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4.4.3 Other smoothing methods

Regression splines, as described above, are attractive because they fit easily within a linear
model framework. We can fit them by specifying an appropriate X-matrix, in a call to lm().
The discussion will now move to consider methods that do not fit within the lm() linear
model framework. In a technical sense, the smoothing methods that will now be described
are no longer linear in the parameters. We consider them here because they are natural and
attractive extensions of the linear model framework.

Consider first locally weighted regression methods, implementated in different ways
and with different functionality in the R functions lowess() and loess(). These rely
on repeated linear fits to successive subsets of the data. Figure 1.6, where the function
lowess() was used to fit a curve to the fruitohms data, is one of a number of examples
of its use that appear elsewhere in this text.

By contrast with lowess(), which can only fit curves, loess() can fit surfaces as
well as curves. It takes up to four numerical predictors. The default for loess() is a
non-resistant smooth; for a resistant smooth, specify family=symmetric. Neither function
has a mechanism for calculating pointwise confidence bounds. See the relevant help pages
for details of options that are available to control the fitting process.

The following description is directly relevant to lowess(). Calculations for loess()
follow the same general pattern. The method is local, in the sense that the fitted value m(x)
at a point x uses only the data within a specified neighborhood of x. Points nearest to x have
highest weight. Those farther away have a reduced weight or no weight. Fits are resistant
to outliers, with observations that generate large residuals given low weights. The fitting
process uses an iterative method, with the residual at the previous iteration determining the
weight at the current iteration.

Kernel smoothing methods further widen the range of possibilities. For example, see the
documentation for the function KernSmooth::locpoly().

On lowess smoothing, see Cleveland (1981). Venables and Ripley (2002) has a useful
brief discussion of smoothing methods. Fan and Gijbels (1996) discusses kernel smoothing,
splines and lowess. See also Hall (2001).

4.4.4 ⇤Quantile regression

Working with a linear model framework, the discussion has until now focused almost
exclusively on models for the expected value or mean of the response variable as a function
of (or conditioned on) one or more covariates. Models for the quantiles of the response (e.g.,
25% or lower quartile, median, 75% or upper quartile) are a further important and useful
extension of the linear model framework. Here, we take a look at the new and exciting
possibilities offered by the quantreg package (Koenker, 2015).

2012 World Bank data on fertility and life expectancy

There is a close correlation, across countries, between fertility (number of children born per
female) and life expectancy. Figure 4.10 is designed to explore the connection, while not
providing insight on how it may arise.
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B: Curves, FertilityRate−0.5

Figure 4.10: Panel A shows 10%, 50Panel B shows shows 2 d.f. (+ 1 d.f. for intercept) fitted natural
spline curves, with a FertilityRate�0.5 transformation on the x-axis. Solid lines or curves are for
unweighted fits, while dashed lines or curves are from weighting by population.

Figure 4.10A shows a median lines, together with 10% and 90% quantile lines. For the
solid curves, all countries were given equal weight, while the dashed curves were from use
of populations as weights.

The footnote has code, which assumes a live internet connection, that may be used to
input the data that is used.7

Code for fitting the quantiles that are shown in Figure 4.10A is:

n s q 1 5 9 . r q <� q u a n t r e g : : rq ( L i f e E x p e c t a n c y ~ F e r t i l i t y R a t e , d a t a=wdi ,
t a u=c (0 .1 , 0 .5 , 0 . 9 ) )

p red159 <� a s . d a t a . f r a m e ( c b i n d ( wdi [ , " F e r t i l i t y R a t e " ] ,
p r e d i c t ( n s q 1 5 9 . r q ) ) )

Figure 4.10A did not use this code directly, but instead used ggplot2::geom_quantile()
to combine fitting the lines with creation of the graphics object used in creating the
plot. Observe how, in Figure 4.10A, a relatively small number of high mortality points
have a large influence on the slope of the fitted line. Hence the use, for Panel B, of the
power transformation of FertilityRate that was suggested by the use of the function
car::powerTransform(FertilityRate).8

For Panel B, the following code can be used to calculate the solid quantile curves:

## Panel B: Power transformed x
wdi [ , " r t 2 i n v F e r t " ] <� �wdi [ [ " F e r t i l i t y R a t e " ] ] ^ �0.5
n s q 1 0 _ 5 0 _ 9 0 . r q <� q u a n t r e g : : rq ( L i f e E x p e c t a n c y ~ s p l i n e s : : ns ( r t 2 i n v F e r t , 2 ) ,

d a t a=wdi , t a u=c (0 .1 , 0 .5 , 0 . 9 ) )
p red159 <� a s . d a t a . f r a m e ( c b i n d ( wdi [ , " r t 2 i n v F e r t " ] , p r e d i c t ( n s q 1 0 _ 5 0 _ 9 0 . r q ) ) )

For the dashed curves, include the argument weight=population.

