
Ordination – Low Dimensional Views

John Maindonald

August 29, 2010

Contents

1 Ordination 3
1.1 Distance measures . 3

1.1.1 Euclidean distances . 3
1.1.2 Non-Euclidean distance measures . 4

1.2 From distances to a configuration in Euclidean space 4
1.2.1 The connection with principal components . 5

1.3 Non-metric scaling . 5
1.4 Examples . 6

1.4.1 Australian road distances . 6
1.4.2 Genetic Distances – Hasegawa’s selected primate sequences 7
1.4.3 Pacific rock art . 9

2 Theory – From Distances to Representation in Euclidean Space 10
2.1 An exact representation? . 11

3 References 11

1

CONTENTS 2

1 ORDINATION 3

1 Ordination

Ordination is a generic name for methods for providing a low-dimensional view of points in multi-
dimensional space, such that“similar”objects are near each other and dissimilar objects are separated.
The plot(s) from an ordination in 2 or 3 dimensions may provide useful visual clues on clusters in
the data and on outliers. The methods described help all use some form of multi-dimensional scaling
(MDS)

Distances may be already given, or it may be necessary to start by calculating distances between
points. In either case, the distances are the starting point for an ordination. Similarities will be
transformed into distances before starting the ordination calculations.

Examples are:

1. From Australian road travel distances between cities and larger towns, can we derive a plausible
“map” showing the relative geographic locations?

2. Starting with genomic data, various methods are available for calculating genomic “distances ”
between, e.g., different insect species. The distance measures are based on evolutionary models
that aim to give distances between pairs of species that are a monotone function of the time
since the two species separated.

3. Given a matrix X of n observations by p variables, a low-dimensional representation is required,
i.e., the hope is that a major part of the information content in the data can be summarized
in a small number of constructed variables. There is typically no good model, equivalent to
the evolutionary models used by molecular biologists, that can be used to motivate distance
calculations. There is then a large element of arbritariness in the distance measure used.

If data can be separated into known classes that should be reflected in any ordination, then the
scores from classification using lda() may be a good basis for an ordination. Plots in 2 or perhaps 3
dimensions may then reveal additional classes and/or identify points that may be misclassified and/or
are in some sense outliers. It may indicate whether the classes that formed the basis for the ordination
seem real and/or the effectiveness of the discrimination method in choosing the boundaries between
classes.

The function randomForest() is able to return “proximities” that are measures of the closeness of
any pair of points. These can be turned into rough distance measures that can then form the basis
for an ordination. With Support Vector Machines, decision values are available from which distance
measures can be derived and used as a basis for ordination.

1.1 Distance measures

1.1.1 Euclidean distances

Treating the rows of X (n by p) as points in a p-dimensional space, the squared Euclidean distance
d2

i j between points i and j is

d2
i j =

p∑
k=1

(xik − x jk)2

The distances satistfy the triangle inequality

di j ≤ dik + dk j

The columns of X can be arbitrarily transformed before calculating the di j. Where all elements
of a column are positive, use of the logarithmic transformation is common. A logarithmic scale
makes sense for biological morphometric data, and for other data that has similar characteristics. For
morphometric data, the effect is to focus attention on relative changes in the various body proportions,
ignoring the overall magnitude.

The columns may be standardized before calculating distances, i.e., scaled so that the standard
deviation is one. The columns may be weighted differently. Use of an unweighted measure with all

1 ORDINATION 4

columns scaled to a standard deviation of one is equivalent to working with the unscaled columns and
calculating d2

i j as

d2
i j =

p∑
k=1

wi j(xik − x jk)2

where wi j = (sis j)−1 is the inverse of the product of the standard deviations for columns i and j.
Results may depend strongly on the distance measure.

1.1.2 Non-Euclidean distance measures

Euclidean distance is one of many possible choices of distance measures, still satisfying the triangle
inequality. As an example of a non-Euclidean measure, consider the Manhattan distance. This has

di j =

p∑
k=1

| xik − x jk |

The Manhattan distance is the shorest distance for a journey that always proceeds along one of the
co-ordinate axes. In Manhattan in New York, streets are laid out in a rectangular grid. This is then
(with k = 2) the walking distance along one or other street. For other choices, see the help page for
the function dist().

The function daisy() in the cluster package offers a still wider range of possibilities, including
distance measures that can be used when columns that are factor or ordinal. It has an argument
stand that can be used to ensure standardization when distances are calculated. Unless measurements
are comparable (e.g., relative growth, as measured perhaps on a logarithmic scale, for different body
measurements), then it is usually desirable to standardize before using ordination methods to examine
the data.

