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Learning from data, and tools for the task

This text is designed as an aid, for learning and for reference, in the navigation of a world in
which unprecedented new data sources, and tools for data analysis, are pervasive. It uses R
for the calculations and for graphical display, but is not a book about R. Rather, it will use
real examples to demonstrate an informed and critical use of the analytical abilities that the
R system offers.

A large body of statistical theory underpins the analyses that R packages implement.
While we will from time to time refer to theoretical results, it is not our purpose to provide
a systematic account of statistical theory. Our focus is different, to teach by example a style
of analysis and critique that can turn meaningful data into defensible analysis results.

We assume enough familiarity with elementary statistical ideas and terminology that
readers will be comfortable with mention of such terms as standard deviation, normal
distribution, independence, and dependence, in some cases used initially in advance of such
formal definition as we provide. Our primary concern is with the role and meaning of this
language in practical data analysis.

The opening section describes issues and interests that have motivated us, especially
as they affect changes made for this new edition. Later sections discuss: data assembly,
analysis, and interpretation issues; tools for, and the uses of, graphical display; data summary
statistics; distributions for the random component of models; and tools that will be helpful for
organizing and managing work, noting in particular the Integrated Development Environment
(IDE) that RStudio provides.

1.1 The changing world of statistical applications

Science, as we know it, is a product of the modern world. Phenomena become part of
established science once we know the circumstances under which they will re-occur. The
process is straightforward for events that can be predicted with the same assurance as, for
example, the occurrence of an eclipse of the sun. Not everything is thus predictable. Does
exposure to words that describe common disabilities of old age cause a younger person
to walk more slowly? Data have to be obtained from a suitable experiment or series of
experiments.

Or it may be necessary to rely on whatever data are already available. How effective
were airbags, in cars that were involved in police reported car crashes in the USA over
1997-2002, in reducing the risk of death? The decision on which of the available datasets is
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2 1. Learning from data, and tools for the task

best designed to provide an answer, and the choice of model, have called for careful and
critical assessment. (See the help pages ?DAAG::nassCDS and ?gamclass::FARS).

Disturbingly often, the careful examination of published analyses reveals serious flaws.
The Reinhold and Rogoff study “Growth in time of debt” gained attention in the the news
media because crucial data, with a large effect on results, had been accidentally left out.
Ironically, that was the most excusable of the faults with their use of the data.

Researchers who wish to focus on the subject-specific aspects of their work may find
close attention to the statistical methodology an annoying diversion. There is, however, no
good way to escape those challenges. Difficulties arise when, as often, research institutions
have not made effective provision for access to high quality statistical advice. Our hope is
that this text will be a help along the way.

1.1.1 Models, algorithms, and machines that learn

Architects and engineers have in the past relied heavily on scale models for giving a sense
of important features of a planned building. For checking routes through the building, for
the plumbing as well as for humans, such models serve useful purposes. They will not
give much insight on how buildings in earthquake prone regions are likely to respond to a
major earthquake — a lively concern in Wellington, NZ, where the first author now lives.
For that purpose, engineers require mathematical equations that can be used as models of
the relevant physical processes. The credibility of predictions will strongly depend on the
accuracy with which the models can be shown to represent those processes.

The tree-based models that are the subject of Chapter 8 have, by contrast, a largely
algorithmic motivation. Their use, and checks to examine whether they are serving their
intended purpose do, however, involve a modeling of the processes involved. The limited
assumptions made are important. Tree-based models have been widely used in “machine
learning".

The limits of current machine learning systems

In an era when new and rich data sources abound, there is more need than ever for tools and
approaches that will assist in critical evaluation both of the data and of consequent analyses.
Automation of numerical computations makes obvious sense; it frees the analyst to focus on
those parts of the exercise that really do require conscious attention. Can machines extend
their role beyond this? Can they acquire the skills needed to do the job of a skilled data
analyst, as the term "machine learning" (or, more recently, "deep learning") might seem to
suggest?

Machine learning approaches have been very successful in, for example, the creation of
automated guidance systems, and in robotics. These are, in key respects, highly automated
statistical processing machines. They must take large amounts of often noisy data from their
sensors, and then use that data as a basis for action. A difference from most of the areas of
statistical application that will be discussed in this text is that major faults in the data inputs
or in the data processing are likely to have an immediate and obvious result — the system
will misbehave! The major risks are from faults that show up in unusual circumstances,
perhaps putting human life at risk.
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The absence of immediate feedback becomes a serious issue when machine learning
algorithms extend their reach into social, business, and government decision making. In
contrast to automated guidance systems, there may be limited direct control on the data
collected, and little or no opportunity for the direct feedback that will often make data or
analysis inadequacies obvious. Examples include systems that make judgments on job
applicants, on rehiring and promotion, on the risk that prisoners will re-offend, on loan
applications, on hedge fund investments, and many other areas of human life.

Issues of this type, for systems currently in place, are documented at length in O’Neil
(2016, "Weapons of Math Destruction"). O’Neil cites the example of a teacher who was
fired because of a low score from an automated rating system. The reason was, apparently,
that under her tutelage the reading scores of her incoming fifth graders had not progressed
from the inflated levels that they had been given, at a feeder school, at the previous year’s
end. Automated systems must, to be effective, allow room for the human ability to step
back and reflect, to learn from failures, and to correct mistakes.

Prediction, or explanation?

Primary interest may be in accurate prediction. Or interest may be in the drivers of model
predictions. In a study of the effectiveness of seat-belts and airbags reducing fatalities in
vehicle accidents, the interest is in the factors — seatbelt use, airbag deployment, and other
factors that may influence survival. In a teacher rating system, the focus is on providing
accurate and objective ratings. Use of data in ways that are not transparent, and that are not
open to scrutiny, may, as with the teacher rating system, seriously compromise both fairness
and effectiveness.

Google Flu Trends was launched in 2008 and updated in 2009, with the aim of using
Google search queries to make accurate and timely prediction of flu outbreaks. The account
that now follows is based on the Lazer et al. (2014) article “The Parable of Google Flu:
Traps in Big Data Analysis.”

In early 2010 the algorithm predicted an outbreak in the mid-Atlantic region of the
United States two weeks in advance of official sources. Thereafter, until the publication of
estimates ceased in 2013, the system consistently overestimated flu prevalence. In February
2013, the system made headlines by over-predicting doctor visits for influenza-like illness
by a factor of more than two. The methodology had large ad hoc elements, and was not
taking advantage of time series structure in the data, resulting in a performance that was
inferior to that of forward projection methods that used Center for Disease Control data.
Lazer et al. (2014) warn against what they term “Big data hubris”:

Big data hubris is the often implicit assumption that big data are a substitute for, rather
than a supplement to, traditional data collection and analysis. . . . quantity of data does
not mean that one can ignore foundational issues of measurement, construct validity and
reliability, and dependencies among data.

Even when the primary interest is in prediction, it is often important to know what the
drivers are. Comments in O’Neil (2016) are apt:

... it’s not enough to just know how to run a black box algorithm. You actually need to
know how and why it works, so that when it doesn’t work, you can adjust.
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Are humans good intuitive statisticians?

While the human mind has remarkable intuitive abilities (consider the ability, without appar-
ent effort, to recognize a familiar face), it is not a good intuitive statistician. Kahneman’s
ground-breaking book (Kahneman, 2013) on human judgement and decision making argues
the case at length. Hence the need for training, and especially for training in forms of critical
scrutiny that will help analysts to recognize and learn from their mistakes.

The Yule-Simpson “paradox”, discussed in Subsection 1.3.5, is one of a number of traps
for overly simplistic use of data that highlight the limits of untrained human intuition. Smith
(2014) gives a number of examples from the public sphere. The traps that such paradoxes
set for data analysis results can readily get built into black box automated systems, where
there may be no ready way either to discover how the black box reached apparently faulty
conclusions, or to get attention to problems that have been identified.

1.1.2 Science and statistics

Statistical methodology, and scientific processes more generally, have to be justified by
their effectiveness in answering questions of interest. Their effectiveness can and should be
open to empirical investigation. The critical test for laboratory science is reproducibility —
are other scientists able to reproduce the results? In important areas of laboratory science,
worrying evidence has emerged that suggests that a majority of published results are not
reproducible. In one widely quoted case (Begley and Ellis, 2012), scientists from the
bio-pharmaceutical company Amgen who attempted to reproduce 53 “landmark” cancer
studies were successful in 6 cases only. The main issues appear to have been with faults in
laboratory procedure and in statistical analysis (Begley, 2013). Among other such reports
from attempts by industry scientists to reproduce published work see, e.g., Prinz et al.
(2011), where results were marginally more encouraging.

How has this happened? Journal editors, and the scientific community at large, have
fallen for the seductive notion that the statistical analysis of data, generated at one time and
in one laboratory and leading to a suitably small p-value, is an effective replacement for
the more stringent requirement that other scientists should reproduce the reported results.
Independent replication at another time and place provides checks on the experimental
processes, on mistakes in statistical analysis, and on factors that may be local to the place
and time of the original experiment.

As will be argued in the next chapter, it is wrong to treat p-values as absolute measures
of the weight of evidence. Rather, they shift the weight of evidence. Comments from Fisher
(Fisher, 1935, pp 13–14), who pioneered the use of p-values, are apt:

. . . no isolated experiment, however significant in itself, can suffice for the experimental
demonstration of any natural phenomenon . . .

. . . we may say that a phenomenon is experimentally demonstrable when we know
how to conduct an experiment which will rarely fail to give us a statistically significant
result.

The meaning and role of p-values therefore get closer scrutiny than in earlier editions.
A new and interesting twist comes from contexts where there may be many p-values —
hundreds, or thousands, or more. New and fruitful ways ways then emerge to martial the
evidence that they provide.
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Systematic attempts to reproduce scientific results

Concerns raised by the Begley and Ellis paper, and by other reports that point in the same
direction, have been the impetus for several systematic attempts to replicate published
results. The “Psychology Reproducibility” (Open Science Collaboration, 2015) project
found that, depending on the measure used, around 40% of the 98 results investigated
appeared reproducible. A study of this same type, for papers from pre-clinical cancer
research, is at the time of writing well advanced (Errington et al., 2014).

The issues that these studies raise bear very directly on the aims that we have set for
ourselves for this text. Failures in experimental design and in laboratory procedure all too
frequently compromise the trustworthiness of the data used for analysis. While experimental
design and more general data collection issues are not a particular focus of this text, we do
want to emphasize their importance.

Data is the raw material of statistical analysis. Historical data may have important insights
to offer, or even be crucial to issues of current interest. A key component of reproducibility
is the reproducibility of the analysis, whether with the data used for the published paper,
or with new data. The technology that is now available leaves little excuse for failure to
attend both to issues of the maintenance of data records through time, and to reproducible
reporting. For this text, we have used the knitr package, which makes it possible to "knit"
text and R code together in one or more documents which are then processed1 to give the
output for this text.

1.2 Statistical analysis questions, aims and strategies

Different questions, asked of the same data, will demand different analyses. Questions of
interest may, given the available data, be unanswerable. Data on house prices in London,
England, may not have much relevance, if the interest is in house prices in New York or
Paris or London in Ontario.

Questions should be structured with a view to the intended use of results. Is the aim
scientific understanding, perhaps as in the example discussed below to determine whether
cuckoos do really match the eggs that they lay in the nests of other birds to the size and
color of the host eggs? Or is the aim to predict, based on recent prices in the area and on
house size, the price that purchasers may be willing to pay?

1.2.1 Terminology — variables, factors, and more!

The word “variable” will be used when values are on an “interval” scale (differences
between points on the scale are meaningful), while “factor” will be used when values are on
a categorical scale. Thus, in the data frame DAAG::kiwishade, yield is a variable, while
block is a factor with levels east, north, and west. More generally, a factor may represent
values on an ordinal scale. Thus the factor tint in the data frame DAAG::tinting has
levels no, lo, and hi, which it is appropriate to treat as ordered.

Variables and factors can both appears as “terms” in a model. Other types of “terms”
include interaction terms that account for, e.g., effects that are not the sum of the separate
effects of two factors.

1The R function knit() starts the process
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“Factor” and “term” are both used in a more general sense, as well as in the technical
senses described in the previous two paragraphs. In the statement that “there are many
factors that influence health”, the more general usage is clearly in mind.

Where interval scales have an absolute zero point (measurement variables such as height
and weight are examples), they may be referred to as “ratio” scales.

1.2.2 Graphical comparisons

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted and
hatched by the host birds. Newton (1893-1896, p. 123) states that the eggs that the cuckoos
lay tend to match the eggs of host bird in size, shape and color. Latter (1902) collected the
data shown in Figure 1.1 in order to investigate Newton’s claims. Two different forms of
graphical display are used — a dotplot display, and the more summary boxplot form of
display that is described in Figure 1.2 in Section 1.3.

