
Chapter 1 Exercises 1

Data Analysis & Graphics Using R, 3rd edn – Solutions to Selected Exercises
(April 29, 2010)

Preliminaries

> library(DAAG)

Exercise 1
The following table gives the size of the floor area (ha) and the price ($000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.
.
Type these data into a data frame with column names area and sale.price.

(a) Plot sale.price versus area.

(b) Use the hist() command to plot a histogram of the sale prices.

(c) Repeat (a) and (b) after taking logarithms of sale prices.

The Aranda house price data are also in a data frame in the DAAG package, called
houseprices.

(a) Omitted

(b) Omitted

(c) The following code demonstrates the use of the log="y" argument to cause plot

to use a logarithmic scale on the y axis, but with axis tick labels that are specified
in the original units.

> plot(sale.price ~ area, data=houseprices, log="y",

+ pch=16, xlab="Floor Area", ylab="Sale Price",

+ main="(c) log(sale.price) vs area")

The following puts a logarithmic scale on the x-axis of the histogram.

> hist(log(houseprices$sale.price),

+ xlab="Sale Price (logarithmic scale)",

+ main="(d) Histogram of log(sale.price)")

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

700 900 1100 1300

15
0

20
0

30
0

(c) log(sale.price) vs area

Floor Area

S
al

e
P

ric
e

(d) Histogram of log(sale.price)

Sale Price (logarithmic scale)

F
re

qu
en

cy

4.6 5.0 5.4 5.8

0
1

2
3

4
5

6

Figure 1: Plots for Exercise
2c.

Here is an alternative that prints x-axis labels in the original units:

2

> logbreaks <- hist(log(houseprices$sale.price))$breaks

> hist(log(houseprices$sale.price), xlab="Sale Price",

+ axes=FALSE, main="Aranda House Price Data")

> axis(1, at=logbreaks,labels=round(exp(logbreaks),0),

+ tick=TRUE)

> axis(2, at=seq(0,6), tick=TRUE)

> box()

Exercise 2
The orings data frame gives data on the damage that had occurred in US space shuttle
launches prior to the disastrous Challenger launch of January 28, 1986. Only the ob-
servations in rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in
deciding whether to proceed with the launch.
Create a new data frame by extracting these rows from orings, and plot total incidents
against temperature for this new data frame. Obtain a similar plot for the full data set.

Use the following to extract rows that hold the data that were presented in the pre-
launch charts:

> orings86 <- orings[c(1,2,4,11,13,18),]

Points are best shown with filled symbols in the first plot, and with open symbols in the
second plot. (Why?)

Exercise 6
Create a data frame called Manitoba.lakes that contains the lake’s elevation (in meters
above sea level) and area (in square kilometers) as listed below. Assign the names of
the lakes using the row.names() function.

. . . .

Plot lake area against elevation, identifying each point by the name of the lake. Because
of the outlying value of area, use of a logarithmic scale is advantageous.

(a) Use the following code to plot log2(area) versus elevation, adding labeling in-
formation:

attach(Manitoba.lakes)

plot(log2(area) ~ elevation, pch=16, xlim=c(170,280))

NB: Doubling the area increases log2(area) by 1.0

text(log2(area) ~ elevation,

labels=row.names(Manitoba.lakes), pos=4)

text(log2(area) ~ elevation, labels=area, pos=2)

title("Manitoba's Largest Lakes")

detach(Manitoba.lakes)

Devise captions that explain the labeling on the points and on the y-axis. It will
be necessary to explain how distances on the scale relate to changes in area.

(b) Repeat the plot and associated labeling, now plotting area versus elevation, but
specifying log="y" in order to obtain a logarithmic y-scale. [NB: The log="y"

setting is automatic, after its initial use with plot(), for the subsequent use of
text(). ie, having specified a log scale for the y-axis in the plot() statement, the
same representation on a logarithmic scale is used for the text() command.]

Chapter 1 Exercises 3

A better choice of x-axis limits would be c(170, 260)

Note that the data are also in the data frame Manitoba.lakes that is included with
the DAAG package. Before running the code, specify

> attach(Manitoba.lakes)

The following code extracts the lake areas from the Manitoba.lakes data frame and
attaches the lake names to the entries of the resulting vector.

area.lakes <- Manitoba.lakes[[2]]

names(area.lakes) <- row.names(Manitoba.lakes)

Exercise 7
Look up the help for the R function dotchart(). Use this function to display the data
in area.lakes.