Irrespective of the method used for the calculation of the distance measure, ordination methods
yield a representation in Euclidean space. Depending on the distance measure and the particular set
of distances, an exact representation may or may not be possible.

See Gower & Legendre (1986) for a detailed discussion of the netric and Euclidean propoerties of
a wide variety of similarity coefficients.

1.2 From distances to a configuration in Euclidean space

Given a set of “distances” di j that satisfy the triangle inequality, there is in general no guarantee that
it will be possible to derive a configuration X in Euclidean that exactly reproduces those distances.
Where Euclidean distances are calculated between the rows of a matrix X, clearly the matrix X is
itself one possible configuration in Euclidean space. So also is XP, where P is an orthogonal matrix.

Suppose however that non-metric distances are derived from a matrix X. For example, they may
be Manhattan distances. For some distance measures, it is always possible to find a configuration
X in Euclidean space (an embedding) that exactly reproduces those distances. For other choices of
distance this is not always possible.

It is however always possible to find a configuration X in Euclidean space in which the distances are
approximated, perhaps rather poorly. This is true whether ot not the triangle inequality is satisfied. It
will become apparent in the course of seeking the configuration whether an exact embedding (matrix
X) is possible, and how accurate this embedding is.

Given such a matrix X if it exists, we can write

d2
i j =

p∑
k=1

(xik − x jk)2

=

p∑
k=1

x2
ik +

p∑
k=1

x2
jk − 2

p∑
k=1

xikx jk

Thus
d2

i j = qii + q j j − 2qi j

1 ORDINATION 5

where qii =
∑p

k=1 x
2
ik; qi j =

∑p
k=1 xikx jk. Observe that qi j is the (i, j)th element of the matrix Q = XXT .

Thus, the matrix Q has all the information needed to derive the distances. Because Q = XXT , it is
positive semidefinite.

The mapping from the qi j to the di j is one to one. Given distances, it is possible to find such a
matrix Q, if it exists. The detailed derivation is in Section 2. This shows that it is always possible to
derive a symmetric matrix Q. If and only if Q is positive definite, there is an exact embedding X in
Euclidean space.

Having thus recovered a symmetric matrix Q, the spectral decomposition yields

Q = UΛUT

where Λ is a diagonal matrix. The diagonal elements λi are ordered so that

λ1 ≥ λ2 . . . ≥ λn

Providing λi ≥ 0, choose

X = UΛ
1
2

As the rows and columns of Q sum to zero, Q is singular. Hence if Q is positive definite, as required
for exact embedding in Euclidean space, λi ≥ 0 for all i and λn = 0.

Important points are:

• Often, most of the information will be in the first few dimensions. We may for example be able
to approximate Q by replacing Λ in Q = UΛUT by a version of Λ in which diagonal elements
after the kth have been set to zero. If cmdscale() is called with eig=TRUE, it returns both the
eigenvalue information (the λi) and a goodness of fit statistic, by default (assuming at least two
non-zero λi) for the configuration with k = 2.

• If Q is not positive semidefinite, the ordination can still proceed. However one or more eigen-
values λi will now be negative. If relatively small, it may be safe to ignore dimensions that
correspond to negative eigenvalues. It is then more than otherwise desirable to check that the
ordination reproduces the distances with acceptable accuracy.

1.2.1 The connection with principal components

Let X be a matrix that is the basis for the calculation of Euclidean distances, after any transformations
and/or weighting. Then metric p-dimensional ordination, applied to Euclidean distances between the
rows of X, yields an orthogonal transformation of the space spanned by the columns of X. If the
successive dimensions are chosen to “explain” successively larger proportions of the trace of XXT , it
is equivalent to the principal components transformation. Thus cmdscale() yields, by a different set
of matrix manipulations, a principal components decomposition.

1.3 Non-metric scaling

These methods all start from “distances”, but allow greater flexibility in their use to create an ordi-
nation. The aim is to represent the “distances” in some specified number of dimensions, typically two
dimensions. As described here, a first step is to treat the distances as Euclidean, and determine a
configuration in Euclidean space. These Euclidean distances are then used as a starting point for a
representation in which the requirement that these are Euclidean distances, all determined with equal
accuracy, is relaxed. The methods that will be noted here are:

Sammon scaling: A configuration with distances d̃ is chosen to minimize a weighted squared
”stress”

1∑
i, j di j

∑
i, j

(di j − d̃i j)2

di j

1 ORDINATION 6

Kruskal’s non-metric multidimensional scaling: This aims to minimize∑
i, j(θ(di j) − d̃i j)2∑

i, j d̃2
i j

with respect to the configuration of points and an increasing function θ of the distance di j.