Figure 1.2A shows the raw data values. Figure 1.2B focuses on statistics that are designed
to indicate the shape of the distribution, and give a rough idea of how variation between
groups compares with variation between groups. The boxes that give boxplots their name
focus attention on quartiles of the data, i..e., the three points on the axis that split the data
into four equal parts. The lower end of the box marks the first quartile, the dot marks the
median, and the upper end of the box marks the third quartile. Points that lie out beyond
the "whiskers" are plotted individually, and are candidates to be con77sidered outliers. The
5 "outliers" that are indicated for meadow pipit may be in large part due to an unusually
narrow box, and hence an exaggerated willingness to flag points as potential outliers.

Simplified code for Figure 1.1 is:

l i b r a r y ( l a t t i c e E x t r a )
## Compare dotplot() with bwplot(), both from lattice package
cuckoos <� DAAG: : cuckoos
gph <� d o t p l o t ( s p e c i e s ~ l e n g t h , x l a b=" Length o f egg (mm) " ,

d a t a=cuckoos , a l p h a=0 . 4 )
av <� wi th ( cuckoos , a g g r e g a t e ( l e n g t h , l i s t ( s p e c i e s= s p e c i e s ) , FUN=mean ) )
gph + l a t t i c e E x t r a : : a s . l a y e r ( d o t p l o t ( s p e c i e s ~ x , pch=3 , cex=1 .25 ,

c o l=" b l a c k " , d a t a=av ) )
bwplo t ( s p e c i e s ~ l e n g t h , x l a b=" Length o f egg (mm) " , d a t a=cuckoos ,

s c a l e s= l i s t ( y= l i s t ( a l t e r n a t i n g =0 ) ) )
# alternating=0; omit y-axis labels

Fuller details of the code are in the web supplement.
Figure 1.1 strongly suggests that eggs planted in wrens’ nests were substantially smaller

than eggs planted in other birds’ nests. The upper quartile (75% point) for eggs in wren’s
nests lies below all the lower quartiles for other eggs. Table 1.1 adds information that
suggests a relationship between the size of the host bird’s eggs, and the size of the cuckoo
eggs that were laid in that host. Note that apart from several outlying egg lengths in the
meadow pipit nests, the length variability within each host species’ nest is fairly uniform.

Issues with the data in Table 1.1 and Figure 1.1 are:

• The cuckoo eggs and the host eggs are from different nests, collected in the course of
different investigations. Data on the host eggs are from various sources.

• The host egg length for the wren is an indicative length from Gordon (1894).
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Table 1.1: Mean lengths of cuckoo eggs, compared with mean lengths of eggs laid by the
host bird species. The table combines information from the data frame cuckoos with
information from the data frame cuckoohosts (both in the DAAG package).

Meadow Hedge Tree Yellow
Host species pipit sparrow Robin Wagtails pipit Wren ammer
Length (cuckoo) 22.3 (45) 23.1 (14) 22.5 (16) 22.6 (26) 23.1 (15) 21.1 (15) 22.6 (9)
Length (host) 19.7 (74) 20.0 (26) 20.2 (57) 19.9 (16) 20 (27) 17.7 (-) 21.6 (32)
(Numbers in parentheses are numbers of eggs)

A

Length of egg (mm)

hedge sparrow
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pied wagtail
robin

tree pipit
wren

20 21 22 23 24 25

B
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Figure 1.1: Dotplot (Panel A) and boxplot (Panel B) displays of cuckoo egg lengths. In Panel A,
points that overlap have a more intense color. Means are shown as +. The boxes in Panel B take in
the central 50% of the data, from 25% of the way through the data to 75% of the way through. Data
are from Latter (1902).

There is thus a risk of biases, different for the different sources of data, that limit the
inferences that can be drawn. How large, then, relative to statistical variation, is the
difference between wrens and other species? Would it require an implausibly large bias to
explain the difference? A more formal model-based comparison between lengths for the
different species is important as an aid to informed judgment.

1.2.3 Formal model-based comparison

For comparing lengths between species, we use the model:

Egg length =Mean for species+Random variation

The means in the dataset cuckoos are:

av <� wi th ( cuckoos , a g g r e g a t e ( l e n g t h , l i s t ( s p e c i e s= s p e c i e s ) , FUN=mean ) )
setNames ( round ( av [ [ " x " ] ] , 2 ) , a b b r e v i a t e ( av [ [ " s p e c i e s " ] ] , 1 1 ) )

hedgsparrow meadowpipit piedwagtail robin tree pipit wren
23.11 22.29 22.89 22.56 23.08 21.12

Commonly, a normal distribution will be used to describe the random variation, and will
be fitted using least squares. The species means are then the fitted values, while differences
from those means are the residuals. The residuals for the wren length model are:

wi th ( cuckoos , s c a l e ( l e n g t h [ s p e c i e s==" wren " ] , s c a l e=FALSE ) ) [ , 1 ]
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[1] -1.32 0.98 0.38 -0.22 0.88 -0.12 1.18 -0.12 -0.82 -0.22 0.88
[12] -1.12 -0.32 0.08 -0.12

A check is desirable on whether the standard deviation, used to measure variation about
the species means, varies between species. The boxes in Figure 1.1, whose widths relate to
a measure of variability that is an alternative to the standard deviation, hint that variation
may be greater for the Pied Wagtail than for other species.

Results that can be trusted

Comments in Tukey (1997) merit close attention. It is important to separate model develop-
ment steps from inference. Models aim to give real world descriptions. Exposure to diverse
challenges will build (or destroy!) confidence in model-based inferences. A large part of
our task in this text is to suggest effective forms of challenge. Specific types of challenge
may include:

• For experiments, is the design open to criticism?
• Look for biases in processes that generated the data.
• Look for inadequacies in laboratory procedure.
• Use all relevant graphical or other summary checks to critique the model that underpins

the analysis. Think carefully what test data might provide an adequate challenge, given
the intended use of results.

• For experimental data, have the work replicated independently by another research
group, from generation of data through to analysis,

It is important that analysts search out all available information about the processes that
generated the data, and consider critically how this may affect the reliance placed on it. We
should trust those results that have survived thorough and informed challenge.

Observational versus experimental data

Data from experiments appear throughout this text – examples are the data on the tinting of
car windows that is used for Figure 7.8 in Section 7.5, and the kiwifruit shading data that
is discussed in Subsection 1.4.2. Such data can, if the experiment has been well-designed
with a view to answering the questions of interest, give highly reliable results. With data
from carefully designed experiments, it is sometimes possible to infer causal relationships.
Perhaps the most serious danger is that the data will be generalized beyond the limits
imposed by the experimental conditions.

Observational data, or data from experiments where there have been failures in design
or execution, is another matter. Correlations do not directly indicate causation. A and B
may be correlated because A drives B, or because B drives A, or because A and B change
together, in concert with a third variable. For interpretation in terms of causation, other
sources of evidence must come into play.
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1.2.4 How will data be used?

Studies may be designed to help scientific understanding. Consider again the data in
Table 1.1. The interest of Latter’s paper is primarily in establishing whether there is a
relationship, and rather less in determining the nature of the relationship. Egg size and
shape is one of several pieces of evidence that Latter considers. Uniquely among the birds
listed, the architecture of wren nests makes it impossible for the birds to see the eggs. In
wren nests, the color of the cuckoo’s egg does not match the color of the wren’s eggs. For
the other species the color does mostly match. Latter concludes that Newton is right, that
the eggs that cuckoos lay tend to match the eggs of the host bird in size and shape in ways
that will make it difficult for hosts to distinguish their eggs from the cuckoo eggs.

What was measured? Is it the relevant measure?

The science and socsupport data frames (DAAG) are both from surveys. In either case it
is necessary to ask: “What was measured?” This question is itself amenable to experimental
investigation. For the dataset science, what did students understand by “science”? Was
science, for them, a way to gain and test knowledge of the world? Or was it a body of
knowledge? Or, more likely, was it a name for their experience of science laboratory classes
(smells, bangs and sparks perhaps) and field trips? Answers to other questions included in
the survey shed some limited light.

In the socsupport dataset, an important variable is Beck Depression Inventory or BDI,
which is based on a 21-question multiple choice self-report. The Beck Depression Inventory
is the result of an extensive process of development and testing. Since its first publication in
1961, it has been extensively used, critiqued, and modified. Its results have to this extent
been well validated, at least for populations on which it has been tested. It has become a
standard psychological measure of depression (see, e.g., Streiner et al., 2014).

For therapies that are designed to prolong life, what is the relevant measure? Is it survival
time from diagnosis? Or is a measure that takes account of quality of life over that time
more appropriate. Two such measures are “Disability Adjusted Life Years” (DALYs) and
“Quality Adjusted Life Years” (QALYs). Quality of life may differ greatly between the
therapies that are compared.

1.2.5 The planning of data analysis

Information from the analysis of earlier data may be invaluable both for the design of
data collection for the new study and for planning data analysis. When prior data are
not available, a pilot study involving several experimental runs can sometimes provide
such information. Graphical and other checks are in any case required to identify obvious
mistakes and/or quirks in the new data. Data must support the intended form of analysis.
Graphs that draw attention to inadequacies may, at the same time, hint at remedies. If
preliminary analysis gives a clear indication that the data should be transformed in order to
give an acceptable approximation to normality, then the demand is to use the transformation.
At the same time, be sensitive to the risk that use of the data to influence may bias results.



10 1. Learning from data, and tools for the task

Data-based selection of comparisons

In carefully designed comparative studies where there are multiple possible comparisons, the
comparisons that will be considered should be specified in advance. Prior data, if available,
can assist in this choice. Any investigation of other comparisons may be undertaken as an
exploratory investigation, a preliminary to the next study.

Data-based selection of one or two comparisons from a much larger number is not
appropriate, since large biases may be introduced. Alternatively, there must be allowance
for such selection in the assessment of model accuracy. The issues here are non-trivial, and
we defer further discussion until later.

1.2.6 Subject area knowledge and judgments

Data analysis results must be interpreted against a background of subject area knowledge
and judgment. Some use of qualitative judgment is inevitable, relating to such matters as
the weight that can be placed on claimed subject area knowledge, the measurements that are
taken, the design of data collection, the analysis choices, and the interpretation of analysis
results. These judgments, while they should be as informed as possible, cannot be avoided.

When working with a subject matter expert, it is important that lines of communication be
as clear as possible. When unclear about the question of interest, or about some feature of
the data, analysts should be careful not to appear to know more than is really the case. The
subject matter specialist may be so immersed in the details of their problem that, without
clear signals to the contrary, they may assume similar knowledge on the part of the analyst.

There is an inevitable risk that assumed insights and judgments, made in planning a study,
will carry elements of personal bias. A well-designed study will allow some opportunity for
study results to challenge the insights and understandings that underpinned the planning.

1.2.7 Notes on sampling from finite populations

Computer generated random number sequences can be used as a mechanism for ensuring
random selection in sample surveys, or random assignment of experimental treatments.
Examples follow.

Suppose, for example, that names on an electoral roll are numbered from 1 to 9384. The
following uses the function sample() to obtain a random sample of 15 individuals:

## For the sequence below, precede with set.seed(3676)
sample ( 1 : 9 3 8 4 , 15 , r e p l a c e=FALSE)

[1] 8466 324 8363 9280 2988 3553 268 7473 3121 7034 2531 2760 851
[14] 8386 7159

The numbers are the numerical labels for the 15 individuals who are included in the sample.
The task is then to find them! The option replace=FALSE gives a without replacement
sample, i.e., it ensures that no one is included more than once.

The following randomly assigns 10 plants (labeled from 1 to 10, inclusive) to one of two
equal sized groups, control and treatment:
## For the sequence below, precede with set.seed(366)
s p l i t ( sample ( seq ( 1 : 1 0 ) ) , r e p ( c ( " C o n t r o l " , " T r e a t m e n t " ) , 5 ) )
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$Control
[1] 3 5 10 2 7

$Treatment
[1] 4 1 9 6 8

# sample(1:10) gives a random re-arrangement (permutation)
# of 1, 2, ..., 10

This assigns plants 3. 5, 10, 2, and 7 to the control group. This mechanism avoids, e.g., any
unwitting or witting preference for placing healthier-looking plants in the treatment group.

Cluster sampling

Cluster sampling is one of many probability-based variants on simple random sampling.
See Barnett (2002). The function sample() can be used as before, but now the numbers
from which a selection is made correspond to clusters. For example, households or localities
may be selected, with multiple individuals from each. Standard inferential methods then
require adaptation to account for the fact that it is the clusters that are independent, not the
individuals within the clusters. Donner and Klar (2000) describe methods that are designed
for use in health research.

