fit, and a line added, as follows:

> cars.lm <- lm(dist ~ speed, data=cars)
> abline(cars.lm)

One way of fitting a quadratic curve to the data is as follows:

> cars.lm2 <- lm(dist ~ speed + I(speed^2), data=cars)

The following overlays the quadratic curve:
Here is the graph
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Figure 2: Quadratic curve fitted to car
data.

> xval <- pretty(cars$speed, 50)
> hat2 <- predict(cars.lm2,
+ newdata=list(speed=xval))
> lines(xval, hat2, col="red", lty=2, lwd=2)

Based on what we’ve seen so far, the quadratic curve does not appear to fit the data
much better than the line. Checking the summary and the p-value might lead us to
believe that the quadratic term is not needed:

> summary(cars.lm2)
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Call:
lm(formula = dist ~ speed + I(speed^2), data = cars)

Residuals:
Min 1Q Median 3Q Max

-28.72 -9.18 -3.19 4.63 45.15

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.470 14.817 0.17 0.87
speed 0.913 2.034 0.45 0.66
I(speed^2) 0.100 0.066 1.52 0.14

Residual standard error: 15.2 on 47 degrees of freedom
Multiple R-squared: 0.667, Adjusted R-squared: 0.653
F-statistic: 47.1 on 2 and 47 DF, p-value: 5.85e-12

The relevant physics suggests that stopping distance is, in fact, a nonlinear function
of speed. An over-simplified model is

distance = k speed2

where k is a constant, which is inversely related to the acceleration (actually decelera-
tion), which is assumed constant here. Because of the unrealistic assumption that k is
independent of the deceleration, this model should be used only as a start. The actual
deceleration will not be constant, and there is likely a fair bit of noise associated with it.
Note that the error term, which we have not specified, is likely to be a function of speed.

Also, we have not consulted a residual plot. In view of the non-significant quadratic
term, we examine the residual plot for the model with a linear term.

> plot(cars.lm, which=1, panel=panel.smooth)
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> ## Code
> plot(cars.lm, which=1,
+ panel=panel.smooth)

In view of the clear trend in the plot of residuals, it seems wise to include the quadratic
term.

Note however that the error variance (even after the trend from the residuals is taken
out) is not constant, but increases with the fitted values. Alternatives are to try a
weighted least-squares fit, or to try a variance-stabilizing transformation. If we are for-
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tunate, a variance-stabilizing transformation may also reduce any trend that may be
present. In particular, a square-root transformation seems to work well:
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Figure 4: Residuals from the regression of
the square root of distance on speed, for
the car data.

> ## Code
> cars.lm3 <- lm(sqrt(dist) ~ speed, data=cars)
> plot(cars.lm3, which=1, panel=panel.smooth)

Incidentally, the square root transformation is also indicated by the Box-Cox proce-
dure (see exercise 5). This is seen from the output to either of

> boxcox(dist ~ speed, data=cars)
> boxcox(dist ~ I(speed^2), data=cars)

Exercise 5
In the data set pressure (datasets), examine the dependence of pressure on temperature.
[The relevant theory is that associated with the Claudius-Clapeyron equation, by which
the logarithm of the vapor pressure is approximately inversely proportional to the abso-
lute temperature. For further details of the Claudius-Clapeyron equation, search on the
internet, or look in a suitable reference text.]

First we ignore the Claudius-Clapeyron equation, and try to transform pressure. When the
logarithmic transformation is too extreme, as happens in this case, a power transformation with
a positive exponent may be a candidate. A square root transformation is a possibility:

> pressure$K <- pressure$temperature+273
> p.lm <- lm(I(pressure^.5) ~ K, data=pressure)
> plot(p.lm, which=1)

A systematic search for a smaller exponent is clearly required.

The Clausius-Clapeyron equation suggests that log(pressure) should be a linear
function of 1/K, where K is degrees kelvin.

> p.lm2 <- lm(log(pressure) ~ I(1/K), data=pressure)
> plot(p.lm2, which=1)

Consulting the residual plot, we see too much regularity. One point appears to be an
outlier, and should be checked against other data sources. Some improvement is obtained
by considering polynomials in the inverse of temperature. For example, the quadratic
can be fit as follows:

> p.lm4 <- lm(log(pressure) ~ poly(1/K,2), data=pressure)
> plot(p.lm4, which=1)
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The residual plot still reveals some unsatisfactory features, particularly for low temper-
atures. However, such low pressure measurements are notoriously inaccurate. Thus, a
weighted least-squares analysis would probably be more appropriate.

Exercise 6*
Look up the help page for the function boxcox() from the MASS package, and use this
function to determine a transformation for use in connection with Exercise 5. Examine
diagnostics for the regression fit that results following this transformation. In particular,
examine the plot of residuals against temperature. Comment on the plot. What are its
implications for further investigation of these data?

The Box-Cox procedure can be applied to the pressure data as follows:
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Figure 5: Boxcox plot, for pressure versus
degrees Kelvin

> ## Code
> boxcox(pressure ~ K,
+ data=pressure)

This suggests a power of around 0.1, so that we might fit the model using

lm(I(pressure^.1) ~ K, data=pressure)

However, remembering that the physics suggests a transformation of temperature, we
should really look at the dependence of pressure on 1/K, thus:

The result is
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Figure 6: Boxcox plot, for pressure versus
1/K

> ## Code
> boxcox(pressure ~ I(1/K), data=pressure)
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This shows clearly that the logarithmic transformation is likely to be helpful. (How-
ever check the effect of the Box-Cox transformation on the trend.)

Exercise 7
Annotate the code that gives panels B and D of Figure 5.4, explaining what each function
does, and what the parameters are.

library(DAAG) # loads the DAAG library
attach(ironslag) # attaches data frame contents to search path
par(mfrow=c(2,2)) # enables a 2x2 layout on the graphics window
ironslag.lm <- lm(chemical ~ magnetic)

# regress chemical on magnetic
chemhat <- fitted(ironslag.lm) # assign fitted values to chemhat
res <- resid(ironslag.lm) # assign residuals to res
## Figure 5.4B
plot(magnetic, res, ylab = "Residual", type = "n") # type = "n"

# Set up axes with correct ranges, do not plot
panel.smooth(magnetic, res, span = 0.95) # plots residuals

# vs predictor, & adds a lowess smooth; f=span
## Figure 5.4D
sqrtabs <- sqrt(abs(res)) # square root of abs(residuals)
plot(chemhat, sqrtabs, xlab = "Predicted chemical",

ylab = expression(sqrt(abs(residual))), type = "n")
# suppressed plot again, as above

panel.smooth(chemhat, sqrtabs, span = 0.95)
# plot sqrt(abs(residuals)) vs fitted values
# add lowess smooth, with f=span

detach(ironslag) # remove data frame contents from search path

Exercise 8
The following code gives the values that are plotted in the two panels of Figure 5.5.

## requires the data frame ironslag (DAAG)
ironslag.loess <- loess(chemical ~ magnetic, data=ironslag)
chemhat <- fitted(ironslag.loess)
res2 <- resid(ironslag.loess)
sqrtabs2 <- sqrt(abs(res2))

Using this code as a basis, create plots similar to Figure 5.5A and 5.5B. Why have we
preferred to use loess() here, rather than lowess()? [Hint: Is there a straightforward
means for obtaining residuals from the curve that lowess() gives? What are the x-values,
and associated y-values, that lowess() returns?]

Obtaining residuals from lowess() is problematic because the fitted data are sorted
according to the predictor variable upon output.

One way of obtaining residuals upon use of lowess() is to sort the data beforehand
as below:

> ironsort <- ironslag[order(ironslag$magnetic),]
> attach(ironsort)
> ironsort.lw <- lowess(magnetic, chemical)
> ironsort.resid <- chemical - ironsort.lw$y
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Once we have the residuals (either from loess() or from lowess()), we may proceed
to obtain the plots in Figure 5.5. One way is as follows:

> plot(ironsort.resid ~ magnetic, lwd=2, xlab="Magnetic", ylab="Residual")
> lines(lowess(magnetic, ironsort.resid, f=.8), lty=2)

To obtain the plot in Figure 5.5B, we could then do the following:

> sqrtabs2 <- sqrt(abs(ironsort.resid))
> plot(sqrtabs2 ~ ironsort.lw$y, xlab="Predicted chemical",
+ ylab=expression(sqrt(Residual)))
> lines(lowess(ironsort.lw$y, sqrtabs2, f=.8))
> detach(ironsort)

One could also use loess() instead of lowess().

Exercise 10
Write a function which simulates simple linear regression data from the model

y = 2 + 3x+ ε

where the noise terms are independent normal random variables with mean 0 and variance
1.
Using the function, simulate two samples of size 10. Consider two designs: first, assume
that the x-values are independent uniform variates on the interval [−1, 1]; second, assume
that half of the x-values are -1’s, and the remainder are 1’s. In each case, compute slope
estimates, standard error estimates and estimates of the noise standard deviation. What
are the advantages and disadvantages of each type of design?

> ex10fun <-
+ function(x=runif(n), n=20){
+ eps <- rnorm(n)
+ y <- 2 + 3*x + eps
+ lm(y ~ x)
+ }
> summary(ex10fun())

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-1.8855 -0.6041 -0.0552 0.6178 2.3180

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.758 0.427 6.45 4.5e-06
x 2.127 0.835 2.55 0.020

Residual standard error: 0.991 on 18 degrees of freedom
Multiple R-squared: 0.265, Adjusted R-squared: 0.224
F-statistic: 6.48 on 1 and 18 DF, p-value: 0.0202

> summary(ex10fun(x=rep(c(-1,1), c(10,10))))
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Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-1.5157 -0.5944 -0.0867 0.4167 2.0823

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.516 0.219 6.92 1.8e-06
x 3.085 0.219 14.07 3.7e-11

Residual standard error: 0.98 on 18 degrees of freedom
Multiple R-squared: 0.917, Adjusted R-squared: 0.912
F-statistic: 198 on 1 and 18 DF, p-value: 3.74e-11

Notice the substantial reduction in the SE for the intercept, and the even larger reduction
in the SE for the slope, for the design that divides the sample points equally between the
two ends of the interval.

This reduction in the SEs is of course a benefit. The disadvantage is that there is
no possibility to check, with the second design, whether the assumed form of regression
relationship is correct.

Note: The estimate and variance of the intercept are:

a = ȳ − bx̄; var[a] = σ2/n+
σ2

n
�

(x− x̄)2

The estimate and variance of the intercept are:

b =

�
(x− x̄)ȳ

n
�

(x− x̄)2
var[b] =

σ2

n
�

(x− x̄)2

Here σ = 1.

For a uniform random variable on [-1, 1], it can be shown that the variance
is 1

3 . It follows that E[
�

(x − x̄)2] = n−1
3 . When sample points are divided

equally between the two ends of the interval,
�

(x− x̄)2 = n. The ratio of the
expected SE for the slope in the first design to the SE in the second design

is then
�

(n−1)
3n . Here, this ratio is approximately 0.56. Asymptotically, it is

approximately 0.58.
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (April 30, 2010)

Preliminaries

> library(DAAG)

Exercise 1
The data set cities lists the populations (in thousands) of Canada’s largest cities over
1992 to 1996. There is a division between Ontario and the West (the so-called “have”
regions) and other regions of the country (the “have-not” regions) that show less rapid
growth. To identify the “have” cities we can specify

cities$have <- factor((cities$REGION=="ON")|

(cities$REGION=="WEST"))

Plot the 1996 population against the 1992 population, using different colors to distinguish
the two categories of city, both using the raw data and taking logarithms of data values,
thus:

plot(POP1996 ~ POP1992, data=cities,

col=as.integer(cities$have))

plot(log(POP1996) ~ log(POP1992), data=cities,

col=as.integer(cities$have))

Which of these plots is preferable? Explain.
Now carry out the regressions

cities.lm1 <- lm(POP1996 ~ have+POP1992, data=cities)

cities.lm2 <- lm(log(POP1996) ~ have+log(POP1992),

data=cities)

and examine diagnostic plots. Which of these seems preferable? Interpret the results.

The required plots are given below.
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Figure 1: Red circles indicate the ‘have’ cities, and black circles indicate the ‘have-not’
cities. In the left panel, data are untransformed, while the right panel uses logarithmic
scales.

The second plot is preferable, since it spreads the plotted points out more evenly, while
the first plot contains the large cluster of points in one corner. Population comparisons are
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usually best made using ratios instead of differences; differences of logarithms correspond
to logarithms of ratios, which is another reason for preferring the second plot.

We plot residuals against fitted values, first for the untransformed data and then for
the transformed data.

> par(mfrow=c(1,2))

> cities.lm1 <- lm(POP1996 ~ have+POP1992, data=cities)

> cities.lm2 <- lm(log(POP1996) ~ have+log(POP1992),

+ data=cities)

> plot(cities.lm1, which=1)

> plot(cities.lm2, which=1)

> par(mfrow=c(1,1))
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Figure 2: Plots of residuals
against fitted values. The
left panel is for the model
that used untransformed data,
while the right panel is for
the model that used log-
transformed data.

These plots indicate the need for transformation.
It is also a good idea to check plots of the residuals versus the predictors, as in

plot(resid(cities.lm2) ~ log(cities$POP1992))

plot(resid(cities.lm2) ~ cities$have)

These plots (not shown) and plots of Cook’s distance and normal probability plots (also
not shown) do not indicate any problems.

Here is the regression summary:

> summary(cities.lm2)

Call:

lm(formula = log(POP1996) ~ have + log(POP1992), data = cities)

Residuals:

Min 1Q Median 3Q Max

-0.03478 -0.01698 -0.00332 0.01836 0.04821

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.05565 0.03062 -1.82 0.083

haveTRUE 0.02254 0.01004 2.25 0.035

log(POP1992) 1.01352 0.00523 193.92 <2e-16

Residual standard error: 0.0239 on 22 degrees of freedom

Multiple R-squared: 0.999, Adjusted R-squared: 0.999

F-statistic: 2.05e+04 on 2 and 22 DF, p-value: <2e-16

This suggests that the ‘have’ cities grew faster between 1992 and 1996 than the ‘have-not’
cities.
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Exercise 2
In the data set cement (MASS package), examine the dependence of y (amount of heat
produced) on x1, x2, x3 and x4 (which are proportions of four constituents). Begin by
examining the scatterplot matrix. As the explanatory variables are proportions, do they
require transformation, perhaps by taking log(x/(100 − x))? What alternative strategies
might be useful for finding an equation for predicting heat?

