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Abstract

Primarily, the purpose of this document is to note issues for the use of linear and gen-
eralized linear models, and of other regression models. Worked examples, as far as possible
using data that have been a basis for published research, are used as a basis for discussion
of the following issues:

Missing variables; noting very striking examples that arise in multi-way tables, perhaps
modeled using logistic regression;
[Maindonald & Braun (2007, Subsections 2.2.1, 3.4.5, 6.8.3 & Section 8.3)]

Observational versus experimental data – implications for interpretation and inference;
Maindonald & Braun (2007, Chapter 6); Rosenbaum (2002)]

Variable selection, noting the use of resampling methods to obtain realistic “error”
estimates;
[Maindonald & Braun (2007, Chapter 6)]

Errors in explanatory variables; implications of classical measurement error for infer-
ence;
[Maindonald & Braun (2007, Chapter 6); Carroll (2006, Chapter 1)]

Regression on constructed variables – propensity scores, with brief mention of principal
components and partial least squares;
[Maindonald & Braun (2007, Chapter 13)]

A statistical analysis, properly conducted, is a delicate dissection of uncertainties, a
surgery of suppositions. M.J.Moroney
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1 Introduction

Applications of linear models are the focus of this course. Much of the discussion will apply also
to non-linear models. In the sense used here, linear models are linear in the parameters, not
necessarily in the variables.

Models in which E[y] (the “fixed part” of the model) is a linear combination of the explanatory
variables are obviously linear models. These are linear both in the parameters and in the variables.
This is unnecessarily restrictive. The classical theory for linear models requires only that models
are linear in the parameters.

1.1 Examples

We will delay attention to the magic of how models are fitted, first examining several examples
of output from the fitting process.

1.1.1 A severely constrained sample of books

Data, on book dimensions and book weight, are from the oddbooks dataset in R. The discussion
will follow (Maindonald & Braun, 2007, Section 6.5, pp. 196–199).

1.1.2 The Age of the Universe

Here, there is a single explanatory variable:

library(gamair)
data(hubble)
names(hubble) <- c("Velocity", "Distance")
plot(Velocity ~ Distance, data=hubble)
hubble.lm <- lm(Velocity ~ -1 + Distance, data=hubble)
hubble.rlm <- rlm(Velocity ~ -1 + Distance, data=hubble)

Note the recourse to the function rlm(). This gives a robust fit, i.e., the effect of points that are
identified as outliers is downweighted.

Note also lqs(), which gives a resistant fit. Points with large residuals are ignored. If the
number of data points n is large relative to the total number of model parameters p, the default
settings have the effect of ignoring slightly less than half of the points.

The plot gives a suggestion of curvature. This might be accommodated by including the
square of the distance as a further explanatory variable, thus:

hubble.lm2 <- rlm(Velocity ~ -1 + Distance + I(Distance^2), data=hubble)

1.1.3 Tomato plant growth – three different nutrients

tomato <-
data.frame(weight=

c(1.5, 1.9, 1.3, 1.5, 2.4, 1.5, # water
1.5, 1.2, 1.2, 2.1, 2.9, 1.6, # Nutrient
1.9, 1.6, 0.8, 1.15, 0.9, 1.6), # Nutrient+24D
trt = factor(rep(c("water", "Nutrient", "Nutrient+24D"),
c(6, 6, 6))))

## Now make water the first level of trt. It will then appear as
## the initial level in the graphs. In aov or lm calculations, it
## will appear as the baseline or reference level.
tomato$trt <- relevel(tomato$trt, ref="water")

Now fit a one-way analysis of variance model:
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tomato.lm <- aov(weight ~ 0 + trt, data=tomato)
summary(tomato.lm)
termplot(tomato.lm, partial=T, col.res="gray30")

The 0 is a device that determines how R chooses the parameters that describe the model. Examine
model.matrix(tomato.lm) to see how R has set up the model.

1.1.4 Electrical resistance of fruit, vs apparent juice content

The following plots shows clear evidence of curvature.

library(DAAG)
plot(ohms ~ juice, data=fruitohms)

With the hubble data set, we could attempt to model the hint of curvature by using the square
of Distance, as well as Distance, as an explanatory variable. Here, a linear combination of
several curves is needed.

The following works quite well.

library(splines)
juice.ns3 <- lm(ohms~ns(juice, 3), data=fruitohms)
plot(ohms ~ juice, data=fruitohms)
ord <- with(fruitohms, order(juice))
lines(fitted(juice.ns3)[ord] ~ juice[ord], data=fruitohms, col=2)
coef(juice.ns3)

We have used a natural spline basis of degree 3. Here are the “basis” curves that were used:

library(lattice)
ns3 <- as.data.frame(with(fruitohms, ns(juice, 3))[, 1:3])
names(ns3) <- c("Curve_1", "Curve_2", "Curve_3")
ns3$juice <- fruitohms$juice
xyplot(Curve_1 + Curve_2 + Curve_3 ~ juice, type="l", data= ns3,

auto.key = list(columns=3, points=FALSE, lines=TRUE))

Above, we saw that the coefficients for the three curves were, respectively, -4534.6, -6329.0 and
-2569.0.

1.1.5 Record times for Scottish hillraces

We will work with logarithms of all variables. The rationale will be discussed when we later
examine these data in more detail.

hills.loglm <- lm(log(time) ~ log(dist) + log(climb), data=hills2000)
par(mfrow=c(1,2), pty="s")
termplot(hills.loglm, partial=TRUE, smooth=panel.smooth)

1.2 Terminology

Note the distinction between fixed and random effects. In

y = α+ βxi + εi, i = 1, 2, . . . n

α and β are fixed effects, while the εi are random effects. A common assumption is that the εi
are distributed as N(0, σ2), independently between observations. This is commonly known as
the iid normal asssumption.

