An R-Based Interface to the
Google Visualisation API

John Maindonald?

1Centre for Mathematics & Its Applications, Australian National University

July 19, 2012

googleVis: Linking to the Google Visualisation API

The googleVis package allows creation of interactive
charts that can be embedded into web pages:

» The output of a googleVis function is html code
that contains the data and references to
JavaScript functions hosted by Google. The data
is not uploaded to Google.

» An internal R HTTP server displays the output
locally. A browser with Flash and Internet
connection is required. The Chrome browser may
give best results.

Here, demonstrate Hans Rosling style Motion Charts

Use of googleVis to Create 'Motion Charts’

Hans Rosling has used Motion Charts very effectively to
wow audiences — see, eg, his TED talk:
http://www.youtube.com/watch?v=ezVk1ahRF78

What follows is largely based on:
http://lamages.blogspot.com/2011/09/
accessing-and-plotting-world-bank-data.html
(Markus Gesmann, 24 September 2011)

http://www.youtube.com/watch?v=ezVk1ahRF78
http://lamages.blogspot.com/2011/09/accessing-and-plotting-world-bank-data.html
http://lamages.blogspot.com/2011/09/accessing-and-plotting-world-bank-data.html

Code Steps to Display World Bank Data

1. Access database, download data in Javascript Object
Notation (JSON) format;

2. Process data as required for googleVis

3. Create and plot the graphics object.
[Create using gvisMotionChart ()]

With googleVis (and dependencies) installed , type the following to
see a motion chart for World Bank data:

library(googleVis)

demo (WorldBank) # This may take a while, especially
with a slowish internet connection

Note other available demos

demo (package=’googleVis’)

Note — Accessing World Bank data
This uses functions (see the code for the demo) such as:

getWorldBankCountries <- function(){
require (RJSONIO)
urlbase <- "http://api.worldbank.org/"
countryInfo <- paste(urlbase,
countries?per_page=12000&format=json",
sep=" ||)
wbCountries <-
fromJSON (countryInfo)
wbCountries <- data.frame(t(sapply(wbCountries[[2]], unlist)))
wbCountries$longitude <- as.numeric(wbCountries$longitude)
wbCountries$latitude <- as.numeric(wbCountries$latitude)
levels(wbCountries$region.value) <-
gsub(" \\(all income levels\\)",
", levels(wbCountries$region.value))
return(wbCountries)

Finally, put data together into a data frame with name subData

Creation of Plot (Javascript Code)

The plot is created thus:

M <- gvisMotionChart(subData, idvar="country.name",
timevar="year",
options=list(width=700, height=600))
Display the chart your browser
plot (M)
Now click on the chart ID (to left, below plot) to see
Javascript code that can be incorporated into a web page.