First, obtain the scatterplot matrix for the untransformed cement data:
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Figure 3: Scatterplot
matrix for the cement
data.

Since the explanatory variables are proportions, a transformation such as that sug-
gested might be helpful, though the bigger issue is the fact that the sum of the explanatory
variables is nearly constant. Thus, there will be severe multicollinearity as indicated by
the variance inflation factors:

> cement.lm <- lm(y ~ x1+x2+x3+x4, data=cement)

> vif(cement.lm)

x1 x2 x3 x4

38.50 254.42 46.87 282.51

The scatterplot matrix indicated that x4 and x2 are highly correlated, so we may wish
to include just one of these variables as in

> cement.lm2 <- lm(y ~ x1+x2+x3, data=cement)

> vif(cement.lm2)

x1 x2 x3

3.251 1.064 3.142
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The multicollinearity is less severe, and we can proceed. We consult the standard diag-
nostics using

> par(mfrow=c(1,4))

> plot(cement.lm2)

> par(mfrow=c(1,1))
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Figure 4: Diagnostic plots for the model cement.lm2

Nothing seems amiss on these plots. The three variable model seems satisfactory.
Upon looking at the summary, one might argue in favour of removing the variable x3.

For the logit analysis, first define the logit function:

> logit <- function(x) log(x/(100-x))

Now form the transformed data frame, and show the scatterplot matrix:

> logitcement <- data.frame(logit(cement[,c("x1", "x2","x3","x4")]),

+ y=cement[, "y"])

> pairs(logitcement)
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Notice that the relationship between x2 and x4 is now more nearly linear. This is helpful;
it is advantageous for collinearities or multicollinearities to be explicit.

Now fit the full model, and plot the diagnostics:

> logitcement.lm <- lm(y ~ x1+x2+x3+x4, data=logitcement)

> par(mfrow=c(1,4))

> plot(logitcement.lm)

> par(mfrow=c(1,1))
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Figure 6: Diagnostic plots for the model that works with logits.

This time, the multicollinearity problem is less extreme, though it is still notable.
Some observations have now influential outliers. In this problem, we may be best off not
transforming the predictors.

Exercise 4
The data frame hills2000 in our DAAG package has data, based on information from
the Scottish Running Resource web site, that updates the 1984 information in the data
set hills. Fit a regression model, for men and women separately, based on the data
in hills2000. Check whether it fits satisfactorily over the whole range of race times.
Compare the equation that you obtain with that based on the hills data frame.

We begin with the same kind of transformed model that we tried in Section 6.3 for
the hills data, examining the diagnostic plots.

> hills2000.loglm <- lm(log(time) ~ log(dist) + log(climb), data=hills2000)

> par(mfrow=c(1,4))

> plot(hills2000.loglm)

> par(mfrow=c(1,1))
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Figure 7: Diagnostic plots for hills2000.loglm
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The first of the diagnostic plots (residuals versus fitted values) reveals three potential
outliers, identified as 12 Trig Trog, Chapelgill, and Caerketton. A robust fit is however
a safer guide. The plot from such a fit shows Eildon Two and Braemar as outliers.
El-Brim-Ick stands out as different primarily because there is residual curvature in the
plot.
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Figure 8: Residuals vs fitted values for
hills2000r.loglm

> ## Code is

> use <- !row.names(hills2000)%in% c("Eildon Two","Braemar")

> hills2000r.loglm <- lm(log(time) ~ log(dist) + log(climb),

+ data=hills2000[use, ])

> plot(hills2000r.loglm, panel=panel.smooth, which=1)

There is clear evidence of curvature in the plot of residuals. Caerketton now stands
out. We will omit that also, for the time being.

A possibility is to try the addition of the interaction term log(dist):log(climb).
This does not remove the curvature in the plot of residuals versus fitted values.

Additional Note:
Use of spline curves to transform the explanatory variables does work well. We include
residuals and fitted values for the three omitted races in the plot. The code is

> library(splines)

> use <- !row.names(hills2000)%in%c("Eildon Two","Braemar","Caerketton")

> hills2000.bs <- lm(log(time) ~ bs(dist,4)+bs(climb,4), data=hills2000[use, ])

> hat <- predict(hills2000.bs, newdata=hills2000)

> res <- log(hills2000$time)-hat

> par(mfrow=c(1,3), pty="s")

> plot(hat,res)

> text(hat[!use], res[!use], row.names(hills2000)[!use], pos=4)

> plot(hills2000.bs, panel=panel.smooth, which=1)

> termplot(hills2000.bs, partial.resid=TRUE)

> par(mfrow=c(1,1))
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Figure 9: Residuals vs fitted values, and termplots, for hills2000.bs.

The plot of residuals versus fitted values shows no evidence either of trend or of hetero-
geneity of variance. Caerketton shows the clearest evidence that is should perhaps be
identified as an outlier.

To complete the analysis, check the effect of including back in the model (i) all three
omitted points except Caerketton, and (ii) all three omitted points. If it makes little
difference, they should be included back.

(A further model that may be tried has time on the left-hand side. The plot of
residuals against fitted values then shows clear evidence of curvature.)
Additional Note: The following may be interesting. We use the spline model, derived from
the hills2000 data, to determine predicted values, and compare these with predicted
values from the spline model that is fitted to the hills data.

> hills2000.bs <- lm(log(time) ~ bs(dist,4)+bs(climb,4), data=hills2000[use, ])

> hills.bs <- lm(log(time) ~ bs(dist,4)+bs(climb,4), data=hills[-18, ])

> fits <- predict(hills.bs)

> fits2 <- predict(hills2000.bs, newdata=hills[-18,])

> plot(fits, fits2, xlab="Fitted values, from hills.bs",

+ ylab="Fitted values, hills2000.bs model")

> mtext(side=3, line=1, "All fitted values are for the hills data")

> abline(0,1)

The warnings arise because some values of climb for the hills data lie outside of the
range of this variable for the hills2000 data.

Exercise 5
Section 6.1 used lm() to analyze the allbacks data that are presented in Figure 6.1.
Repeat the analysis using (1) the function rlm() in the MASS package, and (2) the
function lqs() in the MASS package. Compare the two sets of results with the results in
Section 6.1.

Here are fits, w/wo intercept, using rlm()

> allbacks.rlm <- rlm(weight ~ volume+area, data=allbacks)

> summary(allbacks.rlm)

Call: rlm(formula = weight ~ volume + area, data = allbacks)

Residuals:

Min 1Q Median 3Q Max
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-80.86 -22.18 -9.58 34.54 232.26

Coefficients:

Value Std. Error t value

(Intercept) 9.239 40.316 0.229

volume 0.701 0.042 16.641

area 0.514 0.070 7.311

Residual standard error: 39.4 on 12 degrees of freedom

> allbacks.rlm0 <- rlm(weight ~ volume+area-1, data=allbacks)

> summary(allbacks.rlm0)

Call: rlm(formula = weight ~ volume + area - 1, data = allbacks)

Residuals:

Min 1Q Median 3Q Max

-86.0 -20.6 -10.3 36.1 231.8

Coefficients:

Value Std. Error t value

volume 0.711 0.018 38.511

area 0.517 0.062 8.288

Residual standard error: 39.7 on 13 degrees of freedom

Here are plots of residuals against fitted values, for the two models.

> par(mfrow=c(1,2))

> plot(allbacks.rlm, which=1) # residual plot

> mtext(side=3, line=1, "rlm(), intercept included")

> plot(allbacks.rlm0, which=1) # residual plot

> mtext(side=3, line=1, "rlm(), no intercept")

> par(mfrow=c(1,2))
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Figure 10: Residuals vs fitted
values, for the rlm() models
with & without intercept.

Comparison of the coefficients of the intercept and no-intercept with the lm() coun-
terparts reveals larger differences in coefficient estimates for the intercept models. The
robust method has given smaller coefficient standard errors than lm().

The influence of the outlying observation (the 13th) is reduced using the robust
method; therefore, on the residual plots we see this observation featured even more promi-
nently as an outlier than on the corresponding plots for the lm() fits.

We next consider the lqs() approach. By default, lqs() employs a resistant re-
gression method called least trimmed squares regression (lts), an idea due to Rousseeuw
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(1984) (“Least median of squares regression.” Journal of the American Statistical Associ-
ation 79: 871–888). The method minimizes the sum of the k smallest squared residuals,
where k is usually taken to be slightly larger than 50% of the sample size. This approach
removes all of the influence of outliers on the fitted regression line.

> library(MASS)

> allbacks.lqs <- lqs(weight ~ volume+area, data=allbacks)

> allbacks.lqs$coefficients # intercept model

(Intercept) volume area

-59.6232 0.7737 0.4709

> allbacks.lqs0 <- lqs(weight ~ volume+area-1, data=allbacks)

> coefficients(allbacks.lqs0) # no-intercept model

volume area

0.7117 0.4849

The robust coefficient estimates of volume and area are similar to the corresponding
coefficient estimates for the lm() fit.

Here are plots of residuals against fitted values, for the two models.

> par(mfrow=c(1,2))

> plot(allbacks.lqs$residuals ~ allbacks.lqs$fitted.values)

> mtext(side=3, line=1, "lqs(), intercept included")

> plot(allbacks.lqs0$residuals ~ allbacks.lqs0$fitted.values)

> mtext(side=3, line=1, "lqs(), no intercept")

> par(mfrow=c(1,1))
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Figure 11: Residuals vs fitted
values, for the lqs() models
with & without intercept.

Because the outlying observation (13) is now not used at all in the final regression
coefficient estimates, it has no influence. Neither does observation 11, another outlier.
Both points plot farther away from the reference line at 0 than in the corresponding lm()
residual plots.

Exercise 7
Check the variance inflation factors for bodywt and lsize for the model
brainwt ~ bodywt + lsize, fitted to the litters data set. Comment.

We can use the function vif() to determine the variance inflation factors for the litters
data as follows:

> litters.lm <- lm(brainwt ~ bodywt + lsize, data=litters)

> vif(litters.lm)
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bodywt lsize

11.33 11.33

A scatterplot of litter size versus body weight would confirm that the two variables
have a relation which is close to linear. The effect is to give inflated standard errors in the
above regression, though not enough to obscure the relationship between brain weight
and body weight and litter size completely.

It is hazardous to make predictions of brain weight for pigs having body weight and
litter size which do not lie close to the line relating these variables.

Exercise 10
The data frame table.b3 in the MPV package contains data on gas mileage and eleven
other variables for a sample of 32 automobiles.

(a) Construct a scatterplot of y (mpg) versus x1 (displacement). Is the relationship
between these variables nonlinear?

(b) Use the xyplot() function, and x11 (type of transmission) as a group variable. Is
a linear model reasonable for these data?

11. Fit the model relating y to x1 and x11 which gives two lines having possibly different
slopes and intercepts. Check the diagnostics. Are there any influential observations?
Are there any influential outliers?

(c) Plot the residuals against the variable x7 (number of transmission speeds), again
using x11 as a group variable. Is there anything striking about this plot?

(a) > library(MPV)

> plot(y ~ x1, data=table.b3)

The scatterplot is suggests a curvilinear relationship.

(b) > library(lattice)

> xyplot(y ~ x1, group=x11, data=table.b3)

This suggests that the apparent nonlinearity is better explained by the two types
of transmission.

(c) > b3.lm <- lm(y ~ x1*x11, data=table.b3)

> par(mfrow=c(1,4), pty="s")

> plot(b3.lm)

Observation 5 is influential, but it is not an outlier.

(d) > xyplot(resid(b3.lm) ~ x7, group=x11, data=table.b3)

This plot demonstrates that observation 5 is special. It is based on the only car in
the data set with a 3-speed manual transmission.
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (May 1, 2010)

Preliminaries

> library(DAAG)

> library(splines)

Exercise 1
Re-analyze the sugar weight data of Subsection 7.1.1 using the log(weight) in place of
weight.

From the scatterplot in Figure 7.1, it is clear that the treatment variances are not con-
stant. Perhaps a logarithmic transformation will stabilize the variances.

> sugarlog.aov <- aov(log(weight) ~ trt, data=sugar)

> summary.lm(sugarlog.aov)

Call:

aov(formula = log(weight) ~ trt, data = sugar)

Residuals:

Min 1Q Median 3Q Max

-0.16517 -0.04372 -0.00253 0.03963 0.17069

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.4122 0.0574 76.90 9.1e-13

trtA -0.2902 0.0811 -3.58 0.0072

trtB -0.2011 0.0811 -2.48 0.0382

trtC -0.5229 0.0811 -6.44 0.0002

Residual standard error: 0.0994 on 8 degrees of freedom

Multiple R-squared: 0.843, Adjusted R-squared: 0.784

F-statistic: 14.3 on 3 and 8 DF, p-value: 0.00141

> summary.lm(sugarlog.aov)

Call:

aov(formula = log(weight) ~ trt, data = sugar)

Residuals:

Min 1Q Median 3Q Max

-0.16517 -0.04372 -0.00253 0.03963 0.17069

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.4122 0.0574 76.90 9.1e-13

trtA -0.2902 0.0811 -3.58 0.0072

trtB -0.2011 0.0811 -2.48 0.0382

trtC -0.5229 0.0811 -6.44 0.0002
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Residual standard error: 0.0994 on 8 degrees of freedom

Multiple R-squared: 0.843, Adjusted R-squared: 0.784

F-statistic: 14.3 on 3 and 8 DF, p-value: 0.00141

On the log scale, the differences from control remain discernible. However the plot should
be compared with plots from random normal data. This should be repeated several times.
There will be occasional samples that show changes in variability of the observed residuals
that are of the extent observed for these data.
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Figure 1: Plot of residuals versus fitted values, for the log(sugar weight) data.

Exercise 3
Use the method of Section 7.3 to determine, formally, whether there should be different
regression lines for the two data frames elastic1 and elastic2 from Exercise 1 in
Section 5.11.