Sequential dependence models may be use for data in which observations are sequential in
time or space. The dependence between any two observation is a faction of their distance apart.

The general linear model will be written, using matrix notation, as

yi = (Xβ)i + εi, i = 1, 2, . . . n
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where as a minimum it is required that E[ε] = 0. This is commonly strengthened to ε ∼ N(0, σ2I),
where I is n by n with ones on the diagonal and zeros elsewhere.

More succinctly
y = Xβ + ε

1.3 Least squares and maximum likelihood

Unless justified by more fundamental considerations, least squares appears ad hoc. The more
fundamental justification, from maximum likelihood, is available for data that are independently
and identically distributed (iid) as normal.

Both least squares and maximum likelihood ensure that values that are predicted by the model
(fitted or predicted values) are, according to one or other criterion, close to observed values. This
is so even if the model is wrong. If the model is wrong because the assumed error structure
is incorrect (e.g., correlated observations), the closeness measure that is used may however be
inappropriate.

Correct and incorrect models

If the model is correct, parameter estimates have certain optimality properties. These derive from
the Gauss-Markov theorem, and happen because the paremeter estimates are linear functions of
the fitted values.

If the model is incorrect, there is no longer a guarantee that these virtues will be realized,
not even approximately. Here, note malign consequences that may result from mis-specification
of the fixed effects part of the model. One or more parameters may be reversed in sign, while
remaining statistically significant. (If the true perpetrator is not on the list of suspects, there is
a risk that others who could be found at the same places at similar times will be incriminated.
The presence of one or more of these individuals may turn out to have explanatory power.)

There are interesting recent examples in the epidemiological literature that illustrate this
point. Given certain common types of model failure, large biases are almost inevitable. The
models that thus mislead may have substantial predictive power, at least for the population from
which the data have been sampled.

Errors in explanatory variables, if they are large enough, have a similar potential to lead to
biased parameter estimates. Biases may be generated in parameters other than those for the
variables in which the errors appear.

1.4 Justification of causative interpretations

Occam’s razor may not be used in this context. On the contrary, the proper advice is to “make
your hypotheses complex” (R. A. Fisher, quoted in Cochran, 1965, , Section 6). Estimation of
a parameter that codes for a treatment effect is an important special case, discussed in detail in
Rosenbaum (2002).

A further step is to give a causative interpretation to one or more parameters. Rosenbaum
(2002) notes two types of objection to causative interpretation of parameters deerived from
observational data – the dismissive and the tangible. One important type of tangible objection
involves drawing attention to variables that were not included as explanatory variables in the
regression equation. These are the sorts of “complex hypotheses” that Fisher had in mind.

1.5 Ordinal and categorical outcomes

Models with a 0/1 outcome are a particular case of models with a categorical outcome, otherwise
known as classification or discriminant models. This special case will get some limited attention
in this course. More general classification models are outside of the scope of this course, aside
from some cursory discussion.

Ordinal outcomes, except to the extent that they can be handled using the same approaches
as for continuous variables, are outside of the scope of this course.
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1.6 Model choice

Note first that it is important whether the aim is the derivation of a predictive model, or whether
the hope is to obtain interpretable regression coefficients. The derivation of interpretable regres-
sion coefficients may be difficult or impossible. More is required than to obtain a model that is
a good fit to the data.

If scientific understanding suggests a suitable model, at least to within use of one or other
transformation(s), this model should be investigated as a starting point. As noted above, limited
data snooping to determine suitable transformation(s), and/or possible modification by deletion
or addition of a limited number of variables, may be acceptable.

Recourses when the number of potential explanatory variables is large and there is reccourse
to variable selection are:

• The training/test set approach;

• Cross-validation or the bootstrap, with the selection process repeated at each cross-validation
fold, or for each new bootstrap sample;

• Use some form of variable selection, recognizing that the classical theory will then give
lower bounds for SEs of parameter estimates.

Another possibility is to fit a penalized version of the “full” model; e.g., use ridge regression;

1.7 Model diagnostics

Most model diagnostics rely on various forms of scrutiny of the model residuals. R’s plot method
for lm objects gives, by default, four standard types of diagnostic plot.

Where there is more than one outlier, these can so distort the fitted model the plots of
residuals from an lm analysis are misleading. It is better to work with the residuals from the
robust linear model function rlm().

If data are noisy, residuals from lqs(), which does resistant regression, should be examined.
Currently, there is no usable plot method for lqs objects.

Output from termplot() is a useful supplement to output from the plot method for lm or
rlm objects.

1.8 The interpretation of regression parameters

Do not lightly assume that the regression answers the question(s) of interest. Issues here include:

1. All relevant explantory variables must be included. They must appear in the “correct”
form, e.g., use a logarithmic transformation or spline term if this is needed to give the
correct model.

2. Results are conditional on the observed x. If any of the x-variables in a regression are
observed with error (“measurement error”), the regression coefficients for all variables,
both those measured with error and those measured without error, may be misleading as
estimates of the regression coefficients that are of interest.

2 Factor and Spline Terms

2.1 Factor terms

See the R help pages for contr.treatment(), contr.sum(), contr.SAS() and contr.poly().
Try the following

## The following is the default
with(sugar, C(trt, contr.treatment))
sugar.lm <- lm(weight ~ C(trt, contr.treatment), data=sugar)
sugar.lm
model.matrix(sugar.lm)
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1. Repeat, replacing contr.treatment with contr.SAS. and reconcile the two sets of param-
eter estimates.

