
Parametric vs Nonparametric Models for Discrimination &

Classification

John Maindonald

August 29, 2010

Contents

1 Linear Methods for Discrimination 3
1.1 lda() and qda() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 lda() and qda() – theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Canonical discriminant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Linear Discriminant Analysis – Fisherian and other . . . . . . . . . . . . . . . . 6

1.2 Example – analysis of the forensic glass data . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Two groups – comparison with logistic regression . . . . . . . . . . . . . . . . . 8
1.2.2 How important are the linearity assumptions? . . . . . . . . . . . . . . . . . . . 9
1.2.3 Low-dimensional Graphical Representation . . . . . . . . . . . . . . . . . . . . 9

1.3 A further example – cuckoo egg lengths . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Accuracy comparisons 12

3 Tree-based methods and random forests 12
3.0.1 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 The randomForests() Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 References 13

1



CONTENTS 2



1 LINEAR METHODS FOR DISCRIMINATION 3

The methods described here have the character of regression models where the outcome is cate-
gorical, one of g classes. For example, the fgl dataset has measurements of each on nine physical
properties, for 214 samples of glass that are classified into six different glass types.

Linear Discriminant Analysis (LDA), which will be discussed first, may be contrasted with the
strongly non-parametric random forest method that uses an ensemble of trees. See Maindonald &
Braun (2010, Section 11.7).

A good strategy for getting started is to fit a linear discriminant model with main effects only,
comparing the accuracy with that from a random forest analysis. If the random forest analysis gives
little or no improvement, the linear discriminant model may be hard to better. There is much more
that can be said, but this is often a good starting strategy.

See Ripley (1996); Venables and Ripley (2002); Maindonald & Braun (2010, Section 12.2).

1 Linear Methods for Discrimination

Notation and types of model

Observations are rows of a matrix X with p columns. The vector x is a row of X, but in column vector
form. The outcome is categorical, one of g classes.

Methods discussed here will all use as predictors continuous non-linear functions of the columns
of X. There are several mechanisms for such modeling that involve the use of spline basis terms.

As before, observations are rows of a matrix X with p columns. The vector x, is a row of X, but
in column vector form.

The outcome is categorical, one of g classes, where now g may be greater than 2. The matrix W
estimates the within class variance-covariance matrix, while B estimates the between class variance-
covariance matrix. Details of the estimators used are not immediately important. Note however that
they may differ somewhat between computer programs.

1.1 lda() and qda()

The functions that will be used are lda() and qda(), from the MASS package. The function lda()

implements linear discriminant analysis, while qda() implements quadratic discriminant analysis.
Quadratic discriminant analysis is an adaptation of linear discriminant analysis to handle data where
the variance-covariance matrices of the different classes are markedly different. For g = 2 the logistic
regression model, fitted using R’s glm() function, is closely analagous to the linear discriminant model
that is fitted using lda(). The difference can however be important.

An attractive feature of lda() is that the search for a discriminant rule leads to a representation
of a subspace of the column space of X in r-dimensional space. Providing that the rank of X is at
least g−1, r = g−1. Use of a spectral decomposition leads to r sets of scores, where each set of scores
explains a successively smaller (or at least, not larger) proportion of the sum of squares of differences
of group means from the overall mean. The r sets of scores can be examined using a pairs plot.

With three groups, two dimensions will account for all the variation. A scatterplot is then a
geometrically complete representation of what the analysis has achieved. With larger numbers of
groups, it will often happen that a two or at most three dimensions will account for most of the
variation.

The plots that it yields are a major part of the appeal of lda(). Where lda() does not work
well, they may hint at what type of alternative method might be preferred. They can be useful for
identifying subgroups of the orginal g groups, and for identifying points that may be misclassified

1.1.1 lda() and qda() – theory

The functions lda() and qda() in the MASS package implement a Bayesian decision theory approach.
Points to note are:
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• The methodology is implemented within a Bayesian framework. By default, the prior probabil-
ities for the various categories are taken to be the relative frequencies for those categories. The
classification rule changes if the frequencies are changed from the default.

• For any given classification rule, the overall accuracy (proportion correctly classified) changes if
the prior probabilities are changed.

• For estimating the accuracy for a given target population, the prior probabilities should be the
proportions in that population, not the proportions in the sample.

More specifically:

• A prior probability πc is assigned to the cth class (c = 1, . . . g).