It will be convenient to work with a single data frame:

> elastic2$expt <- rep(2, length(elastic2$stretch))

> elastic1$expt <- rep(1, length(elastic1$stretch))

> elastic <- rbind(elastic1, elastic2)

> elastic$expt <- factor(elastic$expt)

We fit three models as follows:

> e.lm1 <- lm(distance ~ stretch, data=elastic) # a single line

> e.lm2 <- lm(distance ~ stretch + expt, data=elastic)

> # two parallel lines

> e.lm3 <- lm(distance ~ stretch + expt + stretch:expt, data=elastic)

The following sequential analysis of variance table indicates that there is mild evidence
against the two lines having the same intercept.

> anova(e.lm1, e.lm2, e.lm3)
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Analysis of Variance Table

Model 1: distance ~ stretch

Model 2: distance ~ stretch + expt

Model 3: distance ~ stretch + expt + stretch:expt

Res.Df RSS Df Sum of Sq F Pr(>F)

1 14 2549

2 13 2017 1 532 3.22 0.098

3 12 1978 1 39 0.24 0.634

Recall, however, from Exercise 5.1, that observation 7 is an influential outlier. Let’s
check to see what happens to the three models when this observation is deleted.

> e.lm1 <- lm(distance ~ stretch, data=elastic[-7,])

> e.lm2 <- lm(distance ~ stretch + expt, data=elastic[-7,])

> e.lm3 <- lm(distance ~ stretch + expt + stretch:expt, data=elastic[-7,])

> anova(e.lm1, e.lm2, e.lm3)

Analysis of Variance Table

Model 1: distance ~ stretch

Model 2: distance ~ stretch + expt

Model 3: distance ~ stretch + expt + stretch:expt

Res.Df RSS Df Sum of Sq F Pr(>F)

1 13 1205

2 12 1042 1 162.5 1.79 0.21

3 11 1000 1 42.2 0.46 0.51

Now, we see that there is really very little evidence of a difference between the two lines.
Observation 7 seems different in character from other observations.

Exercise 4
The data frame toycars consists of 27 observations on the distance (in meters) traveled
by one of three different toy cars on a smooth surface, starting from rest at the top of
a16-inch-long ramp tilted at varying angles (measured in degrees). Because of differing
frictional effects for the three different cars, we seek three regression lines relating distance
traveled toangle.

(a) As a first try, fit the model in which the three lines have the same slope but have
different intercepts.

(b) Note the value of R2 from the summary table. Examine the diagnostic plots care-
fully. Is there an influential outlier? How should it be treated?

(c) The physics of the problem actually suggests that the three lines should have the
same intercept (very close to 0, in fact), and possibly differing slopes, where the
slopes are inversely related to the coefficient of dynamic friction for each car. Fit the
model, and note that the value of R2 is slightly lower than that for the previously
fitted model. Examine the diagnostic plots. What has happened to the influential
outlier? In fact, we have exhibited an example where taking R2 too seriously
could be somewhat hazardous; in this case, a more carefully thought out model can
accommodate all of the data satisfactorily. Maximizing R2 does not necessarily
give the best model!
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> toycars$car <- factor(toycars$car) # car should be a factor

> toycars.lm <- lm(distance ~ angle + car, data=toycars)

> summary(toycars.lm)

Call:

lm(formula = distance ~ angle + car, data = toycars)

Residuals:

Min 1Q Median 3Q Max

-0.09811 -0.04240 -0.00669 0.01741 0.17251

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09252 0.03467 2.67 0.0137

angle 0.18854 0.00995 18.96 1.5e-15

car2 0.11111 0.03195 3.48 0.0020

car3 -0.08222 0.03195 -2.57 0.0170

Residual standard error: 0.0678 on 23 degrees of freedom

Multiple R-squared: 0.945, Adjusted R-squared: 0.938

F-statistic: 132 on 3 and 23 DF, p-value: 1.22e-14

From the diagnostics (below), we see that there is an influential outlier. The model is
not fitting all of the data satisfactorily.
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Figure 2: Diagnostic plots for toycars.lm

To fit the model with a constant intercept and possibly differing slopes, we proceed
as follows:

> toycars.lm2 <- lm(distance ~ angle + angle:car, data=toycars)

> summary(toycars.lm2)

Call:

lm(formula = distance ~ angle + angle:car, data = toycars)

Residuals:

Min 1Q Median 3Q Max

-0.1084 -0.0468 -0.0122 0.0697 0.1062

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1022 0.0304 3.36 0.0027

angle 0.1819 0.0122 14.97 2.4e-13

angle:car2 0.0416 0.0112 3.71 0.0011
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angle:car3 -0.0217 0.0112 -1.93 0.0654

Residual standard error: 0.0701 on 23 degrees of freedom

Multiple R-squared: 0.941, Adjusted R-squared: 0.934

F-statistic: 123 on 3 and 23 DF, p-value: 2.65e-14

We can see from the diagnostics below that observation 17 is still somewhat influential,
but it is no longer an outlier. All of the data are accommodated by this new model
reasonably well.
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Figure 3: Diagnostic plots for toycars.lm2

Exercise 5
The data frame cuckoos holds data on the lengths and breadths of eggs of cuckoos, found
in the nests of six different species of host birds. Fit models for the regression of length
on breadth that have:
A: a single line for all six species.

B: different parallel lines for the different host species.

C: separate lines for the separate host species.

Use the anova() function to print out the sequential analysis of variance table. Which
of the three models is preferred? Print out the diagnostic plots for this model. Do they
show anything worthy of note? Examine the output coefficients from this model carefully,
and decide whether the results seem grouped by host species. How might the results be
summarized for reporting purposes?

> cuckoos.lm <- lm(length ~ breadth, data=cuckoos) # one line

> cuckoos.lm2 <- lm(length ~ breadth + species, data=cuckoos)

> # parallel lines

> cuckoos.lm3 <- lm(length ~ breadth + species + species:breadth,

+ data=cuckoos) # different lines

> anova(cuckoos.lm, cuckoos.lm2, cuckoos.lm3)

Analysis of Variance Table

Model 1: length ~ breadth

Model 2: length ~ breadth + species

Model 3: length ~ breadth + species + species:breadth

Res.Df RSS Df Sum of Sq F Pr(>F)

1 118 101.9

2 113 79.1 5 22.81 6.57 2.2e-05

3 108 75.0 5 4.14 1.19 0.32
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From the anova summary, we see that the second model is preferable. The standard
diagnostics are given below.
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Figure 4: Diagnostic plots for cuckoos.lm2

There is nothing on these plots that calls for especial attention.

> summary(cuckoos.lm2)

Call:

lm(formula = length ~ breadth + species, data = cuckoos)

Residuals:

Min 1Q Median 3Q Max

-2.3734 -0.4911 -0.0682 0.5298 2.5447

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.5156 3.0177 3.15 0.00207

breadth 0.8112 0.1795 4.52 1.5e-05

speciesmeadow.pipit -0.8013 0.2561 -3.13 0.00223

speciespied.wagtail -0.0132 0.3145 -0.04 0.96650

speciesrobin -0.3031 0.3114 -0.97 0.33241

speciestree.pipit 0.0449 0.3114 0.14 0.88562

specieswren -1.2391 0.3530 -3.51 0.00064

Residual standard error: 0.837 on 113 degrees of freedom

Multiple R-squared: 0.419, Adjusted R-squared: 0.388

F-statistic: 13.6 on 6 and 113 DF, p-value: 1.44e-11

The baseline species is hedge sparrow, and we see some groupings among the host species.
The relation between length and breadth of the eggs is similar when the host species

are hedge sparrow, pied wagtail and tree pipit. Even when the robin is the host species,
there is little evidence of a difference in the way in which length and breadth are related.
However, the linear relation between length and breadth has a smaller intercept when
the host species is either the meadow pipit or the wren.

Exercise 8
Apply spline regression to the geophones data frame. Specifically, regress thickness
against distance, and check the fits of 4-, 5- and 6-degree-of-freedom cases. Which case
gives the best fit to the data? How does this fitted curve compare with the polynomial
curves obtained in the previous exercise? Calculate pointwise confidence bounds for the
5-degree-of-freedom case.
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We fit the 4-, 5-, and 6-degree-of-freedom spline models to the geophones data as follows:

> geo.spl4 <- lm(thickness ~ ns(distance, df=4), data=geophones)

> geo.spl5 <- lm(thickness ~ ns(distance, df=5), data=geophones)

> geo.spl6 <- lm(thickness ~ ns(distance, df=6), data=geophones)

The fitted curves are plotted thus:

> plot(geophones)

> lines(spline(geophones$distance, predict(geo.spl4)),col=1)

> lines(spline(geophones$distance, predict(geo.spl5)),col=2, lty=2)

> lines(spline(geophones$distance, predict(geo.spl6)),col=3, lty=4)

> bottomleft <- par()$usr[c(1,3)]

> legend(bottomleft[1], bottomleft[2], lty=c(1:2,4), col=1:3,

+ legend=c("4 df", "5 df", "6 df"), xjust=0, yjust=0)

The 6-degree-of-freedom case gives the best fit to the data; it captures some of the
curvature at the large distance values, while retaining smoothness in other regions. The
5-degree-of-freedom case is smoother than the quartic, while capturing similar amounts
of curvature in the large distance region.

The 95% confidence bounds for the 5-degree-of-freedom case can be obtained and
plotted as follows:

> plot(geophones, pty="s")

> lines(spline(geophones$distance, predict(geo.spl5)),col=2)

> lines(geophones$distance, predict(geo.spl5, interval="confidence")[,"lwr"],

+ col=2)

> lines(geophones$distance, predict(geo.spl5, interval="confidence")[,"upr"],

+ col=2)
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Figure 5: Panel A
shows 4, 5 and 6 df
spline curves fitted to
the geophones data.
Panel B shows confi-
dence bounds for ex-
pected thickness, for
the 5df fit.

Exercise 11
Check the diagnostic plots for the results of exercise 8 for the 5-degree-of-freedom case.
Are there any influential outliers?

The standard diagnostics for the 5-degree-of-freedom spline model fit to the geophones
data can be plotted using
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> par(mfrow=c(1,4))

> plot(geo.spl5)

> par(mfrow=c(1,1))
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Figure 6: Diagnostic plots for 5df spline model.

There are no extreme outliers. Observation 19 is a mild outlier which exerts moderate
influence. This should not be of major concern. The plot of the residuals versus the fitted
values does indicate that some of the nonlinearity has not been satisfactorily modeled.

Exercise 12
Continuing to refer to exercise 8, obtain plots of the spline basis curves for the 5-degree-
of-freedom case. That is, plot the relevant column of the model matrix against y.

The first basis function is a constant, to include an intercept in the model. (Note that
this implies that there are actually 6 degrees of freedom in the model.) The remaining
basis functions are plotted as follows:

> X5 <- model.matrix(geo.spl5)

> plot(X5[,2] ~ geophones$distance, type="l")

> lines(X5[,3] ~ geophones$distance, col=3)

> lines(X5[,4] ~ geophones$distance, col=4)

> lines(X5[,5] ~ geophones$distance, col=5)

> lines(X5[,6] ~ geophones$distance, col=6)
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Figure 7: Spline basis func-
tions.

We could also use matplot() for this problem.

matplot(geophones$distance, X5[,-1], type="l")
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Exercise 14
The ozone data frame holds data, for nine months only, on ozone levels at the Hal-
ley Bay station between 1956 and 2000. (See Christie (2000) and Shanklin (2001)
for the scientific background. Up to date data are available from the web page
http://www.nerc-bas.ac.uk/public/icd/jds/ozone/.) Replace zeros by missing val-
ues. Determine, for each month, the number of missing values. Plot the October levels
against Year, and fit a smooth curve. At what point does there seem to be clear evidence
of a decline? Plot the data for other months also. Do other months show a similar
pattern of decline?

A simple way to replace 0’s by missing value codes is the following:

> names(ozone)

[1] "Year" "Aug" "Sep" "Oct" "Nov" "Dec" "Jan"

[8] "Feb" "Mar" "Apr" "Annual"

> Ozone <- ozone

> for (i in 2:11){

+ Ozone[ozone[,i]==0, i] <- NA

+ }

One way to count up the monthly missing values is the following:

> sapply(Ozone[,-c(1,11)], function(x) sum(is.na(x)))

Aug Sep Oct Nov Dec Jan Feb Mar Apr

21 8 0 0 0 0 0 0 11

A plot of the October ozone levels against Year can be obtained as follows:

●
●

●●
●

●

●

●
●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●●
●

●
●●●●

1960 1980 2000

15
0

20
0

25
0

30
0

Year

O
ct

ob
er

 o
zo

ne
 le

ve
ls

 (D
U

)

Figure 8: Lowess curve fit-
ted to the ozone data.

We see that ozone level is decreasing throughout the period, but there is an accelera-
tion in the mid- to late-1970s.

To plot the data for the other months, we can do the following:
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Figure 9: Change in
ozone levels over time,
by month.

Similar declines are evident in several of the other months. The decline is less steep
in some of the other months.

Exercise 18*
∗Compare the two results

seedrates.lm <- lm(grain ~ rate + I(rate^2),

data=seedrates)

seedrates.pol <- lm(grain ~ poly(rate,2),

data=seedrates)

Check that the fitted values and residuals from the two calculations are the same, and
that the t-statistic and p-value are the same for the final coefficient, i.e., the same for
the coefficient labeled poly(rate, 2)2 in the polynomial regression as for the coefficient
labeled I(rate^2) in the regression on rate and rate^2.
Regress the second column of model.matrix(seedrates.pol) on rate and I(rate^2),

and similarly for the third column of model.matrix(seedrates.pol). Hence express the
first and second orthogonal polynomial terms as functions of rate and rate^2.

The following shows that the fitted values and residuals are the same for the two calcu-
lations. The t-statistic and p-value are also the same for the final coefficient.

