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Figure 11.8: Diagnostic plots for the mod@l.[m ) that uses the scores as the only covariate.

11.5 *High-dimensional data, classification, and plots

Data sets that have many more variables than observatiensar common in a number
of application areas. In the data that will be consideretiimgection, the observations are
divided up into groups, just as for tip@ssum data in Subsection 11.2.4.

In Subsection 11.2.4 the groups were sites at which the pussiere taken. For the
data that will be discussed here, conveniently called tha@li®’ data after the first author
of the paper that was based on it (Golub et al., 1999), therahisens are tissue samples
that have been taken from cancer patients, grouped inte tlifierent cancer types. For
the possum data, the 9 variables were body measurementthd=Giolub data, there are
7129 variables, each an attempt to measure the biologitigltp®f a particular gene.
Technically, the measurements are “gene expression sidice

The following table compares the relative number of obg@&ma and variables in the
possum data with the numbers in the data that will now be examined:

Number of
Data source Type of measurement observations variables
Possum data Body dimension 102 (1 missing) 9
Golub cancer tissue data  Gene expression index 72 7129

For the possum data, the only groupings of interest wergelzyand bysite . For the
Golub data, there are several groupings that are relevaamyt@xamination of the data.
A major interest is in finding a discrimination rule that caesadiminate between differ-
ent cancer types: AML, ALL B-type and ALL T-type. Here AML iscite Myoblastic
Leukemia (myoblastic = producing muscle tissue), while AilsLAcute Lymphoblastic
Leukemia (lymphoblastic = producing lymph tissue). An effiee discrimination rule,
using a small subset of the features, would allow the desfga diagnostic device (a
“probe”) that could be used to determine cancer type. (Notgdver that any classifi-
cation of cancers is likely to conceal large individual éiffnces that, in many cancers,
arise from random differences in the timing and outcomeigfér points in a cascade of
genomic damage and disruption.)

Use of these data for discrimination between cancer typesigplicated by the potential
effects of other factors. As well as different sexes, theestao different types of body
tissue (bone marrow and peripheral blood). Another padéstiurce of variation is that
the tissues came from four different hospitals; this wilt be pursued here. Because of
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the complications that these other factors create for ttesmgut to find a rule that will
be effective in classifying new samples, graphical exgloraof the data is more than
otherwise important. The high dimensionality offers hoaresvhuge challenge for creating
graphs that are both revealing and unlikely to mislead. Wreats of the data may help
in revealing subgroups in the data, or points that may haee b@sclassified, or between
group differences in the variance-covariance structure?

In the discussion that follows, variables will be calledtteras, following the terminol-
ogy that is common in this area. Each of the 7129 featuresgjoalves) is a value of an
expression index, measuring the expression of one of 71128sger putative genes.

For further discussion of the types of analysis that areritesd here, see Maindonald
and Burden (2005) and Ambroise and McLachlan (2002).

What groups are of interest?

The data frameolub.info has information on the tissue samples, which are the ob-
servations. The two classifications that will be pursued(ayeaccording to cancer type
(AML, ALL B-type, ALL T-type), given by the factorcancer , and (2) according to sex
and tissue type, given by the fact@sue.mf . The frequencies in the two-way classifi-
cation according to these factors are:

> with(golub.info, table(cancer, tissue.mf))

tissue.mf
cancer BM:NA BM:f BM:m PB:NA PB:f PB:m
allB 4 19 10 2 1 2
allT o0 0 8 0 0 1
aml 16 2 3 1 1 2

The different tissue/sex combinations may well affect theparison between different
cancer types. Thus tralB is predominate\BM:f , while aml is predominatel\BMof
unknown sex. FoallB , there are enough samples that it is worthwhile to invetitfze
split of tissue.mf  into BM:f , BM:mandPB:m. Thus, for these data, a sensible pre-
liminary analysis is to investigate whether the tissue {idor PB) and genderfemale
or Male ) affects expression values, limiting attentioraltB tissues. The following pre-
liminary calculations separate out the relevant subSetubB ) of the data, and derive a
factor tissue.mfB ) that identifies the groups of intere&NI:f , BM:mandPB:m):

attach(golub.info)