2. Replace with contr.sum and reconcile with the parameter estimates from contr.treatment
and contr.SAS.

See further Maindonald & Braun (2007, Section 7.1, pp. 219-223)

2.1.1 Ordered factors

Enter

tinting$tint # tinting is in DAAG

The values in the column are followed with

Levels: no < lo < hi

The default contrasts are polynomial contrasts (contr.poly). Observe

with(tinting, C(tinting$tint, contr.poly))

The "contrasts" attribute is

attr(,"contrasts")
.L .Q

no -7.071068e-01 0.4082483
lo -7.850462e-17 -0.8164966
hi 7.071068e-01 0.4082483
Levels: no < lo < hi

This equals

.L .Q
no -1 1
lo 0 -2
hi 1 1

Xply by 0.707 0.408

Taking levels as equally spaced, the first columns accounts for a linear change as one moves from
"no" to "lo" to "hi", while the second column allows for a quadratic form of change.

Exercise Show that the above polynomial contrasts are equivalent to the fitting of as quadratic
polynomial, i.e., they give the same set of fitted values.

2.2 Balanced vs Unbalanced Data

This section illustrates, in a very simple case, confounding effects that may arise when data are
unbalanced. It demonstrates, also, how the estimate for a term may change when a further term
is included in the model.

Post-operative pain profiles

The table shows, separately for males and females, the effect of pentazocine on post-operative pain
profiles (average VAS scores), with (mbac and fbac) and without (mpl and fpl) preoperatively
administered baclofen. Pain scores were recorded every 20 minutes, from 10 minutes to 170
minutes. Results are shown for 50 minutes only. The complete data may be found in the gaba
dataset in the DAAGxtras package.

3 males were given baclofen, as against 15 females. 9 males received the placebo, as against
7 females.
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male female Average over all subjects Average of averages
placebo 0.67 (9) 3.66 (7) (9*0.67+7*3.67)/16 = 1.98 (0.67+3.67)/2 = 2.17
baclofen 0.05 (3) 3.13 (15) (3*.05+15*3.13)/18 = 2.62 (0.05+3.13)/2 = 1.59

Notice that, both for males and for females, the scores are lower when baclofen is adminis-
tered. Reliance on the overall average would suggest that the scores are higher when baclofen is
administered.

Instead of taking the average over all subjects, we might take the overall average of the
baclofen scores and the overall average of the placebo scores, ignoring the different numbers of
subjects contributing to the separate male and female scores. This is shown in the “Average of
averages” column, and gives a result that is defendable.

A competent analyst will, with such data, look for effects that may be due to factors other
than the treatment. If information on a relevant factor is not included in the data, it is obviously
not possible to allow for it at the time of analysis. Thus, if details of gender were not available
for the subjects who contributed to the present data, the only averages that could be calculated
would be the misleading overall averages given in the “Average over all subjects” column.

2.2.1 Analysis Using lm()

> pain <- data.frame(vasScore=c(0.67, 0.05, 3.67, 3.13),
+ trt=factor(rep(c("placebo", "baclofen"), 2),

levels=c("placebo", "baclofen")),
+ gender=factor(rep(c("male", "female"), c(2,2)),

levels=c("male", "female")),
+ number=c(3, 9, 15, 7))
> pain

vasScore trt gender number
1 0.67 placebo male 9
2 0.05 baclofen male 3
3 3.67 placebo female 7
4 3.13 baclofen female 15

> pain.lm <- lm(vasScore ~ gender + trt, data=pain)
> round(coef(pain.lm), 2)
(Intercept) genderfemale trtbaclofen

0.65 3.04 -0.58

Now omit consideration of the Gender effect:

> pain1.lm <- lm(vasScore ~ trt, data=pain)
> round(coef(pain1.lm), 2)
(Intercept) trtbaclofen

2.17 -0.58

Observe that the estimate of the treatment effect is unchanged.

Weighted analysis

> pain.wlm <- lm(vasScore ~ gender + trt, weight=number, data=pain)
> round(coef(pain.wlm), 2)
(Intercept) genderfemale trtbaclofen

0.66 3.03 -0.57

Observe that the estimate of the treatment effect has hardly changed. In general, the change
may not be so small, but will not reverse an effect that goes in the same direction for the genders
separarately.

Now omit consideration of the gender effect:
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> pain.wlm1 <- lm(vasScore ~ trt, weight=number, data=pain)
> round(coef(pain.wlm1), 2)
(Intercept) trtbaclofen

1.98 0.63

Observe that the treatment effect now goes in the other direction. The combination of unequal
weights and omission of a relevant factor generates this misleading result.

3 Applications of Logistic Regression Models

3.1 Logistic Regression vs Multi-way Tabulation

Models for multi-way tables that allow or all interactions, at all levels, are said to be “saturated”.
The probabilities may alternatively be derived from an equivalent multi-way table. The proba-
balities equal the fitted values from a logistic regression with a model that is thus “saturated”
with respect to the multi-way table.

Code will be given that can be used to verify the equivalence of the multi-way table to fitted
values from a logistic model. (Actually, because all interactions are included in the model, fitted
values are the same irrespective of the link that is used with the binomial or quasibinomial
model.)

3.1.1 US Accident Mortality Data

Data, in the data frame nassCDS in the DAAGxtras package, were collected according to a sam-
pling design where different cells had different weights. Whether using the logistic regression or
tabulating the proportions, it is necessary to take account of the weights.

The data have had a central role in a controversy, debated in three articles in the journal
Chance, on the effectiveness of airbags. References, both to these articles and to relevant web
pages, are given on the help page for nassCDS.

Various biases may affect the result. There are alternatives to the style of analysis discussed
here. Farmer (2006) discusses an approach that is preferred by the National Highway and Traffic
Safety Administraton (NHTSA), and which gives an answer that is favourable to the use of
airbags.

