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Figure 2.22: This false color image shows the intensity of the post signal (red), relative to the pre sig-
nal (green), for the first two of six half-slides (“panels”) in a two channel microarray gene expression
experiment. Use of one dye-swap pair per slide was designed to allow adjustment for any systematic
red-green bias.

2.8.3⇤Severe multiplicity — the false discovery rate

The dataset DAAG::coralPval that is the subject of the following discussion was generated
using a microarray gene expression technology. Microarrays are now increasingly being
replaced by the more direct measurements of gene activity in the cell that the RNA-Seq
technology provides. In either case, a single experiment may yield information on thousands,
or tens of thousands, of genes. The present data are from experimental work that was
designed to compare gene expression, for the 3042 genes investigated, between two life-
stages of coral — the pre-settlement free-swimming stage, and post-settlement. Each of
the full complement of six panels (two only are shown in Figure 2.22) had 3072 spots; this
included 30 blanks. Where there was an increase, the spot should be fairly consistently
red, or reddish, over all six panels. Where there was a decrease, the spot should be fairly
consistently green, or greenish. Results from the six sets of comparisons were used to
generate 3042 p-values, one for each of 3042 sets of spots.

The methodology that will be described has wide application, to any form of comparison
that generates large numbers of p-values — hundreds, or thousands, or more. The multiplic-
ity of p-values allows inferences that an individual p-value does not provide. It allows the
estimation of a false discovery rate (FDR).

⇤Microarrays and alternatives — technical note

In the experimental procedure and subsequent processing that led to the plots shown in
Figure 2.22, the slides are first printed with probes, with one probe per spot, each designed
to check for the expression of one gene. The two samples carry labeling with separate
fluorescent dyes so that when later a spot “lights up” under a scanner, the relative intensities
of the two dye frequencies will provide a measure of differences in the signal intensity.

After labeling the separate samples, mixing them, and wiping the mixture over the slide
or half-slide, and various laboratory processing steps, a scanner was used to determine, for
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each spot, the intensities generated from the two samples. Various corrections are then
necessary, leading finally to the calculation of logarithms of intensity ratios. Essentially, it
is logarithms of intensity ratios that are shown in Figure 2.22.

For further information on the statistical analysis of microarray data, see Smyth (2004).
With suitable pre-processing of the data, the methods carry over to the analysis of RNA-Seq
data. See Law et al. (2014). For background on the coral data, see Grasso et al. (2008).

The false discovery rate (FDR)

The object DAAG::coralPval has 3072 p-values from the gene expression data represented
in Figure 2.22.

The following calculates, for several different thresholds pcrit = pcrit, the total number
of genes detected as differentially expressed with threshold as the threshold:

c o r a l P v a l <� DAAG: : c o r a l P v a l
p c r i t <� c (0 .05 , 0 .02 , 0 .01 , 0 . 0 0 1 )
unde r <� s a p p l y ( p c r i t , f u n c t i o n ( x ) sum ( c o r a l P v a l<=x ) )

The numbers expected under the null hypothesis, in each case, are:

e x p e c t e d <� p c r i t * l e n g t h ( c o r a l P v a l )

These numbers can be conveniently set out in a table, allowing us to examine the
implications of choosing one or other of these thresholds.

f d r t a b <� d a t a . f r a m e ( T h r e s h o l d=p c r i t , Expec ted=expec t ed ,
D i s c o v e r i e s=under , FDR=round ( e x p e c t e d / under , 4 ) )

p r i n t ( x t a b l e : : x t a b l e ( f d r t a b ) , i n c l u d e . r o w n a m e s=FALSE , h l i n e . a f t e r =FALSE)

Threshold Expected Discoveries FDR
0.05 153.60 1310 0.12
0.02 61.44 1068 0.06
0.01 30.72 900 0.03
0.00 3.07 491 0.01

The column headed FDR is just the number of detections (“discoveries”) expected under
the null hypothesis, divided by the actual number detected. Although often described as an
adjusted p-value, the result of the adjustment is not a p-value, but an estimate of the false
discovery rate. For the false discovery rate to equal 0.05, the unadjusted p-value threshold
should be set somewhere between 0.01 and 0.02.