• The density p(x|c) of x, conditional on the class c, is assumed multivariate normal, i.e., rows of
X are sampled independently from a multivariate normal distribution.

• For linear discrimination, classes are assumed to have a common covariance matrix Σ, or more
generally a common p(x|c). For quadratic discrimination, different p(x|c) are allowed for different
classes.

• Use Bayes’ formula to derive p(c|x). The allocation rule that gives the largest expected accuracy
chooses the class with maximal p(c|x); this is the Bayes’ rule.

• More generally, assign cost Li j to allocating a case of class i to class j, and choose c to minimize∑
i Lic p(i|x).

Note that lda() and qda() use the prior weights, if specified, as weights in combining the within
class variance-covariance matrices.

Using Bayes’ formula

p(c|x) =
πc p(x|c)

p(x)
∝ πc p(x|c)

The Bayes’ rule maximizes p(c|x). For this it is sufficient, for any given x, to maximize

πc p(x|c)

or, equivalently, to maximize
log(πc) + log(p(x|c))

Now assume p(x|c) is multivariate normal, i.e.,

p(x|c) = (2π)
p
2 | Σc |)−

1
2 exp(−

1
2

Qc)

where
Qc = (x − µc)T Σ−1

c (x − µc)

Then

log(πc) + log(p(x|c)) = log(πc) −
1
2

Qc +
p
2

log(2π) −
1
2

log(| Σc |)

Leaving off the log(2π) and multiplying by -2, this is equivalent to minimization of

Qc + log(| Σc |) − 2 log(πc) = (x − µc)T Σ−1
c (x − µc) + log(| Σc |) − 2 log(πc)

The observation x is assigned to the group for which

(x − µc)T Σ−1
c (x − µc) + log(| Σc |) − 2 log(πc)
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is smallest.
Set µc = x̄c, and replace | Σc | by an estimate Σ̂c.

[Note that the usual estimate of the variance-covariance matrix (or matrices) is positive definite,
providing that the same observations are used in calculating all elements in the variance-covariance
matrix and X has no redundant columns.]

Then x is assigned to the group to which, after adjustments for possible differences in πc and | Σc |,
the Mahalanobis distance

(x − x̄c)T Σ̂c
−1

(x − x̄c)

of x from xc is smallest.
If a common variance-covariance matrix Σc = Σ can be assumed, a linear transformation is available

to a space in which the Mahalanobis distance becomes a Eucliean distance. Replace x by

z = (UT )−1x

and x̄c by z̄c = (UT )−1x̄c where U is an upper triangular matrix such that UT U = Σ̂. Then

(x − µc)T W−1(x − µc) = (z − z̄c)T (z − z̄c)

which in the new space is the squared Euclidean distance to from z to z̄c.
A result of the lda calculations is thus to determine, for each observation, a distances from each

of the g group means. In general, these means define a hypplane in g − 1 dimensional space. Three
group means define a plane, four group means define a 3-dimensional hyperplane, and so on.

Note: For estimation of the posterior probabilities, the simplest approach is that described above.
Thus, replace p(c|x; θ) by p(c|x; θ̂) for calculation of posterior probabilities (the ‘plug-in’ rule). Here, θ is
the vector of parameters that must be estimated. The functions predict.lda() and predict.qda()

offer the alternative estimate method="predictive", which takes account of uncertainty in p(c|x; θ̂).
Note also method="debiased", which may be a reasonable compromise between method="plugin"

and method="predictive"

1.1.2 Canonical discriminant analysis

Here we assume a common variance-covariance matrix. As described above, replace x by

z = UT−1x

where U is an upper triangular matrix such that UTU = Σ̂. The estimated variance-covariance matrix
of z is then the identity matrix. Observe that

v̂ar[z] = E[UT−1
(x − µ)(x − µ)T U−1]

= UT−1
E[(x − µ(x − µ)T ]U−1

= UT−1
Σ̂U−1

= Ip, where Ip is the p × p identity matrix.

The between classes variance-covariance matrix becomes

B̃ = UT−1BU−1

The ratio of between to within class variance of the linear combination αT z is then

E[αT (z − µ)(z − µ)Tα =
αT B̃α
α̃T α̃

= αT B̃α, subject to the constraint ‖ α ‖= 1.
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The matrix B̃ admits the principal components decomposition

B̃ = λ1u1uT
1 + λ2u2uT

2 + . . . + λruruT
r

The choice α = u1 maximizes the ratio of the between to the within group variance, a fraction λ1 of
the total. The choice α = u2 accounts for the next largest proportion λ2, and so on.