## Identify allB samples for that are BM:f or BM:m or PB:m

subsetB <- cancer=="allB" & tissue.mf%in%c("BM:f","BM:m ""PB:m")
## Form vector that identifies these as BM:f or BM:m or PB:m

tissue.mfB <- factor(tissue.mf[subsetB])

## Separate off the relevant columns of the matrix Golub

GolubB <- Golub[, subsetB]

detach(golub.info)

The vector tissue.mf[subsetB ) is a factor that retains all the levels of
tissue.mf . Use of the function textttfactor() returns a factor thas loaly the levels
that are present in the data.
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11.5.1 Classifications and associated graphs

In the following discussion, interest will be on the gragigiew that can be associated
with one or other discriminant rule, rather than in the disamant rules themselves. The
idea is to obtain graphs that are targeted toward giving @aViepresentation of classifi-
cations of interest. Different classifications will leaddifferent graphical views — what is
seen depends, inevitably, on which clues are pursued inetdrels for relevant graphical
views. Care is required to ensure that graphs present aiéawrof the data, not showing
differences between known groups where there are none ggerating such differences
as may exist.

Discrimination will use the relatively simple and readilgyderstood linear discriminant
function methodology that was introduced and used eaitiegection 11.2.2. Analyses
will, again, use thdda() function (MASS. Linear discriminant functions may be as
complicate as is sensible, given the large amount of noisaiirent expression array data
sets.

The statistical information given in the output from the dtionlda() assumes that
the variance-covariance matrix is the same in all groupgn&vhere this is not plausible,
a useful graphical view may still result. If there are pronoed between group differences
in the variance-covariance structure, this will be obvioushe graphs that result. The
emphasis will be on insight rather than on the use of methuaitsare arguably optimal.

The functiongda() is an alternative tayda() that allows for different variance-
covariance matrices in different groups. Usegdf() does however restrict the number
of features that can be used. For use tdatures, each group must have at lgast1 ob-
servations. The methodology for deriving plots that willdescribed here does not readily
adapt for use witlyda() .

Preliminary data manipulation

The version of the Golub data that is used here, and the ingtised, are available
from http://www.maths.anu.edu.au/ ~johnm/r/cvplot .) These will shortly
be incorporated into a package that has the nladuplot The data were derived from the
golubEsetpackage that is available from the Bioconductor web sit#) fuirther process-
ing applied that is additional to the processing that preddtie incorporation of the data
into thegolubEsets  package.

All data for an observation (a tissue sample) comes from glesitchip”, leading po-
tentially to systematic differences between observatioiigs therefore usual to apply
procedures that align the feature values for the differbeeovations. For the present data,
the procedure has been to ensure that the median and staled@tion is the same across
the different slides. Full details will be included in an Swe file that will be placed on
the site noted above.

Before proceeding further the distribution for individuadservations across features,
and the distribution for a selection of features acrossmiasiens, should be checkéd@he

S## Try e.g.

boxplot(data.frame(GolubB[, 1:20])) # First 20 columns (o bservations)
## Random selection of 20 rows (features)
boxplot(data.frame(GolubB[sample(1:7129, 20), ]))
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A: ALL B-cell: 15 features
o BM:f A BM:m + PB:m (X PB:f)

B: Random data: 15 features
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Figure 11.9: The left panel used the subset of ALL B-cell oletions for whichGender was
known. The onePB:f observation was excluded for purposes of analysis. An aftgaatistic
calculation identified the 15 features that, individuaflyest” separated the data into three groups.
These 15 features were then used in a linear discriminahsifaScores were then determined for
each of the two available discriminant axes. Additionalyredicted score was determined for the
PB:f observation. For the right panel, the same procedure whswvied, but now using a matrix
where the “expression values” were random normal data.

distributions are positively skewed. The effect on resudtpiires investigation.

