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Figure 11.8: Diagnostic plots for the model (A.lm ) that uses the scores as the only covariate.

11.5 *High-dimensional data, classification, and plots

Data sets that have many more variables than observations are now common in a number
of application areas. In the data that will be considered in this section, the observations are
divided up into groups, just as for thepossum data in Subsection 11.2.4.

In Subsection 11.2.4 the groups were sites at which the possums were taken. For the
data that will be discussed here, conveniently called the “Golub” data after the first author
of the paper that was based on it (Golub et al., 1999), the observations are tissue samples
that have been taken from cancer patients, grouped into three different cancer types. For
the possum data, the 9 variables were body measurements. Forthe Golub data, there are
7129 variables, each an attempt to measure the biological activity of a particular gene.
Technically, the measurements are “gene expression indices”.

The following table compares the relative number of observations and variables in the
possum data with the numbers in the data that will now be examined:

Number of
Data source Type of measurement observations variables
Possum data Body dimension 102 (1 missing) 9
Golub cancer tissue data Gene expression index 72 7129

For the possum data, the only groupings of interest were bysex and bysite . For the
Golub data, there are several groupings that are relevant toany examination of the data.
A major interest is in finding a discrimination rule that can discriminate between differ-
ent cancer types: AML, ALL B-type and ALL T-type. Here AML is Acute Myoblastic
Leukemia (myoblastic = producing muscle tissue), while ALLis Acute Lymphoblastic
Leukemia (lymphoblastic = producing lymph tissue). An effective discrimination rule,
using a small subset of the features, would allow the design of a diagnostic device (a
“probe”) that could be used to determine cancer type. (Note however that any classifi-
cation of cancers is likely to conceal large individual differences that, in many cancers,
arise from random differences in the timing and outcome of trigger points in a cascade of
genomic damage and disruption.)

Use of these data for discrimination between cancer types iscomplicated by the potential
effects of other factors. As well as different sexes, there are two different types of body
tissue (bone marrow and peripheral blood). Another potential source of variation is that
the tissues came from four different hospitals; this will not be pursued here. Because of
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the complications that these other factors create for the attempt to find a rule that will
be effective in classifying new samples, graphical exploration of the data is more than
otherwise important. The high dimensionality offers however a huge challenge for creating
graphs that are both revealing and unlikely to mislead. Whatviews of the data may help
in revealing subgroups in the data, or points that may have been misclassified, or between
group differences in the variance-covariance structure?

In the discussion that follows, variables will be called features, following the terminol-
ogy that is common in this area. Each of the 7129 features (or variables) is a value of an
expression index, measuring the expression of one of 7129 genes or putative genes.

For further discussion of the types of analysis that are described here, see Maindonald
and Burden (2005) and Ambroise and McLachlan (2002).

What groups are of interest?

The data framegolub.info has information on the tissue samples, which are the ob-
servations. The two classifications that will be pursued are(1) according to cancer type
(AML, ALL B-type, ALL T-type), given by the factorcancer , and (2) according to sex
and tissue type, given by the factortissue.mf . The frequencies in the two-way classifi-
cation according to these factors are:

> with(golub.info, table(cancer, tissue.mf))

tissue.mf

cancer BM:NA BM:f BM:m PB:NA PB:f PB:m

allB 4 19 10 2 1 2

allT 0 0 8 0 0 1

aml 16 2 3 1 1 2

The different tissue/sex combinations may well affect the comparison between different
cancer types. Thus theallB is predominatelyBM:f , while aml is predominatelyBMof
unknown sex. ForallB , there are enough samples that it is worthwhile to investigate the
split of tissue.mf into BM:f , BM:mandPB:m. Thus, for these data, a sensible pre-
liminary analysis is to investigate whether the tissue type(BMor PB) and gender (Female
or Male ) affects expression values, limiting attention toallB tissues. The following pre-
liminary calculations separate out the relevant subset (GolubB ) of the data, and derive a
factor (tissue.mfB ) that identifies the groups of interest (BM:f , BM:mandPB:m):

attach(golub.info)