Often, it makes sense to give greater weight to small distances than to large distances. The distance
scale should perhaps not be regarded as rigid. Larger distances may not be measured on the same
Euclidean scale as shorter distances. The ordination should perhaps preserve relative rather than
absolute distances.

1.4 Examples

1.4.1 Australian road distances

The distance matrix that will be used is in the matrix audists, in the image file audists.Rdata.
Consider first the use of classical multi-dimensional scaling, as implemented in the function cmd-

scale():

> library(DAAGxtras)

> aupoints <- cmdscale(audists)

> plot(aupoints)

> text(aupoints, labels=paste(rownames(aupoints)))

An alternative to text(aupoints, labels=paste(rownames(aupoints))), allowing better place-
ment of the labels, is identify(aupoints, labels=rownames(aupoints)). We can compare the
distances in the 2-dimensional representation with the original road distances:

> audistfits <- as.matrix(dist(aupoints))

> misfit <- as.matrix(dist(aupoints)) - as.matrix(audists)

> for (j in 1:9)for (i in (j+1):10){

lines(aupoints[c(i,j), 1], aupoints[c(i,j), 2], col="gray")

midx <- mean(aupoints[c(i,j), 1])

midy <- mean(aupoints[c(i,j), 2])

text(midx, midy, paste(round(misfit[i,j])))

}

> colnames(misfit) <- abbreviate(colnames(misfit),6)

> print(round(misfit))

Adelad Alice Brisbn Broome Cairns Canbrr Darwin Melbrn Perth Sydney

Adelaide 0 140 -792 -156 366 20 11 82 482 -273

Alice 140 0 -1085 -175 -41 76 -118 106 -26 -314

Brisbane -792 -1085 0 198 319 -25 -233 -471 153 -56

Broome -156 -175 198 0 527 -7 6 -65 990 70

Cairns 366 -41 319 527 0 277 -31 178 8 251

Canberra 20 76 -25 -7 277 0 -1 -241 372 -8

Darwin 11 -118 -233 6 -31 -1 0 -12 92 -58

Melbourne 82 106 -471 -65 178 -241 -12 0 301 -411

Perth 482 -26 153 990 8 372 92 301 0 271

Sydney -273 -314 -56 70 251 -8 -58 -411 271 0

The graph is a tad crowded, and for detailed information it is necessary to examine the table.
It is interesting to overlay this “map” on a physical map of Australia.

> library(oz)

> oz()

1 ORDINATION 7

> points(aulatlong, col="red", pch=16, cex=1.5)

> comparePhysical <- function(lat=aulatlong$latitude, long=aulatlong$longitude,

x1=aupoints[,1], x2 = aupoints[,2]){

Get best fit in space of (latitude, longitude)

fitlat <- predict(lm(lat ~ x1+x2))

fitlong <- predict(lm(long ~ x1+x2))

x <- as.vector(rbind(lat, fitlat, rep(NA,10)))

y <- as.vector(rbind(long, fitlong, rep(NA,10)))

lines(x, y, col=3, lwd=2)

}

> comparePhysical()

An objection to cmdscale() is that it gives long distances the same weight as short distances. It is
just as prepared to shift Canberra around relative to Melbourne and Sydney, as to move Perth. It
makes more sense to give reduced weight to long distances, as is done by sammon() (MASS).

> aupoints.sam <- sammon(audists)

Initial stress : 0.01573

stress after 10 iters: 0.00525, magic = 0.500

stress after 20 iters: 0.00525, magic = 0.500

> oz()

> points(aulatlong, col="red", pch=16, cex=1.5)

> comparePhysical(x1=aupoints.sam$points[,1], x2 = aupoints.sam$points[,2])

Notice how Brisbane, Sydney, Canberra and Melbourne now maintain their relative positions much
better.

Now try full non-metric multi-dimensional scaling (MDS). This preserves only, as far as possible,
the relative distances. A starting configuration of points is required. This might come from the
configuration used by cmdscale(). Here, however, we use the physical distances.

> oz()

> points(aulatlong, col="red", pch=16, cex=1.5)

> aupoints.mds <- isoMDS(audists, as.matrix(aulatlong))

initial value 11.875074

iter 5 value 5.677228

iter 10 value 4.010654

final value 3.902515

converged

> comparePhysical(x1=aupoints.mds$points[,1], x2 = aupoints.mds$points[,2])

Notice how the distance between Sydney and Canberra has been shrunk quite severely.