With-replacement samples

We can randomly sample from the set {1,2, . . . ,10}, allowing repeats, thus:
sample ( 1 : 1 0 , r e p l a c e=TRUE)

[1] 8 1 3 1 5 9 5 7 7 9

With replacement sampling is the basis of bootstrap sampling. See Subsection 2.5.3 for
an example of its use.

1.3 Using graphs to make sense of data

The use of graphs to display and help understand data has a long tradition. John W. Tukey
formalized and extended this tradition, giving it the name Exploratory Data Analysis (EDA),
as explained in Hoaglin (2003). A key concern is that data should, as far as possible, have
the opportunity to speak for themselves, prior to or as part of a formal analysis.

A use of graphics that is broadly in an EDA tradition continues to develop and evolve.
The best modern statistical software makes a strong connection between data analysis and
graphics, combining the computer’s ability to crunch numbers and present graphs with the
ability of a trained human eye to detect pattern. Statistical theory has an important role in
suggesting forms of display that may be helpful and interpretable.

A note on static graphics systems in R

Three R static graphics systems get wide use, in this text as elsewhere. These are: base (or
traditional) graphics using plot() and associated commands, lattice which offers more
stylized types of graphs, and ggplot2 whose rich array of features comes at the cost of
some extra graphics language complexity.
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A: Boxplot, with annotation added

Figure 1.2: Panel A shows a boxplot, with annotation that explains boxplot features. Panel B shows
a density plot, with a histogram overlaid. Histogram frequencies are shown on the right axis of Panel
B. In both panels, the individual data points appear as a "rug" along the lower side of the bounding
box. Where necessary, they have been moved slightly apart to avoid overlap.

Later chapters will make extensive use both of base graphics and of lattice graphics,
resorting to use of ggplot2 on those few occasions when features are needed that are not
readily available in lattice or base graphics. Lattice graphs will however be printed in a
style (using a “theme”) that is similar to the default ggplot2 style.

1.3.1 One-way layouts, perhaps broken down by groups within the data

The most basic form of display is the dotplot, which spreads the individual data points out
a line. An often helpful summary form of representation, which allows a trained eye to
comprehend at a glance specific important features of the data, is the boxplot.

Figure 1.2A shows a boxplot of total lengths of females in the possum dataset, with
annotation added that explains the interpretation of boxplot features. Figure 1.2B shows a
density curve, with a histogram overlaid, for the same data. In both panels, vertical bars
have been added along the lower edge that show the locations of the individual points. This
form of display has the name “rug”.

Notice that one point lies outside the boxplot “whiskers” to the left, and is thus flagged
as an outlier. An outlier is a point that, in a some defined sense, lies away from the main
body of the data. For purposes of flagging points in boxplot displays as outliers, the normal
distribution sets the standard. Using the default criterion. one point in 100 will on average,
for data from a normal distribution, be flagged as a possible outlier. In a boxplot display of
1000 values that are drawn at random from a normal distribution, it can be expected that
around 10 points will be plotted out beyond the boxplot whiskers and flagged as outliers.
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Figure 1.3: Total lengths of possums, broken down by sex and (within panels) by geographical
location (Victorian or other).

The histogram is a basic (and over-used) exploratory tool for displaying the frequency
distribution of a set of data. The area of each rectangle of a histogram is proportional to the
number of observations whose values lie within the width of the rectangle. A mound-shaped
histogram may make it plausible that the data follow a normal distribution (the “bell curve”).
Especially in small samples, however, there needs to be caution in interpreting the shape.
The shape can be highly irregular, and can depend on the choice of breakpoints.

A histogram is a crude form of a density estimate. A smooth density estimate is, often,
a better alternative. The height of the density curve at any point is an estimate of the
proportion of sample values per unit interval, locally at that point. Both histograms and
density curves involve an element of subjective choice. Histograms require the choice
of breakpoints, while density estimates require the choice of a bandwidth parameter that
controls the amount of smoothing. In both cases, the software has default choices that can
work reasonably well.

Dotplot, boxplot, and other such one-way summaries, can often be usefully broken down
by one or more factors between panels, as well as within panels. Figure 1.3 overlays dotplots
onto boxplot summaries of the distributions of Australian possum length data, broken down
by sex and (within panels) by geographical region (Victorian or other). Code is:

possum <� DAAG: : possum
gph <� bwplo t ( Pop~ t o t l n g t h | sex , d a t a=possum , pch=16)+

l a t t i c e E x t r a : : l a y e r ( p a n e l . d o t p l o t ( x , u n c l a s s ( y ) �0.4 , pch =1) )

The normal distribution is not necessarily the appropriate reference. Points may be
identified as outliers because the distribution is skew (usually, with a tail to the right). In
each case, the user has to exercise good judgement in deciding what action to take. This
will depend on the context. Subsection 1.3.6 comments in more detail.

1.3.2 Patterns in univariate time series

In Figure 1.4, “measles” includes both what is nowadays called measles and the closely
related rubella or German measles.2 Panel A uses a logarithmic vertical scale. Panel B uses
an unlogged scale and takes advantage of the fact that deaths from measles are of the order,

2For details of the data, and commentary, see Guy (1882); Stocks (1942); Senn (2003). (Guy’s interest was in the comparison
with smallpox mortality.) The population estimates (londonpop) are from Mitchell (1988).
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Figure 1.4: The two panels provide different insights into data on mortality from measles, in London
over 1629-1939. Panel A uses a logarithmic scale to show the numbers of deaths from measles in
London for the period from 1629 through 1939 (black curve). (See the comments on log scales
that accompany Figure 1.7). The black dots show, for the period 1800 through to 1939, the London
population. Panel B shows, on the linear scale (black curve), the subset of the measles data for the
period 1840 through 1882 together with the London population (in thousands, black dots).

in any year, of one thousandth of the population. Thus, deaths in thousands and population
in millions can be shown on the same scale.

Simplified code is:

m e a s l e s <� DAAG: : m e a s l e s
## Panel A
p l o t ( log10 ( m e a s l e s ) , x l a b=" " , y l im= l og10 ( c (1 ,5000 * 1 0 0 0 ) ) ,

y l a b=" Dea ths ; P o p u l a t i o n " , y a x t=" n " )
y t i k s <� c ( 1 , 10 , 100 , 1000 , 1000000 , 5000000)
## London population in thousands
londonpop <�

t s ( c ( 108 8 , 1 2 58 ,1 504 ,1 7 7 8 , 2073 ,2 491 ,292 1 , 33 3 6 ,3 881 ,4 2 6 6 ,
4 56 3 , 4 54 1 , 4 49 8 , 44 0 8 ) , s t a r t =1801 , end=1931 , d e l t a t =10)

p o i n t s ( log10 ( londonpop * 1 0 0 0 ) , pch=16 , cex= . 5 )
a x i s ( 2 , a t= l og10 ( y t i k s ) , l a b e l s=p a s t e ( y t i k s ) , l a s =2)
## Panel B
p l o t ( window ( meas les , s t a r t =1840 , end =1882) , y l im=c ( 0 , 4 6 0 0 ) ,

y a x t=" n " )
p o i n t s ( londonpop , pch=16 , cex=0 . 5 )
a x i s ( 2 , a t = ( 0 : 4 ) * 1000 , l a b e l s=p a s t e ( 0 : 4 ) , l a s =2)

Panel A shows broad trends over time, but is of no use for identifying changes on the
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Figure 1.5: Distance traveled (distance.traveled) by model car, as a function of starting point
(starting.point), up a 20� ramp.

time-scale of a year or two. In panel B, the lines that show such changes are, mostly, at an
angle that is in the approximate range of 20� to 70� from the horizontal.

A sawtooth pattern, by which years in which there are many deaths are commonly
followed by years in which there are fewer deaths, is thus evident. (To obtain this level of
detail for the whole period from 1629 until 1939, multiple panels would be necessary.)

1.3.3 Bivariate data

Response lines and curves

The data shown to the right of Figure 1.5, and plotted in the figure, was generated by
releasing a model car three times at each of four different distances (starting.point) up
a 20� ramp. The experimenter recorded distances traveled from the bottom of the ramp
across a concrete floor. Response curve analysis, using regression, is appropriate. It would
be a poor use of the data to treat the four starting points as factor levels in a one-way analysis.

For these data, the physics can be used to suggest the likely form of response. Where no
such help is available, careful examination of the graph, followed by systematic examination
of plausible forms of response, may suggest a suitable form of response curve.

Example — a smooth trend line

Figure 1.6 shows data from a study that measured both electrical resistance and apparent
juice content for slabs of kiwifruit. The curve in Panel B, obtained using the lowess method
that is discussed further in Subsection 4.4.3, estimates the relationship between electrical
resistance and apparent juice content. The code for Panel B is:

f r u i t o h m s <� DAAG: : f r u i t o h m s
p l o t ( ohms / 1000 ~ j u i c e , x l a b=" Apparen t j u i c e c o n t e n t (%) " ,

y l a b=" R e s i s t a n c e ( kOhms ) " , d a t a= f r u i t o h m s , fg=" g r ay " )
## Add a smooth trend curve (Panel B)
wi th ( f r u i t o h m s , l i n e s ( l owe s s ( j u i c e , ohms / 1 0 0 0 ) , lwd=2 ,

c o l=" gray40 " ) )

The response pattern is clearly inconsistent with a straight line. The fitted smooth curve
suggests an approximate linear relationship for juice content up to somewhat over 35%.
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Figure 1.6: Electrical resistance versus apparent juice content. Panel B repeats panel A, but with a
smooth curve fitted to the data.

Once the juice content reaches around 45%, the curve becomes a horizontal line, and there
is no evident further change in resistance.

A curve fitted using lowess() or another such smoothing function can provide a useful
benchmark against which to compare the curve given by a theoretical or other mathematical
form of equation that the data are thought to follow.

What is the appropriate scale?

Figures 1.7A and 1.7B plot brain weight (g) against body weight (kg), for 28 animals.

Animals <� MASS : : Animals
p l o t ( I ( b r a i n / 10) ~ I ( body / 1 0 ) , d a t a=Animals , fg=" g r ay " ,

x l a b=" Body ( u n i t =10kg ) " , y l a b=" B r a i n ( u n i t =10g ) " ) # Panel A
p l o t ( l o g ( b r a i n / 10) ~ l o g ( body / 1 0 ) , d a t a=MASS : : Animals , # Panel B

x l a b=" Body ( u n i t =10kg ) " , y l a b=" B r a i n ( u n i t =10g ) " , a sp =1)

Figure 1.7A reveals almost nothing about the relationship between brain weight and body
weight. It does indicate that the distributions of data values are highly positively skew, on
both axes. Panel B uses a logarithmic scale, which spreads the data out more evenly. Points
along both axes that differ by a common factor (tick marks are shown for a factor of 100)
are an equal distance apart. The argument asp=1 is used to ensure that distances that reflect
a change by the same factor are the same distance apart on both x- and y-axes.

A logarithmic scale is appropriate for quantities that change multiplicatively. For example,
if cells in a growing organism divide and produce new cells at a constant rate, then the
total number of cells changes multiplicatively, resulting in so-called exponential growth.
Growth in the bodily measurements of organisms may similarly be multiplicative, with large
organisms increasing in some time interval by the same approximate fraction as smaller
organisms. Growth rate on a natural logarithmic scale (loge) equals the relative growth rate.
Derivation of this result is a straightforward use of the differential calculus.

Pretty much anyone who works with real data — biologists, economists, physical scien-
tists — should make themselves comfortable with the use and interpretation of logarithmic
scales. There is a brief discussion of other transformations in Subsection 2.6.9.
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Figure 1.7: Brain weight versus body weight, for 28 animals that vary greatly in size. Panel A uses
untransformed scales, while Panel B uses logarithmic scales, on both axes.

1.3.4⇤Multiple variables and times

Overlaying plots of several time series (sequences of measurements taken at regular inter-
vals) might seem appropriate for making direct comparisons. However, this approach will
only work if the scales are comparable for the different series.

