
Lattice With Layers –
layer() and as.layer() (from latticeExtra)1

J H Maindonald
http://www.maths.anu.edu.au/~johnm

Centre for Mathematics and Its Applications
Australian National University.

Contents

1 Layering, and Alternatives to Layering 1

2 Overlaying Spatial Data 4

3 Adding to a dotplot 6

The layering features of the latticeExtra package, due to Felix Andrews, appeared
subsequent to the final draft of Maindonald & Braun (2010), They are a powerful and
useful supplement to the abilities of the lattice package. Examples are given that demon-
strate the layering approach, in several instances offering for comparison alternatives that
achieve the same end result.

1 Layering, and Alternatives to Layering

Each lattice command that creates a graph has its own panel function. Perhaps the
most obvious way to gain detailed control of panel contents is to create one’s own panel
function, which in the simplest case could be a sequence of calls to several of the variety
of panel functions that are available in lattice. Or the panel function can be modified in
a call to the function update().

The layer(), as.layer() and related functions in the latticeExtra package add fur-
ther flexibility. Both add a new “layer” to a graphics object.

• The function layer() allows as arguments, passed via the ... argument, any
sequence of statements that might appear in a panel function. A data argument
can be supplied from which new variables can be taken.

1©J. H. Maindonald 2011
Permission is given to make copies for personal study and class use.

Current draft: February 17, 2011

http://www.maths.anu.edu.au/~johnm

1 LAYERING, AND ALTERNATIVES TO LAYERING 2

• The function as.layer() makes it possible to superpose the contents of the panels
of two or more lattice objects.

Several variations on layer() are available. These are layer_(), glayer() and
glayer_(). Use glayer() when account must be taken of groups within each panel.
The functions layer_() and glayer_() add the new layer “underneath” the prior layer.

First attach the DAAG and latticeExtra packages. The lattice package will be
attached automatically along with latticeExtra.

> library(latticeExtra)

> library(DAAG)

Panel functions

The function xyplot() calls, by default, the panel function panel.xyplot(). The fol-
lowing are equivalent:

> xyplot(species ~ length, xlab="", data=cuckoos)

> xyplot(species ~ length, xlab="", data=cuckoos, panel=panel.xyplot)

NB: When a groups argument is supplied, panel.xyplot() calls panel.superpose().
The user’s own function can be substituted for panel.xyplot(). Such a function

might for example call panel.superpose(), followed or preceded by other available panel
functions. These include:

• panel.points() (alias lpoints()), panel.lines(), panel.text(), panel.rect(),
panel.arrows(), panel.segments(), panel.polygon()

(these are all documented on the same help page as panel.points())

• panel.abline(), panel.curve(), panel.loess(), panel.lmline(),
panel.rug(), panel.refline(), panel.average(), panel.fill(),
panel.mathdensity()

(these are all documented on the same help page as panel.abline()).

Note the aliases lpoints() for panel.points(), llines() for panel.lines(), etc.);
The following compares alternative approaches to modifying panel contents:

> library(DAAG)

> gph <- xyplot(Brainwt ~ Bodywt, data=primates, xlim=c(0,280))

For adding labels to the points, two possibilities are:

• Use the function layer() to add a second layer that has the labels, thus:

> gph + layer(panel.text(x,y, labels=rownames(primates), pos=4))

• Create a panel function that plots both points and labels, then using this to update
the graphics object:

1 LAYERING, AND ALTERNATIVES TO LAYERING 3

Bodywt

B
ra

in
w

t

200

400

600

800

1000

1200

50 100 150 200 250

●

●

●

●

●

Potar monkey

Gorilla

Human

Rhesus monkey

Chimp

Figure 1: Graph, with points labeled.

> ## Code that adds layer to basic graph

> ## Code that adds a further layer

> ## Alternative to code in the text

> gph <- xyplot(Brainwt ~ Bodywt,

data=primates,

xlim=c(0,280))

> addlabels <-

function(x,y,labs=rownames(primates))

panel.text(x,y, labels=labs, pos=4)

> print(gph + layer(addlabels(x,y)))

> my.panel <- function(x,y){

panel.xyplot(x,y)

panel.text(x,y, labels=rownames(primates), pos=4)}

> update(gph, panel=my.panel)

Code that accompanies Figure 1 shows variants on the above code, in which functions are
created outside the call to layer() or to update().

Note finally that we could have supplied the argument panel=my.panel in a single
function call, thus:

> xyplot(Brainwt ~ Bodywt, data=primates, xlim=c(0,280), panel=my.panel)

However the plot is obtained, Figure 1 shows the result.