## Identify allB samples for that are BM:f or BM:m or PB:m

subsetB <- cancer=="allB" & tissue.mf%in%c("BM:f","BM:m ","PB:m")

## Form vector that identifies these as BM:f or BM:m or PB:m

tissue.mfB <- factor(tissue.mf[subsetB])

## Separate off the relevant columns of the matrix Golub

GolubB <- Golub[, subsetB]

detach(golub.info)

The vector tissue.mf[subsetB ) is a factor that retains all the levels of
tissue.mf . Use of the function textttfactor() returns a factor that has only the levels
that are present in the data.
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11.5.1 Classifications and associated graphs

In the following discussion, interest will be on the graphical view that can be associated
with one or other discriminant rule, rather than in the discriminant rules themselves. The
idea is to obtain graphs that are targeted toward giving a visual representation of classifi-
cations of interest. Different classifications will lead todifferent graphical views – what is
seen depends, inevitably, on which clues are pursued in the search for relevant graphical
views. Care is required to ensure that graphs present a fair view of the data, not showing
differences between known groups where there are none or exaggerating such differences
as may exist.

Discrimination will use the relatively simple and readily understood linear discriminant
function methodology that was introduced and used earlier,in Section 11.2.2. Analyses
will, again, use thelda() function (MASS). Linear discriminant functions may be as
complicate as is sensible, given the large amount of noise incurrent expression array data
sets.

The statistical information given in the output from the function lda() assumes that
the variance-covariance matrix is the same in all groups. Even where this is not plausible,
a useful graphical view may still result. If there are pronounced between group differences
in the variance-covariance structure, this will be obviousin the graphs that result. The
emphasis will be on insight rather than on the use of methods that are arguably optimal.

The functionqda() is an alternative toqda() that allows for different variance-
covariance matrices in different groups. Use ofqda() does however restrict the number
of features that can be used. For use ofp features, each group must have at leastp + 1 ob-
servations. The methodology for deriving plots that will bedescribed here does not readily
adapt for use withqda() .

Preliminary data manipulation

The version of the Golub data that is used here, and the functions used, are available
from http://www.maths.anu.edu.au/ ∼johnm/r/cvplot .) These will shortly
be incorporated into a package that has the namehddplot. The data were derived from the
golubEsetspackage that is available from the Bioconductor web site, with further process-
ing applied that is additional to the processing that preceded the incorporation of the data
into thegolubEsets package.

All data for an observation (a tissue sample) comes from a single “chip”, leading po-
tentially to systematic differences between observations. It is therefore usual to apply
procedures that align the feature values for the different observations. For the present data,
the procedure has been to ensure that the median and standarddeviation is the same across
the different slides. Full details will be included in an Sweave file that will be placed on
the site noted above.

Before proceeding further the distribution for individualobservations across features,
and the distribution for a selection of features across observations, should be checked.6The

6## Try e.g.
boxplot(data.frame(GolubB[, 1:20])) # First 20 columns (o bservations)
## Random selection of 20 rows (features)
boxplot(data.frame(GolubB[sample(1:7129, 20), ]))
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Figure 11.9: The left panel used the subset of ALL B-cell observations for whichGender was
known. The onePB:f observation was excluded for purposes of analysis. An anovaF -statistic
calculation identified the 15 features that, individually,“best” separated the data into three groups.
These 15 features were then used in a linear discriminant analysis. Scores were then determined for
each of the two available discriminant axes. Additionally,a predicted score was determined for the
PB:f observation. For the right panel, the same procedure was followed, but now using a matrix
where the “expression values” were random normal data.

distributions are positively skewed. The effect on resultsrequires investigation.