> seedrates.lm <- lm(grain ~ rate + I(rate^2), data=seedrates)

> seedrates.pol<- lm(grain ~ poly(rate, 2), data=seedrates)

> fitted(seedrates.lm)-fitted(seedrates.pol)

1 2 3 4 5

0 0 0 0 0

> resid(seedrates.lm)-resid(seedrates.pol)
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1 2 3 4 5

-6.939e-17 1.804e-16 0.000e+00 -1.318e-16 6.245e-17

> summary(seedrates.lm)

Call:

lm(formula = grain ~ rate + I(rate^2), data = seedrates)

Residuals:

1 2 3 4 5

0.04571 -0.12286 0.09429 -0.00286 -0.01429

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.060000 0.455694 52.80 0.00036

rate -0.066686 0.009911 -6.73 0.02138

I(rate^2) 0.000171 0.000049 3.50 0.07294

Residual standard error: 0.115 on 2 degrees of freedom

Multiple R-squared: 0.996, Adjusted R-squared: 0.992

F-statistic: 256 on 2 and 2 DF, p-value: 0.00390

> summary(seedrates.pol)

Call:

lm(formula = grain ~ poly(rate, 2), data = seedrates)

Residuals:

1 2 3 4 5

0.04571 -0.12286 0.09429 -0.00286 -0.01429

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.3200 0.0513 376.8 7e-06

poly(rate, 2)1 -2.5614 0.1146 -22.3 0.002

poly(rate, 2)2 0.4009 0.1146 3.5 0.073

Residual standard error: 0.115 on 2 degrees of freedom

Multiple R-squared: 0.996, Adjusted R-squared: 0.992

F-statistic: 256 on 2 and 2 DF, p-value: 0.00390

From the following output, we can infer that the first orthogonal polynomial is

p1(x) = −1.265 + .01265x

and the second orthogonal polynomial is

p2(x) = 3.742− .08552x+ .0004276x2

> attach(seedrates)

> y <- model.matrix(seedrates.pol)[,2]

> y.lm <- lm(y ~ rate + I(rate^2))

> coef(y.lm)

(Intercept) rate I(rate^2)

-1.265e+00 1.265e-02 3.917e-20
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> y <- model.matrix(seedrates.pol)[,3]

> y.lm <- lm(y ~ rate + I(rate^2))

> coef(y.lm)

(Intercept) rate I(rate^2)

3.7416574 -0.0855236 0.0004276

Among other things, the polynomials given above have the property that

p1(50)p2(50) + p1(75)p2(75) + p1(100)p2(100) + p1(125)p2(125) + p1(150)p2(150)

since the values of the predictor are:

> rate

[1] 50 75 100 125 150

> detach(seedrates)
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Data Analysis & Graphics Using R – Solutions to Exercises (May 1, 2010)

Preliminaries

> library(DAAG)

Exercise 1
The following table shows numbers of occasions when inhibition (i.e., no flow of current
across a membrane) occurred within 120 s, for different concentrations of the protein
peptide-C (data are used with the permission of Claudia Haarmann, who obtained these
data in the course of her PhD research). The outcome yes implies that inhibition has
occurred.

conc 0.1 0.5 1 10 20 30 50 70 80 100 150
no 7 1 10 9 2 9 13 1 1 4 3
yes 0 0 3 4 0 6 7 0 0 1 7

Use logistic regression to model the probability of inhibition as a function of protein
concentration.

It is useful to begin by plotting the logit of the observed proportions against log(conc).
Concentrations are nearer to equally spaced on a scale of relative dose, rather than on a
scale of dose, suggesting that it might be appropriate to work with log(conc). In order
to allow plotting of cases where no = 0 or yes = 0, we add 0.5 to each count.
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 +
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)) Figure 1: Plot of log((yes+0.5)/(no+0.5)), against
log(conc).

> conc <- c(.1, .5, 1, 10, 20, 30,
+ 50, 70, 80, 100, 150)
> no <- c(7, 1, 10, 9, 2, 9, 13, 1, 1, 4, 3)
> yes <- c(0, 0, 3, 4, 0, 6, 7, 0, 0, 1 ,7)
> n <- no + yes
> plot(log(conc), log((yes+0.5)/(no+0.5)))

The plot seems consistent with the use of log(conc) as the explanatory variable.
The code for the regression is:

> p <- yes/n
> inhibit.glm <- glm(p ~ I(log(conc)), family=binomial, weights=n)
> summary(inhibit.glm)

Call:
glm(formula = p ~ I(log(conc)), family = binomial, weights = n)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.251 -1.060 -0.503 0.315 1.351
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.766 0.521 -3.39 0.0007
I(log(conc)) 0.344 0.144 2.39 0.0170

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16.6834 on 10 degrees of freedom
Residual deviance: 9.3947 on 9 degrees of freedom
AIC: 29.99

Number of Fisher Scoring iterations: 4

Exercise 2
In the data set (an artificial one of 3121 patients, that is similar to a subset of the data
analyzed in Stiell et al. (2001)) minor.head.injury, obtain a logistic regression model
relating
clinically.important.brain.injury to other variables. Patients whose risk is suffi-
ciently high will be sent for CT (computed tomography). Using a risk threshold of 0.025
(2.5%), turn the result into a decision rule for use of CT.

> sapply(head.injury, range)

age.65 amnesia.before basal.skull.fracture GCS.decrease GCS.13
[1,] 0 0 0 0 0
[2,] 1 1 1 1 1

GCS.15.2hours high.risk loss.of.consciousness
[1,] 0 0 0
[2,] 1 1 1

open.skull.fracture vomiting clinically.important.brain.injury
[1,] 0 0 0
[2,] 1 1 1

> injury.glm <- glm(clinically.important.brain.injury ~ .,
+ data=head.injury, family=binomial)
> summary(injury.glm)

Call:
glm(formula = clinically.important.brain.injury ~ ., family = binomial,

data = head.injury)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.277 -0.351 -0.210 -0.149 3.003

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.497 0.163 -27.61 < 2e-16
age.65 1.373 0.183 7.52 5.6e-14
amnesia.before 0.689 0.172 4.00 6.4e-05
basal.skull.fracture 1.962 0.206 9.50 < 2e-16
GCS.decrease -0.269 0.368 -0.73 0.46515
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GCS.13 1.061 0.282 3.76 0.00017
GCS.15.2hours 1.941 0.166 11.67 < 2e-16
high.risk 1.111 0.159 6.98 2.9e-12
loss.of.consciousness 0.955 0.196 4.88 1.1e-06
open.skull.fracture 0.630 0.315 2.00 0.04542
vomiting 1.233 0.196 6.29 3.2e-10

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1741.6 on 3120 degrees of freedom
Residual deviance: 1201.3 on 3110 degrees of freedom
AIC: 1223

Number of Fisher Scoring iterations: 6

Observe that log(.025/(1-.025)) = -3.66, an increase of 0.84 above the intercept (= -
4.50). This change in risk results from (1) GCS.decrease with any other individual factor
except amnesia.before, GCS.decrease and open.skull.fracture; (2) GCS.decrease
with any two of amnesia.before, open.skull.fracture and loss.of.consciousness;
(3) any of the individual factors age.65, basal.skull.fracture, GCS.15.2hours, high.risk
and vomiting, irrespective of the levels of other factors.

Exercise 3
Consider again the moths data set of Section 8.4.

(a) What happens to the standard error estimates when the poisson family is used in
glm() instead of the quasipoisson family?

(b) Analyze the P moths, in the same way as the A moths were analyzed. Comment on
the effect of transect length.

(a) The dispersion estimate was 2.69. Use of the quasipoisson family has the effect
of increasing SEs by a factor of

√
2.69, relative to the poisson family. See the first

two lines on p.215. SEs on pp.214-215 will thus be reduced by this factor if the
poisson family is (inappropriately) specified.

(b) > sapply(split(moths$P, moths$habitat), sum)

Bank Disturbed Lowerside NEsoak NWsoak SEsoak
4 33 17 14 19 6

SWsoak Upperside
48 8

> moths$habitat <- relevel(moths$habitat, ref="Lowerside")
> P.glm <- glm(P ~ habitat + log(meters), family=quasipoisson,
+ data=moths)

The highest numbers are now for SWsoak and for Disturbed The number of moths
increases with transect length, by a factor of approximately 1.74 (= e.55) for each
one meter increase in transect length.
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Exercise 4*
The factor dead in the data set mifem (DAAG package) gives the mortality outcomes
(live or dead), for 1295 female subjects who suffered a myocardial infarction. (See
Section 11.5 for further details.) Determine ranges for age and yronset (year of onset),
and determine tables of counts for each separate factor. Decide how to handle cases
for which the outome, for one or more factors, is not known. Fit a logistic regression
model, beginning by comparing the model that includes all two-factor interactions with
the model that has main effects only.

First, examine various summary information:

> str(mifem)

'data.frame': 1295 obs. of 10 variables:
$ outcome : Factor w/ 2 levels "live","dead": 1 1 1 1 2 1 1 2 2 2 ...
$ age : num 63 55 68 64 67 66 63 68 46 66 ...
$ yronset : num 85 85 85 85 85 85 85 85 85 85 ...
$ premi : Factor w/ 3 levels "y","n","nk": 2 2 1 2 2 2 2 1 2 1 ...
$ smstat : Factor w/ 4 levels "c","x","n","nk": 2 1 4 2 4 2 3 3 1 1 ...
$ diabetes: Factor w/ 3 levels "y","n","nk": 2 2 3 2 3 3 2 2 2 2 ...
$ highbp : Factor w/ 3 levels "y","n","nk": 1 1 1 1 3 3 1 1 1 1 ...
$ hichol : Factor w/ 3 levels "y","n","nk": 1 1 3 2 3 3 2 1 3 2 ...
$ angina : Factor w/ 3 levels "y","n","nk": 2 2 1 1 3 3 2 1 3 2 ...
$ stroke : Factor w/ 3 levels "y","n","nk": 2 2 2 2 3 3 2 1 2 1 ...

> sapply(mifem[, c("age", "yronset")], range)

age yronset
[1,] 35 85
[2,] 69 93

> lapply(mifem[, -(1:3)], table)

$premi

y n nk
311 928 56

$smstat

c x n nk
390 280 522 103

$diabetes

y n nk
248 978 69

$highbp

y n nk
813 406 76
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$hichol

y n nk
452 655 188

$angina

y n nk
472 724 99

$stroke

y n nk
153 1063 79

For all of the factors, there are a large number of nk’s, i.e., not known. A straightforward
way to handle them is to treat nk as a factor level that, as for y and n, may give
information that helps predict the outcome. For ease of interpretation we will make n,
the reference level.

> for(j in 4:10)mifem[,j] <- relevel(mifem[,j], ref="n")
> mifem1.glm <- glm(outcome ~ ., family=binomial, data=mifem)
> mifem2.glm <- glm(outcome ~ .^2, family=binomial, data=mifem)
> anova(mifem1.glm, mifem2.glm)

Analysis of Deviance Table

Model 1: outcome ~ age + yronset + premi + smstat + diabetes + highbp +
hichol + angina + stroke

Model 2: outcome ~ (age + yronset + premi + smstat + diabetes + highbp +
hichol + angina + stroke)^2

Resid. Df Resid. Dev Df Deviance
1 1277 1173
2 1152 1014 125 159

> CVbinary(mifem1.glm)

Fold: 6 10 9 5 2 7 1 4 8 3
Internal estimate of accuracy = 0.807
Cross-validation estimate of accuracy = 0.803

> CVbinary(mifem2.glm)

Fold: 2 1 8 7 9 10 6 5 4 3
Internal estimate of accuracy = 0.839
Cross-validation estimate of accuracy = 0.775

The difference in deviance seems statistically significant (pchisq(125,159) = 0.021),
but it may be unwise to trust the chi-squared approximation to the change in deviance.

It is safer to compare the cross-validated accuracy estimates, which in individual
cross-validation runs were marginally lower for mifem2.glm than for mifem2.glm; 0.78 as
against 0.80. Note also that there were convergence problems for the model that included
all first order interaction terms.
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Data Analysis & Graphics Using R, 3
rd

edn – Solutions to Exercises (April 29, 2010)

Preliminaries

> library(DAAG)

Exercise 1
A time series of length 100 is obtained from an AR(1) model with σ = 1 and α = −.5. What

is the standard error of the mean? If the usual σ/
√
n formula were used in constructing a

confidence interval for the mean, with σ defined as in Section 9.1.3, would it be too narrow

or too wide?

If we know σ, then the usual σ/
√
n formula will give an error that is too narrow; refer

back to Subsection 9.1.3 on pp. 288-289.

The need to estimate σ raises an additional complication. If σ is estimated by fitting

a time series model, e.g., using the function ar(), this estimate of σ can be plugged into

the formula in Subsection 9.1.3. The note that now follows covers the case where σ2
is

estimated using the formula

σ̂2 =

�
(Xi − X̄)

2

n− 1

The relevant theoretical results are not given in the text. Their derivation requires a

kmowledge of the algebra of expectations.

Note 1: We use the result (proved below)

E[(Xi − µ)2] = σ2/(1− α2
) (1)

and that

E[

�
(Xi − X̄)

2
] =

1

1− α2
(n− 1− α)σ2 � 1

1− α2
(n− 1)σ2

(2)

Hence, if the variance is estimated from the usual formula σ̂2 =

�
(Xi−X̄)2

n−1 , the standard

error of the mean will be too small by a factor of approximately

�
1−α
1+α .

Note 2: We square both sides of

Xt − µ = α(Xt−1 − µ) + εt

and take expectations. We have that

E[(Xt − µ)2] = (1− α2
)E[(Xt − µ)2] + σ2

from which the result (eq.1) follows immediately. To derive E[
�

(Xi− X̄)
2
], observe that

E[

�
(Xi − X̄)

2
] = E[(Xt − µ)2]− n(X̄ − µ)2
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Exercise 2
Use the ar function to fit the second order autoregressive model to the Lake Huron time

series.

> ar(LakeHuron, order.max=2)

Call:
ar(x = LakeHuron, order.max = 2)

Coefficients:
1 2

1.054 -0.267

Order selected 2 sigma^2 estimated as 0.508

It might however be better not to specify the order, instead allowing the ar() function

to choose it, based on the AIC criterion. For this to be valid, it is best to specify also

method="mle". Fitting by maximum likelihood can for long series be very slow. It works

well in this instance.

> ar(LakeHuron, method="mle")

Call:
ar(x = LakeHuron, method = "mle")

Coefficients:
1 2

1.044 -0.250

Order selected 2 sigma^2 estimated as 0.479

The AIC criterion chooses the order equal to 2.

Exercise 3
Repeat the analysis of Section 9.2, replacing avrain by: (i) southRain, i.e., annual average
rainfall in Southern Australia; (ii) northRain, i.e., annual average rainfall in Northern

Australia.