7if(!is.element("WDI", installed.packages()[,1]) )install.packages("WDI")
inds <- c('SP.DYN.TFRT.IN','SP.DYN.LE00.IN', 'SP.POP.TOTL')
indnams <- c("FertilityRate", "LifeExpectancy", "population")
wdi2012 <- WDI::WDI(country="all", indicator=inds, start=2012, end=2012, extra=TRUE)
colnum <- match(inds, names(wdi2012))
names(wdi2012)[colnum] <- indnams
wdi2012 <- na.omit(droplevels(subset(wdi2012, !region %in% "Aggregates")))
wdi <- wdi2012[order(wdi2012[, 'FertilityRate']), ]
save(wdi, file="wdi.RData")

8## Code used to suggest a transformation to a more symmetric distribution
summary(car::powerTransform(wdi[["FertilityRate"]]))
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An alternative that avoids explicit use of a regression spline basis

The function quantreg::rqss(), with the function qss() used to specify the fitting of a
smooth, offers an alternative to the explicit use of a regression spline basis. At the time of
writing, the parameter lambda, with larger values of lambda leading to a smoother curve,
takes a specified fixed value. The function ggplot2::geom_quantile() can be used to
handle the fitting of curves, and create a ggplot2 graph object. Try, as an example:

wdi [ , " r t 2 i n v F e r t " ] <� �wdi [ , ' F e r t i l i t y R a t e ' ] ^ �0.5
gph1 <� g g p l o t ( wdi , a e s ( r t 2 i n v F e r t , L i f e E x p e c t a n c y ) )+ geom_poin t ( )
gph1+g e o m _ q u a n t i l e ( method=" r q s s " , q u a n t i l e s=c ( .1 , .5 , . 9 ) , lambda=0 . 1 ) +

s c a l e _ x _ c o n t i n u o u s ( b r e a k s = � ( 2 : 7 ) ^ ( �0.5 ) , l a b e l s = p a s t e ( 2 : 7 ) ) +
x l a b ( " F e r t i l i t y Rate " )

Monotone and/or convexity constraints can be imposed.

4.5 ⇤Generalized additive models (GAMs) — Roughness penalty methods

Rather than restrict the number of basis curves for a smooth, a better general strategy is
to choose a relatively large degrees of freedom basis, with a penalty applied to prevent
the choice of fitted curves or surfaces that are unduly wiggly. Under the assumption
that observations are independent with homogeneous variance, the penalty can be chosen
automatically.

Contrast the penalization approach used for GAM smooths with control of complexity by
restriction to a small (low degree of freedom) basis set. Use of too few basis curves can lead
to a curve that fails to capture all the nuances of the data while choosing too many is likely
to result in excessive bumpiness, i.e., the details of the curve capture noise. Roughness
penalties are a mechanism for allowing, in principle at least, a choice of curve or surface
that is constrained only by the effect of penalties that limit wiggliness.

For complete generality in the choice of curve, cubic smoothing spline methods assign a
knot to each predictor value, while applying a roughness penalty that constrains the fitted
spline to pass smoothly through the cloud of observations. Without such a constraint, the
spline would interpolate the observations, usually rendering a rough curve. There are then
as many basis curves as there are distinct observations. Thin plate splines circumvent the
overt choice of knots. Complete generality in the choice of curve requires, again, as many
basis functions as there are distinct observations.

To reduce the time and memory requirements, a reduced set of basis curves may be used,
albeit a large enough set that the choice of curve is not unduly constrained. The “cubic
regression splines” that are provided in the mgcv package place knots at equally spaced
quantiles of the data, as does the function smooth.spline() (stats package). Penalized
splines, as implemented by pspline() in the survival package, are another approach
that places knots at values that are evenly spaced through the data.

To keep computational demands within reasonable bounds and allow use of a reduced set
of basis functions, thin plate regression splines (t.p.r.s) are used in place of true thin plate
splines. Thin plate regression splines bases provide workable low rank (rank = number of
basis curves or functions) approximations.

Note also the gam package (not to be confused with the gam() function in mgcv), which
is for some purposes an alternative to mgcv. For brief comments on the comparison between


