Updates and Corrections, $1^{\text {st }}$ printing only
 Data Analysis and Graphics Using R - An Example-Based Approach, $3^{\text {rd }}$ edn

John Maindonald (email: john.maindonald@anu.edu.au) and John Braun

Webpage: http://www.maths.anu.edu.au/~johnm/r-book/r-book.html.

First (2010) printing

Chapter 6, p.187, lines $\mathbf{- 1 3}$ to -12: Delete:"differs from the AIC statistic only by subtraction of n, and by omission of the constant term. It"
line -11: Replace with:

$$
\mathrm{C}_{p}=\frac{\mathrm{RSS}}{\sigma^{2}}+2 p-n
$$

Here, σ^{2} is replaced by s^{2} if the variance has to be estimated. If the variance is known, the C_{p} statistic differs from AIC only by omission of the constant term and subtraction of n.
p.210, line 3: Starting values can be obtained by fitting the log-linear equation:

```
nihills.lm <- lm(log(time) ~ log(dist) + log(climb.mi), data = nihills)
```

The coefficients are:

```
> coef(nihills.lm)
    (Intercept) log(dist) log(climb.mi)
        -0.9688 0.6814 0.4658
```

Then suitable starting values for the nonlinear equation are $\hat{\alpha}=\exp (-0.9688) \simeq 0.38, \widehat{\beta_{1}}=$ $0.68, \widehat{\beta_{2}}=0.47$
p. 210 (Subsection 6.8.4), line -5: Replace " $y=x_{1}^{\alpha} x_{2}^{\beta}+\epsilon$ " by " $y=\alpha x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}}+\epsilon$ "
p.211, lines 5-6: Replace with

```
nihills.nls0 <- nls(time~alpha*(dist`beta1)*climb.mi^beta2,
    start=c(alpha=0.38, beta1=0.68, beta2=0.47), data=nihills)
```

Replace lines 11-12 by:

alpha	0.3602	0.0601	6.00	$7.3 \mathrm{e}-06$
beta1	0.7179	0.0655	10.96	$6.6 \mathrm{e}-10$
beta2	0.4948	0.0524	9.45	$8.1 \mathrm{e}-09$

p.211, line 13: Replace "substantially" by "noticeably".

Chapter 7, p. 238 (Subsection 7.6.1), line -2: Replace " 1 m " by "gam"

Chapter 9, p. 295 (Section 9.2), footnote 5, line 2: Replace " 0.0427 " by " 0.040 "
p.298, final computer output in Section 9.2 Using version 2.04 of the forecast package, the call to auto.arima() fits an $\operatorname{ARIMA}(0,1,2)$ model, thus:

```
> (mdb2.arima <- with(xbomsoi, auto.arima(mdb3rtRain,
+ xreg=poly(SOI,2))))
Series: mdb3rtRain
ARIMA(0,1,2)
Call: auto.arima(x = mdb3rtRain, xreg = poly(SOI, 2))
Coefficients:
    ma1 ma2 1 2
    -0.984 0.050 2.899 0.950
s.e. }0.110\quad0.111 0.510 0.551
sigma^2 estimated as 0.266: log likelihood = -82.87
AIC = 175.7 AICc = 176.3 BIC = 189.2
```

Chapter 10, p.308, (Section 10.1.2), lines -11 an -10 Replace
" $\sqrt{\sigma_{L}^{2} n+\sigma_{W}^{2}}=\sqrt{2.37 n+0.578}$ " by " $n \sqrt{\sigma_{L}^{2}+\sigma_{W}^{2} / n}=n \sqrt{2.37+0.578 / n}$ "
p.350, (Section 10.10), Exercise 5 For assessing the accuracy of the components of variance, consider using mcmcsamp() as demonstrated on p.316.

Chapter 15, pp.483-484 (Section 15.5.3) p.483, lines -4 to -1, and p.484, lines 1-2, should be deleted. It repeats p.484, lines -9 to -1 , and is out of place on p. 483 .

Additional note: The function layer() (in latticeExtra) provides a mechanism for fitting parallel lines that is simpler than creation of a panel function, as describes on lines -21 to -5 (under the heading A panel function that fits and plots parallel lines).

The function layer() creates a "layer" that can be added to a trellis graphics object. Use the operator "+" ("add") to add a layer. For example:
\#\# Create graphics object that has the points.
gph <- xyplot(Brainwt ~ Bodywt, data=primates, xlim=c $(0,270)$)
\#\# Add a second layer that has the labels
gph2 <- gph + layer(panel.text(x,y, labels=rownames(primates), pos=4))
print (gph2)
Such "addition" of another layer is often easier than use of a user created panel function.

The function layer() allows as arguments, passed via the ... argument, any sequence of statements that might appear in a panel function. Such statements can refer to panel function arguments, including ' x ', ' y ' and 'subscripts'. Additionally, statements can refer to names of columns of an optional data argument. The new layer can either be overlaid (the default for layer()) or underlaid (specify under=TRUE or use layer_()).
The following adds a new layer to basic2, used for Figure 15.4 in Subsection 15.5.2 above, to add separate and parallel lines for the two sports, as in Plate 13:
\#\# Create new layer that has the parallel lines
layer2 <- layer(parallel.fit <- fitted(lm(y ~ groups[subscripts] + x)), panel.superpose(x, parallel.fit, type = "a", ...))
\#\# Enhanced version of graph, with parallel lines added
print(basic2 + layer2)
The function as.layer() creates a layer from a trellis graphics object. This can then be "added" in the same way as above.
p. 491 (Section 15.6), Table 15.2 Note also the function opts (). For example:

```
quickplot(ht, wt, data=ais, facets=. ~ sex) +
    opts(axis.text.x=theme_text(size=14),
            axis.text.y=theme_text(size=10),
            axis.title.y=theme_text(size=14, angle=90),
            legend.text=theme_text(size=14, hjust=0.5),
            legend.title=theme_blank(),
            legend.position=c(.5,.915),
            title="Body Dimensions of Australian Athletes")
```