3.1.2 Do airbags reduce risk of death in an accident

Each year the National Highway Traffic Safety Administration in the USA collects, using a
random sampling method, data from all police-reported crashes in which there is a harmful event
(people or property), and from which at least one vehicle is towed. The data in Table 1 summarize
data in the data frame nassCDS (DAAGxtras).1

The data are a sample. The use of a complex sampling scheme has the consequence that the
sampling fraction differs between observations. Each point has to be multiplied by the relevant
sampling fraction, in order to get a proper estimate of its contribution to the total number of
accidents. The column weight (or textttnif = textitnational inflation factor) gives the relevant
multiplier.

Other variables than those included in nassCDS might be investigated – those extracted into
nassCDS are enough for present purposes.

Meyer and Finney (2005) and Meyer (2006) conclude that on balance (over the period when
their data were collected) airbags gave no statistically detectable benefit. There is a suggestion
that airbags may have cost lives. Their study seems a large improvement over an official National
Highway Traffic Safety Administration assessment of the evidence that was based on accidents

1They hold a subset of the columns from a corrected version of the data analyzed in Meyer and Finney (2005).
More complete data are available from one of the web pages
http://www.stat.uga.edu/~mmeyer/airbags.htm (SAS transport file)
or http://www.maths.anu.edu.au/~johnm/datasets/airbags/ (R image file).

http://www.stat.uga.edu/~mmeyer/airbags.htm
http://www.maths.anu.edu.au/~johnm/datasets/airbags/
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seatbelt airbag dead total Prop dead
none none 24067 1366089 0.01762
belted none 15609 4118833 0.00379
none airbag 13760 885635 0.01554
belted airbag 12159 5762975 0.00211

Table 1: Number of fatalities, by use of seatbelt and presence of airbag. Data are for front-seat
occupants.

where there was at least one death. Farmer (2006) offers an alternative form of analysis that
does suggest a benefit. A definitive conclusion is impossible; see the further discussion below.

In order to obtain a fair comparison, it is necessary to adjust, not only for the effects of
seatbelt use, but also for speed of impact. When this is done, airbags appear on balance to be
dangerous, with the most serious effects in high impact accidents. Strictly, the conclusion of the
two Meyer papers is that, conditional on involvement in an accident that was sufficiently serious
to be included in the database (at least one vehicle towed away from the scene), airbags are
harmful.

Both sets of data are from accidents, and there is no way to know how many cases there were
with airbags where accidents (serious enough to find their way into the database) were avoided,
as opposed to the cases without aribags where accidents were avoided. Tests with dummies do
not clinch the issue; they cannot indicate how often it will happen that an airbag disables a driver
to an extent that they are unable to recover from an accident situation enough to avoid death or
serious injury.

Before installation of airbags was made mandatory, should there have been a large controlled
trial in which one out of every two cars off the production line was fitted with an airbag? Would
it have worked? Or would there be too much potential for driver behaviour to be influenced by
whether or not there was an airbag in the car? Would it have been possible to sell the idea of
such a trial to the public?

Notwithstanding care to consider all relevant effects, it remains possible that there will be
relevant factors of interactions that have not been considered. The relevant information may not
be included in the data. A useful strategy, with data such as these, may be:

• Account first for those effects that on prior grounds (relevant science, previous experience
with related data), seem certain to have a role. Such arguments justify use, for the present
data, of the factors seatbelt, airbag and dvcat.

• Investigate addition of other possible effects one at a time.

3.1.3 Factors that affect mortality

The analysis here will be limited to the factors seatbelt and airbag, leaving as an exercise
extension to account for the force of impact measure (dvcat). Such a more extended analysis
makes it clear that any defendable analysis in the style of the analysis discussed here must, as a
minimum, include these three factors and their interactions.

Almost certainly, there are other factors, not considered in any of the analyses presented in the
Chance articles, that have affected results. A more complete analysis will require consideration
of further possible effects for which data are available. If more than one or two of those factors
are included there is a risk, even with this relatively large data set, that it will become impossible
to distinguish the likely effects of airbags from those of other factors.

Here is the code for the limited (and misleading!) tabulations presented here:

tot <- xtabs(weight ~ seatbelt+airbag, data=nassCDS)
dead <- xtabs(I(weight*(unclass(dead)-1)) ~ seatbelt+airbag, data=nassCDS)

Here is code for the glm analysis:
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nass.glm <- glm(dead ~ seatbelt*airbag, weight=weight, family=binomial,
data=nassCDS)

Note that seatbelt*airbag expands to seatbelt + airbag + seatbelt:airbag, i.e., all pos-
sible main effects and interactions.

Now reconcile this with the tabulated result.

## Reconcile with tabulated result
df <- with(nassCDS, expand.grid(seatbelt=factor(levels(seatbelt),

levels=levels(seatbelt)),
airbag=factor(levels(airbag),
levels=levels(airbag))))

df$tot <- as.vector(xtabs(weight ~ seatbelt+airbag, data=nassCDS))
nasshat <- predict(nass.glm, newdata=df, type="response", se=TRUE)
df$estdead <- nasshat$fit*df$tot
xtabs(tot ~ seatbelt+airbag, data=df) # Table of totals
xtabs(estdead ~ seatbelt+airbag, data=df) # Table of dead

Bootstrap esimates of the excess risk from airbags can be obtained thus:

xtra <- matrix(0, nrow=2, ncol=1000)
nass <- nassCDS[nassCDS$weight>0,]
prob=with(nass, weight/sum(weight))
for(i in 1:1000){
nrows <- sample(1:dim(nass)[1], prob=prob, replace=TRUE)
xtra[,i] <- excessRisk(form = weight ~ seatbelt + airbag,

data=nass[nrows, ])[, 8]
}

Calculations can take a long time. Run this to calculate 10 or 100 bootstrap samples before
running it for the full 1000 samples. Percentile estimates of the confidence limits may in this
instance be satisfactory.