> area.lakes <- Manitoba.lakes[[2]]

> names(area.lakes) <- row.names(Manitoba.lakes)

> dotchart(area.lakes, pch=16, main="Areas of Large Manitoba Lakes",

+ xlab="Area (in square kilometers)")

Exercise 11
Run the following code:

gender <- factor(c(rep("female", 91), rep("male", 92)))

table(gender)

gender <- factor(gender, levels=c("male", "female"))

table(gender)

gender <- factor(gender, levels=c("Male", "female"))

Note the mistake

The level was "male", not "Male"

table(gender)

rm(gender) # Remove gender

Explain the output from the final table(gender).

The output is

gender

female male

91 92

> table(gender)

gender

male female

92 91

> gender <- factor(gender, levels=c("Male", "female")) # Note the mistake

> # The level was "male", not "Male"

> table(gender)

4

gender

Male female

0 91

> rm(gender) # Remove gender

Exercise 18
The Rabbit data frame in the MASS library contains blood pressure change measure-
ments on five rabbits (labeled as R1, R2, . . . , R5) under various control and treatment
conditions. Read the help file for more information. Use the unstack() function (three
times) to convert Rabbit to the following form:

Treatment Dose R1 R2 R3 R4 R5

1 Control 6.25 0.50 1.00 0.75 1.25 1.5

2 Control 12.50 4.50 1.25 3.00 1.50 1.5

3 Control 25.00 10.00 4.00 3.00 6.00 5.0

4 Control 50.00 26.00 12.00 14.00 19.00 16.0

5 Control 100.00 37.00 27.00 22.00 33.00 20.0

6 Control 200.00 32.00 29.00 24.00 33.00 18.0

7 MDL 6.25 1.25 1.40 0.75 2.60 2.4

8 MDL 12.50 0.75 1.70 2.30 1.20 2.5

9 MDL 25.00 4.00 1.00 3.00 2.00 1.5

10 MDL 50.00 9.00 2.00 5.00 3.00 2.0

11 MDL 100.00 25.00 15.00 26.00 11.00 9.0

12 MDL 200.00 37.00 28.00 25.00 22.00 19.0

Dose <- unstack(Rabbit, Dose ~ Animal)[,1]

Treatment <- unstack(Rabbit, Treatment ~ Animal)[,1]

BPchange <- unstack(Rabbit, BPchange ~ Animal)

Rabbit.df <- data.frame(Treatment, Dose, BPchange)

Exercise 20
Convert the data in iris3 (datasets package) to case-by-variable format, with column
names ”Sepal.Length”, ”Sepal.Width”, ”Petal.Length”, ”Petal.Width”, and ”Species”.

This exercise should be asterisked.
For a solution see the help page for iris or iris3. As a follow-on exercise, annotate

the code, explaining what each step does.

Exercise 21*
*The following code uses the for() looping function to plot graphs that compare the
relative population growth (here, by the use of a logarithmic scale) for the Australian
states and territories.

oldpar <- par(mfrow=c(2,4))

for (i in 2:9){

plot(austpop[, 1], log(austpop[, i]), xlab="Year",

ylab=names(austpop)[i], pch=16, ylim=c(0,10))}

par(oldpar)

Find a way to do this without looping. [Hint: Use the function sapply(), with
austpop[,2:9] as the first argument.]

Chapter 1 Exercises 5

We give the code, omitting the graphs

> oldpar <- par(mfrow=c(2,4))

> sapply(2:9, function(i, df)

+ plot(df[,1], log(df[, i]),

+ xlab="Year", ylab=names(df)[i], pch=16, ylim=c(0,10)),

+ df=austpop)

> par(oldpar)

There are several subtleties here:

(i) The first argument to sapply() can be either a list (which is, technically, a type of
vector) or a vector. Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an inline function that has
two arguments. The argument i takes as its values, in turn, the sucessive elements
in the first argument to sapply

(iii) Where as here the inline function has further arguments, they area supplied as
additional arguments to sapply(). Hence the parameter df=austpop.

Note that lapply() could be used in place of sapply().