The following functions may be used to automate these calculations. First, here is a

function that gives the time series plots.

> bomts <-
+ function(rain="NTrain"){
+ plot(ts(bomsoi[, c(rain, "SOI")], start=1900),
+ panel=function(y,...)panel.smooth(bomsoi$Year, y,...)) }

Next, here is a function that automates the calculations and resulting plots, for the

analysis used for all-Australian rainfall data. The parameter choices may for some areas

need to be varied, but output from this function should be a good start.

> bomplots <-
+ function(loc="NTrain"){
+ oldpar <- par(fig=c(0,0.5,0.5,1), mar=c(3.6,3.6,1.6,0.6), mgp=c(2.25,.5,0))
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+ on.exit(par(oldpar))
+ rain <- bomsoi[, loc]
+ xbomsoi <-
+ with(bomsoi, data.frame(SOI=SOI, cuberootRain=rain^0.33))
+ xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y
+ xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y
+ rainpos <- pretty(rain, 5)
+ par(fig=c(0,0.5,0.5,1), new=TRUE)
+ with(xbomsoi,
+ {plot(cuberootRain ~ SOI, xlab = "SOI",
+ ylab = "Rainfall (cube root scale)", yaxt="n")
+ axis(2, at = rainpos^0.33, labels=paste(rainpos))
+ ## Relative changes in the two trend curves
+ lines(lowess(cuberootRain ~ SOI))
+ lines(lowess(trendRain ~ trendSOI), lwd=2, col="gray40")
+ })
+ xbomsoi$detrendRain <-
+ with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
+ xbomsoi$detrendSOI <-
+ with(xbomsoi, SOI - trendSOI + mean(trendSOI))
+ par(fig=c(.5,1,.5,1),new=TRUE)
+ plot(detrendRain ~ detrendSOI, data = xbomsoi,
+ xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
+ axis(2, at = rainpos^0.33, labels=paste(rainpos))
+ with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI)))
+ attach(xbomsoi)
+ xbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI,
+ order=c(0,0,12))
+ xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI,
+ seasonal=list(order=c(0,0,1), period=12))
+ print(xbomsoi.ma12)
+ print(xbomsoi.ma12s)
+ par(fig=c(0,0.5,0,0.5), new=TRUE)
+ acf(resid(xbomsoi.ma12))
+ par(fig=c(0.5,1,0,0.5), new=TRUE)
+ pacf(resid(xbomsoi.ma12))
+ par(oldpar)
+ detach(xbomsoi)
+ }

Data for further regions of Australia are available from the websites noted on the help

page for bomsoi.

Exercise 4
In the calculation

Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
type="Ljung-Box", lag=20)

try the test with lag set to values of 1 (the default), 5, 20, 25 and 30. Comment on the

different results.

The calculation for a lag of 20 was given on page 296. Here are the results for the other

suggested lags:
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> if(!exists("xbomsoi"))
+ {xbomsoi <-
+ with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33))
+ xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y
+ xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y}
> xbomsoi$detrendRain <-
+ with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
> xbomsoi$detrendSOI <-
+ with(xbomsoi, SOI - trendSOI + mean(trendSOI))
> Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
+ type="Ljung-Box", lag=15)

Box-Ljung test

data: resid(lm(detrendRain ~ detrendSOI, data = xbomsoi))
X-squared = 32.86, df = 15, p-value = 0.004905

> Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
+ type="Ljung-Box", lag=25)

Box-Ljung test

data: resid(lm(detrendRain ~ detrendSOI, data = xbomsoi))
X-squared = 38.44, df = 25, p-value = 0.04192

> Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
+ type="Ljung-Box", lag=30)

Box-Ljung test

data: resid(lm(detrendRain ~ detrendSOI, data = xbomsoi))
X-squared = 46.41, df = 30, p-value = 0.02836

The p-values are:

n=15 n=20 n=25 n=30
0.005 0.023 0.042 0.028

Notice that the indication of sequential correlation is much stronger for n=15 than for

larger values of n. As the number of possibilities that are canvassed increases (a greater

number of lags at which there may be autocorrelations) the probability of detection of

autocorrelation decreases.The small p-value for n=30 may thus seem surprising.
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (May 1, 2010)

Preliminaries

> library(lme4)

> library(DAAG)

The final two sentences of Exercise 1 are challenging! Exercises 1 & 2 should be asterisked.

Exercise 1
Repeat the calculations of Subsection 2.3.5, but omitting results from two vines at random.
Here is code that will handle the calculation:

n.omit <- 2

take <- rep(TRUE, 48)

take[sample(1:48,2)] <- FALSE

kiwishade.lmer <- lmer(yield ~ shade + (1|block) + (1|block:plot),

data = kiwishade,subset=take)

vcov <- show(VarCorr(kiwishade.lmer))

gps <- vcov[, "Groups"]

print(vcov[gps=="block:plot", "Variance"])

print(vcov[gps=="Residual", "Variance"])

Repeat this calculation five times, for each of n.omit = 2, 4, 6, 8, 10, 12 and 14. Plot (i)
the plot component of variance and (ii) the vine component of variance, against number
of points omitted. Based on these results, for what value of n.omit does the loss of vines
begin to compromise results? Which of the two components of variance estimates is more
damaged by the loss of observations? Comment on why this is to be expected.

For convenience, we place the central part of the calculation in a function. On slow
machines, the code may take a minute or two to run.

> trashvine <- function(n.omit=2)

+ {

+ k <- k+1

+ n[k] <- n.omit

+ take <- rep(T, 48)

+ take[sample(1:48, n.omit)] <- F

+ kiwishade$take <- take

+ kiwishade.lmer <- lmer(yield ~ shade + (1 | block) + (1|block:plot),

+ data = kiwishade, subset=take)

+ varv <- as.numeric(attr(VarCorr(kiwishade.lmer), "sc")^2)

+ varp <- as.numeric(VarCorr(kiwishade.lmer)$�block:plot�)
+ c(varp, varv)

+ }

> varp <- numeric(35)

> varv <- numeric(35)

> n <- numeric(35)

> k <- 0

> for(n.omit in c( 2, 4, 6, 8, 10, 12, 14))

+ for(i in 1:5){

+ k <- k+1
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+ vec2 <- trashvine(n.omit=n.omit)

+ n[k] <- n.omit

+ varp[k] <- vec2[1]

+ varv[k] <- vec2[2]

+ }

We plot the results:
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Figure 1: Within, and between plots variance estimates, as functions of the number of
vines that were omitted at random

As the number of vines that are omitted increases, the variance estimates can be
expected to show greater variability. The effect should be most evident on the between
plot variance. Inaccuracy in estimates of the between plot variance arise both from
inaccuracy in the within plot sums of squares and from loss of information at the between
plot level.

At best it is possible only to give an approximate d.f. for the between plot estimate
of variance (some plots lose more vines than others), which complicates any evaluation
that relies on degree of freedom considerations.

Exercise 2
Repeat the previous exercise, but now omitting 1, 2, 3, 4 complete plots at random.

> trashplot <- function(n.omit=2)

+ {

+ k <- k+1

+ n[k] <- n.omit

+ plotlev <- levels(kiwishade$plot)

+ use.lev <- sample(plotlev, length(plotlev)-n.omit)

+ kiwishade$take <- kiwishade$plot %in% use.lev

+ kiwishade.lmer <- lmer(yield ~ shade + (1 | block) + (1|block:plot),

+ data = kiwishade, subset=take)

+ varv <- as.numeric(attr(VarCorr(kiwishade.lmer), "sc")^2)

+ varp <- as.numeric(VarCorr(kiwishade.lmer)$�block:plot�)
+ c(varp, varv)

+ }

> varp <- numeric(20)
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> varv <- numeric(20)

> n <- numeric(20)

> k <- 0

> for(n.omit in 1:4)

+ for(i in 1:5){

+ k <- k+1

+ vec2 <- trashplot(n.omit=n.omit)

+ n[k] <- n.omit

+ varp[k] <- vec2[1]

+ varv[k] <- vec2[2]

+ }

Again, we plot the results:
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Figure 2: Within, and between plots variance estimates, as functions of the number of
whole plots (each consisting of four vines) that were omitted at random.

Omission of a whole plot loses 3 d.f. out of 36 for estimation of within plot effects, and
1 degree of freedom out of 11 for the estimation of between plot effects, i.e., a slightly
greater relative loss. The effect on precision will be most obvious where the d.f. are
already smallest, i.e., for the between plot variance. The loss of information on complete
plots is inherently for serious, for the estimation of the between plot variance, than the
loss of partial information (albeit on a greater number of plots) as will often happen in
Exercise 1.

Exercise 3
The data set Gun (MEMSS package) reports on the numbers of rounds fired per minute,
by each of nine teams of gunners, each tested twice using each of two methods. In the
nine teams, three were made of men with slight build, three with average, and three with
heavy build. Is there a detectable difference, in number of rounds fired, between build
type or between firing methods? For improving the precision of results, which would be
better – to double the number of teams, or to double the number of occasions (from 2 to
4) on which each team tests each method?

It probably does not make much sense to look for overall differences in Method; this
depends on Physique. We therefore nest Method within Physique.
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> library(MEMSS)

> Gun.lmer <- lmer(rounds~Physique/Method +(1|Team), data=Gun)

> summary(Gun.lmer)

Linear mixed model fit by REML

Formula: rounds ~ Physique/Method + (1 | Team)

Data: Gun

AIC BIC logLik deviance REMLdev

143 156 -63.5 134 127

Random effects:

Groups Name Variance Std.Dev.

Team (Intercept) 1.09 1.04

Residual 2.18 1.48

Number of obs: 36, groups: Team, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) 23.589 0.492 47.9

Physique.L -0.966 0.853 -1.1

Physique.Q 0.191 0.853 0.2

PhysiqueSlight:MethodM2 -8.450 0.852 -9.9

PhysiqueAverage:MethodM2 -8.100 0.852 -9.5

PhysiqueHeavy:MethodM2 -8.983 0.852 -10.5

Correlation of Fixed Effects:

(Intr) Phys.L Phys.Q PS:MM2 PA:MM2

Physique.L 0.000

Physique.Q 0.000 0.000

PhysqSl:MM2 -0.289 0.353 -0.204

PhysqAv:MM2 -0.289 0.000 0.408 0.000

PhysqHv:MM2 -0.289 -0.353 -0.204 0.000 0.000

A good way to proceed is to determine the fitted values, and present these in an interaction
plot:

> Gun.hat <- fitted(Gun.lmer)

> interaction.plot(Gun$Physique, Gun$Method, Gun.hat)

Differences between methods, for each of the three physiques, are strongly attested. These
can be estimated within teams, allowing 24 degrees of freedom for each of these compar-
isons.

Clear patterns of change with Physique seem apparent in the plot. There are however
too few degrees of freedom for this effect to appear statistically significant. Note however
that the parameters that are given are for the lowest level of Method, i.e., for M1. Making
M2 the baseline shows the effect as closer to the conventional 5% significance level.

The component of variance at the between teams level is of the same order of mag-
nitude as the within teams component. Its contribution to the variance of team means
(1.0442) is much greater than the contribution of the within team component (1.4762/4;
there are 4 results per team). If comparison between physiques is the concern; it will
be much more effective to double the number of teams; compare (1.0442+1.4762/4)/2
(=0.82) with 1.0442+1.4762/8 (=1.36).
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Exercise 4
*The data set ergoStool (MEMSS package) has data on the amount of effort needed to
get up from a stool, for each of nine individuals who each tried four different types of
stool. Analyse the data both using aov() and using lme(), and reconcile the two sets of
output. Was there any clear winner among the types of stool, if the aim is to keep effort
to a minimum?

For analysis of variance, specify

> aov(effort~Type+Error(Subject), data=ergoStool)

Call:

aov(formula = effort ~ Type + Error(Subject), data = ergoStool)

Grand Mean: 10.25

Stratum 1: Subject

Terms:

Residuals

Sum of Squares 66.5

Deg. of Freedom 8

Residual standard error: 2.883

Stratum 2: Within

Terms:

Type Residuals

Sum of Squares 81.19 29.06

Deg. of Freedom 3 24

Residual standard error: 1.100

Estimated effects may be unbalanced

For testing the Type effect for statistical significance, refer (81.19/3)/(29.06/24) (=22.35)
with the F3,24 distribution. The effect is highly significant.

This is about as far as it is possible to go with analysis of variance calculations. When
Error() is specified in the aov model, R has no mechanism for extracting estimates.
(There are mildly tortuous ways to extract the information, which will not be further
discussed here.)

For use of lmer, specify

> summary(lmer(effort~Type + (1|Subject), data=ergoStool))

Linear mixed model fit by REML

Formula: effort ~ Type + (1 | Subject)

Data: ergoStool

AIC BIC logLik deviance REMLdev

133 143 -60.6 122 121

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 1.78 1.33

Residual 1.21 1.10

Number of obs: 36, groups: Subject, 9
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Fixed effects:

Estimate Std. Error t value

(Intercept) 8.556 0.576 14.85

TypeT2 3.889 0.519 7.50

TypeT3 2.222 0.519 4.28

TypeT4 0.667 0.519 1.29

Correlation of Fixed Effects:

(Intr) TypeT2 TypeT3

TypeT2 -0.450

TypeT3 -0.450 0.500

TypeT4 -0.450 0.500 0.500

Observe that 1.1002952 (Residual StdDev) is very nearly equal to 29.06/24 obtained from
the analysis of variance calculation.

Also the Stratum 1 mean square of 66.5/8 (=8.3125) from the analysis of variance
output is very nearly equal to 1.33252 +1.1002952/4 (= 2.078) from the lme output.

Exercise 5*
In the data set MathAchieve (MEMSS package), the factors Minority (levels yes and no)
and sex, and the variable SES (socio-economic status) are clearly fixed effects. Discuss
how the decision whether to treat School as a fixed or as a random effect might depend
on the purpose of the study? Carry out an analysis that treats School as a random effect.
Are differences between schools greater than can be explained by within school variation?

School should be treated as a random effect if the intention is to generalize results to
other comparable schools. If the intention is to apply them to other pupils or classess
within those same schools, it should be taken as a fixed effect.