11.5.2 Flawed graphs

Figure 11.9A is a first, but flawed, attempt at a graph that shows the separation of the 31
observations into the 3 specified groups. It uses discriminant axes that were determined
using 15 features that individually, as indicated by an analysis of varianceF -test, gave
the best separation into the 3 groups. It is flawed because no account is taken of the
effect of selecting the 14 “best” features, out of 7129. Figure 11.9B, which was obtained
by applying the same procedure to random normal data, from 7129 independent normal
variables that all has the same mean and variance, shows the potential for getting an entirely
spurious separation into groups. In spite of its evident flaws, it is important to understand
the procedure that was followed, as the later discussion will extend and adapt it to give
graphs that are not subject to the same flaws.

In summary, Figure 11.9 was obtained as follows:

• The 15 features (from 7129) were selected that, as measured by an analysis of variance
F -statistic, gave the best separation of the remaining 40 observations into the three
groupsBM:f , BM:m, PB:f ;7

• The first two discriminant functions, and associated discriminant scores, were calcu-
lated and plotted;

7## Uses order.features() (DAAG); see below
ord15 <- order.features(GolubB, cl=tissue.mfB)[1:15]
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• Discriminant scores were predicted for the onePB:f , so that it could be plotted.8

Figure 11.9B used the same approach, but replaced the measured expression values by
random normal values. It can be obtained with:

simscores <- simulate.scores(nfeatures=7129, cl=rep(1: 3, c(19,10,2)),

cl.other=4, nf.use=15, seed=41)

# Returns list elements: scores, cl, scores.other & cl.othe r

with(simscores, scoreplot(scores, cl, scores.other, cl. other))

Readers are encouraged to experiment with this function, trying different values for
nfeatures , for nf.use , and different groupings of the data.9

The selection of 15 features from a total of 7129, selected tohave the largestF -statistics,
makes it impossible to give much credence to the clear separation achieved with expression
array data in Figure 11.9A. The extent of separation in Figure 11.9B from use of random
normal data indicates the potential severity of the selection effect, for the data used for
11.9A. The 15 most extreme F-statistics out of 7129, from a null distribution in which
there is no separation between groups, will all individually show some separation. Choice
of the two “best” two discriminant axes that use these 15 features will achieve even clearer
separation than is possible with any of the features individually. Clearer apparent separa-
tion still, both for random data and for the Golub data, can beachieved by choosing more
than 15 features.

Distributional extremes

There will in some data sets be a small number ofF -statistics that are so large that they
are unlikely to be extremes from the null distribution. Plots such as Figure 11.9A can
then be based on these features, with no concern about possible effects of selection bias.
Correlations between features vitiates use of a theory thatassumes that genes are indepen-
dent. Additionally, the distributions for individual features may not be normal, in a context
where the interest is in the distributional extremes ofF -statistics and normality is likely to
matter.

Permutation methods, implemented in the packagemulttest, can however be used to
determine a relevant reference distribution. (There are two ways to install this package.

8dfB.ord <- data.frame(t(GolubB[ord15, ]))
## Calculations for the left panel
## Transpose to observations by features
dfB15 <- data.frame(t(GolubB[ord15, ]))
library(MASS)
dfB15.lda <- lda(dfB15, grouping=tissue.mfB)
scores <- predict(dfB15.lda, dimen=2)$x
## Scores for the single PB:f observation
attach(golub.info)
df.PBf <- data.frame(t(Golub[ord15, tissue.mf=="PB:f"

& cancer=="allB", drop=FALSE]))
scores.PBf <- predict(dfB15.lda, newdata=df.PBf, dimen= 2)$x
detach(golub.info)
## Warning! The plot that now follows may be misleading!
scoreplot(scores=scores, cl=tissue.mfB, scores.other= scores.PBf,

cl.other="PB:f")
9## Use the function simulate.scores()
## Alternatively, set:
## dimen <- dim(GolubB); rsetB <- array(rnorm(prod(dimen) ), dim=dimen)
## Then replace GolubB with rsetB, and repeat the lines above .