Adding to conditioning plots

The following show haemoglobin count versus red blood cell count, distinguished by sport

within panel, and with separate panels for females and males:

> aisBS <- subset(ais, sport %in% c("B_Ball", "Swim"))

> basic1 <- xyplot(hc ~ rcc | sex, groups=sport[drop=TRUE],

data=aisBS)

> basic2 <- update(basic1,

par.settings=simpleTheme(pch = c(1,3)),

strip=strip.custom(factor.levels=c("Female","Male")),

In place of level names c("f", "m"),

use c("Female", "Male")

scales=list(tck=0.5), lty=1:2, lwd=1.5)

The xyplot() function has provision for the addition of separate lines for the two sports,
but not for parallel lines. Subsection 15.5.3 in Maindonald & Braun (2010) updates the
graphics object to use a specially created panel function.

The following, which adds a new layer that has the parallel lines, is simpler. First,
create the new layer:

2 OVERLAYING SPATIAL DATA 4

rcc

hc

36

38

40

42

44

46

48

4.0 4.5 5.0

●
●

●

●

●

●

● ●

●
● ●

●

●

Female

4.0 4.5 5.0

●

●

●
●

●

●

●

●

●

●
●

●

Male

Figure 2: Lines that are
parallel between sports
have been added to the
basic plot, as described
in the text.

> ## Create new layer that has the parallel lines

> layer2 <-

layer(parallel.fit <-

fitted(lm(y ~ groups[subscripts] + x)),

panel.superpose(x, parallel.fit, type = "a", ...))

Now plot the graph

> print(basic2+layer2)

Figure2 shows the plot that is required:
The following adds a new layer:

Observe that the arguments to the function layer() were the two commands:

> parallel.fit <- fitted(lm(y ~ groups[subscripts] + x))

> panel.superpose(x, parallel.fit, type = "a", ...)

These are executed in succession, adding the new layer to the plot. More generally, any
number of arguments, each an R command, can be supplied.

2 Overlaying Spatial Data

The data frame meuse (sp package) has data from locations near the village of Stein in
the Netherlands, in the floodplain of the river Meuse. Included are concentrations of
various heavy metals (cadmium, copper, lead, zinc), with x and y giving Eastings and
Northings in Netherlands topographical map coordinates.

The sp package has a function bubble() that uses the abilities of the lattice package
to plot spatial measurement data. Each point (location) is shown as a bubble. By default,
the area of the bubble is proportional to the value. The description of the argument obj
looks intimidating. There is however a function coordinates() that can be used to turn
a data frame or matrix into an object of the requisite class. Here, it will create an object
of class SpatialPointsDataFrame.

2 OVERLAYING SPATIAL DATA 5

> library(sp)

> data(meuse)

> coordinates(meuse) <- ~ x + y

The coordinates can be extracted using coordinates(meuse). Remaining columns of the
data are available from the data frame meuse@data.

Figure 3 shows a bubble plot for zinc.

zinc

Easting

N
or

th
in

g

330000

331000

332000

333000

178500 179000 179500 180000 180500 181000 181500

●●● ●

●
●

●●
●

●
●

●

●●
●●

●
●

●
●●●●

●
●●●

●
●

●

●
●●

●
●●

●
●●●
●

●●

●

●
●
●
●
●

●●

●●●●●
●

●●
●

●
●
●

●
●

●
●

●

●
●
●●

●●
●●
●

●
●
●●

●

●

●

●
●

●
●

●
● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●●
●●

●
●

●
●

●●
●

●

●

●

●

●
●

113
198
326
674.5
1839

Figure 3: Bubble plot
for zinc concentra-
tions. Areas of bub-
bles are proportional
to concentrations.
Locations are near
the village of Stein
(Netherlands), in the
floodplain of the river
Meuse.

Code is:

> ## Code

> ## library(sp)

> ## data(meuse)

> ## coordinates(meuse) <- ~ x + y

> library(lattice)

> gph <- bubble(meuse, zcol="zinc", scales=list(tck=0.5),

xlab="Easting", ylab="Northing")

> print(gph)

As the function bubble() uses the abilities of the lattice package, the layering abilities
of the latticeExtra package, described earlier in Subsection 1. can be used to overlay
additional information on the plot.

Figure 4 adds the river boundaries, using data from the dataset meuse.riv. This is a
matrix, with Eastings in column 1 and Northings in column 2.