The vectors u1, . . . ur are known as “linear discriminants” or “canonical variates”. Scores, which
are conveniently centered about the mean over the data as a whole, are available on each observation
for each discriminant. These locate the observations in r-dimensional space, where r is at most
min(g − 1, p). A simple rule is to assign observations to the group to which they are nearest, i..e., the
distance dc is smallest in a Euclidean distance sense.

For plotting in two dimensions, one takes the first two sets of discriminant scores. A point zi that
is represented as

ζi1u1 + ζi2u2 + ... + ζirur

is plotted in two dimensions as (ζi1, ζi2), or in three dinsensions as (ζi1, ζi2, ζi3). The amounts by which
the original columns of xi need to be multiplied to give ζi1 are given by the first column of the list
element scaling in the lda object. For ζi2, the elements are those in the second column, and so on.
See the example below.

As variables have been scaled so that within group variance-covariance matrix is the identity, the
variance in the transformed space is the same in every direction. An equal scaled plot should therefore
be used to plot the scores.

1.1.3 Linear Discriminant Analysis – Fisherian and other

Fisher’s linear disciminant analysis was a version of canonical discriminant analysis that used a single
discriminant axis. The more general case, where there can be as many as r = min(g−1, p) discriminant
functions, is described here.

The theory underlying lda() assigns x to the class that maximizes the likelihood. This is equivalent
to choosing the class c that minimizes dc + log(πc), where if the same estimates are used for W and
B, dc is the distance as defined for Fisherian linear discriminant analysis. Recall that πc is the prior
probability of class c.

The output from lda() includes the list element scaling, which is a matrix with one row for
each column of X and one column for each discriminant function that is calculated. This gives the
discriminant(s) as functions of the values in the matrix X.

There are two ways that one can run lda() and/or qda():

• With the argument CV=TRUE, leave-one-out cross-validation is used to return a list with compo-
nents class (the class assigned by the cross-validation) and posterior (the posterior probabil-
ities).

• For purposes other than leave-one-out cross-validation, use the argument CV=FALSE, which is
the default.

1.2 Example – analysis of the forensic glass data

The data frame fgl in the MASS gives 10 measured physical characteristics for each of 214 glass
fragments that are classified into 6 different types. As noted above, the data frame fgl has 10
measured physical characteristics for each of 214 glass fragments that are classified into 6 different
types.

First, fit a linear discriminant analysis, and use leave-one-out cross-validation to check the accuracy,
thus:

> fglCV.lda <- lda(type ~ ., data=fgl, CV=TRUE)

> tab <- table(fgl$type, fglCV.lda$class)

> ## Confusion matrix

> print(round(apply(tab, 1, function(x)x/sum(x)), digits=3))
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WinF WinNF Veh Con Tabl Head

WinF 0.729 0.237 0.647 0.000 0.111 0.034

WinNF 0.229 0.684 0.353 0.462 0.222 0.069

Veh 0.043 0.000 0.000 0.000 0.000 0.000

Con 0.000 0.039 0.000 0.462 0.000 0.034

Tabl 0.000 0.026 0.000 0.000 0.556 0.000

Head 0.000 0.013 0.000 0.077 0.111 0.862

Now run the function with CV=FALSE, and examine the output:

> opt <- options(digits=2)

> fgl.lda <- lda(type ~ ., data=fgl)

> fgl.lda

Call:

lda(type ~ ., data = fgl)

Prior probabilities of groups:

WinF WinNF Veh Con Tabl Head

0.327 0.355 0.079 0.061 0.042 0.136

Group means:

RI Na Mg Al Si K Ca Ba Fe

WinF 0.718 13 3.55 1.2 73 0.45 8.8 0.0127 0.057

WinNF 0.619 13 3.00 1.4 73 0.52 9.1 0.0503 0.080

Veh -0.036 13 3.54 1.2 72 0.41 8.8 0.0088 0.057

Con 0.928 13 0.77 2.0 72 1.47 10.1 0.1877 0.061

Tabl -0.544 15 1.31 1.4 73 0.00 9.4 0.0000 0.000

Head -0.884 14 0.54 2.1 73 0.33 8.5 1.0400 0.013

Coefficients of linear discriminants:

LD1 LD2 LD3 LD4 LD5

RI 0.31 0.029 0.36 0.247 -0.80

Na 2.38 3.165 0.46 6.924 2.40

Mg 0.74 2.986 1.57 6.850 2.80

Al 3.34 1.725 2.20 6.419 0.94

Si 2.45 3.006 1.70 7.542 0.96

K 1.57 1.862 1.29 8.076 2.82

Ca 1.01 2.373 0.65 6.697 3.71

Ba 2.31 3.443 2.60 6.438 4.41

Fe -0.51 0.217 1.20 -0.045 -1.30

Proportion of trace:

LD1 LD2 LD3 LD4 LD5

0.815 0.117 0.041 0.016 0.011

> options(opt)

Observe that 93% of the information, as measured by the trace, is in the first two discriminants. We
can plot scores on these discriminants, one against the other, as in Figure 1:



1 LINEAR METHODS FOR DISCRIMINATION 8

Discriminant 1

D
is

cr
im

in
an

t 2

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6

WinF
WinNF

Veh
Con

Tabl
Head

Figure 1: Visual representation of scores de-
rived from linear discriminant analysis, for
the forensic glass data. A six-dimensional
pattern of separation between the categories
has been collapsed down to two dimensions.
Some categories may therefore be better dis-
tinguished than is evident from this figure.

The code for Figure 1 is:

> library(lattice)

> scores <- predict(fgl.lda)$x

> gph <- xyplot(scores[,2] ~ scores[,1], groups=fgl$type,

xlab="Discriminant 1", ylab="Discriminant 2",

aspect=1, scales=list(tck=0.4), auto.key=list(columns=3),

par.settings=simpleTheme(alpha=0.6),

title="Plot shows first two linear discriminant scores")

> print(gph)

The discriminant functions

The following demonstrates the use of the information, giving details of the linear discriminant func-
tions, in the component scaling of the model object fgl.lda:

library(MASS)

fgl.lda <- lda(type ~ ., data=fgl)

scores <- predict(fgl.lda, dimen=5)$x # Default is dimen=2

## Now calculate scores from other output information

checkscores <- model.matrix(fgl.lda)[, -1] %*% fgl.lda$scaling

## Center columns about mean

checkscores <- scale(checkscores, center=TRUE, scale=FALSE)

plot(scores[,1], checkscores[,1]) # Repeat for remaining columns

93% of the information, as measured by the trace, is in the first two discriminants.

1.2.1 Two groups – comparison with logistic regression

Logistic regression, which can be handled using R’s function glm(), is a special case of a Generalized
Linear Model (GLM). The approach is to model p(c|x; θ̂) using a parametric model that may be the
same logistic model as for linear and quadratic discriminant analysis.

In this context it is convenient to change notation slightly, and give X an initial column of ones.
In the linear model and generalized linear model contexts, X has the name “model matrix”.

The vector x is a row of X, but in column vector form. Then if π is the probability of member-
shipÂăin the second group, the model assumes that

log(π/(1 − π) = β′x

where β is a constant.
Compare logistic regression with linear discriminant analysis:
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• Inference is conditional on the observed x. A model for p(x|c) is not required. Results are
therefore more robust against the distribution p(x|c).

• Parametric models with “links” other than the logit f (π) = log(π/(1 − π) are available. Where
there are sufficient data to check whether one of these other links may be more appropriate, this
should be done. Or there may be previous experience with comparable data that suggests use
of a link other than the logit.

• Observations can be given prior weights.

• There is no provision to adjust predictions to take account of prior probabilities, though this
can be done as an add-on to the analysis.

• The fitting procedure minimizes the deviance, which is twice the difference between the log-
likelihood for the model that is fitted and the loglikelihood for a ‘saturated’ model in which
predicted values from the model equal observed values. This does not necessarily maximize
predictive accuracy.

• Standard errors and Wald statistics (roughly comparable to t-statistics) are provided for param-
eter estimates. These are based on approximations that may fail if predicted proportions are
close to 0 or 1 and/or the sample size is small.

1.2.2 How important are the linearity assumptions?

The linearity assumptions are restrictive, even allowing for the use of regression spline terms to model
non-linear effects. It is not obvious how to choose the appropriate degree for each of a number of
terms. The attempt to investigate and allow for interaction effects adds further complications. In
order to make progress with the analysis, it may be expedient to rule out any but the most obvious
interaction effects. These issues affect regression methods (including GLMs) as well as discriminant
methods.