11.5 *High-dimensional data, classification, and plots 389

A “stand-alone” version can be installed from CRAN, or it canalternatively be installed
as one component of a minimal BioConductor installation. The stand-alone version from
CRAN is adequate for present purposes.)

The functionmt.maxT() determines the needed empirical distribution, as part of
its implementation of a multiple testing procedure – the “step-down” method. Our in-
terest here is not in the multiple testing procedure, but in the empirical distribution
of the F -statistics, which can be obtained asqf(1-GolubB.maxT$rawp, 2, 28) .
The F -statistics for the assignment of labels as in the actual sample are stored in
GolubB.maxT$teststat , i.e., the values are the same as those obtained from
calc.matrixrows.f(GolubB, tissue.mfB) .

The code used for the calculation is:

## The calculation may take tens of minutes, even with adequa te

## memory (e.g., 512MB) and a fast processor.

## If necessary, use a smaller value of B.

GolubB.maxT <- mt.maxT(GolubB, unclass(tissue.mfB)-1, t est="f",

B=100000)

## Compare calculated F-statistics with permutation distr ibution

qqthin(qf(1-GolubB.maxT$rawp, 2, 28), GolubB.maxT$test stat)

## Compare calculated F-statistics with theoretical F-dis tribution

qqthin(qf(ppoints(7129), 2, 28), GolubB.maxT$teststat)

# The theoretical F-distribution gives estimates of quanti les

# that are too small

## NB also (not included in Figure 11.10) the comparison betw een

## the permutation distribution and the theoretical F:

qqthin(qf(ppoints(7129), 2, 28), qf(1-GolubB.maxT$rawp , 2, 28))

The parameterB sets the number of permutations that will be taken. This needs to be
substantially larger than the number of features in order toget an accurate estimate of
extreme upper quantiles of the distribution.

Figure 11.10 shows QQ-plots that compare the relevant distributions.
The plot on the left, which uses an appropriate reference distribution, suggests that the

largest two features, and probably others as well, show differential expression, The theo-
reticalF -distribution, used for the horizontal axis in the right plot, is clearly not an appro-
priate reference distribution. It is very unlikely that thenull distribution would generate
such extremeF -statistics. It would be safe to work with a version of Figure11.9A that
uses the two features that show the clearest evidence of differential expression. Beyond,
this point, there are a number of features that show evidenceof differential expression, and
use of those that show the clearest evidence of differentialexpression may introduce a bias.

This brief interlude has had the aim of drawing attention to the distributional issues.
Effective mechanisms for handling such issues are the subject of active research, and will
be pursued further in this section.

The subsequent discussion will demonstrate adaptations ofthe procedure used for
Figure 11.9A, designed to avoid its evident flaws and withoutnecessarily limiting at-
tention to a small number of features that show clear evidence of differential expres-
sion. Before proceeding to that discussion, brief details will be given of the function
order.features() that was used above, and that will be used extensively in the re-
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Figure 11.10: These QQ-plots are for the subset of ALL observations for whichGender was known,
but excluding the onePB:f observation. The left plot compares the orderedF -statistics with the
ordered statistics from the permutation distribution. Theright plot compares the orderedF -statistics
with F -distribution quantiles. Also shown, in both plots, is the liney = x.

mainder of this section.

The functionorder.features()

At this point, note our functionorder.features() , included in theDAAGpackage.
This function will be used extensively in the sequel.10The functionorder.features()
takes as parameters:

• dset : the matrix of expression values, in the features by observations layout that is
usual in work with expression arrays;

• cl : a factor that classifies the observations;
• subset : if changed from its default (NULL), this identifies a subset of observations

(columns ofdset ) that will be used for calculating the statistics.