4 Validity Issues – Errors in x

Here will be discussed just one of a variety of possible “errors in x” models, described in Carroll
(2006) as the “classical” model. See Carroll (2006, pp. 49-52) for a summary of different types of
models that have been proposed. In the following, we discuss implications for the interpretation
of the regression coefficients.

4.1 Regression with a single covariate

Consider first regression with a single covariate. Under the classical model errors in explanatory
variables, if they are sufficiently extreme, have two effects:

1. Estimates of the coefficient will be reduced, relative to the coefficient for the variable that
is measured without error.

2. Very large samples may be required to show a statistically detectable coefficient.

The model is
y = α+ βx+ ε

We measure, not x, but w = x+ u, where u is “measurement error”.
Now assume that w is unbiased for x and that u is independent of x and ε.
Then, conditional on x, instead of

β̂ =
∑

(x− x̄)(y − ȳ)∑
(x− x̄)2
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we have

β∗ =
∑

(w − w̄)(y − ȳ)∑
(w − w̄)2

Then
E[

∑
(w − w̄)(y − ȳ)] =

∑
(x− x̄)(y − ȳ)

This happens because y is independent of u.

E[
∑

(w − w̄)2] = E[
∑

(x− x̄ + u− ū)2]

=
∑

(x− x̄)2 +
∑

(u− ū)2

= (n− 1)σ2
x + (n− 1)σ2

u

Then β∗ is a consistent estimate of λβ, where

λ =
σ2

x

σ2
x + σ2

u

Simulation

Use the function g6.17, included in the image file figs6.RData that is available from:
http://www.maths.anu.edu.au/~johnm/r-book/2edn/figures/

4.2 One covariate measured with error; others without error

The coefficient of the variable that is measured with error is attenuated, as in the single variable
case. The coefficients of other variables may be reversed in sign, or show an effect when there is
none. See Carroll (2006, pp. 52-55) for summary comment.

Suppose that
y = βxx + βzz + ε

If w is unbiased for x and the measurement error u is independent of x and z, then least squares
regression yields a consistent estimate of λβx

λ =
σ2

x|z

σ2
x|z + σ2

u

The σ2
x that appears in the single covariate case is replaced by σ2

x|z.
A new feature is the bias in the least squares estimate of βz. The naive least squares estimator

estimates
βz + βx(1− λ)γx|z (1)

where γx|z is the coefficient of z in the least squares regression of x on z. The least squares
estimate may be non-zero value even though βz = 0. Where βz 6= 0 , the least squares estimate
may, depending on the relative values of βz, βx and λ be reversed in sign from βz.

Where there are multiple explanatory variables that are measured without error, equation 1
can be applied to each of them in turn.

One covariate measured without error – a simulation

The function errorsINxGP(), available from http://www.maths.anu.edu.au/~johnm/r/functions/,
simulates the effect when the variables that are measured without error code for a categorical
effect.

http://www.maths.anu.edu.au/~johnm/r-book/2edn/figures/
http://www.maths.anu.edu.au/~johnm/r/functions/
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4.3 Implications for variable selection

The implications are clearly damaging. If one covariate only is measured with substantial error
has a non-zero effect, then any variable that

• has a non-zero correlation with that covariate, and

• has no effect on the response

will have a non-zero expected least squares coefficient.
Where two or more variables are measured with substantial error, effects on other least squares

coefficients may in fortuitous circumstances cancel. More important, in most practical circum-
stances, is a widening of the range of possibilities for obtaining least squares coefficients that are
spuriously non-zero.

4.4 Example – diet-disease association studies

The attempt to use food frequency questionnnaires (FFQs) or food diaries, in studies that are
designed to detect diet-disease associations, provides a telling and interesting case study. A recent
major study with biomarkers has demonstrated large person-specific biases in standard dietary
intake measurement “instruments” (diaries or questionnaires). These biases severely complicate
the finding of a relationship between such measures and health outcomes. Not only is there
an error that varies from recording time to recording time, for an individual. There is also a
person-specific bias that can be substantially larger than the random occasion to occasion error.
See Schatzkin et al (2003) and the power point presentation Carroll (2006).

This is a multi-million dollar issue. The following prospective studies that use such instru-
ments are complete or nearly complete:

NHANES: n = 3,145 women aged 25-50
(National Health and Nutrition Examination Survey)
Nurses Health Study: n = 60,000+
Pooled Project: n = 300,000+
Norfolk (UK) study: n = 15,000+
AARP: n = 250,000+

Only 1 prospective study has found firm evidence suggesting a fat and breast cancer link, and
1 has found a negative link. The lack of consistent (even positive) findings led to the Women’s
Health Initiative Dietary Modification Study in which 60,000 women have been randomized to
two groups: healthy eating and typical eating. Objections to this study are:

• Cost ($100,000,000+)

• Can Americans can really lower % fat calories from to 20%, from the current 35%

• Even if the study is successful, difficulties in measuring diet mean that we will not know
what components led to the decrease in risk.

5 Missing variables and/or mis-specification of the model

The issue will be illustrated with examples. Some striking examples come from the analysis of
multi-way tables. For a formal analysis, logistic regression can be used. However, the effects that
are of interest are perhaps better demonstrated from examination of relevant tables.

An important reference is Rosenbaum (2002).
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5.1 Model and variable selection

5.1.1 Strategy issues

Stepwise and best subsets automatic variable selection procedures have a much more limited
usefulness than older textbooks on regression may have suggested. Cross-validation or bootstrap
approaches should be used to check out the stability of the selection with respect to statistical
variation. Note that the use of automatic selection priocedures invalidates, in general, estimates
that classical linear model theory gives for the standard errors of parameters. Bootstrap estimates
of the standard errors, perhaps obtained along with the procedure used to check out the stability
of the selection, may provide a workaround.