The data frame jobs (DAAG) gives the number of workers (in thousands) in the Canadian
labor force, broken down by region (BC, Alberta, Prairies, Ontario, Quebec, Atlantic), for
the 24-month period from January 1995 to December 1996. Over this time, Canada was
emerging from a deep economic recession. Columns 1–6 have the respective numbers for
six different regions. The ranges of values in the columns are:

## Apply function range to columns of data frame jobs (DAAG)
j o b s <� DAAG: : j o b s
s a p p l y ( jobs , r a n g e )

BC Alberta Prairies Ontario Quebec Atlantic Date
[1,] 1737 1366 973 5212 3167 941 95.00
[2,] 1840 1436 999 5360 3257 968 96.92

In order to see where the economy was taking off most rapidly, it is tempting to plot
all series on the same graph. In order that similar changes on the scale will correspond to
similar proportional changes, a logarithmic scale is used in Figure 1.8A:

## Panel A: Basic plot; all series in a single panel; use log y-scale
basicGphA <�

x y p l o t ( O n t a r i o+Quebec+BC+A l b e r t a+ P r a i r i e s+A t l a n t i c ~ Date ,
o u t e r=FALSE , d a t a= j obs , t y p e=" l " ,
y l a b=" Number o f worke r s " , s c a l e s= l i s t ( y= l i s t ( l o g=" e " ) ) ,
a u t o . k e y= l i s t ( s p a c e=" r i g h t " , l i n e s=TRUE, p o i n t s=FALSE ) )

The graphics object basicGphA has been saved so that it can be updated, as demonstrated
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Figure 1.8: Data are numbers in the labor force (thousands) for various regions of Canada, at quar-
terly intervals over 1995-1996. Panel A uses the same logarithmic y-scale for all regions. Panel B
shows the same data, but now with separate (“sliced”) logarithmic y-scales on which the same per-
centage increase, e.g., by 1%, corresponds to the same distance on the scale, for all plots. Distances
between ticks are 0.02 on the loge scale, i.e., a change of almost exactly 2%.

in the footnote, to give the graph shown in Figure 1.8A.3

The use of column names that are joined with "+", has the result that the columns are
plotted in parallel. The regions have been taken in order of the number of workers in
December 1996 (or, in fact, at any other time). This ensures that the order of the labels in
the key matches the positioning of the points for the different regions. Code in the footnote
shows how the labeling on the x- and y-axes was obtained.

Because the labor forces in the various regions do not have similar sizes, it is impossible
to discern any differences among the regions from this plot. Plotting on the logarithmic
scale did not remedy this problem.

Figure 1.8B shows a more informative alternative. The six different panels use different

3## Create improved x- and y-axis tick labels; will update to use
datelabpos <- seq(from=95, by=0.5, length=5)
datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=5), "%b%y")
## Now create $y$-labels that have numbers, with log values underneath
ylabposA <- exp(pretty(log(unlist(jobs[,-7])), 5))
ylabelsA <- paste(round(ylabposA),"\n(", log(ylabposA), ")", sep="")
gphA <- update(basicGphA, xlab="",

scales=list(x=list(at=datelabpos, labels=datelabs),
y=list(at=ylabposA, labels=ylabelsA)))



1.3 Using graphs to make sense of data 19

1366 1436 1752 1840

1250 1500 1800

210.42 210.49 210.78 210.85
e7.220 e7.270 e7.469 e7.518
103.135 103.157 103.244 103.265

log=2

log="e"

log=10

Figure 1.9: Labeling of the values for Alberta (1366, 1436) and BC (1752, 1840), with alternative
logarithmic scale choices of labeling.

slices of the same logarithmic scale. Here is simplified code for Figure 1.8B. The regions
are again taken in the order of numbers of workers in December 1996.

## Panel B
basicGphB <�

x y p l o t ( O n t a r i o+Quebec+BC+A l b e r t a+ P r a i r i e s+A t l a n t i c ~ Date ,
d a t a= j obs , o u t e r=TRUE, t y p e=" l " , l a y o u t=c ( 3 , 2 ) ,
x l a b=" " , y l a b=" Number o f worke r s " ,
s c a l e s= l i s t ( y= l i s t ( r e l a t i o n=" s l i c e d " , l o g=TRUE ) ) )

# Provinces are in order of number of workers in Dec96

Use of outer=TRUE, ensures that the separate columns (regions) are plotted on separate
panels. Equal distances on the scale now correspond to equal relative changes. It is now
clear that Alberta and BC experienced the most rapid job growth during the period, and that
there was little or no job growth in Quebec and the Atlantic region.

The following are the changes in numbers employed, in each of Alberta and BC, from
January 1995 to December 1996. The changes are shown in actual numbers, and on scales
of log2, loge and log10. Figure 1.9 shows this graphically.

Increase
Rel. change log2 loge log10

Alberta (1366 to 1466; increase=70) 1.051 0.072 0.050 0.022
BC (1752 to 1840; increase=88) 1.050 0.070 0.049 0.021

From the beginning of 1995 and the end of 1996, Alberta increased by 70 from 1366 to
1436, which is a factor of 1436/1366 ' 1.051. BC increased by 88 from 1752 to 1840 which
is a factor of 1.050. The proper comparison is not between the absolute increases of 70
and 88, but between the relative increases by very nearly identical multipliers of 1.051 and
1.050. Panel B of Figure 1.9 gives a visual perspective on this and other such comparisons.

Even better than using a logarithmic y-scale, particularly if ready comprehension is
important, would be to standardize the labor force numbers by dividing, e.g., by the
respective number of persons aged 15 years and over at that time. Scales would then be
directly comparable. (The plot method for time series could then suitably be used to plot
the data as a multivariate time series. See ?plot.ts.)
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⇤Labeling technicalities

For lattice functions, the arguments log=2 or log="e" or log=10 are available. These use
the relevant logarithmic axis labeling, as in Figure 1.9, for axis labels. In base graphics,
with the argument log="x", the default is to label in the original units.

An alternative, both for traditional and lattice graphics, is to enter the logged values,
using whatever basis is preferred (2 or "e" or 10), into the graphics formula. Unless other
tick labels are provided, the tick marks will then be labeled with the logged values for the
relevant basis.

Note again the reason for placing y-axis tick marks a distance 0.02 apart on the loge
physical distance scale used in Figure 1.8. On a loge scale (natural logarithms) a change of
0.02 is, to a close approximation, a 2% change.

1.3.5 Graphical displays for categorical data

Code used to enter the counts into the array stones that is shown to the right of Figure
1.10, then creating the table shown underneath that results from adding over Size, is:

s t o n e s <� a r r a y ( c ( 8 1 , 6 , 2 3 4 , 3 6 , 1 9 2 , 7 1 , 5 5 , 2 5 ) , dim=c ( 2 , 2 , 2 ) ,
dimnames= l i s t ( S u c c e s s=c ( " yes " , " no " ) ,

Method=c ( " open " , " u l t r a s o u n d " ) ,
S i z e=c ( "<2cm" , ">=2cm" ) ) )

margin12 <� m a r g i n . t a b l e ( s t o n e s , margin =1 :2 )

The table stones has three margins— Success, Method, and Size. The table margin12
retains the first two of these margins only.

Figure 1.10 illustrates the possible hazards of adding a multi-way table over one of its
margins. Data are from a study (Charig, 1986) that compared the use of open surgery for
kidney stones with a method that made a small incision and used ultrasound to destroy the
stone. Stones were classified by diameter as either at least 2 cm or less than 2 cm. For each
subject, the outcome was assessed as successful (“yes”) or unsuccessful (“no”).

Both for small stones and for large stones separately, surgery appears more successful than
ultrasound. The blue vertical bar Figure 1.10 is in each case to the right of the corresponding
red vertical bar. The overall counts, which favor ultrasound, are thus misleading. For open
surgery, the larger number of operations for large stones (263 large, 87 small) weights the
overall success rate towards the low overall success rate for large stones. For ultrasound
surgery (red bars), the weighting (80 large, 280 small) is towards the high success rate for
small stones. This is an example of the phenomenon called the Simpson or Yule-Simpson
paradox. (See also Subsection 2.1.3.)

Note that without additional information, the results are not interpretable from a medical
standpoint. Different surgeons will have preferred different surgery types, and the prior
condition of patients will have affected the choice of surgery type. The consequences of
unsuccessful surgery may have been less serious for ultrasound than for open surgery.

Mosaic plots, implemented using mosaicplot() from base graphics or
vcd::mosaicplot(), offer an alternative type of display. Figure 1.10 makes the
point of interest for the kidney stone surgery data more simply and directly.
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Figure 1.10: Outcomes are for two different types of surgery for kidney stones. The overall (appar-
ent) success rates (78% for open surgery as opposed to 83% for ultrasound) favor ultrasound. The
success rate for each size of stone separately favors, in each case, open surgery.

1.3.6 What to look for in plots

The notes that follow draw attention to a few of the more important features that may be
apparent from visual inspection.

Outliers

Outliers are points that appear to be isolated from the main body of the data. Such points
(whether errors or genuine values) are liable to distort any model that we fit. What appears
as an outlier depends, inevitably, on the view that is presented. On a fairly simple level, the
view is affected by whether or not, and on how, the data are transformed.

Boxplots, and the normal probability plot that will be discussed in Subsection 1.5.4, are
useful for highlighting outliers in one dimension. Scatterplots may highlight outliers in two
dimensions. Some outliers will, however, be apparent only in three or more dimensions.
The presence of outliers can indicate departure from model assumptions.

Asymmetry of the distribution

Positive skewness is a common form of departure from normality. The largest values
are widely dispersed (there is a tail to the right), and values near the minimum are likely
to be bunched up together. Provided that all values are greater than zero, a logarithmic
transformation typically makes such a distribution more symmetric. Negative skewness (a
tail to the left) is less common. Severe skewness is typically a more serious problem for the
validity of results than other types of non-normality.

If values of a variable that takes positive values range by a factor of more than 10:1
then, depending on the application area context, positive skewness is to be expected. A
logarithmic transformation should be considered.

Changes in variability

Boxplots and histograms readily convey an impression of the extent of variability or scatter
in the data. Side by side boxplots, such as in Figure 1.1B, or dotplots such as in Figure 1.1A,
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allow rough comparisons of the variability across different samples or treatment groups.
They provide a visual check on the assumption, common in many uses of statistical models,
that variability is constant across treatment groups.

It is easy to over-interpret such plots. Statistical theory offers useful and necessary
warnings about the potential for such over-interpretation. (The variability in a sample,
typically measured by the variance, is itself highly variable under repeated sampling.
Measures of variability will be discussed in Subsection 1.4.3.)

When variability increases as data values increase, the logarithmic transformation will
often help. If the variability is constant on a logarithmic scale, then the relative variation on
the original scale is constant.

Clustering

Clusters in scatterplots may suggest features of the data that may or may not have been
expected. Upon proceeding to a formal analysis, any clustering must be taken into account.
Do the clusters correspond to different values of some relevant variable? Outliers are a
special form of clustering.

Non-linearity

We should not fit a linear model to data where relationships are demonstrably non-linear.
Often it is possible to transform variables so that it makes sense to model their effects
as linear. Where none of the common standard transformations (the logarithmic is the
commonest) meets requirements, methodology is available that will fit quite general forms
of smoothing curve. See especially Sections 4.4 and 4.5.

If there is a theory that suggests the form of model, then this is a good starting point.
Available theory may, however, incorporate various approximations, and the data may tell a
story that does not altogether match the available theory. The data, unless they are flawed,
have the final say!

Time trends in the data

It is common to find time trends that are associated with order of data collection. It can be
enlightening to plot residuals, or other quantities, against time.

1.4 Data Summary

Data summaries may: (1) be of interest in themselves; (2) give insight into aspects of data
structure that may affect further analysis; (3) be used as data for further analysis. In case
(3), it is necessary to ensure that important information, relevant to the analysis, is not lost.
If no information is lost, the gain in simplicity of analysis can make the use of summary
data highly worthwhile.

It is important, when data are summarized, not to introduce distortions that are artifacts
of the way that the data have been summarized – examples will be given. The potential for
loss or misrepresentation of information is an especial issue when counts are summarized
across the margins of multi-way tables, or when correlation coefficients are calculated.
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1.4.1 Counts

Data in the data frame DAAG::nswpsid1 are derived from a study (Lalonde, 1986) that
compared two groups of individuals with a history of unemployment problems – one an
“untreated” control group and the other a “treatment” group whose members were exposed
to a labor training program. Are the two groups genuinely comparable? This can be checked
by comparing them with respect to various measures other than their exposure (or not) to
the labor training program.

Thus, what are the relative numbers in each of the two groups who had completed high
school (nodeg = 0), as opposed to those who had not (nodeg = 1)?

## Table of counts example: data frame nswpsid1 (DAAG)
nswps id1 <� DAAG: : nswps id1
t a b <� wi th ( nswpsid1 , t a b l e ( t r t , nodeg , useNA=" i f a n y " ) )
dimnames ( t a b ) <� l i s t ( t r t =c ( " none " , " t r a i n i n g " ) ,

educ = c ( " comple t ed " , " d r o p o u t " ) )
t a b

educ
trt completed dropout
none 1730 760
training 80 217

Notice the use of the argument useNA="ifany" in the call to table(). This ensures that
any NAs in either of the margins of the table will be tabulated.

The training group has a much higher proportion of dropouts. Similar comparisons are
required for other factors, variables, and combinations of two factors or variables. These
data will be investigated further in Section 10.1.