For the analysis of these data, both SES and MEANSES should be included in the
model. Then the coefficient of MEANSES will measure between school effects, while the
coefficient of SES will measure within school effects.

> library(MEMSS)

> MathAch.lmer <- lmer(MathAch ~ Minority*Sex*(MEANSES+SES) + (1|School),

+ data=MathAchieve)

> options(width=90)

> MathAch.lmer

Linear mixed model fit by REML
Formula: MathAch ~ Minority * Sex * (MEANSES + SES) + (1 | School)

Data: MathAchieve
AIC BIC logLik deviance REMLdev

46344 46441 -23158 46308 46316
Random effects:
Groups Name Variance Std.Dev.
School (Intercept) 2.51 1.58
Residual 35.79 5.98
Number of obs: 7185, groups: School, 160

Fixed effects:
Estimate Std. Error t value

(Intercept) 12.799 0.179 71.4
MinorityYes -2.605 0.279 -9.3
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SexMale 1.277 0.186 6.9
MEANSES 2.237 0.504 4.4
SES 2.508 0.185 13.5
MinorityYes:SexMale -0.462 0.376 -1.2
MinorityYes:MEANSES 1.439 0.684 2.1
MinorityYes:SES -1.101 0.319 -3.5
SexMale:MEANSES 0.574 0.574 1.0
SexMale:SES -0.517 0.264 -2.0
MinorityYes:SexMale:MEANSES -0.713 0.903 -0.8
MinorityYes:SexMale:SES 0.110 0.468 0.2

Correlation of Fixed Effects:
(Intr) MnrtyY SexMal MEANSE SES MnY:SM MY:MEA MY:SES SM:MEA SM:SES MY:SM:M

MinorityYes -0.346
SexMale -0.481 0.268
MEANSES -0.095 0.066 0.054
SES -0.017 0.031 0.007 -0.355
MnrtyYs:SxM 0.207 -0.671 -0.433 -0.030 -0.010
MnY:MEANSES 0.091 0.161 -0.043 -0.510 0.271 -0.142
MnrtyYs:SES 0.008 0.117 -0.012 0.211 -0.584 -0.089 -0.446
SxM:MEANSES 0.044 -0.035 -0.141 -0.540 0.315 0.092 0.366 -0.181
SexMale:SES 0.010 -0.017 -0.081 0.252 -0.703 0.045 -0.194 0.409 -0.430
MY:SM:MEANS -0.033 -0.140 0.096 0.316 -0.205 0.120 -0.651 0.332 -0.576 0.280
MnrY:SM:SES -0.011 -0.076 0.056 -0.140 0.397 0.122 0.300 -0.678 0.241 -0.567 -0.473

> options(width=68)

The between school component of variance (1.5852) is 2.51, compared with a within school
component that equals 35.79. To get confidence intervals (strictly Bayesian credible
intervals) for these variance estimates, specify:

> MathAch.mcmc <- mcmcsamp(MathAch.lmer, n=10000)

> HPDinterval(VarCorr(MathAch.mcmc, type="varcov"))

lower upper

[1,] 1.626 2.954

[2,] 34.698 37.061

attr(,"Probability")

[1] 0.95

The 95% confidence interval for the between school component of variance ranged, in my
calculation, from 1.64 to 3.0. The confidence interval excludes 0.

The number of results for school varies between 14 and 67. Thus, the relative contri-
bution to class means is 5.51 and a number that is at most 5.9824292/14 = 2.56.
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Data Analysis & Graphics Using R, 3
rd

edn – Solutions to Exercises (April 29, 2010)

Preliminaries

> library(DAAG)
> library(rpart)

Exercise 1
Refer to the head.injury data frame.

(a) Use the default setting in rpart() to obtain a tree-based model for predicting oc-

currence of clinically important brain injury, given the other variables.

(b) How many splits gives the minimum cross-validation error? item Prune the tree

using the 1 standard error rule.

(a) > set.seed(29) ## Gives the results presented here
> injury.rpart <- rpart(clinically.important.brain.injury ~ .,
+ data=head.injury, method="class", cp=0.0001)
> plotcp(injury.rpart)
> printcp(injury.rpart)

Classification tree:
rpart(formula = clinically.important.brain.injury ~ ., data = head.injury,

method = "class", cp = 1e-04)

Variables actually used in tree construction:
[1] GCS.13 GCS.15.2hours
[3] age.65 amnesia.before
[5] basal.skull.fracture high.risk
[7] loss.of.consciousness vomiting

Root node error: 250/3121 = 0.08

n= 3121

CP nsplit rel error xerror xstd
1 0.0400 0 1.00 1.00 0.061
2 0.0360 2 0.92 0.99 0.060
3 0.0140 3 0.88 0.90 0.058
4 0.0080 5 0.86 0.90 0.058
5 0.0001 10 0.82 0.92 0.058

The setting cp=0.0001 was reached after some experimentation.

(b) The minimum cross-validated relative error is for nsplit=3, i.e., for a tree size of

4.

(c) The one-standard-error rule likewise chooses nsplit=3, with cp=0.014. Setting

cp=0.02, i.e., larger than cp for the next smallest number of splits, will prune the

tree back to this size. We have

> injury0.rpart <- prune(injury.rpart, cp=0.02)
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We plot the tree from (a) that shows the cross-validated relative error, and the tree

obtained from (c).
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Figure 1: Plots

from the rpart
analysis of the

head injury data:

(i) cross-validated

relative error versus

cp; and (ii) the tree

obtained in (c).

There can be substantial change from one run to the next.

Exercise 2
The data set mifem is part of the larger data set in the data frame monica that we have

included in our DAAG package. Use tree-based regression to predict mortality in this

larger data set. What is the most immediately striking feature of your analysis? Should

this be a surprise?

> monica.rpart <- rpart(outcome ~ ., data=monica, method="class")

> plot(monica.rpart)
> text(monica.rpart)

|hosp=a

highbp=ab

live dead
dead

Figure 2: Classification

tree for monica data.

Those who were not hospitalised were very likely to be dead! Check by examining the

table:

> table(monica$hosp, monica$outcome)

live dead
y 3522 920
n 3 1922
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Exercise 3
Use tree-based regression to predict re78 in the data frame nsw74pred1 that is in our

DAAG package. Compare the predictions with the multiple regression predictions in

Chapter 6.

In order to reproduce the same results as given here, do:

> set.seed(21)

Code for the initial calculation is:

> nsw.rpart <- rpart(re78~., data=nsw74psid1, cp=0.001)
> plotcp(nsw.rpart)

It is obvious that cp=0.002 will be adequate. At this point, the following is a matter of

convenience, to reduce the printed output:

> nsw.rpart <- prune(nsw.rpart, cp=0.002)
> printcp(nsw.rpart)

Regression tree:
rpart(formula = re78 ~ ., data = nsw74psid1, cp = 0.001)

Variables actually used in tree construction:
[1] age educ re74 re75

Root node error: 6.5e+11/2675 = 2.4e+08

n= 2675

CP nsplit rel error xerror xstd
1 0.3446 0 1.00 1.00 0.046
2 0.1101 1 0.66 0.66 0.039
3 0.0409 2 0.55 0.56 0.033
4 0.0318 3 0.50 0.52 0.035
5 0.0158 4 0.47 0.51 0.035
6 0.0106 5 0.46 0.49 0.035
7 0.0105 6 0.45 0.48 0.035
8 0.0063 7 0.44 0.47 0.033
9 0.0057 8 0.43 0.46 0.033
10 0.0039 9 0.42 0.46 0.033
11 0.0036 10 0.42 0.46 0.033
12 0.0032 11 0.42 0.47 0.034
13 0.0028 12 0.41 0.48 0.034
14 0.0027 13 0.41 0.47 0.034
15 0.0023 15 0.40 0.48 0.034
16 0.0020 16 0.40 0.48 0.034
17 0.0020 17 0.40 0.48 0.034

The minimum cross-validated relative error is at nsplit=12. The one standard error

limit is 0.498 (=0.463+0.035). The one standard error rule suggests taking nsplit=5.
If we go with the one standard error rule, we have a residual variance equal to

244284318 × 0.49177 = 120131699.

For the estimate of residual variance from the calculations of Section 6.x, we do the

following.
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> attach(nsw74psid1)
> here <- age <= 40 & re74 <= 5000 & re75 <= 5000 & re78 < 30000
> nsw74psidA <- nsw74psid1[here, ]
> detach(nsw74psid1)
> A1.lm <- lm(re78 ~ trt + (age + educ + re74 + re75) + (black +
+ hisp + marr + nodeg), data = nsw74psidA)
> summary(A1.lm)$sigma^2

[1] 40177577

The variance estimate is 40177577. This is about a third of the variance estimate that

was obtained with tree-based regression.

Exercise 4
Copy down the email spam data set from the web site given in Section 10.2. Carry out a

tree-based regression using all 57 available explanatory variables. Determine the change

in the cross-validation estimate of predictive accuracy.

We set the random number seed to 21, to allow users to reproduce our results. In

most other contexts, it will be best not to set a seed. The file spam.shortnames
is available for copying from the web address http://wwwmaths.anu.edu.au/~johnm/
r-book/xtra-data. The data frame spam is created thus:

> spam <- read.table("spambase.data", header=FALSE, sep=",")
> nam <- scan("spam.shortnames", what="")
> names(spam) <- nam

Now load rpart and proceed with the calculations.

> set.seed(21)
> spam.rpart <- rpart(yesno~., data=spam, cp=0.0001, method="class")
> printcp(spam.rpart)

Classification tree:
rpart(formula = yesno ~ ., data = spam, method = "class", cp = 1e-04)

Variables actually used in tree construction:
[1] address bang crl.av crl.long crl.tot
[6] data dollar edu email font
[11] free george hp internet leftparen
[16] money n1999 n650 our over
[21] re remove semicolon technology will
[26] you your

Root node error: 1813/4601 = 0.39

n= 4601

CP nsplit rel error xerror xstd
1 0.47656 0 1.00 1.00 0.018
2 0.14892 1 0.52 0.56 0.015
3 0.04302 2 0.37 0.46 0.014
4 0.03089 4 0.29 0.32 0.012
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5 0.01048 5 0.26 0.28 0.012
6 0.00827 6 0.25 0.27 0.011
7 0.00717 7 0.24 0.26 0.011
8 0.00530 8 0.23 0.25 0.011
9 0.00441 14 0.20 0.24 0.011
10 0.00359 15 0.19 0.23 0.011
11 0.00276 19 0.18 0.23 0.011
12 0.00257 22 0.17 0.22 0.011
13 0.00221 25 0.16 0.22 0.011
14 0.00211 27 0.16 0.22 0.011
15 0.00165 33 0.14 0.21 0.010
16 0.00110 36 0.14 0.20 0.010
17 0.00083 43 0.13 0.20 0.010
18 0.00055 47 0.13 0.20 0.010
19 0.00037 53 0.12 0.20 0.010
20 0.00010 62 0.12 0.20 0.010

Figure 3 shows the graph that is obtained by plotting this tree. For making a decision

on the size of tree however, it is convenient to work from the information given by the

function printcp().

> plotcp(spam.rpart)

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

cp

X−
va

l R
el

at
ive

 E
rro

r

0.
2

0.
4

0.
6

0.
8

1.
0

Inf 0.018 0.004 0.0014

1 5 8 16 26 37 54

Figure 3: Plot of cross-

validated relative error versus

cp, for the full spam data set.

Setting cp=0.0001 ensures, when the random number seed is set to 21, that the cross-

validated relative error reaches a minimum, of 0.1958, at nsplit=43. Pruning to get the

tree that is likely to have best predictive power can use cp=0.001. Adding the SE to the

minimum cross-validated relative error gives 0.2. The smallest tree with an SE smaller

than this is at nsplit=36; setting cp=0.0012 will give this tree.

Here then are the two prunings:

> spam.rpart1 <- prune(spam.rpart, cp=0.001) # Minimum predicted error
> spam.rpart2 <- prune(spam.rpart, cp=0.0012) # 1 SE pruning

Additional Exercises A number of additional exercises are included in the laboratory

exercises that are available from the web page http:www.maths.anu.edu.au/~johnm/
courses/dm
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (April 29, 2010)

Preliminaries

> library(DAAG)

Exercise 1
Carry out the principal components analysis of Section Subsection 12.1.2, separately for
males and females. Compare the loadings for the first and second principal components
in these new analyses with the loadings obtained in Subsection 12.1.2.

We do the analysis (i) for all observations; (ii) for females; (iii) for males.

> all.pr <- princomp(na.omit(possum[, -(1:5)]))
> femp.pr <- princomp(na.omit(possum[possum$sex=="f", -(1:5)]))
> malep.pr <- princomp(na.omit(possum[possum$sex=="m", -(1:5)]))

One way to compare the separate loadings is to plot each set in turn against the loadings
for all observations. We put the code into a function so that we can easily do the plot for
each component in turn. The settings for the two elements of signs allow us to switch
the signs of all elements, for males and females separately. Loadings that differ only in a
change of sign in all elements are equivalent.

> compare.loadings <- function(i=1, all.load=loadings(all.pr),
+ fload=loadings(femp.pr),
+ mload=loadings(malep.pr), signs=c(1,1)){
+ alli <- all.load[,i]
+ fi <- fload[,i]*signs[1]
+ mi <- mload[,i]*signs[2]
+ plot(range(alli), range(c(fi, mi)), type="n")
+ chw <- par()$cxy[1]
+ points(alli, fi, col="red")
+ text(alli, fi, lab=row.names(fload), adj=0, xpd=T, col="red",
+ pos=2, cex=0.8)
+ points(alli, mi, col="blue")
+ text(alli, mi, lab=row.names(mload), adj=0, xpd=T, col="blue",
+ pos=4, cex=0.8)
+ abline(0,1)
+ }

Now compare the loadings for the first and second principal components. From exami-
nation of the results for default settings for signs, it is obvious that a switch of sign is
needed for the female loadings.

> par(mfrow=c(1,2))
> compare.loadings(1) # Compare loadings on 1st pc
> compare.loadings(2, signs=c(-1,1)) # Compare loadings on 2nd pc
> par(mfrow=c(1,1))
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Figure 1: Loadings for females (red) and loadings for males(blue), plotted against loadings
for the total data set.