1.2.3 Low-dimensional Graphical Representation

In linear discriminant analysis, discriminant scores in as many dimensions as seem necessary are used
to classify the points. These scores can be plotted. Each pair of dimensions gives a two-dimensional
projection of the data. If there are three groups and at least two explanatory variables, the two-
dimensional plot is a complete summary of the analysis. Even where higher numbers of dimensions
are required, two dimensions may capture most of the information. This can be checked.

With most other methods, a low-dimensional representation does not arise so directly from the
analysis. An approach that will be demonstrated with random forests, can be adapted for use with
other methods.

1.3 A further example – cuckoo egg lengths

To illustrate linear and quadratic discriminant analysis, we will use the data set cuckoos (DAAG
package), in the first instance limiting attention to hedge sparrow and wren nests. This dataset
provides measurements on the length and breadth of eggs of each of six host species. Because there
are just two measurements, a two-dimensional representation provides a complete description of the
results of the analysis. Any plot of scores will be a rotated version of the plot of length versus
breadth.

Examining cuckoos.lda$scaling, the entries in the column headed LD1 are the coefficients of
length and breadth that give the first set of discriminant scores. Those in the column headed LD2

give the second set of discriminant scores. These scores can be obtained directly from the calculation
predict(cuckoos.lda)$x

The following uses leave-one-out cross-validation to give an assessments of the accuracy for lda()
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> ## Leave-one-out cross-validation

> ## Accuracies for linear discriminant analysis

> cuckooCV.lda <- lda(species ~ length + breadth,

data=cuckoos, CV=TRUE)

> confusion(cuckoos$species, cuckooCV.lda$class,

gpnames=abbreviate(levels(cuckoos$species), 10))

Overall accuracy = 0.433

This assumes the following prior frequencies:

hedg.sprrw meadow.ppt pied.wagtl robin tree.pipit wren

0.117 0.375 0.125 0.133 0.125 0.125

Confusion matrix

Predicted (cv)

Actual hedg.sprrw meadow.ppt pied.wagtl robin tree.pipit wren

hedg.sprrw 0.000 0.571 0.143 0.071 0.143 0.071

meadow.ppt 0.000 0.867 0.067 0.000 0.022 0.044

pied.wagtl 0.067 0.467 0.200 0.067 0.067 0.133

robin 0.000 0.625 0.188 0.000 0.062 0.125

tree.pipit 0.067 0.667 0.200 0.067 0.000 0.000

wren 0.000 0.267 0.000 0.067 0.000 0.667

The following uses leave-one-out cross-validation to give assessments of the accuracy for qda():

> ## Accuracies for quadratic discriminant analysis

> cuckooCV.qda <- qda(species ~ length + breadth,

data=cuckoos, CV=TRUE)

> acctab <-confusion(cuckoos$species, cuckooCV.qda$class,

gpnames=abbreviate(levels(cuckoos$species), 10),

printit=FALSE)

> tab <- table(cuckoos$species)

> ##

> ## Overall accuracy

> sum(diag(acctab)*tab)/sum(tab)

[1] 0.425

> ## Confusion matrix

> round(acctab, 3)

Predicted (cv)

Actual hedg.sprrw meadow.ppt pied.wagtl robin tree.pipit wren

hedg.sprrw 0.214 0.429 0.143 0.071 0.000 0.143

meadow.ppt 0.000 0.822 0.044 0.000 0.044 0.089

pied.wagtl 0.067 0.533 0.067 0.067 0.133 0.133

robin 0.000 0.688 0.188 0.000 0.000 0.125

tree.pipit 0.200 0.600 0.133 0.067 0.000 0.000

wren 0.067 0.133 0.000 0.133 0.000 0.667

The calculations that follow will require lda() and qda() fits with CV=FALSE, which is the default:

> cuckoos.lda <- lda(species ~ length + breadth, data=cuckoos)

> cuckoos.qda <- qda(species ~ length + breadth, data=cuckoos)

Figure ??A plots length versus breadth, with the axes for the discriminant scores added.
Figure ??B shows 50% contours for distinguishing wren from not-wren, both for the lda() analysis

( solid line) and for the qda() analysis (gray line). The countours are very different. These different
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Figure 2: Length versus breadth, compared between cuckoo eggs laid in hedge sparrow and those laid
in wren nests. Panel A overlays the axes for the scores. Panel B shows the estimated 50% boundary
line for distinguishing wren from not-wren.

contours lead in each case to a cross-validated accuracy of 66.7% for correctly predicting wren eggs
as wren – a close agreement that may seem surprising.