11.5.2 Flawed graphs

Figure 11.9A is a first, but flawed, attempt at a graph that shine separation of the 31
observations into the 3 specified groups. It uses discrimiages that were determined
using 15 features that individually, as indicated by an ysialof varianceF'-test, gave
the best separation into the 3 groups. It is flawed becausecmuat is taken of the
effect of selecting the 14 “best” features, out of 7129. Fegll.9B, which was obtained
by applying the same procedure to random normal data, fra2® f#idependent normal
variables that all has the same mean and variance, showstthgipl for getting an entirely
spurious separation into groups. In spite of its evidentdlatis important to understand
the procedure that was followed, as the later discussionewiend and adapt it to give
graphs that are not subject to the same flaws.
In summary, Figure 11.9 was obtained as follows:

* The 15 features (from 7129) were selected that, as measyatdmnalysis of variance
F-statistic, gave the best separation of the remaining 4@rghtons into the three
groupsBM:f , BM:m PB:f ;7

* The first two discriminant functions, and associated distrant scores, were calcu-
lated and plotted;

“## Uses order.features() (DAAG); see below
ordl5 <- order.features(GolubB, cl=tissue.mfB)[1:15]
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* Discriminant scores were predicted for the &:f , so that it could be plotte®.

Figure 11.9B used the same approach, but replaced the redasxpression values by
random normal values. It can be obtained with:

simscores <- simulate.scores(nfeatures=7129, cl=rep(1: 3, ¢(19,10,2)),
cl.other=4, nf.use=15, seed=41)
# Returns list elements: scores, cl, scores.other & cl.othe r
with(simscores, scoreplot(scores, cl, scores.other, cl. other))

Readers are encouraged to experiment with this functigingrdifferent values for
nfeatures , fornf.use , and different groupings of the data.

The selection of 15 features from a total of 7129, selectédt® the largedt-statistics,
makes it impossible to give much credence to the clear sepagchieved with expression
array data in Figure 11.9A. The extent of separation in FdLir.9B from use of random
normal data indicates the potential severity of the saactffect, for the data used for
11.9A. The 15 most extreme F-statistics out of 7129, from ladistribution in which
there is no separation between groups, will all individpaliow some separation. Choice
of the two “best” two discriminant axes that use these 15ieatwill achieve even clearer
separation than is possible with any of the features indailgy. Clearer apparent separa-
tion still, both for random data and for the Golub data, caadgeved by choosing more
than 15 features.

Distributional extremes

There will in some data sets be a small numbeFeftatistics that are so large that they
are unlikely to be extremes from the null distribution. Blsuch as Figure 11.9A can
then be based on these features, with no concern about [gosB#xts of selection bias.
Correlations between features vitiates use of a theonetdsaimes that genes are indepen-
dent. Additionally, the distributions for individual feats may not be normal, in a context
where the interest is in the distributional extremegedtatistics and normality is likely to
matter.

Permutation methods, implemented in the packaggttest can however be used to
determine a relevant reference distribution. (There ameways to install this package.

8dfB.ord <- data.frame(t(GolubB[ord15, 1))

## Calculations for the left panel

## Transpose to observations by features

dfB15 <- data.frame(t(GolubB[ord15, 1))
library(MASS)

dfB15.1da <- Ida(dfB15, grouping=tissue.mfB)
scores <- predict(dfB15.lda, dimen=2)$x

## Scores for the single PB:f observation
attach(golub.info)

df.PBf <- data.frame(t(Golub[ord15, tissue.mf=="PB:f"

& cancer=="allB", drop=FALSE]))
scores.PBf <- predict(dfB15.lda, newdata=df.PBf, dimen= 2)$x
detach(golub.info)

## Warning! The plot that now follows may be misleading!

scoreplot(scores=scores, cl=tissue.mfB, scores.other= scores.PBf,
cl.other="PB:f")

%## Use the function simulate.scores()

## Alternatively, set:

## dimen <- dim(GolubB); rsetB <- array(rnorm(prod(dimen) ), dim=dimen)

## Then replace GolubB with rsetB, and repeat the lines above .
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A “stand-alone” version can be installed from CRAN, or it adternatively be installed
as one component of a minimal BioConductor installatione $tand-alone version from
CRAN is adequate for present purposes.)