Tabulation that accounts for frequencies or weights – the xtabs() function

Each year the National Highway Traffic Safety Administration in the USA uses a random
sampling method, with sampling fractions that differ according to class of accident, to
collect data from all police-reported crashes in which there is a harmful event (people or
property), and from which at least one vehicle is towed. The data in nassCDS (DAAG) are
restricted to front-seat occupants.4

Factors whose effect warrant investigation include, as a minimum: airbag (was an
airbag fitted?), seatbelt (was a seatbelt used?), and dvcat (a force of impact measure).
The column weight (national inflation factor) holds the inverses of the sampling fraction
estimates. The range of variation in the sampling weights is huge, as indicated by the
boxplot representation of the weights in Figure 1.11: Very large weights, for some classes
of accident, will exaggerate the effect, both of any mistakes in data collection, and of
deviations from the prescribed (and relatively complex) sampling scheme.

The following contrasts numbers in the sample with estimated total numbers of crashes:

4They hold a subset of the columns from a corrected version of the data analyzed in Meyer and Finney (2005). See also
Farmer (2005) and Meyer (2006). More complete data are available from one of the web pages noted on the help page for nassCDS.
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Figure 1.11: Boxplot representation of values in the column weight, in the dataset DAAG::nassCDS.
(A log(weight+1) scale): has been used.)

alive dead
Sample 25037 1180
Total number 12067937 65595

Use of xtabs() to classify the estimated population numbers by airbag use, and adding
the marginal death rates per 1000 to the table, gives:
nassCDS <� DAAG: : nassCDS
Atab <� x t a b s ( w e i gh t ~ a i r b a g + dead , d a t a=nassCDS )
## Define a function that calculates Deaths per 1000
DeadPer1000 <� f u n c t i o n ( x )1000 *x [ 2 ] / sum ( x )
Atabm <� f t a b l e ( addmarg ins ( Atab , margin =2 , FUN=DeadPer1000 ) )
p r i n t ( Atabm , d i g i t s =2 , method=" compact " , b i g . m a r k=" , " )

airbag | dead alive dead DeadPer1000
none 5,445,245.9 39,676.0 7.2
airbag 6,622,691.0 25,919.1 3.9

This might suggest that the fitting of an airbag substantially reduces the risk of mortality.
Consider however:
SAtab <� x t a b s ( w e i gh t ~ s e a t b e l t + a i r b a g + dead , d a t a=nassCDS )
SAtab <� addmarg ins ( SAtab , margin =3 , FUN= l i s t ( T o t a l=sum ) )
SAtabf <� f t a b l e ( addmarg ins ( SAtab , margin =3 ,

FUN=DeadPer1000 ) , c o l . v a r s =3)
p r i n t ( SAtabf , d i g i t s =2 , method=" compact " , b i g . m a r k=" , " )

seatbelt airbag | dead alive dead Total DeadPer1000
none none 1,342,021.9 24,066.7 1,366,088.6 8.8

airbag 871,875.4 13,759.9 885,635.3 7.8
belted none 4,103,224.0 15,609.4 4,118,833.4 1.9

airbag 5,750,815.6 12,159.2 5,762,974.8 1.1

The Total column gives the weights that are, effectively, applied to the values in the
DeadPer1000 column when the raw numbers are added over the seatbelt margin. In
the earlier table (Atab), the results for airbag=none were mildly skewed ( 4119:1366)
to those for belted. Results with airbags were strongly skewed ( 5763:886) to those for
seatbelt=none. Hence the spuriously large advantage that the table that had added over
the seatbelt margin gave to the presence of an airbag.

The reader may wish to try an analysis that accounts, additionally, for estimated force of
impact (dvcat):
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FSAtab <� x t a b s ( w e i gh t ~ d v c a t + s e a t b e l t + a i r b a g + dead ,
d a t a=nassCDS )

FSAtabf <� f t a b l e ( addmarg ins ( FSAtab , margin =4 ,
FUN=DeadPer1000 ) , c o l . v a r s =3 :4 )

p r i n t ( FSAtabf , d i g i t s =1)

There is no consistent pattern in the difference between "none" and "airbag".
Further terms, including the age of vehicle and the age of driver, demand consideration.

The estimated effect of airbag, or of any factor other than seatbelt, varies depending on
what further terms are included in the model. Seatbelts have such a large effect that their
contribution stands out irrespective of what other terms appear in the model. These data,
tabulated as above, have too many uncertainties and potential sources of bias to give reliable
answers.

A better starting point for investigation is data from the Fatality Analysis Recording
System (FARS). This has, in principle at least, a complete set of records for the more limited
class of accidents where there was at least one fatality. The gamclass::FARS dataset has
data for the years 1998 to 2010.

Farmer (2005) used the FARS data for an analysis, limited to cars without passenger
airbags, that used front seat passenger mortality as a standard against which to compare
driver mortality. In the absence of any effect from airbags, the ratio of driver mortality to
passenger mortality should be the same, irrespective of whether there was a driver airbag.
Farmer found a ratio of driver fatalities to passenger fatalities that was 11% lower in the
cars with driver airbags. Factors that have a large effect on the absolute risk can be expected
to have a much smaller effect on the relative risk.

In addition to the functions discussed, note the function gmodels::CrossTable(),
which offers a choice of SPSS-like and SAS-like output formats.

1.4.2 Summaries of information from data frames

The data frame kiwishade (from DAAG) has yield measurements from 48 kiwifruit vines.
Plots, made up of 4 vines each, were the experimental units.

The 12 plots were divided into three blocks of four plots each. One block of four was
north-facing, a second block west-facing, and a third block east-facing. (Because the
trial was conducted in the Southern hemisphere, there is no south-facing block.) Shading
treatments were applied to whole plots, i.e., to groups of four vines, with each treatment
occurring once per block. The shading treatments were applied either from August to
December, December to February, February to May, or not at all. For more details of the
experiment, look ahead to Figure 7.5.

Figure 1.12 plots both the aggregated means and the individual vine results. The code is
given as a footnote.5 As treatments were applied to whole plots, a focus on the individual

5## Individual vine yields, with means by block and treatment overlaid
kiwishade <- DAAG::kiwishade
kiwishade$block <- factor(kiwishade$block, levels=c("west","north","east"))
keyset <- list(space="top", columns=2,

text=list(c("Individual vine yields", "Plot means (4 vines)")),
points=list(pch=c(1,3), cex=c(1,1.35), col=c("gray40","black")))

panelfun <- function(x,y,...){panel.dotplot(x,y, pch=1, ...)
av <- sapply(split(x,y),mean); ypos <- unique(y)

lpoints(ypos~av, pch=3, col="black")}
gph <- dotplot(shade~yield | block, data=kiwishade, col="gray40", aspect=0.65,

panel=panelfun, key=keyset, layout=c(3,1))
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Figure 1.12: Individual yields and plot-level mean yields of kiwifruit (in kg) for each of four treat-
ments (season) and blocks (exposure).

vine results exaggerates the extent of information that is available, in each block, for
comparing treatments. For gaining an accurate impression of the strength of the evidence,
focus the eye on the means, shown as +.

The code used for the plot used a user defined panel function to take means, for each
combination of block and shading treatment, “on the fly”. Code that creates the means
separately from the graph, with the first line of output following, is:
## mean yield by block by shade: data frame kiwishade (DAAG)
kiwimeans <� wi th (DAAG: : k iw i shade ,

a g g r e g a t e ( y i e l d , by= l i s t ( b lock , shade ) , mean ) )
names ( kiwimeans ) <� c ( " b l o c k " , " shade " , " meany ie ld " )
head ( kiwimeans , 4 )

block shade meanyield
1 east none 99.03
2 north none 104.03
3 west none 97.56
4 east Aug2Dec 105.56

The aggregate() function splits the data frame according to the specified combinations
of factor levels, and then applies a specified function to each of the resulting subgroups.

Should the analysis then use the aggregated data? The form of analysis of variance
that will be used with these data in Subsection 7.4.1 will give, for treatment comparison
purposes, the same results as an analysis based directly on the plot means. The question
then becomes: “Is the mean an effective form of summary?” If there were occasional highly
aberrant values, use of medians might be preferable. Use of summary data gives the freedom
to choose the most appropriate form of summary.

The benefits of data summary – dengue status example

Hales et al. (2002) examined the implications of climate change projections for the world-
wide distribution of dengue, a mosquito-borne disease that is a risk in hot and humid regions.
Dengue status, i.e., information on whether dengue had been reported during 1965–1973, is
available for 2000 administrative regions. Climate information is available on a much finer
scale, on a grid of about 80 000 pixels at 0.5� latitude and longitude resolution. Should the
analysis work with a dataset that consists of 2000 administrative regions, or with the much
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larger dataset that has one row for each of the 80 000 pixels? The following are reasons that
might have argued for working with the summarized data:

• Dengue status is a summary figure that is given by administrative region. Use of the
individual pixel values to calculate summary climate statistics prior to the analysis, by
administrative region, gives the user control over the form of statistical summary that
will be used. If, for example, values for some pixels are extreme relative to other pixels
in the administrative region, medians may be more appropriate than means. In some
regions, the range of climatic variation may be extreme. The mean will give the same
weight to sparsely populated cold mountainous locations as to highly populated hot and
humid locations on nearby plains.

• Correlation between observations that are close together geographically, though still
substantial, will be less of an issue for the dataset in which each row is an administrative
region. Points that repeat essentially identical information are a problem both for the
interpretation of plots and, often, for the analysis. Regions that are geographically close
will often have similar climates and the same dengue status.

• Analysis is more straightforward with the reduced size of dataset. It is easier to do
standard forms of data checking. Standard forms of scatterplot less readily degenerate
into a dense mass of black ink.

There are many possible ways to calculate a central value, of which the mean and the median
are the most common. (In fact, however, the paper used the disaggregated data.)

1.4.3 Measures of spread — standard deviation and inter-quartile range

An important measure of variation in a population is the population standard deviation
(often written �), which is almost always unknown. The variance �2, which is the square
of the standard deviation, is widely used in formal inference.

Given a random sample x1, x2, . . . , xn, the sample standard deviation is:

s =

sPn
i=1(xi� x̄)2

n�1
.

In R, use the function sd() to calculated the standard deviation, or var() to calculate the
variance. The standard deviation is in the same units as the original measurements. For s to
be an accurate estimate of �, the sample must be large.

Cuckoo eggs example

Consider again the data on cuckoo eggs that we discussed in Subsection 1.2.2. The standard
deviations for each group, with numbers of eggs shown in parentheses, are:

hedgsparrow meadowpipit piedwagtail robin tree pipit wren
1.05 (14) 0.92 (45) 1.07 (15) 0.68 (16) 0.88 (15) 0.75 (15)

The variability in egg length is smallest when the robin is the host. Note however that the
numbers are all, except for meadow pipit, 14 or 15 or 16. The standard deviations are then
subject to large statistical uncertainty.
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The footnote has code for the calculations used to create the table.6

Degrees of freedom

The denominator n� 1 is the number of degrees of freedom remaining after estimating
the mean. With one data point, the sum of squares about the mean is zero, the degrees of
freedom are zero, and no estimate of the variance is possible. The degrees of freedom are
the number of data values, additional to the first data value.

In later chapters, standard deviation calculations will be based on the variation that
remains after fitting a model (most simply, a line), to the data. Degrees of freedom are
reduced by 1 for each model parameter that is estimated.

Inter-quartile range (IQR)

The standard deviation is similar in concept to the inter-quartile range H, noted in connection
with Figure 1.2 in Section 1.3. The inter-quartile range is the difference between the first
and third quartiles. (The region between the lower and upper quartiles takes in 50% of the
data.)

For data that are approximately normally distributed, note the relationship

s ⇡ 0.75H.

For data are normally distributed, one standard deviation either side of the mean takes in
slightly more than 68% of the data.

Note also the median absolute deviation, calculated using the function mad(). This
calculates the median of the absolute deviations from the median, multiplied by the value
given to the argument constant. The default is constant = 1.4286, set to ensure that in a
large sample of normally distributed values the value returned should approximately equal
the standard deviation. This is a more reliable estimate than that based on the IQR.

The pooled standard deviation

Consider two independent samples of sizes n1 and n2, respectively, randomly selected from
populations that have the same standard deviation but for which the means may differ.
After estimating the two means, n1+n2�2 degrees of freedom remain for estimating the
(common) standard deviation. The ("pooled") standard deviation estimate is calculated
by summing squares of differences of each data value from their respective sample mean,
dividing by the degrees of freedom n1+n2�2, and taking the square root:

sp =

sP
(x� x̄)2+

P
(y� ȳ)2

n1+n2�2
.

Use of this pooled estimate of the standard deviation is appropriate if variation in the two
populations is plausibly similar. The pooled standard deviation is estimated with more
degrees of freedom, and therefore, more accurately, than either of the separate standard
deviations.