The following creates a graphics object that plots the points:

> gph <- xyplot(length ~ breadth, groups=species, data=cuckoos,

type=c("p"), auto.key=list(columns=2), aspect=1,

scales=list(tck=0.5), par.settings=simpleTheme(pch=16))

The code for Figure 2A is then:

> library(latticeExtra) # This package has the function layer()

> LDmat <- cuckoos.lda$scaling

> ld1 <- LDmat[,1]

> ld2 <- LDmat[,2]

> library(DAAGxtras)

> gm <- sapply(cuckoos[, c("length", "breadth")], mean)

> av1 <- gm[1] + ld1[2]/ld1[1]*gm[2]

> av2 <- gm[1] + ld2[2]/ld2[1]*gm[2]

> gphA <- gph + layer(panel.abline(av1, -ld1[2]/ld1[1], lty=1),

panel.abline(av2, -ld2[2]/ld2[1], lty=2))

The code for Figure 2B is:

> x <- pretty(cuckoos$breadth, 20)

> y <- pretty(cuckoos$length, 20)

> Xcon <- expand.grid(breadth=x, length=y)

> cucklda.pr <- predict(cuckoos.lda, Xcon)$posterior

> cuckqda.pr <- predict(cuckoos.qda, Xcon)$posterior

> gphB <- gph + as.layer(contourplot(cucklda.pr[,"wren"] ~ breadth*length,

at=c(0,.5,1), labels=c("", "lda",""),

label.style="flat",

data=Xcon),

axes=FALSE) +

as.layer(contourplot(cuckqda.pr[,"wren"] ~ breadth*length,

at=c(0,.5,1), labels=c("", "qda",""),
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label.style="flat",

data=Xcon),

axes=FALSE)

> gphB

For quadratic discriminant analysis, use qda() in place of lda().

2 Accuracy comparisons

The function compareModels() (DAAGxtras) can be used to compare the accuracies of alternative
model fits, checking for consistency over the data as a whole. Three model fits will be compared – the
lda() fit above, the qda() fit above, and a variation on the lda() fit that includes terms in length2̂,
breadth2̂ and length*breadth

> cucklda.pr <- cuckooCV.lda$posterior

> cuckqda.pr <- cuckooCV.qda$posterior

> cucklda.pr2 <- lda(species ~ length + breadth + I(length^2)

+ I(breadth^2) + I(length*breadth), CV=TRUE,

data=cuckoos)$posterior

> compareModels(groups=cuckoos$species,

estprobs=list(lda=cucklda.pr, qda=cuckqda.pr,

"lda plus"=cucklda.pr2))

[1] "Average accuracies for groups:"

WinF WinNF Veh Con Tabl Head

0.1703 0.5113 0.1467 0.1497 0.1574 0.5780

Approx sed

0.0271

[1] "Average accuracies for methods:"

lda qda lda plus

0.3342 0.3402 0.3510

Approx sed

0.0049

3 Tree-based methods and random forests

On a scale in which highly parametric methods lie at one end and highly non-parametric methods at
the other, linear discriminant methods lie at the parametric end, and tree-based methods and random
forests at the non-parametric extreme. An attraction of tree-based methods and random forests is
that model choice can be pretty much automated.

Figure 3 is a visual summary of results from the use of tree-based classification. The three classes
are from a clinical classification of Diabetes – overt (overt diabetic), chemical (chemical diabetic),
and normal (normal).

The clinical measures (explanatory variables) are relwt (relative weight), fpg (fasting plasma
glucose), glucArea (glucose area), Insulin (insulin area), and SSPG (steady state plasma glucose).

Tree-based classification proceeds by constructing a sequence of decision steps. At each node, the
split is used that best separates the data into two groups. Here (Figure 3) tree-based regression does
unusually well (CV accuracy = 97.2%), perhaps because it is well designed to reproduce a simple form
of sequential decision rule that has been used by the clinicians.

How is ‘best’ defined? Splits are chosen so that the Gini index of “impurity” is minimized. Other
criteria are possible, but this is how randomForest() constructs its trees.