Selection of features that discriminate well individually, in an analysis of varianceF -
statistic sense, is not guaranteed to select the features that will perform well in combination.
It is akin to using, in a multiple regression, the variables that perform well when used as the
only predictors. It may however be a reasonable strategy foruse in an initial exploratory
analysis, in the absence of a an obviously better alternative. Again, note that this section
is intended to draw attention to important issues and ideas.The development of good vari-
able selection methods, in the context considered in this section, is the subject of ongoing
research.

10## Simplified version. The DAAG version has an additional pa rameters
## subset (to extract a subset of observations)
"simple.order.features" <-

function(dset, cl){
## Ensure that cl is a factor & has no redundant levels
cl <- factor(cl)
stat <- calc.matrixrows.f(dset, cl)
order(-stat) # Require largest first

}
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11.5.3 Accuracies and Scores for test data

One approach is to split the data into two sets, here named I and II. Then set I can be used to
train discriminant functions and to determine discriminant scores for the test observations
in set II. The key requirement is that the scores must relate to observations that are distinct
from those used to develop the discriminant functions, and are free from the selection bias
that affects the set I scores. The set II test data had no role in either the selection of features,
or the determination of the discriminant functions and associated scores.

The process can then be reversed, with set II used for training and scores calculated for
set I. Two plots are then available, the first of which shows scores for set II, and the second
scores for set II. The two plots, conveniently identified as I/II and II/I, will use different
features and different discriminant functions and cannot be simply superposed.

Because of the small number of observations (3) in thePB:m category, the data used for
Figure 11.9A cannot satisfactorily be split into training and test data. We can however use
this approach to examine the classification of the bone marrow (BM.PB=="BM" ) samples
into ALL B-cell, ALL T-cell, and AML. Two approaches that might be used to determine
the optimum number of features, when developing a discriminant rule from set I, are:

• Use the predicted accuracies for set II.
• Use cross-validation on set I

Cross-validation can of course be used even if, as in the dataused for Figure 11.9A, we do
not have a set II. Cross-validation will be demonstrated later in this section.

The graphs now presented will work with the grouping of the 62observations into
ALL B-cell, ALL T-cell and AML categories. These will be split into training and
test sets in which the relative numbers in the three groups are similar. The function
balanced.sample() (DAAG) may conveniently be used for this purpose.

attach(golub.info)

Golub.BM <- Golub[, BM.PB=="BM"]

cancer.BM <- cancer[BM.PB=="BM"]

## Now split each of the BTM categories between two subsets

## Uses balanced.sample(), from DAAG

gp.id <- balanced.sample(cancer.BM, nset=2, seed=31)

# Set seed to allow exact reproduction of the results below

detach(golub.info)

Tabulating the division into two sets, we find:

> table(gp.id, cancer.BM)

cancer.BM

gp.id allB allT aml

1 17 4 11

2 16 4 10

The maximum number of features for calculations usinglda() with the set I data are
28 (= 17+4+11-3-1) for set I, and 26 for set II. Hence we will work with a maximum of 25
features, in each case. Steps in handling the calculations are:

1. Using set I as the training data, find the 25 features that, for a classification of the data
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Figure 11.11: Panel A plots the test scores for the set II datain a calculation where the training data
were set I (the I/II split), as described in the text. Panel B plots the test scores for the set I data in
discriminant calculations where the roles of the two sets ofthe data were reversed i.e. the split was
II/I.

into three groups according to levels ofBTM, have the largestF -statistics.
2. For each value ofnf = 1, 2, . . . , 25 in turn

– Use the bestnf features to develop discriminant functions
– Apply this function to the data in set II, and calculate the accuracy

3. The accuracies that result will be called the I/II accuracies.
4. Now make set II the training data and set I the test data, andrepeat items 1 and 2. The

accuracies that result will be called the II/I accuracies.

These calculations can be carried out using the functionacc.train.test() (from
hddplot).