1.4.2 Genetic Distances – Hasegawa’s selected primate sequences

Here, matching genetic DNA or RNA or protein or other sequences are available from each of the
different species. Distances are based on probabilistic genetic models that describe how gene sequences
change over time. The package ape implements a number of alternative measures. For details see
help(dist.dna).

Hasegawa’s sequences were selected to have as little variation in rate, along the sequence, as
possible. The sequences are available either from the DAAGxtras package or from the wepage
http://evolution.genetics.washington.edu/book. They can be read into R as:

1 ORDINATION 8

> ## Obtain data from the web page on the next line, calculate distances

> url <- "http://evolution.genetics.washington.edu/book/primates.dna"

> library(ape)

> primates.dna <- read.dna(url)

> ## Alternative - download and then read in data

> # download.file(webpage, destfile="primates.txt") # Alternative

> # primates.dna <- read.dna("primates.txt")

> ## Now calculate distances, using Kimura's K80 model

> primates.dist <- dist.dna(primates.dna, model="K80")

The DAAGxtras package has the dataset primateDNA. These are the same data, but stored in
character format. For use with dist.dna() use the function dist.dna() to convert the data to a
binary format. The following is an alternative to the code given above:

> ## Use dataset primateDNA from the DAAGbio package

> library(DAAGbio)

> library(ape)

> ## Calculate distances, using Kimura's K80 model

> primates.dist <- dist.dna(as.DNAbin(primateDNA), model="K80")

We now try for a two-dimensional representation, using cmdscale() from the MASS package:

> primates.cmd <- cmdscale(primates.dist)

> eqscplot(primates.cmd, xlab="Axis 1", ylab="Axis 2")

> lefrt <- 2+2*(primates.cmd[,1] < mean(par()$usr[1:2]))

> text(primates.cmd[,1], primates.cmd[,2], row.names(primates.cmd), pos=lefrt)

initial value 19.892084

iter 5 value 13.849956

iter 10 value 13.553589

final value 13.527427

converged

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Axis 1

A
xi

s
2

Mouse

Bovine

Lemur

Tarsier

Squir Monk

Jpn Macaq

Rhesus Mac
Crab−E.Mac

BarbMacaq

Gibbon
Orang

Gorilla

Chimp

Human

A: Metric scaling with K80 distances
●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

Axis 1

A
xi

s
2

Mouse

Bovine

Lemur

Tarsier

Squir Monk

Jpn MacaqRhesus Mac

Crab−E.Mac

BarbMacaq

GibbonOrang

Gorilla

Chimp

Human

A: MDS scaling with K80 distances

Figure 1: The plot on the left has used classical metric scaling, i.e., calculations seek a Euclidean
space representation of the distances. The plot on the right has used the isoMDS() function to show
results from Kruskal’s non-metric multidimensional scaling, i.e., the “distances” provide an ordering
in Euclidean space.

Now see how well Figure 1A reproduces the distances:

> d <- dist(primates.cmd)

> sum((d-primates.dist)^2)/sum(primates.dist^2)

1 ORDINATION 9

[1] 0.101

With only around 5% of the sum of squared distances unaccounted for, it is hardly worth examining
a 3-dimensional representation. Here, however, is the code:

> library(lattice)

> primates.cmd <- cmdscale(primates.dist, k=3)

> cloud(primates.cmd[,3] ~ primates.cmd[,1]*primates.cmd[,2])

> d <- dist(primates.cmd)

> sum((d-primates.dist)^2)/sum(primates.dist^2)

Now repeat the above with sammon() and mds().

> primates.sam <- sammon(primates.dist, primates.cmd, k=2)

> eqscplot(primates.sam$points)

> text(primates.sam$points[,1], primates.sam$points[,2],

row.names(primates.sam$points), pos=lefrt)

There is no harm in asking for three dimensions, even if only two of them will be plotted.
The following code is used to for the multidimensional scaling representation in Figure 1B:

> primates.mds <- isoMDS(primates.dist, primates.cmd, k=2)

> eqscplot(primates.mds$points, xlab="Axis 1", ylab="Axis 2")

> text(primates.mds$points[,1], primates.mds$points[,2],

row.names(primates.mds$points), pos=lefrt)

1.4.3 Pacific rock art

Here, the the 614 features were all binary – the presence or absence of specific motifs in each of
98 Pacific sites. (Actually, there were 103 sites, but 5 were omitted because they had no motifs in
common with any of the other sites.) Data are from Meredith Wilson’s PhD thesis at Australian
National University.