6 ## SD of length, by species: data frame cuckoos (DAAG)
z <- with(cuckoos, sapply(split(length,species), function(x)c(sd(x),length(x))))
print(setNames(paste0(round(z[1,],2),' (',z[2,],')'),
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Figure 1.13: Different relationships between y and x. In the second panel, the Pearson correlation is
0.85, while the Spearman rank correlation is 0.92.

Elastic bands example

Consider data from an experiment in which 21 elastic bands were randomly divided into
two groups, one of 10 and one of 11. Bands in the first group were immediately tested for
the amount that they stretched under a weight of 1.35 kg. The other group were dunked in
hot water at 65�C for four minutes, then left at air temperature for ten minutes, and then
tested for the amount that they stretched under the same 1.35 kg weight as before. The
results were:

Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253.5)
Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244.1)
The pooled standard deviation estimate is s = 10.91, with 19 (= 10+11�2) degrees of

freedom. Since the separate standard deviations (s1 = 9.92; s2 = 11.73) are similar, the
pooled standard deviation estimate is an acceptable summary of the variation in the data.

1.4.4 Correlation

The usual Pearson or product–moment correlation is a summary measure of linear rela-
tionship. Calculation of a correlation should always be accompanied by a check that the
relevant scatterplot shows a linear relationship. It can be helpful to add a smooth trend line.
Check also that the separate distributions of the two variables are roughly normal, or at
least not highly skew. If the relationship is monotonic, but is not linear and/or the separate
distributions are asymmetric, a Spearman rank correlation may be more appropriate.

Figure 1.13 gives four graphs to consider. For which does it make sense to calculate

1. a Pearson correlation coefficient?
2. a Spearman rank correlation?

The figure that appears in the upper left in each panel is the Pearson correlation. For the
second panel, the Pearson correlation is 0.85, while the Spearman correlation, which better
captures the strength of the relationship, is 0.92. Here a linear fit clearly is inadequate. The
magnitude of the correlation r, or of the squared correlation r2, does not of itself indicate
whether the fit is adequate.

Note also the Kendall correlation, obtained by specifying method="kendall" when
cor.test() is called. This is applicable in contexts where the same individuals are
assessed by two different judges, and estimates the probability that the two judges will
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assign the same ranking to an individual.
Other ways in which correlations may mislead are:

• There may be a subgroup structure in the data. If, for example, random samples are
taken from each of a number of villages and the data are pooled, then it will be unclear
whether any correlation at the level of individuals reflects a correlation between village
averages or a correlation between individuals within villages, or some of each. The two
correlations may not be the same, and may even go in differentmdirections. See Cox
and Wermuth (1996).

• Any correlation between a constituent and a total amount is likely to be, in part at least, a
mathematical artifact. Thus, consider a study of an anti-hypertensive drug that hopes to
determine whether the change y� x is larger for those with higher initial blood pressure
x. If x and y have similar variances then y� x will have a negative correlation with x,
whatever the influence of x.

Note that while a correlation coefficient may sometimes be a useful single number
summary of the relationship between x and y, regression methods offer a much richer
framework for the examination of such relationships.

In addition, or as an alternative to the function cor(), note cor.test(). This returns a
confidence interval and a test for no association. Subsection 2.3.4 explains the assumptions
that use of this function requires.

1.5 Distributions: models for the random component

The models that will be used in later chapters will typically have both deterministic and
random components. The simplest type of model takes the form:

y = µ+"

where µ is a constant, and " is the random component. In the models that will be discussed
in this section, µ will be the population mean, or expected value.

Alternative names that may be used for the random component are noise, or error. Both
noise and error are technical terms. Use of the word error does not imply that there have
been mistakes in the collection of the data, though mistakes can of course contribute to the
variability.

The R stats package has an extensive range of functions that have direct application
in cases where the deterministic model component is constant. See ?Distributions for
details. The CRAN Distributions task view gives details of contributed R packages that
extend the range of possibilities.

For each distribution, there are four functions, with names whose first letter is, respec-
tively, d (density), p (cumulative probability), q (quantile), and r (generate a random
sample).

1.5.1 Discrete distributions

Probabilities for a discrete random variable with values 0, 1, 2, . . . , are for naming purposes
treated as densities that are constant on unit length intervals, chosen thus:

0 1 2 ...
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(-0.5,0.5) (0.5,1.5) (1.5,2.5) ...

Hence the notation dbinom() and dpois(), for what are really discrete probabilities, not
densities!

The usual starting points for discussing discrete distributions are the binomial and Poisson.
Examples for both now follow.

Binomial: Functions are dbinom(), pbinom(), and qbinom(), rbinom()
Values are 0, 1, 2, . . . , n, where the argument size specifies n, and the argument prob
specifies the probability ⇡. The name Bernoulli is used for the special case when size
n = 1. A binomial random variable with size n > 1 is the sum of n independent Bernoulli
variables. Standard simple applications are as a model for the number of heads in a sequence
of fair coin tosses, or for the number of daughters in a family.

For an example, suppose a sample of 10 items is taken from an assembly line that
produces 15% defective items, on average. The probabilities of 0, 1, 2, . . . , 10 defectives
are (rounded to 3 decimal places):
round ( setNames ( dbinom ( 0 : 1 0 , s i z e =10 , prob=0 . 1 5 ) , 0 : 1 0 ) , 3 )

0 1 2 3 4 5 6 7 8 9 10
0.197 0.347 0.276 0.130 0.040 0.008 0.001 0.000 0.000 0.000 0.000

The probability of observing 4 or fewer defectives in a sample of size 10 is:
pbinom ( q=4 , s i z e =10 , prob=0 . 1 5 )

[1] 0.9901

The function qbinom() goes in the other direction, from cumulative probabilities to
numbers of events. It generates quantiles, a generalization of the more familiar term
percentiles. To calculate a 70th percentile of the distribution of the number of defectives in
a sample of 10, with Pr[defective=0.15], type:
qbinom ( p = 0 .70 , s i z e = 10 , prob = 0 . 1 5 )

[1] 2

## Check that this lies between the two cumulative probabilities:
## pbinom(q = 1:2, size=10, prob=0.15)

The Poisson distribution: dpois(), ppois(), qpois(), rpois()
Values are 0, 1, 2, . . . , where the argument lambda specifies the poisson mean

The Poisson distribution is often used to model the number of events that occur in a
certain time interval, or the numbers of defects observed in for example manufactured
products. The distribution has a single parameter � (the Greek letter “lambda”) which
happens to coincide with the mean or expected value.

As an example, consider a population of raisin buns for which there are an average of
3 raisins per bun, i.e., � = 3. The possible numbers of raisins are 0, 1, 2, . . . . Under the
Poisson model, which assumes that raisins that raisins appear independently in different
buns, probabilities for numbers of raisins in a bun are:



32 1. Learning from data, and tools for the task

## Probabilities of 0, 1, 2, 3, 4 raisins
round ( setNames ( d p o i s ( x = 0 : 9 , lambda = 3 ) , 0 : 9 ) , 3 )

0 1 2 3 4 5 6 7 8 9
0.050 0.149 0.224 0.224 0.168 0.101 0.050 0.022 0.008 0.003

## Probability of > 9 raisins
setNames (1 �ppois ( q = 9 , lambda = 3 ) , ">9" )

>9
0.001102

The functions ppois(), qpois(), and rpois() can be used in exactly the same way as
binomial family functions.

In the practical situation, raisins may tend to stick together, or the mixing may not be
even through the baking mixture. Something more sophisticated than a simple Poisson
model may be required.

Means and standard deviations

Binomial: In a sample of 10 manufactured items from a population where 15% are defec-
tive, we expect to see 1.5 defectives on average. More generally, the expected value or mean
of a binomial random variable with size = n and probability prob = ⇡ is n⇡.

The standard deviation is a summary measure of the spread of a probability distribution.
For predicting the value of a random variable, a high standard deviation reflects more
uncertainty than a low value. The standard deviation for a binomial random variable isp

n⇡(1�⇡). The variance, which is the square of the standard deviation, is n⇡(1�⇡).
For the number of defectives in our sample of 10 items with ⇡ = 0.15, the variance is

10⇥0.15⇥0.85 ' 1.275, with standard deviation =
p

1.275 ' 1.129.

Poisson: The variance of a Poisson random variable is equal to its mean, i.e., �. Thus if the
number of raisins in a bun is Poisson with mean � = 3, the variance is also 3. The standard
deviation is

p
� ' 1.732.

1.5.2 Continuous distributions

Models for measurement data will usually require use of a continuous distribution. It is
no longer useful to consider the probability that a measurement takes a particular value.
Instead, a continuous random variable is summarized by its density function. The area under
the density curve between x = a and x = b gives the probability that the random variable
lies between those limits. The total area under the density curve is 1.

The normal distribution : The normal, or Gaussian, distribution, which has the bell-
shaped density curve pictured in Figure 1.14, is widely used to model continuous measure-
ment data (a transformation may be required, as in Figure 1.7 in Subsection 1.3.3, for the
normal model to be useful). The height of the curve is a function of the distance from the
mean.
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 = 0.841 Calculations using pnorm()

Probability
pnorm(0) 0.5000
pnorm(1) 0.8413
pnorm(-1.96) 0.0250
pnorm(1.96) 0.9750
pnorm(1.96, mean = 2) 0.4840
pnorm(1.96, sd = 2) 0.8365

Figure 1.14: A plot of the normal density. The horizontal axis is labeled in standard deviations
(SDs) distance from the mean. The area of the shaded region is the probability that a normal random
variable has a value less than one standard deviation above the mean.

The density curve shown in Figure 1.14 is for a standard normal distribution, i.e., with
mean 0 and standard deviation 1. Replacing each value z in a population of standard normal
variates by µ+�z changes the mean to µ and the variance to �.

Code that plots the normal density function is:

## Plot the normal density, in the range -3 to 3
z <� p r e t t y ( c (�3 , 3 ) , 30) # Find ~30 equally spaced points
h t <� dnorm ( z ) # Equivalent to dnorm(z, mean=0, sd=1)
p l o t ( z , h t , t y p e=" l " , x l a b=" Normal d e v i a t e " , y l a b=" D e n s i t y " , yaxs=" i " )
# yaxs="i" locates the axes at the limits of the data

Functions for calculations relating to the normal distributions are dnorm() (used for
plotting the density curve in Figure 1.14), pnorm(), qnorm(), and rnorm(). The function
pnorm() calculates the cumulative probability, i.e., the area under the curve up to the
specified ordinate or x-value. Thus, the probability that a normal deviate with mean 0 and
standard deviation 1 is less than 1.0 is:

pnorm (1 . 0 ) # by default, mean=0 and SD=1

[1] 0.8413

This corresponds to the area of the shaded region in Figure 1.14.
The function qnorm() computes normal quantiles. Thus, the 90th percentile is:

qnorm ( . 9 ) # 90th percentile; mean=0 and SD=1

[1] 1.282

The footnote has additional examples.7

Other continuous distributions: An especially simple model is the uniform, for which an
observation is equally likely to take any value in a given interval. The probability density is
constant on a fixed interval.

7## Additional examples:
setNames(qnorm(c(.5,.841,.975)), nm=c(.5,.841,.975))
qnorm(c(.1,.2,.3)) # -1.282 -0.842 -0.524 (10th, 20th and 30th percentiles)
qnorm(.1, mean=100, sd=10) # 87.2 (10th percentile, mean=100, SD=10)
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The exponential gives high probability density to positive values lying near 0, with
the density decaying exponentially as the values increase. It is the simplest of a class of
distributions that have been used to model times between arrivals of customers to a queue.
The exponential is a special case of the chi-squared distribution which arises, for example,
when checking for dependence between row and column numbers in contingency tables.
Details on computing probabilities for these distributions are in the exercises.

Different ways to represent distributions

In Figure 1.2A in Section 1.3 it was noted that, with the default boxplot settings, 1% of
values that are drawn at random from a normal distribution will on average be flagged
as possible outliers. If the distribution is not symmetric, more than 1% of points may lie
outside the whiskers, mostly at the lower end if the distribution is left-skewed (i.e., with a
longish tail to the left), and mostly at the upper end if the distribution is right-skewed. If the
distribution is symmetric, but “heavy-tailed”, then the expected 1% of values that are out
beyond the boxplot whiskers will have no preference for side.

1.5.3 Use of simulation to estimate sampling distributions

In a simulation, repeated random samples are taken from a specified distribution. Statistics,
perhaps estimates that are derived from one or other model, can then be calculated for each
successive sample. The information on the sampling distibutions of the statistics of interest
offers an empirical, i.e., sampling based, alterative to the direct use of statistical theory. It
can be used when theoretical results are not available or are of uncertain relevance.