Approaches that may be used include:

• Stepwise regression; either forward (starting with a simple model) or backward (starting
with a maximal model). All such methods suffer from the difficulties that:

– Optimal decisions at each local step do not ensure a globally optimal model;

– Decisions on whether to include or drop variables at each local step have a large element
of arbitrariness. Should the F -statistic or p-value be used, or should an information-
based measure (AIC, BIC, . . . ) be used? In either case, what are the appropriate
thresholds for adding for adding or dropping variables? Should the threshold be held
constant (on one or other scale) throughout the process?

– Separate data must in general be set aside for use in deriving the statistical properties
of estimates. Other selection effects will bias statistics that for the model that is,
finally, selected.

• Best subsets regression. This is, except in relatively simple situations, computationally
expensive. Cross-validation or bootstrap approaches to deciding model size make it even
more expensive. The training/test set approach may offer a way out, at the cost of making
poor use of what may be limited data.

Among recent papers on variable selection, note Luo et al (2006) and Zhu and Chipman
(2006). The exposition in Luo et al (2006) is less than satisfactory, and the examples that they
give are unconvincing. Zhu and Chipman (2006) is interesting. The main usefulness of the
genetic algorithm may be in the insertion of randomness into the selection process. This could
be achieved in other ways, e.g., by taking bootstrap samples. Model selection remains, except in
the simplest cases, a difficult and challenging problem.

Note further:

• Consider data where one variable, or a small number of variables jointly, have effects that,
in the preferred model, are large relative to statistical error, while other variables have
effects that, at best, are marginally detectable. Then classical selection techniques (stepwise
regression, etc.) are likely to find those variables that have large effects, and their coefficients
will be estimated without selection bias.

• In contexts where automatic selection techniques are tested more severely, they may not
do much better than chance.

• To see the potential, with automatic selection algorithms, to get highly significant effects
from random data, run the function bestset.noise(), from the DAAG package.

• There may be no unique “best” set of explanatory variables.

• The paper by Zhu and Chipman (2006) is interesting. The key here seems to be the
incorporation of a random element. I suspect that a bootstrap approach, used in a similar
way as in the random forests algorithm, would do as well or better.

• The selection problem is fraught with further hazards when one or more of the variables is
measured with substantial error.
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Attempts to interpret regression coefficients raise further hazards. Conditions that may make
coefficients interpretable include: a) It is possible to identify a few variables that have large
effects; b) the data allow their contribution to the regression to be estimated accurately; c) there
is good reason to believe that no variables or interactions with substantial effects have been left
out; d) there is a context of scientific understanding that supports proposed interpretations. Note
further the Bradford Hill criteria, in Hill (1965).

6 Propensities

Propensities are one of a number of devices that may be used in the attempt to reduce the number
of explanatory variables that need to be considered in a regression. The method is intended for
a very specific, but important, context where there are two (or, potentially, more) levels of a
treatment factor. The aim is to investigate treatment effects, after adjustment for covariate
effects.

The attempt to adjust for multiple potential covariate effects has a variety of complications.
The correct functional form must be used – it may not be adequate to assume additive linear
effects, even after transformation of covariates in cases where this seems desirable. Diagnostic
checking may be difficult; failure to account adequately for the effect of one or more variable may
lead to misleading diagnostics for other variables.

The derivation and use of propensity scores can simplify the model fitting process. The
complications that arise from the attempt to adjust for multiple covariates are limited to the
modeling used to predict the propensity scores. Having derived a vector of propensity scores, the
regression model that incorporates the treatment effect has two terms – a treatment effect, and
a single covariate adjustment term. This can greatly simplify the analysis, allow more effective
use of standard diagnostic tools, and give results that are more readily interpretable.

With more than two classes, a further set or sets of scores will in general be rewquired.

6.1 Discriminant Methods

There is a wide choice of classification methods that can be used to derive scores. Here, note two
very different methods – linear discriminant analysis and random forests.

In linear discriminant analysis, discriminant scores in as many dimensions as seem necessary
are used to classify the points, and thus emerge directly from the analysis. The linearity as-
sumptions are of course restrictive, even allowing for the use of regression spline terms to model
non-linear effects. With two classes, there is a linear relationship between the scores and the
posterior log odds for the two classes.

Random forests are a highly nonparametric approach. The estimated log odds for the two
classes can be used be used as propensity scores. A similar approach can be used with any other
classifaction method that yields probabilities or posterior probabilities.

For random forests, note that the proportion of trees in which any pair of points appear
together at the same terminal node may be used as a measure of the “proximity” between that
pair of points. Then, using 1-proximity as a measure of distance, an ordination method can be
used to find a representation of those points in a low-dimensional space.

6.2 What is a propensity?

A propensity is the conditional probability λ(x) of assignment to a particular treatment given
a vector of observed covariates x. The methodology requires that treatment assignment should
be ignorable given the propensity, i.e., treatment assignment should be unrelated to potential
outcomes within strata defined by λ(x). Conditional on the propensity score, the distributions
of the observed covariates are independent of the binary treatment assignment.2 This allows
use of the propensity score as a balancing score. See Rosenbaum (2002, pp.296-297), perhaps
supplemented by Rosenbaum (1999) and Rosenbaum and Rubin (1983), for a discussion.

2The ignorability assumption seems to me implausible for the present data.
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The propensity score, or a monotone function of the score, can be estimated using discriminant
analysis methodology, independently of the outcome yi. The regression equation becomes

yi = ti + βφ(λi) + εi

where the functional form of φ() has to be estimated or guessed. Scores from use of the logit
transformation are often used as a starting point.

Compare this with the use of regression adjustments of the form

yi = ti + f(x1, x2, . . . , xk) (2)

where in the simplest situation it might be hoped that

f(x1, x2, . . . , xk) = a1x1 + +a2x2 + . . .+ +akxk

This requires the stronger condition that treatment assignment should be ignorable given the
observed covariates x. i.e., treatment assignment should be unrelated to potential outcomes
within strata defined by x.