The Benjamini-Hochberg method for adjusting p-values relies, in essence, on the argu-
ment just given. Rather than finding an unadjusted p-value threshold, it is however more
straightforward to work directly with adjusted values, calculated as will now be described.
After sorting the p-values from smallest to largest, the calculation is:

pad j[i] =
m
i

pi ; i = 1,2, . . .m

A further tweak is to set each pad j[i] to the smallest value, if any, that appears later in the
sequence. This ensures that pad j[i] is a monotonic function of pi. (Also, any value that is
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greater than 1.0 is set to 1.) The function p.adjust() (stats package in base R), can be
used (specify method="BH") to do the adjustments, thus:

f d r <� p . a d j u s t ( c o r a l P v a l , method="BH" )

Here are numbers that fall under thresholds 0.05, 0.04, 0.02, and 0.01:

f d r c r i t <� c (0 .05 , 0 .04 , 0 .02 , 0 . 0 1 )
unde r <� s a p p l y ( f d r c r i t , f u n c t i o n ( x ) sum ( c o r a l P v a l<=x ) )
setNames ( under , p a s t e ( f d r c r i t ) )

0.05 0.04 0.02 0.01
1310 1234 1068 900

The FDR for a cutoff of 0.05 is a composite value, with some genes that fall under this
threshold having a FDR much greater than 0.05, and many more having an FDR that is
much less. The discussion that now follows shows how this composite FDR can be broken
apart. Take p45 as the false discovery rate for genes in the range 0.04 < fdrcrit <= 0.05.
Then the 1310 genes with fdrcrit <= 0.05 are comprised thus:

• 1310 - 1234 = 76 genes with an average FDR of p45
• 1234 genes with an average FDR of 0.04

Then

p45⇥76+0.04⇥1234 = 0.05⇥1310

Solving for p45 yields, rounded to two decimal places

p45 = 0.21

As with use of the p <= 0.05 criterion for a single p-value, it is tempting to place greater
weight than is warranted on an FDR statistic that falls just under 0.05.

The average estimated false discovery rate for genes with 0.01 < fdrcrit <= 0.02, is:

0.02⇥1068�0.01⇥900
1068�900

= 0.07

This line of argument can be combined with the assumption of a smooth change in the
FDR to provide a local false discovery rate estimate. These bear the same relationship to the
false discovery rate that a density, for the relevant distribution, bears to the corresponding p-
value, i.e., to an area in the tail or tails of the distribution. The function locfdr::locfdr()
is designed to provide, as well as estimates of local FDRs, an estimate of the proportion
of p-values that correspond to cases where the null hypothesis is true. Estimates of the
proportion of nulls may vary widely, depending on the method used.

As noted, the false discovery rate estimates are not p-values in the conventional sense.
They give a frequency based probability that a detected difference is a real difference –
information that p-values do not provide. Why insist on working with p-values when there
is a better alternative? When m is large, the estimate provided has high statistical accuracy.

The p.adjust() FDR estimate remains valid in a wide range of contexts where p-values
are positively correlated. Also available is method="BY", designed for contexts where there
may be quite general dependence structures. This gives a very conservative adjustment.
Other available adjustment methods (see ?p.adjust) are more in the style of p-values. .
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Figure 2.23: Both panels are for rice shoot dry mass data. Panel A shows a one-way strip plot, with
different strips for different treatment regimes. Treatment means are shown with a large +. The
interaction plot in Panel B shows how the effect of fertilizer (the first factor) changes with variety
(the second factor). Data relate to Perrine et al. (2001)

As noted, 3072 p-values is small, by the standards of much other expression array data.
The experimental data that will be considered in Section 9.3, from an experiment with
RNA-Seq data, yielded 18658 p-values for each comparison of interest.

2.8.4 Data with a two-way structure, i.e., two factors

Consider now data from an experiment that compared wild type (wt) and genetically
modified rice plants (ANU843), each with three different chemical treatments. A first factor
relates to whether F10 or NH4Cl or NH4NO3 is applied. A second factor relates to whether
the plant is wild type (wt) or ANU843.

There are 72 sets of results, i.e., two types (variety) ⇥ three chemical treatments (fert)
⇥ 6 replicates, with the experimental setup repeated across each of two blocks (Block).
Figures 2.23A and 2.23B show alternative perspectives on these data.

Figure 2.23B shows a large difference between ANU843 and wild type (wt) for the F10
treatment. For the other treatments, there is no detectable difference. A two-way analysis
will show a large interaction.13

Note, finally, that the treatments were arranged in two blocks. In general, this has
implications for the analysis. This example will be discussed again in Chapter 4, where
block effects will be taken into account.

2.8.5 Presentation issues

The discussion so far has treated all comparisons as of equal interest. Often they are not.
There are several possibilities:

13## Simplified version of code, Panel B only
with(rice, interaction.plot(fert, variety, ShootDryMass,

xlab="Level of first factor"))