The seed for the random number generator is stored in the workspace, in a hidden
variable (.Random.seed) that changes whenever there has been a call to the random
number generator. In situations, such as when checking calculations, that require the
repeating of the same sequence on successive occasions, the function set.seed() can
be used to set an initial seed and thus ensure the same sequence. The following uses
set.seed() to make the call to rbinom(10, size=1, p=0.5) thus reproducible:

s e t . s e e d ( 2 3 2 8 6 ) # Use to reproduce the sample below
rbinom ( 1 5 , s i z e =1 , p=0 . 5 )

[1] 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0

When the workspace is saved, .Random.seed is stored as part of the workspace. When
the workspace is loaded again, the seed will be restored to its value when the workspace
was last saved. Any new simulations will then be independent of those prior to saving the
workspace.

Sampling from discrete distributions

To generate the numbers of daughters in a simulated sample of 25 four-child families,
assuming independence between successive births and a probabiity of 0.5 for a daughter,
use the rbinom() function thus:
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Figure 1.15: Each panel shows a simulated distribution of 50 values from a normal distribution with
mean = 10 and sd = 1. The underlying theoretical normal curve is overlaid on the far left panel.

s e t . s e e d ( 3 1 ) # Use to reproduce the sample below
rbinom ( 2 5 , s i z e =4 , prob=0 . 5 )

[1] 2 4 2 2 4 2 3 1 3 1 2 3 2 0 3 1 1 2 1 1 1 2 2 2 2

The following simulates the number of raisins in 20 raisin buns, where the expected
number of raisins per bun is 3:

r p o i s ( 2 0 , 3 )

[1] 0 1 4 1 1 1 4 3 4 4 4 3 2 1 2 1 4 2 4 4

Sampling from the normal and other continuous distributions

The function rnorm() generates random deviates from the normal distribution. To generate
10 random values from a standard normal distribution, we type:
o p t i o n s ( d i g i t s =2) # Suggest number of digits to display
rnorm ( 1 0 ) # 10 random values from the normal distribution

[1] 0.0087 -2.1096 -0.4879 -0.2962 0.3986 0.4652 0.7066 -0.2313
[9] 1.9908 0.1407

Figure 1.15 demonstrates the use of simulation to indicate the extent of sample-to-sample
variation in histogram summaries of the data, when five independent random samples of 50
values are taken from a normal distribution.8

Calculations for other distributions, for example runif() to generate uniform random
numbers, or rexp() to generate exponential random numbers, follow the same pattern.

r u n i f ( n = 20 , min=0 , max=1) # 20 numbers, uniform distn on (0, 1)
r exp ( n=10 , r a t e =3) # 10 numbers, exponential , mean 1 / 3.

Exercises at the end of this chapter explore further possibilities.
Histograms such as are shown in Figure 1.15 are not a good basis for deciding whether

sample values are consistent with a normal distribution. For that purpose, an effective tool
is the normal probability plot, used as will now be demonstrated.

8## The following gives conventional histogram representations:
set.seed (21) # Use to reproduce the data in the figure
df <- data.frame(x=rnorm(250), gp=rep(1:5, rep(50,5)))
lattice::histogram(~x|gp, data=df, layout=c(5,1))
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Figure 1.16: The lower left panel is the normal probability plot for heated–ambient differences.
Remaining panels show normal probability plots for samples of nine numbers from a normal
distribution.

1.5.4 Graphical checks for normality

To create a normal probability (or normal quantile-quantile), the sorted data values are
plotted against the expected ordered values for a normal distribution. The “expected” value
of a statistic is its mean, as estimated from the fitted model. Thus for data from a normal
distribution, the points should scatter about a straight line.

The DAAG::pair65 dataset has data from an experiment that tested the effect of heat on
the stretchiness of elastic bands. Following an initial test for “stretchiness”, bands were then
arranged into nine pairs, such that the two members of a pair appeared similarly “stretchy”.
One member of each pair, chosen at random, was placed in hot water (60–65 �C) for four
minutes, while the other was left at ambient temperature. After a wait of about ten minutes,
the amounts of stretch, under a 1.35 kg weight, were recorded. The following were the
amounts of stretch, and the differences, for each pair:

1 2 3 4 5 6 7 8 9
heated 244 255 253 254 251 269 248 252 292
ambient 225 247 249 253 245 259 242 255 286
heated-ambient 19 8 4 1 6 10 6 -3 6

In a later section, the heated–ambient differences will be the basis for a formal comparison.
The normal probability plot for these differences is in the lower left panel of Figure 1.16.
The other seven plots are for samples (all of size 9) of simulated random normal values. As
judged against these plots, the distribution of the sample differences appears consistent with
normality. The code is:

## Normal probability plot for heated-ambient differences ,
## compared with plots for random normal samples of the same size
p l t <� wi th (DAAG: : p a i r 6 5 ,

DAAG: : q r e f e r e n c e ( hea ted�ambien t , n r ep =10 , nrows =2) )

Displays in the style of Figure 1.16 help to calibrate the eye, giving a sense of the nature
and extent of departures from linearity that can be expected in random normal samples of
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the specified size, here 9. The process should be repeated several times. With a sample
size of just 9, large departures from a linear pattern will be needed to provide convincing
evidence of non-normality.

The base graphics function qqnorm() may be used to obtain such plots one at a time.
Specify, e.g., qqnorm(rnorm(9)).

The methodology extends to allow a comparison of ordered sample values with expected
ordered values for any distribution that is of interest. See ?qqplot.

The limitations of checks for normality

In practice, exact normality is unlikely. Nor, depending somewhat on the use that will
be made of the data, is exact normality necessary. Concern arises when there are gross
departures from normality. Check especially for data that are skew, and for outliers. Check
also for data that take relatively few discrete values, perhaps as a result of excessive
rounding.

In small samples (e.g., of the order of 10 or less), large departures from normality, of
an extent that affect the validity of results, will commonly go undetected. It is typically
necessary to rely on sources of evidence that are external to the data, including where
possible previous experience with similar data.

The sampling distribution of the mean — the Central Limit Theorem

The sampling distribution of the mean is the distribution of the means of repeated random
samples of a given size n. The standard deviation of this sampling distribution has the name
standard error of the mean (SEM). If the population mean is µ and the standard deviation is
�, then

SEM =
�p

n

A consequence of the “Central Limit Theorem” is that for a statistic such as a mean or a
regression slope, the effects of averaging may give a close approximation to normality, even
when the underlying population is clearly not normally distributed. This theorem implies
that, for large enough n, the sampling distribution of the mean will closely approximate the
normal.9 The sample size n needed so that the normal is a good approximation will depend
on the distribution of the population from which samples are taken.

Modest departures from normality will commonly be of minor consequence where
samples are large. Graphical checks, and formal statistical tests for normality, will both
detect non-normality in this large sample context where it commonly gives the least reason
for concern. Graphical checks have the advantage that they give indications of the extent
and nature of non-normality.

Figure 1.17 shows, as solid curves, simulated sampling distributions of the mean (sample
sizes 3, 9, and 30), for samples from a distribution that is mildly skew. Panel A shows
density curves, while Panel B shows normal probability plots. The dashed curve, which is
the same in each panel, shows the population distribution. As the sample size increases from

9More precisely, the distribution of the sample mean approximates the normal distribution with arbitrary accuracy, for a large
enough sample, assuming values are independent, and a finite population standard deviation. There are similar results for a number
of other sample statistics.
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Figure 1.17: Data values are from simulations of the sampling distribution of the mean, for a distri-
bution that is mildly skew. Panel A shows density curves, while Panel B shows normal probability
plots. The plot for the population, repeated in each panel, is shown as a dashed curve. Simulated
sampling distributions, each from 1000 simulations, are shown as solid curves. The three panels
show the plots for samples of respective sizes 3, 9 and 30.

n = 3 to n = 9 to n = 30, the density curves become more nearly symmetric with a decreasing
standard deviation, while the normal probability plots become increasingly linear, with a
reduced slope. The reduction in slopes in Panel B reflect the reduced SEMs, from �p

3
to �p

9
to �p

30
. Even for a sample size of 3, much of the skewness has gone.

Code for the plots in Figure 1.17A is:

## Generate n sample values; skew population
sampfun = f u n c t i o n ( n ) exp ( rnorm ( n , mean = 0 .5 , sd = 0 . 3 ) )
gph <� DAAG: : s a m p d i s t ( s a m p s i z e = c ( 3 , 9 , 3 0 ) , s eed = 23 ,

nsamp = 1000 , FUN = mean , sampva l s=sampfun ,
p l o t . t y p e = " d e n s i t y " )

For Figure 1.17B, replace plot.type="density" in the call to DAAG::sampdist() with
plot.type="qq". The skewness of the population can be increased by increasing sd in
the call to sampfun(). For example, try sd = 0.8.

Simulation in teaching and research

In statistical theory and in practice, simulation is widely used, when analytical results are
not available, to determine the sampling distribution of statistics that are of interest. In
teaching, it can provide helpful insight. The R package animation (Xie and Cheng, 2008)
has a variety of simulations that are intended for use in teaching or self-instruction.
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1.6 Organizing and managing work; reproducible reporting

It can be a challenge to keep track of the resources — R packages, other software, other
internet resources, relevant publications, other data — that bear on the task. Work will
typically break down into several separate sub-tasks, with occasional need to move to and
fro between them. Analyses will themselves need to be documented, with the results feeding
into a description that may become part of a report or paper.

Tools that will help take complexity from the analyst’s mind or notebook and place it in
the external world — should then be used to full advantage. Tools that will be noted can be
classified, broadly, as either Integrated Development Environments (IDEs), or Graphical
User Interfaces (GUIs).

For managing work with R, we strongly recommend the highly rated RStudio IDE (go to
www.rstudio.com). RStudio provides, from a graphical user interface, a range of abilities
for organizing and managing work, for accessing help information, and for data input.
Computations will usually be initiated from the command line, or from a script window.

As an alternative to the R GUI that is supplied with R binaries, there are several GUIs
that provide, also, graphical and analysis abilities. Here, note the R Commander (Rcmdr),
Deducer, and Rattle. Details can be obtained from online resources.

Especially for novices or infrequent users of R, a GUI interface can be helpful for
handling data input, for creating simple graphs, for simple tabulation and summarization,
and for fitting standard models. The balance of preference is likely to change in favor of the
command line as familiarity with R increases.

Menu and command line modes of use can be mixed. All the GUIs noted here make
available the commands used by R, for inspection and/or modification and/or for audit trail
purposes. The user can examine the help page for the relevant function(s), modify the code
as required, and re-execute it.

Our discussion will usually assume use of the command line, either directly, or from an
editor window in a GUI or IDE. Further comments on RStudio now follow.

The RStudio Integrated Development Environment

The RStudio IDE has extensive features that assist with:

• The organization of work into projects;
• Maintaining a record of files that have been accessed from RStudio, of help pages

accessed, and of plots. The record of files is maintained from one session of a project to
the next;

• The editing, maintenance and display of code files;
• Abilities that assist reproducible reporting, using an interface to the abilities of the
knitr package. Subsection 1.6.1 has further details.

• The creation of packages.

RStudio has very extensive web-based documentation. Go to https://support.
rstudio.com/hc/en-us and look under Documentation. The RStudio website has, addi-
tionally, extensive help on getting started with R.

Among alternatives to RStudio, note the ESS interface to Emacs (http://ess.
r-project.org/), aimed at advanced users who are comfortable working with the Emacs
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editor. The R interface is one of several interfaces to different language or statistical package
environments.

1.6.1 Reproducible reporting — the knitr package

As noted above, the R package knitr has extensive abilities that allow the mixing of text
and R code for automatic report generation. The R code chunks are embedded within
markup that includes options that control what will be done with the code and with any
computer output. When suitably processed, a document is generated that contains the text,
and any specified combination of R code and computer output. The functionality of knitr
is automatically available, via a GUI interface, to RStudio users.

There are several different types of document where markup code can be used to control
how text and other document features will appear after they have been processed for printing.
Perhaps the simplest of these languages is Markdown. With the ability added to include
R code and output in the final document, RStudio gives it the name R Markdown. Other
possibilities are R HTML, and Sweave. Sweave is LATEX with R markup incorporated. R
Markdown is easily the simplest of these three to learn and use.

To get a quick introduction to R Markdown, start up RStudio. Then, within the R
command panel, click on File | New File | R Markdown This will display a simple skeleton
R Markdown document. This can be edited as required, or processed as it stands. Clicking
on the **Knit** button will generate a document that includes text as well as output from
any embedded R code chunks.

1.7 Further Reading and Study

Extensive R-related tutorial material is available online. See for example Galili (2015).
Introductions to R include Dalgaard (2008). Braun and Murdoch (2016) is an elementary
introduction to the R programming language. More technical and detailed accounts of the R
language include: Chambers (2008); Matloff (2011); Wickham (2015, 2016a).