Exercise 2
In the discriminant analysis for the possum data (Subsection 12.2.4), determine, for each
site, the means of the scores on the first and second discriminant functions. Plot the means
for the second discriminant function against the means for the first discriminant function.
Identify the means with the names of the sites.

We need only omit the rows that have missing values in columns 6-14. (The variable age,
in column 4, has two missing values, which are need not concern us.) Hence the use, in
the code that follows, of ccases to identify rows that have no missing values in these
columns. Here is the code used to do the discriminant function calculations:

> library(MASS)
> ccases <- complete.cases(possum[,6:14])
> possum.lda <- lda(site ~ hdlngth+skullw+totlngth+ taill+footlgth+
+ earconch+eye+chest+belly, data=possum[ccases, ])

We calculate the means of the scores thus:

> possum.fit <- predict(possum.lda)
> avfit <- aggregate(possum.fit$x, by=list(possum[ccases, "site"]),
+ FUN=mean)
> avfit

Group.1 LD1 LD2 LD3 LD4 LD5 LD6
1 1 4.410 0.5562 0.3159 -0.16741 -0.06322 0.00564
2 2 3.879 -1.8591 -0.5403 0.41949 0.25835 -0.02279
3 3 -2.607 0.6693 0.5403 1.06685 -0.52209 0.05072
4 4 -2.555 1.9663 -1.3030 0.23393 0.57195 0.22124
5 5 -3.948 0.1797 0.5990 -0.02541 0.23511 -0.39662
6 6 -4.282 -0.8074 1.0298 -0.22913 0.10260 0.30275
7 7 -2.720 -0.3520 -1.0987 -0.29477 -0.31963 -0.03311
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The matrix avfit has 7 rows (one for each site) and 6 columns (one for each of the six dis-
criminant functions). The row labels can be obtained from the data frame possumsites.
Here then is the plot:

> plot(avfit[,"LD1"], avfit[,"LD2"], xlab="1st discriminant function",
+ ylab="2nd discriminant function")
> chw <- par()$cxy[1]
> text(avfit[,"LD1"]+0.5*chw, avfit[,"LD2"], labels=row.names(possumsites),
+ adj=0, xpd=TRUE)
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Figure 2: Plot of the sec-
ond discriminant function
against the first discrimi-
nant function, for the pos-
sum data frame. The dis-
criminant functions are de-
signed to discriminate be-
tween sites.

Cambarville and Bellbird seem distinguised from the other sites.

Exercise 3
The data frame possumsites (DAAG package) holds latitudes, longitudes, and altitudes,
for the seven sites. The following code, which assumes that the oz package is installed,
locates the sites on a map that shows the Eastern Australian coastline and nearby state
boundaries.

library(DAAG); library(oz)
oz(sections=c(3:5, 11:16))
attach(possumsites)
points(latitude, longitude)
chw <- par()$cxy[1]
chh <- par()$cxy[2]
posval <- c(2, 4, 2, 2, 4, 2, 2)
text(latitude+(3-posval)*chw/4, longitude,

row.names(possumsites), pos=posval)

Do the site means that were calculated in Exercise 2 relate in any obvious way to geo-
graphical position, or to altitude?

Cambarville and Bellbird, which were distinguished from the main cluster in the plot in
Exercise 2, are the southernmost sites.
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Exercise 5
Create a version of Figure 12.5B that shows the discriminant line. In the example of
Subsection 12.2.1, investigate whether use of logpet, in addition to logwid and loglen,
improve discrimination?

Here are the discriminant function calculations:

> leaf17.lda <- lda(arch ~ logwid + loglen, data = leafshape17)
> leaf17.fit <- predict(leaf17.lda)
> leaf17.lda$prior

0 1
0.6721 0.3279

> leaf17.lda$scaling

LD1
logwid 0.1555
loglen 3.0658

> leaf17.lda$means

logwid loglen
0 1.429 2.460
1 1.866 2.994

The information needed to reconstruct the discriminant function is provided by leaf17.lda$prior,
leaf17.lda$means and leaf17.lda$scaling. First we calculate a grand mean, from
that the constant term for the discriminant function, and then do a plot (see below) that
checks that we are correctly recovering the discriminant function scores. Calculations
can be done without matrix multiplication, but are tedious to write down. The following
assumes a knowledge of matrix multiplication, for which the symbol is %*%:

> gmean <- leaf17.lda$prior%*%leaf17.lda$means
> const <- as.numeric(gmean%*%leaf17.lda$scaling)
> z <- as.matrix(leafshape17[,c(5,7)])%*%leaf17.lda$scaling - const

Note that R distinguishes between a 1 by 1 matrix and a numeric constant. The final
two lines are a check that the discriminant function has been correctly calculated. It has
the form ax+ by − c = z, where the discriminant line is given by z = 0. The equation of
the line is then y = −a/bx+ c/b. We have

> slope <- -leaf17.lda$scaling[1]/leaf17.lda$scaling[2]
> intercept <- const/leaf17.lda$scaling[2]

We now show the plot that checks that we have correctly recovered the discriminant
function scores, with the requested plot alongside.

> par(mfrow=c(1,2))
> plot(z, leaf17.fit$x[,1]); abline(0,1)
> mtext(side=3, line=1, "Check that z=leaf17.fit$x[,1]")
> plot(loglen ~ logwid, data=leafshape17, xlab="log(leaf width)",
+ ylab="log(leaf length)", pch=leafshape17$arch+1)
> abline(intercept, slope)
> mtext(side=3, line=1, "Fig.12.4B, with discriminant line")
> par(mfrow=c(1,1))
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Figure 3: The left panel is
a check that calculations
are correct. The right
panel reproduces Figure
11.4B, adding the dis-
criminant function line.

Exercise 6*
The data set leafshape has three leaf measurements – bladelen (blade length), bladewid
(blade width), and petiole (petiole length). These are available for each of two plant
architectures, in each of six locations. (The data set leafshape17 that we encountered in
Section 12.2.1 is a subset of the data set leafshape.) Use logistic regression to develop
an equation for predicting architecture, given leaf dimensions and location. Compare
the alternatives: (i) different discriminant functions for different locations; (ii) the same
coefficients for the leaf shape variables, but different intercepts for different locations; (iii)
the same coefficients for the leaf shape variables, with an intercept that is a linear function
of latitude; (iv) the same equation for all locations. Interpret the equation that is finally
chosen as discriminant function.

We use the variables logwid, loglen and logpet.

> names(leafshape)[4] <- "latitude"
> one.glm <- glm(arch ~ (logwid+loglen+logpet)*location,
+ family=binomial, data=leafshape)
> two.glm <- glm(arch ~ (logwid+loglen+logpet)+location,
+ family=binomial, data=leafshape)
> three.glm <- glm(arch ~ (logwid+loglen+logpet)*latitude,
+ family=binomial, data=leafshape)
> four.glm <- glm(arch ~ (logwid+loglen+logpet)+latitude,
+ family=binomial, data=leafshape)
> anova(four.glm, three.glm, two.glm, one.glm)

Analysis of Deviance Table

Model 1: arch ~ (logwid + loglen + logpet) + latitude
Model 2: arch ~ (logwid + loglen + logpet) * latitude
Model 3: arch ~ (logwid + loglen + logpet) + location
Model 4: arch ~ (logwid + loglen + logpet) * location
Resid. Df Resid. Dev Df Deviance

1 281 193
2 278 188 3 5.5
3 277 186 1 1.5
4 262 148 15 38.3

It may however, in view of uncertainty about the adequacy of the asymptotic chi-
squared approximation for the deviance changes, be better to fit the models using lda(),
and choose the model that has the smallest cross-validated relative error:
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> one.lda <- lda(arch ~ (logwid+loglen+logpet)*location, CV=TRUE,
+ data=leafshape)
> two.lda <- lda(arch ~ (logwid+loglen+logpet)+location, CV=TRUE,
+ data=leafshape)
> three.lda <- lda(arch ~ (logwid+loglen+logpet)*latitude, CV=TRUE,
+ data=leafshape)
> four.lda <- lda(arch ~ (logwid+loglen+logpet)+latitude, CV=TRUE,
+ data=leafshape)
> table(leafshape$arch, one.lda$class)

0 1
0 173 19
1 25 69

> table(leafshape$arch, two.lda$class)

0 1
0 177 15
1 24 70

> table(leafshape$arch, three.lda$class)

0 1
0 179 13
1 22 72

> table(leafshape$arch, four.lda$class)

0 1
0 177 15
1 24 70

The smallest cross-validated relative error was for the third model.

Additional Exercises A number of additional exercises are included in the laboratory
exercises that are available from the web page http:www.maths.anu.edu.au/~johnm/
courses/dm
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Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (April 30, 2010)

Preliminaries

> library(DAAG)

Exercise 1
Repeat the principal components calculation omitting the points that appear as outliers

in Figure 13.1, and redo the regression calculation. What differences are apparent, in

loadings for the first two principal components and/or in the regression results?

The following repeats the calculations that are described in the text.

> not.na <- complete.cases(socsupport[,9:19])
> not.na[36] <- FALSE
> ss.pr <- princomp(as.matrix(socsupport[not.na, 9:19]), cor=TRUE)
> ss.lm <- lm(BDI[not.na] ~ ss.pr$scores[, 1:6], data=socsupport)
> attach(socsupport)
> plot(BDI[not.na] ~ ss.pr$scores[ ,1], col=as.numeric(gender[not.na]),
+ pch=as.numeric(gender[not.na]),
+ xlab ="1st principal component", ylab="BDI")
> topleft <- par()$usr[c(1,4)]
> legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
> detach(socsupport)

Examination of Figure 13.1 makes it clear that we need to omit points for which BDI is

greater than 35. We determine the relevant row numbers:

> (1:95)[socsupport$BDI>35]

[1] 36 68 95

Row 36 had already been omitted. We need, additionally, to omit rows 68 and 95. The

following repeats the calculations given above, but now with observations 36, 68 and 95

omitted:

> not3.na <- complete.cases(socsupport[,9:19])
> not3.na[c(36,68,95)] <- FALSE
> ss3.pr <- princomp(as.matrix(socsupport[not3.na, 9:19]), cor=TRUE)
> ss3.lm <- lm(BDI[not3.na] ~ ss3.pr$scores[, 1:6], data=socsupport)
> attach(socsupport)
> plot(BDI[not3.na] ~ ss3.pr$scores[ ,1], col=as.numeric(gender[not3.na]),
+ pch=as.numeric(gender[not3.na]),
+ xlab ="1st principal component", ylab="BDI")
> topleft <- par()$usr[c(1,4)]
> legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
> detach(socsupport)

The following (shown in the left panel below) compares the loadings, with (x-axis) and

without (y-axis) rows 68 and 95.
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> plot(loadings(ss.pr)[,1], loadings(ss3.pr)[,1])
> abline(0,1, col="green", xpd=FALSE)
> ord <- order(loadings(ss3.pr)[,1])
> texpos <- numeric(length(ord))
> texpos[ord] <- rep(c(2,4), length.out=length(ord))
> text(loadings(ss.pr)[,1], loadings(ss3.pr)[,1], pos=texpos,
+ labels=row.names(loadings(ss.pr)), adj=0, xpd=TRUE)
> plot(loadings(ss.pr)[,2], loadings(ss3.pr)[,2])
> ord <- order(loadings(ss3.pr)[,2])
> texpos[ord] <- rep(c(2,4), length.out=length(ord))
> text(loadings(ss.pr)[,2], loadings(ss3.pr)[,2], pos=texpos,
+ labels=row.names(loadings(ss.pr)), adj=0, xpd=TRUE)
> abline(0,1, col="green", xpd=FALSE)

Omission of the two outliers has made very little difference. The graph below shows the

comparisons.
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Figure 1: The left

panel compares the

two sets of loadings

on the first prin-

cipal component,

while the right

panel makes the

comparison for the

second principal

component.

Now compare the two sets of regression coefficients.

> plot(coef(ss.lm)[-1], coef(ss3.lm)[-1])
> text(coef(ss.lm)[-1], coef(ss3.lm)[-1], labels=paste(1:6),
+ adj=0, xpd=TRUE)
> abline(0,-1, col="green")
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Figure 2: Compari-

son between the two

sets of regression coef-

ficients.

Notice that the inter-

cepts have been omit-

ted from the compar-

ison; these should be

compared directly.

The coefficients for the first principal component agree fairly well. For other principal

components, there is little agreement. As these are not statistically significant, this is of

no consequence.



Chapter 14 Exercises 1

Data Analysis & Graphics Using R, 3rd edn – Solutions to Exercises (April 30, 2010)

Preliminaries

> library(DAAG)

Exercise 1
Compare the different outputs from help.search("print"), apropos(print) and
methods(print). Look up the help for each of these three functions, and use what you
find to explain the different outputs.

help.search() searches the documentation for a match in the name, or alias (i.e., an
alternative name for a function or other object) or title or keyword.

apropos() searches for object or alias names where there is a partial match. For
example, try help.search("str"). [Note also the function find(), which is an alias for
apropos() in which the default parameters are set to find “simple words”.]

methods(print) finds all available print methods, i.e., all the different functions that
may, depending on the class of object that is to be printed, be called when the generic
print function is used.

Now that the number of functions and associated documentation is so extensive,
consider limiting the search by using, e.g., help.search("print", package="base"),
rather than help.search("print")

Exercise 2
Identify as many R functions as possible that are specifically designed for manipulations
with text strings.

Try apropos("str"). Some objects (e.g., fitdistr or structure) clearly have nothing
to do with strings. Look up the help for those that do seem possible string manipulation
functions. Look under See Also: to find other related functions that may not have the
letters “str” in their names. Try also apropos("char"). Once these steps are complete,
this should identify most possibilities.

Another recourse may be to type in help.start(), and click on Search Engine & Keywords.

Exercise 3
Test whether strsplit() is vectorized, i.e., does it accept a vector of character strings as
input, then operating in parallel on all elements of the vector?

Try applying strsplit() to a vector of character strings. For example:

> strsplit(c("eggs'nbacon", "bacon'neggs"), "'n")

[[1]]
[1] "eggs" "bacon"

[[2]]
[1] "bacon" "eggs"
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Notice that strsplit() does accept a vector of character strings as input, and that it
returns one list element for each character string in the vector.

Exercise 4
For the data frame Cars93, get the information provided by summary() for each level of
Type. (Use split().)