> accboth <- acc.train.test(dset = Golub.BM, cl = cancer.BM ,

traintest=gp.id)

Training/test split Best accuracy, less 1SD Best accuracy

I (training) / II (test) 0.89 (7 features) 0.93 (16 features)

II (training) / I (test) 0.77 (12 features) 0.81 (16 features )

Notice that, as well as giving the number of features that gives the maximum accuracy,
the output gives the number which achieves the maximum accuracy, less one standard
deviation. This gives a more conservative estimate of the optimum number of features.
( The standard deviation is estimated asp(1 − p)/n, wherep is the estimated maximum
accuracy, andn is the number of observations used for estimation ofp.)

We now calculate both sets of test scores (I/II and II/I) for the more conservative
choices of numbers of features (7 and 12 respectively), and plot the scores. The func-
tion plot.train.test() can conveniently be used for this purpose. Figure 11.11A
shows the test scores for the I/II split, while Figure 11.11Bshows the test scores for the
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II/I split.11Readers should repeat the plots with other divisions of the data into training and
test sets. To determine each new division, specify:

gp.id <- balanced.sample(cl=cancer.BM, nset=2, seed=NUL L)

The graphs can vary greatly, depending on how the data have been split. The ALL T-cell
points seem more dispersed than points for the other two categories.

It is instructive to compare the choices of features betweenI/II and II/I. The first twelve
in the two cases are, by row number:

> rbind(accboth$sub1.2[1:12],accboth$sub2.1[1:12])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 6606 6510 4847 5542 4050 5543 4377 4342 6236 1694 3594 126 8

[2,] 4050 2794 6696 4342 6510 1207 4055 2335 3252 6180 6236 554 3

> ## Find the order of the first list in the second, if present

> match(accboth$sub1.2[1:12],accboth$sub2.1[1:12])

[1] NA 5 NA NA 1 12 NA 4 11 NA NA NA

Note that the feature that is first in the first list is fifth in the second list, and that the feature
that is first in the second list does not appear in the first list.

Cross-validation to determine the optimum number of features

We will demonstrate the use of cross-validation to determine how many features to choose.
For the use of cross-validation, data are split intok sets. The cross-validation must be
repeated for each choice of number of features that is under consideration.

Consider again the classification of a subset of the ALL B-cell Golub data for which
gender is known intoBM:f , BM:m, andPB:m, but omitting the onePB:f sample. There
are 31 observations, divided into three groups, so that the maximum number of features that
can be used for discrimination is 26 (=31-3-2). In order to choose the optimum number of
features, the cross-validation must be repeated for each choice ofg = number of features
in the range 1, 2, . . . ,gmax = 26, calculating the cross-validation accuracy for each such
choice. The number of features will be chosen to give an accuracy that is, or is close to,
the maximum.

The full procedure is:

Forg = 1, 2, . . . ,gmax, do the following:
For each foldi = 1, . . . k in turn (k = number of folds) do the following:

Split data: Take theith set as the test data, and use the remaining data (all
except theith set) for training;
Select: Choose theg features that have the largest anova between groupF -
statistics;
Classify: Determine discriminant functions, using the chosen features and
the current training data;
Prediction: Predict the group to which the current test observation belongs.

11## Use function plot.train.test() from hddplot
plot.train.test(dset=Golub.BM, nfeatures=c(7,12),

cl=cancer.BM, traintest=gp.id)
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Figure 11.12: Comparison of different accuracy measures, in the development of a discriminant rule
for the classification, into the categoriesBM:f , BM:mandPB:m, of the B-cell ALL data for which
gender is known. The resubstitution measure (�) is a severely biased measure. Cross-validation,
but with features selected using all the data (+), is less severely biased. An acceptable measure of
predictive accuracy (◦) requires re-selection of features at each fold of the cross-validation. The right
panel shows the performance of each of these measures when the expression values are replaced by
random data.

Record, against the numberg of features used, the proportion of correct predic-
tions.