Kahneman (2013) gives important insight into human propensities for misinterpreting
statistical data. O’Neil (2016) has insightful commentary on the nature and limitations of
mathematical models, and on the limitations of machine learning technology in current use
as a replacement for human judgement. Thaler (2015) is an extended commentary on the
mismatch between the decision making processes of the idealised agents of the models of
classical economics (Thaler calls these agents “Econs”), and human agents, with serious
implications for social policy.

Papers that comment on statistical presentation issues, and on deficiencies in the published
literature, include Andersen (1990); Maindonald (1992); Wilkinson and Task Force on
Statistical Inference (1999); Allison et al. (2016). On errors in the interpretation of p-
values, see Greenland et al. (2016), and the extensive list of references given in that paper.
Wilkinson and Task Force on Statistical Inference (1999) makes helpful comments on the
planning of data analysis, on the role of exploratory data analysis, and more.

Books and papers that set out principles of good graphics include Robbins (2012). See
also the imaginative uses of R’s graphical abilities that are demonstrated in Murrell (2011).
Chang (2013) is a helpful resource for ggplot2.
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1.8 Exercises

1. The DAAG::orings data frame information on the damage that had occurred in US space
shuttle launches prior to the disastrous Challenger launch of January 28, 1986. The observations
in rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether
to proceed with the launch, while remaining rows were omitted.

Create a new data frame by extracting these rows from orings, and plot total incidents
against temperature for this new data frame. Obtain a similar plot for the full data set. Why
is it important to show the plot for the full set of data?

2. For the data frame possum (DAAG)

(a) Use the function str() to get information on each of the columns.
(b) Using the function complete.cases(), determine the rows in which one or more values

is missing. Print those rows. In which columns do the missing values appear?

3. The following plots four different transformations for the columns brain and body in the
Animals dataset. What different aspects of the data do these different graphs emphasize?
Consider the effect on low values of the variables, as contrasted with the effect on high values.

Animals <� MASS : : Animals
manyMals <� r b i n d ( Animals , s q r t ( Animals ) , Animals ^0 .1 , l o g ( Animals ) )
manyMals$ t r a n s g p <� r e p ( c ( " Un t r a ns fo rmed " , " Square r o o t t r a n s f o r m " ,
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" Power t r a n s f o r m , lambda=0 . 1 " , " l o g t r a n s f o r m " ) ,
r e p ( nrow ( Animals ) , 4 ) )

manyMals$ t r a n s g p <� wi th ( manyMals , f a c t o r ( t r a n s g p , l e v e l s=u n i q u e ( t r a n s g p ) ) )
l a t t i c e : : x y p l o t ( b r a i n ~body | t r a n s g p , d a t a=manyMals ,

s c a l e s= l i s t ( r e l a t i o n= ' f r e e ' ) , l a y o u t=c ( 2 , 2 ) )

4. Calculate the following correlations:

wi th ( Animals , c ( c o r ( b r a i n , body ) , c o r ( b r a i n , body , method=" spearman " ) ) )
w i th ( Animals , c ( c o r ( l o g ( b r a i n ) , l o g ( body ) ) ,

c o r ( l o g ( b r a i n ) , l o g ( body ) , method=" spearman " ) )

Comment on the different results. Which is the most appropriate measure?

5. Use the function abbreviate() to obtain six-character abbreviations for the row names in the
data frame cottonworkers (DAAG package). Plot survey1886 against census1886, and plot
avwage*survey1886 against avwage*census1886, in each case using the six-letter abbrevi-
ations to label the points. How should each of these graphs be interpreted? [Hint: Be sure to
specify I(avwage*survey1886) and I(avwage*census1886) when plotting the second of
these graphs.]

6. The data frame socsupport (DAAG) has data from a survey on social and other kinds of support,
for a group of university students. It includes Beck Depression Inventory (BDI) scores. The
following are two alternative plots of BDI against age.

p l o t ( BDI ~ age , d a t a= s o c s u p p o r t )
p l o t ( BDI ~ u n c l a s s ( age ) , d a t a= s o c s u p p o r t )

For examination of cases where the score seems very high, which plot is more useful? Explain.
Why is it necessary to be cautious in making anything of the plots for students in the three
oldest age categories (25-30, 31-40, 40+)?

7. Plot a histogram of the earconch measurements for the possum data. The distribution should
appear bimodal (two peaks). This is a simple indication of clustering, possibly due to sex dif-
ferences. Obtain side by side boxplots of the male and female earconch measurements. How
do these measurement distributions differ? Can you predict what the corresponding histograms
would look like? Plot them to check your answer.

8. For the data frame DAAG::ais, draw graphs that show how the values of the hematological
measures (red cell count, hemoglobin concentration, hematocrit, white cell count, and plasma
ferritin concentration) vary with the sport and sex of the athlete.

9. In the data frame DAAG::cuckoohosts, column names with first letter c refer to cuckoos,
while names starting with h refer to hosts. Plot clength against cbreadth, and hlength
against hbreadth, all on the same graph and using different colors to distinguish points for
the cuckoo eggs from points for the host eggs. Join the two points that relate to the same host
species with a line. What does a line that is long, relative to other lines, imply? Code that you
may wish to use or adapt is:

usableDF <� DAAG: : c u c k o o h o s t s [ c ( 1 : 6 , 8 ) , ]
n r <� nrow ( usableDF )
wi th ( usableDF , {
p l o t ( c ( c l e n g t h , h l e n g t h ) , c ( c b r e a d t h , h b r e a d t h ) , c o l= r e p ( 1 : 2 , c ( nr , n r ) ) )
f o r ( i i n 1 : n r ) l i n e s ( c ( c l e n g t h [ i ] , h l e n g t h [ i ] ) , c ( c b r e a d t h [ i ] , h b r e a d t h [ i ] ) )
t e x t ( h l e n g t h , h b r e a d t h , a b b r e v i a t e ( rownames ( usableDF ) , 8 ) ,

pos=c ( 2 , 4 , 2 , 1 , 2 , 4 , 2 ) )
} )
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10. The four columns in the dataset Devore7::ex10.22 give tomato yields at the four levels of
salinity 1.6, 3.8, 6.0, and 10.2, as measured by electrical conductivity (EC, in nmho/cm).

(a) Obtain a scatterplot of yield against EC.
(b) Obtain side by side boxplots of yield for each level of EC.
(c) Comment upon whether the yield data are more effectively analyzed using EC as a quanti-

tative or qualitative factor.

Note: You will likely want to work with the “long” of the data, which can be obtained thus:

t o m a t o e s <� d a t a . f r a m e ( y i e l d= u n l i s t ( Devore7 : : e x 10 . 2 2 ) ,
EC= r e p ( c (1 .6 , 3 .8 , 6 .0 , 1 0 . 2 ) , r e p ( 5 , 4 ) ) )

11. Figure 1.8 showed changes in labor force numbers, in six regions of Canada, in successive
quarters of 1995-1996. The population (in thousands) aged 15 years and over in each of these
regions was, according to the 1996 census: BC: 3955; Alberta: 2055; Prairies: 1604;
Ontario: 8249; Quebec: 5673; Atlantic: 1846. Plot a version of Figure 1.8B in which
the labor force numbers are standardized by division by the number in the relevant population.
Compare a plot that shows all regions in the same panel, with a plot that gives each region its
own panel and its own slice of a common scale, commenting on the advantages and disadvan-
tages of each. Is there now any reason to use a logarithmic scale?

12. The MASS::galaxies data frame gives speeds of 82 galaxies (see the help file and the refer-
ences listed there for more information). Show a density plot for these data. Is the distribution
strongly skewed? Is there evidence of clustering?

13. The MASS::cpus data frame gives information on 8 aspects for each of 209 different types of
computers. Read the help page for more information.

(a) Construct a scatterplot matrix for these data, as in Figure 3.3 in Subsection 3.2.1. Should
any of the variables be transformed before further analysis is conducted?

(b) How well does estimated performance (estperf) predict performance (perf)? Study this
question by constructing a scatterplot of these two variables, after taking logarithms. Do
the plotted points scatter about a straight line or is there an indication of nonlinearity? Is
variability in performance the same at each level of performance?

14. Figure 1.7B plots brain weight (units of 10gm) versus body weight (units of 10kg), for 28
animals. Make a copy of the plot and use a ruler or other straight edge to draw a line through
the main body of points. Use the ratio of vertical to horizontal distance, between the points
where the line intersects the left and right boundaries of the plotting region, to estimate the
slope of the line. The slope can be interpreted as the ratio between the relative rate of increase
of brain weight, and that for body weight. For a body weight increase of 5% (this counts for
this purpose as a small increase), what increase might be expected in brain weight?

15. An experimenter intends to arrange experimental plots in four blocks. In each block there
are seven plots, one for each of seven treatments. Use the function sample() to find four
random permutations of the numbers 1 to 7 that will be used, one set in each block, to make the
assignments of treatments to plots.

16. (a) Use y <- rnorm(10) to generate a random sample of size 100 from a normal distribu-
tion.

(b) Use a loop to repeat the drawing of a normal random sample, as in (a), 25 times. For each
sample store the mean in the next available element of a vector av that has been created for
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this purpose. Calculate the standard deviation of the values in av, and compare the result
with the theoretical value of the standard deviation for a sample that has been created in
this way.

(c) Create a function that performs the calculations described in (b). Run the function several
times, showing each of the distributions of 25 means in a density plot.

17. Use mfrow to set up the layout for a 3 by 4 array of plots. For the top panel with a samples of
size 100, the middle 4 panels with samples of size 100, and the bottom 4 panels with samples of
size 1000, show normal probability plots (four samples and four plots in each case.) Comment
on how the appearance of the plots changes as the sample size changes.

18. Repeat exercise 17, but using the function runif() to take samples from a uniform distribution
(by default on the interval 0 to 1.) Comment on the patterns that the points show.

19. (a) The function pexp(x, rate=r) computes the probability that an exponential variable is
less than x. Suppose the time between accidents at an intersection can be modeled by
an exponential distribution with a rate of .05 per day. Find the probability that the next
accident will occur during the following three weeks.

(b) Use the function rexp() to simulate 100 exponential random numbers with rate 0.2. Ob-
tain a density plot for the observations. Find the sample mean of the observations. Com-
pare with the population mean (the mean for an exponential population is 1/rate).

20. (a) The statement x <- rt(10, 1) generates 10 random values from a t distribution with
one degree of freedom. Make normal probability plots for samples of various sizes from
this distribution. How large a sample is necessary, to obtain a visually consistent shape?

(b) Repeat, using statements of the form x <- rchisq(10, 1) to generates random values
from a chi-squared distribution with one degree of freedom.

(c) Repeat, generating random values from a chi-squared distribution with 5, and then with
50, degrees of freedom.

21. The following are the total number of aberrant crypt foci (abnormal growths in the colon) ob-
served in seven rats that had been administered a single dose of the carcinogen azoxymethane
and sacrificed after six weeks (thanks to Ranjana Bird, Faculty of Human Ecology, University
of Manitoba for the use of these data):

87 53 72 90 78 85 83

Calculate the sample mean and variance. Is the Poisson model appropriate? To investigate how
the sample variance and sample mean differ under the Poisson assumption, repeat the following
simulation experiment several times:

x <� r p o i s ( 7 , 78 . 3 )
mean ( x ) ; v a r ( x )

22. ⇤A Markov chain is a data sequence in which the probability of change from one state to the
next depends only on the current state. The probabilities can be set out as a transition matrix,
the rows give the current state, and columns the state next occupied. Thus, for the weather in a
particular season of the year, a simple form of Markov chain model, for changes in the weather
from one day to the next, might have the transition matrix:

P =

2
666666666666664

S un Cloud Rain
S un 0.6 0.2 0.2
Cloud 0.2 0.4 0.4
Rain 0.4 0.3 0.3

3
777777777777775
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It can be shown, using linear algebra, that in the long run (“in the limit”) this Markov chain will
visit the states according to the stationary distribution:

Sun Cloud Rain
0.429 0.286 0.286

A result called the ergodic theorem allows us to estimate this distribution by simulating the
Markov chain for a long enough time.

Markov <� f u n c t i o n ( P , N=10000 , i n i t i a l . s t a t e =0)
{

s t a t e <� numer ic (N)
s t a t e [ 1 ] <� i n i t i a l . s t a t e + 1 # States 0:2; subscripts 1:3
n <� nrow ( P )
f o r ( i i n 2 :N) {

s t a t e [ i ] <� sample ( 1 : n , s i z e =1 , prob=P [ s t a t e [ i�1 ] , ] ) }
s t a t e � 1

}

Simulate 10,000 values, and calculate the proportion of times the chain visits each of the states.
Compare the proportions given by the simulation with the above theoretical proportions. Repeat
several times, for each of the choices 0, 1, and 2 for initial.state.