3.0.1 Random forests

The random forest methodology will usually improve (but not here), sometimes quite dramatically,
on tree-based classification. Figure 4 shows trees that have been fitted to different bootstrap samples
of the diabetes data. Typically 500 or more trees are fitted, without a stopping rule. Individual trees
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Figure 3: Can the clinical diagnosis be derived
directly from the five available clinical measures?
The graph shows the classification rule that is
given by a tree-based classification.

are likely to overfit. As each tree is for a different random sample of the data, there is no overfitting
overall.

Figure 5 is a visual summary of the random forest classification result. The proportion of trees in
which any pair of points appear together at the same node may be used as a measure of the“proximity”
between that pair of points. Then, subtracting proximity from one to obtain a measure of distance,
an ordination method is used to find a representation of those points in a low-dimensional space.

3.1 The randomForests() Function

A good first check on the adequacy of “linear” methods in the style of lda() and qda() adequate
is comparison with the highly nonparametric analysis of the function randomForest() ( randomFor-
est package). Random Forests may do well when complex interactions are required to explain the
dependence.

The randomForest() function can be used in a manner that is highly automatic. There is relatively
limited scope for tuning. Such tuning as is possible will often make a very limited improvement.

The random forests methodology takes many (the randomForest() default is 500) different boot-
strap random samples from the data, each with the same number of observations as the original data.
For each such random sample, it takes a random sample of variables, and builds a tree. Splitting
of trees usually to the fullest possible extent. The class to which an observation will be assigned is
determined by taking a vote between trees.

For each bootstrap sample, predictions can be made for the observations that were not included
– i.e., for the out-of-bag data. This is done for each bootsrap sample. Comparison with the actual
group assignments then provides an unbiased estimate of accuracy.

In the randomForest() implementation, there is no direct provision for varying prior probabilities
from the relative group frequencies. The same effect can however be achieved by varying the sample
size (sampsize between groups.

4 References

References

Maindonald, J. H. and Braun, W.J. 2010. Data Analysis and Graphics Using R – An Example-
Based Approach. 3rd edition, Cambridge University Press.
<URL:http://www.maths.anu.edu.au/~johnm/r-book.html>
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Each tree is for a different random with replacement
('bootstrap') sample of the data, and sample of variables

Each tree has one vote; the majority wins

|
fpg>=118.5

fpg>=100.5
relwt>=1.045Insulin>=228.5overt   

chemicalchemicalnormal  normal  

|
fpg>=117

Insulin>=294.5

overt   
chemical normal  

|
fpg>=117

relwt>=1.045
fpg>=102.5

overt   
chemicalchemicalnormal  

|
fpg>=117

SSPG>=192

overt   
chemical normal  

|
glucArea>=419.5

glucArea>=656.5

overt   chemical

normal  

|
fpg>=119

relwt>=1.01

overt   
chemical normal  

|
glucArea>=420.5

glucArea>=596.5

overt   chemical
normal  

|
glucArea>=420.5

fpg>=116

overt   chemical
normal  

|
glucArea>=408

glucArea>=656.5

overt   chemical

normal  

|
fpg>=117

SSPG>=150

overt   
chemicalnormal  

|
glucArea>=422

fpg>=118.5

overt   chemical
normal  

|
glucArea>=408

glucArea>=606

overt   chemical
normal  

Figure 4: The left panel is a classification tree that was derived from tree-based classification. Each
tree in the right panel is for a different bootstrap sample of the diabetes data. Additionally, a different
random sample of variables is used for each different tree. The final classification is determined by a
random vote over all trees.
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Figure 5: The plot is an attempt to repre-
sent, in two dimensions, the random forest
result. This plot tries hard to reflect proba-
bilities of group membership assigned by the
analysis. It does not result from a ’scaling’
of the feature space.
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[This is aimed at practicing scientists who have some modest statistical sophistication, and at
statistical practitioners. It demonstrates the use of the R system for data analysis and for graphics.]

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University Press.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. Springer-Verlag, 4
edition. See also R Complements to Modern Applied Statistics with S.
http://www.stats.ox.ac.uk/pub/MASS4/

[This is a wide-ranging account of statistical methods, including statistical learning methods, with
details of the S-PLUS and R code required to carry out the computations. Note especially pp.331–
341 (lda and qda) and pp.187–198 (logistic and other GLMs).]