Accuracies are now available for all choices of number of features. Choose the smallest
number of features that gives close to the maximum accuracy.

Leave-one-out cross-validation will be used in the subsequent discussion. This is slightly
simpler to implement than general cross-validation, and the balancing of samples is auto-
matic. It gives a more discrete view of the variability than is possible when the test set is a
larger part of the total data.

Computations can be greatly reduced and simplified by determining the ordering of
features in advance. This will use a matrix of character values, with as many columns as
there are folds, and with the number of rows equal to the maximum number of features
that will be considered for use. A rigid upper limit is the number of features that can be
accommodated on the discriminant analysis, which is 36 (= 40observations - 3 groups -
1). When the preliminary calculations are finished, the matrix will have stored, in column
i, the 36 features that give the highestF -statistic for the observations that form the foldi

training data. For selecting the “best”nf features, one set for each different fold, the first
nf rows of this matrix will be used.

The key to getting the cross-validation to work correctly isthe use, at each fold of the
cross-validation, of the choice of features that is optimalfor the training data at that fold.
The blue curve in Figure 11.12A shows the result. Calculations are conveniently handled
using the functioncvdisc() (hddplot), thus:

tissue.mfB.acc <- cvdisc(GolubB, cl=tissue.mfB, nfeatur es=1:26,

selectonce=TRUE, cv=TRUE)
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# Accuracy measures are cv: tissue.mfB.acc$acc.cv

# Resubstitution (red points): tissue.mfB.acc$acc.resub

# "Select once" (gray): tissue.mfB.acc$acc.sel1

The red and gray points show biased and therefore inappropriate accuracy measures.
The red points show the proportion of correct predictions when the discrimination rule is
applied to the data used to develop the rule. The gray points show proportion of correct
predictions when the same features, selected using all the data, are used at each fold, and
do not change from one fold to the next.

Figure 11.12B applies the same calculations to random data.The bias in the red and
gray curves is now very obvious. The grey points now do worse than chance for more than
3 or 4 features. At each fold, the rule has been tuned to be optimal for the training data. It
therefore overfits, at each fold, relative to what is optimalfor the one test observation.

Feature selection at each fold

Note the comparison between the simpler code that selects features initially prior to the
cross-validation, and code that repeats feature selectionat each fold of the cross-validation.
The code for the calculation that selects features initially, prior to the cross-validation, is:

## This code does (less than) half the required task.

## It gives biased and therefore incorrect results.

maxfeatures <- 26

ord <- order.features(GolubB, source.mfB)

selectonce.df <- data.frame(t(GolubB[ord, , drop=F]))

acc.sel1 <- numeric(maxfeatures)

for(nf in 1:maxfeatures){

hat.selB <- lda(tissue.mfB ˜ .,

data=selectonce.df[, 1:nf, drop=FALSE],

CV=TRUE)$class

tab1 <- table(hat.selB, tissue.mfB)

acc.sel1[nf] <- sum(tab1[row(tab1)==col(tab1)])/sum(t ab1)

}

For the correct use of cross-validation, the line that calculatesselectonce.df disap-
pears. The line that calculateshat.sel1 expands into afor loop that is repeated once
for each fold. Within each fold, there are steps akin to:

## Repeat for each fold of the cross-validation
# Vector traini will be TRUE for training observations
# Vector testi will be TRUE for test observations
# cli <- tissue.mfB[traini]
# ordi <- order.features(GolubB[, traini], cli)
# dfi <- t(GolubB[ordi[1:ng], traini)
# newdfi <- t(GolubB[ordi[1:ng], testi)
# hati <- predict(lda(dfi, cli), newdata=newdfi)$class
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Cross-validation: bone marrow (BM) samples only

. It turns out to be sufficient to calculate accuracies for 1, 2, . . . , 20 features.12The maxi-
mum is 92%, from use of 14 features. A more conservative assessment, based on the one
standard deviation rule, suggests use of 11 features with anaccuracy of 89%.