The propensity score approach reduces the regression equation that is of primary interest to
a simple form. Decisions on which variables and interactions to include, and on transformation
and/or modeling using spline terms where this seems required, is relegated to the earlier discrim-
inant function calculations. Diagnostics for the model for yi need be studied for one covariate
only.

6.3 Lalonde’s data – effectiveness of a labour training program

This will review the discussion in Maindonald & Braun (2007, Section 13.2), though working
with the nswdemo dataset in the DAAGxtras package rather than with the nsw74psid1 dataset
from DAAG. Proximities from software that uses bootstrap aggregation offer an alternative and it
will be argued, preferable approach to the determination of distances and hence ordination scores
that can be used in a regression. I will explore this approach as a preferred alternative.

There has been a long-standing debate in the economometric literature over whether social
programs can be reliably evaluated without a randomized experiment. The Lalonde data have
received wide attention, from several different authors, in the course of this debate. A recent
contribution to the debate, which gives a good summary of the controversy, is Smith & Todd
(2005).

6.4 Scores calculated using a linear discriminant

In Maindonald & Braun (2007, pp.412-419), we discuss the use, as propensity scores, of functions
f(x1, x2, . . . , xk) that are linear in covariates x1, x2, . . . , xk. This may be too restrictive. Even
after use of spline terms (how many d.f.? what interactions, if any, should be included?) the
model may be unable to capture well the nuances of the regression dependence in cases where
there are more than one or two explanatory variables.

Here is code for the calculations:

common <- multilap(maxf=30) # Mild preliminary filtering on
# variables educ, re74 and re75

## Calculate propensity scores: data frame nsw74psidA (DAAG)
disc.glm <- glm(formula = trt ~ age + educ + black + hisp + marr +

re74 + re75, family = binomial,
data = nsw74psid1, subset=common)

Pscores <- predict(disc.glm)
## Now filter further, based on values of Pscores
xchop <- with(subset(nsw74psid1, common),

overlapDensity(Pscores[trt==0], Pscores[trt==1],
compare.numbers=FALSE,
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ratio=c(1/30, 30)))
overlap <- common
overlap[common] <- Pscores > xchop[1] & Pscores < xchop[2]
nsw74psidC <- subset(nsw74psid1, overlap)
Pscores <- Pscores[Pscores > xchop[1] & Pscores < xchop[2]]

The hope is that, conditional on values of Pscores, controls and treated are now relatively similar
with respect to the various covariates. This can be checked directly, by splitting the data set up
in to, e.g., 5 parts, based on values of Pscores.

cut5 <- cut(Pscores, breaks=5)
for (cutlev in levels(cut5)){
print(cutlev)
nsw74 <- subset(nsw74psidC, cutlev==cut5)
print(
sapply(nsw74[, c("black","hisp","marr","nodeg")],

function(x){tab <- table(nsw74[,"trt"], x)
tab[1,]/apply(tab,2,sum)})

)
}

The balancing is, in most cases, reasonable. There is however a big disparity in the numbers
of hispanics in one of the categories, and none of the treated group in the final category were
married. Similar comparisons can be done for the continuous variables.

Now try fitting the models:

nsw.lm <- lm(log(re78+25) ~ trt + propensity, data=nsw74psidC)
nsw.glm <- glm(I(re78>0) ~ trt + propensity,

family=binomial, data=nsw74psidC)

6.5 Scores Calculated from randomForest Analysis

This is at the other extreme, relative to linear discriminant methods. Random forest models
builds in as little structure as possible. There is no insistence on continuous forms of dependence
on continuous variables. Remarkably as it seems to me, these models can, in some classification
problems, do very well. It may be that the loss from ignoring of obvious structure is more than
compensated by the ability to handle complex interactions and non-linear responses.

The following is exploratory. As a technique for revealing structure in data, it can work well.
Here, we use the larger data set in which not all observations have information on re75. We
therefore omit this variable from consideration.

nsw <- rbind(psid1, nswdemo[nswdemo$trt==1,])
nsw$trt <- factor(nsw$trt)
nswx <- nsw[, c(1:7,9)]
nsw.rf <- randomForest(trt ~ ., data=nswx, proximity=TRUE)
distmat <- 1-nsw.rf$proximity
distmat[distmat==0] <- 0.001 # Half minimum of non-zero distances
## Apply arcsine transformation to stretch the scale out at both ends
distmat <- asin(distmat)
## Start with classical multi-dimensional scaling (Euclidean distances)
nsw.cmd <- cmdscale(distmat)
plot(nsw.cmd, col=unclass(nsw$trt))
## Apply Sammon (semi-metric) scaling
nsw.sam <- sammon(distmat, nsw.cmd)
plot(nsw.sam$points, col=unclass(nsw$trt))

The plot suggests that the two groups are not well matched. There may however be subgroups
that overlap substantially. One might try to separate out those regions of the plot where both
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controls and (especially, as there are many fewer of these) treatment observations are reasonably
well represented. A more direct approach is to use the predict method for randomForest objects
to return a matrix of class probabilities, with one row for each data point.