The binary measure of distance was used – the number of locations in which only one of the sites
had the marking, as a proportion of the sites where one or both had the marking. Here then is the
calculation of distances:

> pacific.dist <- dist(x = as.matrix(rockArt[-c(47,54,60,63,92), 28:641]),

method = "binary")

> sum(pacific.dist==1)/length(pacific.dist)

[1] 0.631

> plot(density(pacific.dist, to = 1))

> ## Now check that all columns have some distances that are less than 1

> symmat <- as.matrix(pacific.dist)

> table(apply(symmat, 2, function(x) sum(x==1)))

13 21 27 28 29 32 33 35 36 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56

1 1 1 1 2 1 2 1 2 2 1 2 4 3 1 3 1 2 1 1 2 2 3 2 2 2

57 58 61 62 64 65 66 67 68 69 70 71 73 75 76 77 79 81 83 84 85 90 91 92 93 94

1 3 3 1 2 1 1 1 3 3 1 1 4 1 2 1 1 1 2 1 1 3 1 1 3 1

95 96 97

1 3 4

It turns out that 63% of the distances were 1. This has interesting consequences, for the plots we now
do.

2 THEORY – FROM DISTANCES TO REPRESENTATION IN EUCLIDEAN SPACE 10

> pacific.cmd <- cmdscale(pacific.dist)

> plot(pacific.cmd)

> pacific.mds <- isoMDS(pacific.dist, pacific.cmd)

initial value 54.388728

iter 5 value 40.556391

iter 10 value 37.297430

iter 15 value 36.120966

iter 20 value 35.291828

iter 25 value 34.785333

iter 30 value 34.259107

iter 35 value 33.771381

iter 35 value 33.739070

iter 35 value 33.723549

final value 33.723549

converged

> plot(pacific.mds$points)

2 Theory – From Distances to Representation in Euclidean
Space

Given an embedding X in Euclidean space, if it exists, the squared Euclidean distance between points
i and j can be written

d2
i j =

p∑
k=1

(xik − x jk)2

=

p∑
k=1

x2
ik +

p∑
k=1

x2
jk − 2

p∑
k=1

xikx jk

Thus
d2

i j = qii + q j j − 2qi j (1)

where qii =
∑p

k=1 x
2
ik; qi j =

∑p
k=1 xikx jk.

Observe that qi j is the (i, j)th element of the matrix Q = XX′. Thus, the matrix XX′ has all the
information needed to construct distances.

Now require that columns of X are centered, i.e.

n∑
i=1

xik = 0, i = 1, . . . p

This implies that

n∑
i=1

qi j =

n∑
i=1

(
p∑

k=1

xikx jk)

=

p∑
k=1

(
n∑

i=1

xikx jk)

=

p∑
k=1

(x jk

n∑
i=1

xik)

= 0

i.e., that the rows and columns of Q sum to zero.

3 REFERENCES 11

2.1 An exact representation?

It will now be shown that given distances di j, then equation 1 uniquely determines a matrix Q whose
rows and columns sum to zero. The demand that the di j satisfy the triangle inequality is unfortunately
not enough to guarantee that this matrix will be positive definite, as is required to yield a configuration
that can be exactly embedded in Euclidean space.

Set A =
∑n

i=1 qii. Summing di j = qii + q j j − 2qi j over i, it follows that

n∑
i=1

d2
i j = A + nq j j (2)

n∑
j=1

d2
i j = A + nqii (3)

n∑
i=1

n∑
j=1

d2
i j = 2nA (4)

From equation 4

A =
1

2n

n∑
i=1

n∑
j=1

d2
i j (5)

From equation 1, substituting for qii and q j j from equations 2 and 3 above, and then for A from
equation 5 above

qi j = −
1
2

d2
i j +

1
2n

(
n∑

i=1

d2
i j +

n∑
j=1

d2
i j − 2A)

= −
1
2

d2
i j +

1
2n

(
n∑

i=1

d2
i j +

n∑
j=1

d2
i j −

1
n

n∑
i=1

n∑
j=1

d2
i j)

Having thus recovered a symmetric matrix Q, the spectral decomposition yields

Q = UΛUT

where Λ is a diagonal matrix. The diagonal elements λi are ordered so that

λ1 ≥ λ2 . . . ≥ λn

An exact embedding is possible if and only if λi ≥ 0 for all i. For this, set

X = UΛ
1
2

3 References

References

Gower, J. C. & Legendre, P. 1986. Metric and Euclidean properties of dissimilarity coefficients.
Journal of Classification 3: 5-48.