11.5.4 Graphs derived from the cross-validation process

With a methodology available for choosing the number of features, it is now possible to
look for a better alternative to Figure 11.9A. Figure 11.12Asuggested that the optimum
number of features is, conservatively, either 1 or 3. The calculations that will be described
here will use three features. This is more interesting, fromthe point of view of the method-
ology, than the use of a single feature. (Use of one feature allows just one discriminant
axis, i.e. it does not lead to a scatterplot.)

It is of interest to see what features have been used at the different folds. This informa-
tion is available from the list elementgenelist , in the objecttissue.mfB.acc that
was obtained earlier. As the interest is in working with three features, it is the first three
rows that are relevant. The following table summarizes thisinformation:

> tabf <- table(tissue.mfB.acc$genelist[1:3,])

> nam <- names(sort(-tabf))

> tab <- with(tissue.mfB.acc, table(genelist[1:3,],

+ row(genelist[1:3,])))

> tab[nam, ]

1 2 3

M58459_at 30 0 1

X54870_at 0 23 5

U91327_at 0 4 23

L08666_at 0 1 0

S74221_at 0 1 0

U29195_at 1 0 0

U49395_at 0 1 0

X00437_s_at 0 1 0

X53416_at 0 0 1

X62654_rna1_at 0 0 1

Observe that M58459at is almost always the first choice.
Test scores can be calculated for the test data at each of the folds. However the different

pairs of scores (pairs is all that is possible when there is are three groups) relate to different
discriminant functions and to different choices of features, and are thus appropriately called
“local” test scores. Local foldi training scores are similarly available.

These local training scores are used to make the connection between the different folds.
Details of the way this is done are in the vignette that accompanies the packagehddplot.
The methodology is similar, but not identical to, that described in Maindonald and Burden
(2005).

12attach(golub.info)
BMonly.acc <- cvdisc(Golub, cl=cancer, nf.use=1:20, subs et=BM.PB=="BM")
round(BMonly.acc$acc.cv, 2)
detach(golub.info)
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Figure 11.13: This plot is designed to fairly reflect the performance of a linear discriminant in distin-
guishing between the categoriesBM:f , BM:mandPB:m, from the ALL B-cell subset of the Golub
data for which gender is known. The additional pointPB:f is plotted on the same axes. In the right
panel, scores were derived and plotted for B-cell samples only.
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Figure 11.14: Scores are plotted for the classification intoof bone marrow samples into ALL B-cell,
ALL T-cell and AML. Points whereGender is known are identified as male or female.

Figure 11.13A shows the result.13Figure 11.13B has applied the same methodology to
the classification of the bone marrow samples according to cancer type. Points where
Gender is known are identified as male or female.14

Notice the clear clustering of points from females on the left of the graph. This compli-
cates interpretation; is there a bias from the different gender balances in the three groups?
Enough has been done to indicate that the heterogeneity of the samples is an important
issue for the analysis of this data, and for the interpretation of the graphs of the graphs that
have been presented. There is scope to extend further the lines of investigation that have
been pursued in this section.

13attach(golub.info)
## Uses tissue.mfB.acc from above
tissue.mfB.scores <-

cvscores(cvlist = tissue.mfB.acc, nfeatures = 3, cl.other = NULL)
cvplot(scorelist = tissue.mfB.scores, cl.circle=NULL,

prefix="B-cell subset -")
detach(golub.info)

14BMonly.scores <- cvscores(cvlist=BMonly.acc, nfeatures =13,
cl.other=NULL)

cvplot(scorelist=BMonly.scores, cl.circle=tissue.mf[ BM.PB=="BM"],
circle=source.mf[BM.PB=="BM"]%in%c("BM:f","BM:m"),
circle.colr=c("cyan","gray"), prefix="B: BM samples -")