## Take the second column; the first would do equally well.
prob <- predict(nsw.rf, type="prob")[,2]
prob[prob==0] <- 0.5*min(prob[prob>0])
prob[prob==1] <- 1-0.5*min(1-prob[prob<1])
scores <- log(prob/(1-prob))

Now find the range of values of scores where the ratios of the densities are in the range (0.025,
40), and try the regressions with attention limited to data where the scores are in that range:

z <- with(nsw, overlapDensity(ratio=c(.025,40),
scores[trt==0], scores[trt==1]))

retain <- scores>z[1] & scores<z[2]
nsw.lm <- lm(log(re78+25) ~ trt + scores, data=nsw, subset=retain)
termplot(nsw.lm, par=T, smooth=panel.smooth)
nsw.glm <- glm(I(re78>0) ~ trt + scores,

family=binomial, data=nsw, subset=retain)

The results depend on the chosen range of values of the scores. The estimates from lm() do not
reproduce the results from the experimental comparison; in fact they suggest a negative effect
from training. The estimates from glm() do favour the treatment group, providing the range
of ratios is set small enough. The difference does not, however, reach the 5% level of statistical
significance.

7 Further Example – the Hill Race Data

The data are from the hills2000 data set from the DAAG package. To make the data available,
do the following:

> library(DAAG)
> names(hills2000)
[1] "h" "m" "s" "h0" "m0" "s0" "dist" "climb" "time"
[10] "timef"

The row names store the names of the hillraces. I have recently discovered that for the
Caerketton race, where the time seems anomalously small, the value of dist seems in doubt.
Possibly it should be 1.5mi not 2.5mi. The safest option may be to omit this point. For later
reference, note the row number:

> match("Caerketton", rownames(hill2k))
[1] 42
> hill2k[42, "dist"]
[1] 2.5

The interest is in prediction of time as a function of dist and climb. First examine the
scatterplot matrices, for the untransformed variables, and for the log transformed variables. The
pattern of relationship between the two explanatory variables – dist and climb – is much closer
to linear for the log transformed data, i.e., the log transformed data are consistent with a form
of parsimony that is advantageous if we hope to find a relatively simple form of model. Note
also that the graphs of log(dist) against log(time) and of log(climb) against log(time) are
consistent with approximately linear relationships. Thus, we will work with the logged data:

loghill2k <- log(hill2k[-42, ])
names(loghill2k) <- c("ldist", "lclimb", "ltime", "ltimef")
loghill2k.lm <- lm(ltime ~ ldist + lclimb, data = loghill2k)
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par(mfrow = c(2, 2))
plot(loghill2k.lm)
par(mfrow = c(1, 1))

We pause at this point and look more closely at the model that has been fitted. Does
log(time) really depend linearly on the terms ldist and log(lclimb)?

The function termplot() gives a graphical summary that can be highly useful. The graph is
called a termplot because it shows the contributions of the different terms in the model. We use
the function mfrow() to place the graphs side by side in a panel of one row by two columns:

par(mfrow = c(1, 2))
termplot(loghill2k.lm, col.term = "gray", partial = TRUE,

col.res = "black", smooth = panel.smooth)
par(mfrow = c(1, 1))

The plot shows the “partial residuals” for log(time) against log(dist) (left panel), and for
log(time) against log(climb) (right panel). They are partial residuals because, for each point, the
means of contributions of other terms in the model are subtracted off. The vertical scales show
changes in ltime, about the mean of ltime.

The lines, which are the contributions of the individual linear terms (“effects”) in this model,
are shown in gray so that they do not obtrude unduly. For the lines as well as the points, the
contributions of each term are shown after averaging over the contributions of all other terms.
The dashed curves, which are smooth curves that are passed through the partial residuals, are
the primary feature of interest in these plots. In both panels, they show clear indications of
curvature.

7.1 Spline Terms

loghill2k.lm <- lm(ltime ~ ldist + lclimb, data = loghill2k)
par(mfrow = c(1, 2))
termplot(loghill2k.lm, col.term = "gray", partial = TRUE,

col.res = "black", smooth = panel.smooth)
par(mfrow = c(1, 1))

A spline of degree 3 (by default a cubic polynomial) seemed adequate for capturing the
curvature in the partial residuals for ldist, while a spline of degree 4 seemed adequate for
capturing the slightly more complicated pattern of curvature in the partial residuals for lclimb:

library(splines)
loghill2ks.lm <- lm(ltime ~ ns(ldist, 3) + ns(lclimb, 4), data = loghill2k)

Notice that the first plot brings together the information associated with the basis functions that
are generated by bs(ldist,3), while the second plot brings together the information associated
with the basis functions that are generated by bs(lclimb,4)

Diagnostic plots: The following is a series of diagnostic plots, designed to highlight issues
that it may be important to consider:

if (dev.cur() == 2) invisible(dev.set(3))
par(mfrow = c(2, 2))
plot(loghill2ks.lm)
par(mfrow = c(1, 1))

The diagnostic plots cannot possibly identify all possible problems with the fit of the models
to the data. It is possible to have models where the diagnostic plots look fine, but the model is
lousy. They can however be very useful in picking up some issues that commonly merit attention
– outliers, non-normality in the residuals, heterogeneity of variance, and points that individually
have a large effect on the fitted model.
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Notice that, in the diagnostic plot, one point (row 19: 12 Trig Trog) has a huge Cook’s
distance. With a time of 8.3h, it is the longest of any of the races.

The following plots the contributions of the individual spline curves (“the effects”), shows the
partial residuals, and passes a smooth curve (red dashes) through the partial residuals:

if (dev.cur() == 3) invisible(dev.set(2))
par(mfrow = c(1, 2))
termplot(loghill2ks.lm, col.term = "gray", partial = TRUE,

col.res = "black", smooth = panel.smooth)
par(mfrow = c(1, 1))

Also the fitted curve for lclimb is not monotonic for small values of lclimb. It would be
desirable to constrain it to be monotonic.

*The basis functions

Use the following to inspect and plot the basis functions:

bases <- model.matrix(loghill2ks.lm)
colnames(bases)
options(digits = 3)
bases[1:5, ]
par(mfrow = c(2, 2))
for (i in 0:3) plot(loghill2k$lclimb, bases[, 5 + i])
par(mfrow = c(1, 1))
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