3 ADDING TO A DOTPLOT 6

Zinc(ppm)

330000

331000

332000

333000

178500 179000 179500 180000 180500 181000 181500

●●● ●

●
●

●●
●

●
●

●

●●
●●

●
●

●
●●●●

●
●●●

●
●

●

●
●●

●
●●

●
●●●
●

●●

●

●
●
●
●
●

●●

●●●●●
●

● ●
●

●
●
●

●
●

●
●

●

●
●
●●

●●
●●
●

●
●
●●

●

●

●

●
●

●
●

●
● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●●
●●

●
●

●
●

●●
●

●

●

●

●
●
●

100
200
400
800
1600

Figure 4: Bubble plot
for zinc, with area of
bubbles proportional
to concentration.
River Meuse bound-
aries are in gray.

Code is:

> data(meuse); data(meuse.riv)

> coordinates(meuse) <- ~ x + y

> library(latticeExtra)

> gph <- bubble(meuse, "zinc", pch=1, key.entries = 100 * 2^(0:4),

main = "Zinc(ppm)", scales=list(axes=TRUE, tck=0.4)) +

layer(panel.lines(meuse.riv[,1], meuse.riv[,2], col="gray"))

> print(gph)

3 Adding to a dotplot

The graph will add error bars to a basic dotplot. The data are:

> numsDF <- data.frame(

species=rep(c("Jimajing teresaeta", "Sasquatch rutilusaeta"), c(3,3)),

bcat=rep(c("<2 y", "5-10 y", ">20 y"), 2),

estlog=c(0.286, 1.660, -0.616, 2.488, 3.689, 2.290),

halfwid=rep(c(0.198, 0.464), c(3,3)))

> numsDF$bcat <- factor(numsDF$bcat, levels=c("<2 y", "5-10 y", ">20 y"))

> ## Check the data

> print(numsDF, quote=FALSE)

3 ADDING TO A DOTPLOT 7

species bcat estlog halfwid

1 Jimajing teresaeta <2 y 0.286 0.198

2 Jimajing teresaeta 5-10 y 1.660 0.198

3 Jimajing teresaeta >20 y -0.616 0.198

4 Sasquatch rutilusaeta <2 y 2.488 0.464

5 Sasquatch rutilusaeta 5-10 y 3.689 0.464

6 Sasquatch rutilusaeta >20 y 2.290 0.464

Data are on a logarithmic (loge) scale. The following generates the numbers that will
be plotted:

> numsDF <- within(numsDF, {

estnum=exp(estlog)

lolim=exp(estlog-halfwid)

hilim=exp(estlog+halfwid)

}

)

First, create a graphics object that displays the estimated numbers.

> library(latticeExtra)

> uplim <- with(numsDF, sapply(split(hilim, species), max))

> gph <- dotplot(bcat ~ estnum | species, subscripts=TRUE,

scales=list(alternating=FALSE,relation="free"),

xlim=list(c(0, uplim[1]), c(0, uplim[2])),

data=numsDF,

layout=c(1,2))

Notice the use of the argument subscripts=TRUE in the call to dotplot(). The subscript
information, identifying the panels in which points are plotted, will be required when a
new layer is added.

Now create a layer that will be used to add the limits around the points:

> addlayer <- layer(panel.segments(lolim[subscripts], y,

hilim[subscripts], y),

data=numsDF)

The argument y refers to the panel-specific y-values for the initial dotplot. On the other
hand, the arguments lolim and hilim are taken from the data frame, and hence must
be subscripted.

Then plot the graph using the command:

> print(gph+addlayer)

Figure 5 shows the result:

REFERENCES 8

estnum

<2 y

5−10 y

>20 y

0 2 4 6

●

●

●

Jimajing teresaeta

<2 y

5−10 y

>20 y

0 20 40 60

●

●

●

Sasquatch rutilusaeta

Figure 5: The limits about
each point were added as
a second layer to a graph
that used the dotplot()

function.

One function to do all – segplot()

The latticeExtra package has the function segplot() that does the complete task in one
function call:

> segplot(bcat ~ lolim+hilim | species, centers=estnum, data=numsDF,

scales=list(x="free"), cex=1.5,

draw.bands=FALSE, lwd=2,

layout=c(1,2))

Note the use of the argument draw.bands=FALSE. With the default draw.bands=TRUE,
the lines that show the limits are replaced by rectangles.

References

Maindonald, J. H. and Braun, W.J. 2010. Data Analysis and Graphics Using R –
An Example-Based Approach, 3rd edition, Cambridge University Press.
<URL:http://www.maths.anu.edu.au/~johnm/r-book.html>

<URL: http://www.maths.anu.edu.au/~johnm/r-book.html>

	Layering, and Alternatives to Layering
	Overlaying Spatial Data
	Adding to a dotplot