First, note the column names:

> names(Cars93)

[1] "Manufacturer" "Model" "Type"
[4] "Min.Price" "Price" "Max.Price"
[7] "MPG.city" "MPG.highway" "AirBags"
[10] "DriveTrain" "Cylinders" "EngineSize"
[13] "Horsepower" "RPM" "Rev.per.mile"
[16] "Man.trans.avail" "Fuel.tank.capacity" "Passengers"
[19] "Length" "Wheelbase" "Width"
[22] "Turn.circle" "Rear.seat.room" "Luggage.room"
[25] "Weight" "Origin" "Make"

The code that gives the summaries is:

lapply(split(Cars93, Cars93$Type), summary)

The output runs over many pages. To present only the first two sets of summaries, for
the first five columns of the data frame, specify.

> lapply(split(Cars93[, 1:5], Cars93$Type), summary)[1:2]

Exercise 5
Determine the number of cars, in the data frame Cars93, for each Origin and Type.

> table(Cars93$Origin, Cars93$Type)

Compact Large Midsize Small Sporty Van
USA 7 11 10 7 8 5
non-USA 9 0 12 14 6 4

Exercise 6
In the data frame Insurance (MASS package):

(a) determine the number of rows of information for each age category (Age) and car
type (Group);

(b) determine the total number of claims for each age category and car type;

(a) > library(MASS)

> sapply(Insurance, function(x)sum(is.na(x)))
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District Group Age Holders Claims
0 0 0 0 0

> table(Insurance$Group, Insurance$Age)

<25 25-29 30-35 >35
<1l 4 4 4 4
1-1.5l 4 4 4 4
1.5-2l 4 4 4 4
>2l 4 4 4 4

As the default for table() is to omit mention of NA’s, it is good practice to make
a check, such as included in the statement above, on the number of NA’s in each
column.

(b) > attach(Insurance)

> tapply(Claims, list(Group, Age), sum)

<25 25-29 30-35 >35
<1l 67 70 56 346
1-1.5l 105 169 197 979
1.5-2l 46 124 153 540
>2l 11 41 47 200

> detach(Insurance)

Exercise 7
Enter the following, and explain the steps that are performed to obtain the result:

## Use of split() and sapply(): data frame science (DAAG)
with(science, sapply(split(school, PrivPub),

function(x)length(unique(x))))

The data frame science becomes, for the duration of the calculation

sapply(split(school, PrivPub),
function(x)length(unique(x)))

a “database” where the objects school and PrivPub can be found.
The statement split(school, PrivPub) creates a list that has two elements, one

for each of the two levels of PrivPub. Each list element holds the codes that identifies
the schools. The function sapply() operates on each of these list elements in turn. It
replaces the vector of codes by a vector of unique codes. The length of that vector is
then the number of schools, and of course this is done separately for Private and Public
schools.

Exercise 8
Save the objects in your workspace, into an image (.RData) file, with the name
archive.RData. Then remove all objects from the workspace. Demonstrate how, without
loading the image file, it is possible to list the objects that were included in archive.RData
and to recover a deleted object that is again required.
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To save the workspace contents into the file archive.RData, type

> save.image(file="archive.RData")

We can now type

> rm(list=ls())

The following will again make available all objects that were in the workspace:

> attach("archive.RData", warn.conflicts=FALSE)

To see the contents of this “database”, type

> ls(name="file:archive.RData")

character(0)

Providing no other databases have been attached in the meantime, an alternative is
ls(pos=2).

Type the name of an object that is in the database (choose one that is not too large!)
to demonstrate that all such objects are now available.

Note the use of detach("file:archive.RData") to detach the database.

Exercise 9
Determine the number of days, according to R, between the following dates:

(a) January 1 in the year 1700, and January 1 in the year 1800

(b) January 1 in the year 1998, and January 1 in the year 2007

> as.Date("1/1/1800","%d/%m/%Y") - as.Date("1/1/1700","%d/%m/%Y")

Time difference of 36524 days

> as.Date("1/1/2007","%d/%m/%Y") - as.Date("1/1/1998","%d/%m/%Y")

Time difference of 3287 days
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Exercise 10
*The following code concatenates (x, y) data values that are random noise to data pairs
that contain a ‘signal’, randomly permutes the pairs of data values, and finally attempts
to reconstruct the signal:

### Thanks to Markus Hegland (ANU), who wrote the initial version
##1 Generate the data
# . . . .
# Code is displayed below (with annotations),
# and is therefore omitted here.
# . . . .
##1 End

##2 determine number of neighbors within
# a distance <= h = 1/sqrt(length(xn))
# . . . .
# Annotated code is shown below
# . . . .
##2 End

##3 Plot data, with reconstructed signal overlaid.
# . . . .
# Annotated code is shown below
# . . . .
##3 End

(a) Run the code and observe the graph that results.

(b) Work through the code, and write notes on what each line does.
[The key idea is that points that are part of the signal will, on average, have more
near neighbours than points that are noise.]

(c) Split the code into three functions, bracketed respectively between lines that begin
##1, lines that begin ##2, and lines that begin ##3. The first function should take pa-
rameters m and n, and return a list xy that holds data that will be used subsequently.
The second function should take vectors xn and yn as parameters, and return values
of nnear, i.e., for each point, it will give the number of other points that lie within
a circle with the point as center and with radius h. The third function will take as
parameters x, y, nnear and the constant ns such that points with more than ns near
neighbours will be identified as part of the signal. Run the first function, and store
the output list of data values in xy.

(d) Run the second and third functions with various different settings of h and ns.
Comment on the effect of varying h. Comment on the effect of varying ns.

(e) Which part of the calculation is most computationally intensive? Which makes the
heaviest demands on computer memory?

(f) Suggest ways in which the calculation might be made more efficient.
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(a)

generate data

produce plots
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Figure 1: Graph obtained from running the
code of Exercise 10

(b) ### Thanks to Markus Hegland (ANU), who wrote the initial version
##1 Generate the data
cat("generate data \n")
n <- 800 # length of noise vector
m <- 100 # length of signal vector

## Samples 100 values that will be x-values for the signal
xsignal <- runif(m)
sig <- 0.01
enoise <- rnorm(m)*sig
ysignal <- xsignal**2+enoise # y = x^2 + noise

## Determine the range of x- and y-values for the signal
maxys <- max(ysignal)
minys <- min(ysignal)

## Precede signal x-values with 800 x-values for points
## that will be entirely noise
x <- c(runif(n), xsignal)

## Generate y-values for noise; follow with signal values.
## y-values for noise are sampled from a uniform distribution,
## with the same limits as the y-values for the signal.
y <- c(runif(n)*(maxys-minys)+minys, ysignal)
# random permutation of the data vectors

## Randomly permute the points, so that points that are signal
## are mixed in with points that are noise.
iperm <- sample(seq(x))
x <- x[iperm]
y <- y[iperm]
# normalise the data, i.e., scale x & y values to lie between 0 & 1
xn <- (x - min(x))/(max(x) - min(x))
yn <- (y - min(y))/(max(y) - min(y))

## The above has generated data, from which to recover the signal.
##1 End

##2 determine number of neighbors within
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# a distance <= h = 1/sqrt(length(xn))
## These distances will be available for all points
nx <- length(xn)
# determine distance matrix

## The following is a clever way to calculate
## sqrt((xi-xj)^2 + (yi-yj)^2), and store the result in the (i,j)
## position of d.
d <- sqrt( (matrix(xn, nx, nx) - t(matrix(xn, nx, nx)) )**2 +

(matrix(yn, nx, nx) - t(matrix(yn, nx, nx)) )**2 )
## Next, we need a threshold, such that most random points are
## will not be closer than this. Detailed investigation will
## require examination of the distribution of d. Here we choose
## 1/sqrt(nx); if this does not seem to work, it can be varied.
## Better (and here is a starting point for further exercises),
## the distribution of d can be examined empirically and/or
## theoretically.
h <- 1/sqrt(nx)

## Count the number of points that lie closer than this threshold
nnear <- apply(d <= h, 1, sum)

##2 End

##3 Plot data, with reconstructed signal overlaid.
cat("produce plots \n")
plot(x, y)
# plot only the points which have many such neighbors

## ns is another tuning constant.
ns <- 8
points(x[nnear > ns], y[nnear > ns], col="red", pch=16)

##3 End

(c) Next, the code will be split between three functions:

> generate.data <- function(m=100, n=800){

+ xsignal <- runif(m)

+ sig <- 0.01

+ enoise <- rnorm(m)*sig

+ ysignal <- xsignal**2+enoise

+ maxys <- max(ysignal)

+ minys <- min(ysignal)

+ x <- c(runif(n), xsignal)

+ y <- c(runif(n)*(maxys-minys)+minys, ysignal)

+ # random permutation of the data vectors

+ iperm <- sample(seq(x))

+ x <- x[iperm]

+ y <- y[iperm]

+ # normalise the data, i.e., scale x & y values to lie between 0 & 1

+ xn <- (x - min(x))/(max(x) - min(x))

+ yn <- (y - min(y))/(max(y) - min(y))

+ list(x=x, y=y, xn=xn, yn=yn)

+ }

> count.neighbours <- function(xn, yn, h=1/sqrt(length(xn))){

+ nx <- length(xn)

+ d <- sqrt( (matrix(xn, nx, nx) - t(matrix(xn, nx, nx)) )**2 +
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+ (matrix(yn, nx, nx) - t(matrix(yn, nx, nx)) )**2 )

+ nnear <- apply(d <= h, 1, sum)

+ nnear

+ }

> plot.signal <- function(x, y, nnear, ns=8){

+ plot(x, y)

+ # plot only the points which have many such neighbors

+ ns <- 8

+ points(x[nnear > ns], y[nnear > ns], col="red", pch=16)

+ }

Here then is a sequence of calls:

> xy <- generate.data(m=100, n=800)

> nnear <- count.neighbours(xn=xy[["xn"]], yn=xy[["yn"]])

> plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=nnear, ns=8)

(d) In an initial simulation, the range of values of nnear, obtained from range(nnear),
was from 1 to 13. Hence, we will try setting nnear = 6 and nnear=10. For ns we
will try 2/sqrt(length(xn)) and 0.5/sqrt(length(xn)).

> par(mfrow=c(2,2))

> nx <- length(xy[["xn"]])

> nnear <- count.neighbours(xn=xy[["xn"]], yn=xy[["yn"]], h=sqrt(0.5/nx))

> plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=nnear, ns=6)

> title(main="h=sqrt(0.5/nx); ns=6")

> plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=nnear, ns=10)

> title(main="h=sqrt(0.5/nx); ns=10")

> nnear <- count.neighbours(xn=xy[["xn"]], yn=xy[["yn"]], h=sqrt(2/nx))

> plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=nnear, ns=6)

> title(main="h=sqrt(2/nx); ns=6")

> plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=nnear, ns=10)

> title(main="h=sqrt(2/nx); ns=10")

The result is sensitive to the choice of h. Therefore, repeat the exercise with
h=sqrt(0.75/nx) and h=sqrt(1/nx) The result is relatively insensitive to vari-
ation in ns.

(e) The most computationally intensive part of the calculations is the determination
of the distances. This is done for all nx^2 pairs (x,y), though actually we only
need the nx*(nx+1)/2 points in the upper triangle of the matrix. This makes, if
nx is large, heavy demands on computer memory. Calculation of nnear, as done
above, requires nx comparisons for each point, i.e., a total of nx^2 comparisons,
with the result stored in a vector of length nx. These should be much cheaper than
multiplications.

We now examine the costs in an actual machine run.

> system.time(xy <- generate.data(m=100, n=800))

user system elapsed
0.001 0.000 0.000

> system.time(nnear <- count.neighbours(xn=xy[["xn"]], yn=xy[["yn"]]))

user system elapsed
0.208 0.079 0.286
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> system.time(plot.signal(x=xy[["x"]], y=xy[["y"]], nnear=nnear, ns=8))

user system elapsed
0.128 0.032 0.193

The function count.neighbours() has taken most of the time, on my system 3.10
seconds. We now break this down further.

> xn <- xy[["xn"]]

> yn <- xy[["yn"]]

> nx <- length(xn)

> h <- 1/sqrt(nx)

> system.time(

+ d <- sqrt( (matrix(xn, nx, nx) - t(matrix(xn, nx, nx)) )**2 +

+ (matrix(yn, nx, nx) - t(matrix(yn, nx, nx)) )**2 ))

user system elapsed
0.153 0.079 0.247

> system.time(nnear <- apply(d <= h, 1, sum))

user system elapsed
0.055 0.000 0.059

Calculation of d took 1.62 seconds, whereas calculation of nnear tool 0.67 seconds.

(f) The focus should be on those calculations that are computationally intensive, i.e.,
the calculation of the distances. There are nx*(nx-1)/2 distances that need be
calculated, where the code has calculated nx^2 distances, i.e. the distance from
point 2 to point 1 as well as the distance from point 1 to point 2.

Exercise 11
This question has been reworded
Try the following, for a range of values of n between, e.g., 2 ×105 and 107. (On systems
that are unable to cope with such large numbers of values, adjust the range of numbers of
values accordingly.)

n <- 10000; system.time(sd(rnorm(n)))

The first output number is the user cpu time, while the third output number is the elapsed
time. Plot each of these numbers, separately, against n. Comment on the graphs. Is the
elapsed time roughly linear with n? Try the computations both for an otherwise empty
workspace, and with large data objects (e.g., with 107 or more elements) in the workspace.

On a 1.2MHz Macintosh G4 PowerBook with half a gigabyte of memory, results were:

> nn <- 2000000*(1:5)

> cpu <- numeric(5)

> cpu[1] <- system.time(sd(rnorm(n=nn[1])))[1]

> cpu[2] <- system.time(sd(rnorm(n=nn[2])))[1]

> cpu[3] <- system.time(sd(rnorm(n=nn[3])))[1]

> cpu[4] <- system.time(sd(rnorm(n=nn[4])))[1]

> cpu[5] <- system.time(sd(rnorm(n=nn[5])))[1]
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Here is a graph:
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Figure 2: Cpu time, versus
number of elements.

On my system, the response was remarkably linear with time. The increase in time
with increasing values of nn reduced slightly as nn increased.