The functionmt.maxT() determines the needed empirical distribution, as part of
its implementation of a multiple testing procedure — theefistown” method. Our in-
terest here is not in the multiple testing procedure, buthie ¢mpirical distribution
of the F-statistics, which can be obtainedqg§d-GolubB.maxT$rawp, 2, 28)

The F-statistics for the assignment of labels as in the actualpgarare stored in
GolubB.maxT$teststat , i.e., the values are the same as those obtained from
calc.matrixrows.f(GolubB, tissue.mfB)

The code used for the calculation is:

## The calculation may take tens of minutes, even with adequa te
## memory (e.g., 512MB) and a fast processor.
## If necessary, use a smaller value of B.
GolubB.maxT <- mt.maxT(GolubB, unclass(tissue.mfB)-1, t est="f",
B=100000)
## Compare calculated F-statistics with permutation distr ibution
gqthin(gf(1-GolubB.maxT$rawp, 2, 28), GolubB.maxT$test stat)
## Compare calculated F-statistics with theoretical F-dis tribution
qqthin(gf(ppoints(7129), 2, 28), GolubB.maxT$teststat)
# The theoretical F-distribution gives estimates of quanti les
# that are too small
## NB also (not included in Figure 11.10) the comparison betw een
## the permutation distribution and the theoretical F:
qqthin(gf(ppoints(7129), 2, 28), qf(1-GolubB.maxT$rawp , 2, 28))

The parameteB sets the number of permutations that will be taken. This sgede
substantially larger than the number of features in ordegeban accurate estimate of
extreme upper quantiles of the distribution.

Figure 11.10 shows QQ-plots that compare the relevanilulisions.

The plot on the left, which uses an appropriate referendelalision, suggests that the
largest two features, and probably others as well, showrdiftial expression, The theo-
retical F’-distribution, used for the horizontal axis in the righttpis clearly not an appro-
priate reference distribution. It is very unlikely that thell distribution would generate
such extremd-'-statistics. It would be safe to work with a version of Figdre9A that
uses the two features that show the clearest evidence efdliffial expression. Beyond,
this point, there are a number of features that show evidehdéerential expression, and
use of those that show the clearest evidence of differemtjaession may introduce a bias.

This brief interlude has had the aim of drawing attentionhe distributional issues.
Effective mechanisms for handling such issues are the subjactive research, and will
be pursued further in this section.

The subsequent discussion will demonstrate adaptatiortheoprocedure used for
Figure 11.9A, designed to avoid its evident flaws and withoetessarily limiting at-
tention to a small number of features that show clear evidafcdifferential expres-
sion. Before proceeding to that discussion, brief details lve given of the function
order.features() that was used above, and that will be used extensively inghe r
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Figure 11.10: These QQ-plots are for the subset of ALL ola@ms for whichGender was known,
but excluding the on®B:f observation. The left plot compares the ordefedtatistics with the
ordered statistics from the permutation distribution. Tight plot compares the orderdd statistics
with F'-distribution quantiles. Also shown, in both plots, is tively = «.

mainder of this section.

The functioror der . f eat ur es()

At this point, note our functiomrder.features() , included in theDAAGpackage.
This function will be used extensively in the seqifilhe functionorder.features()
takes as parameters:

e dset : the matrix of expression values, in the features by obsenslayout that is
usual in work with expression arrays;

e cl : afactor that classifies the observations;

e subset : if changed from its defaultNULL), this identifies a subset of observations
(columns ofdset ) that will be used for calculating the statistics.

Selection of features that discriminate well individually an analysis of variancg-
statistic sense, is not guaranteed to select the featwaesithperform well in combination.
Itis akin to using, in a multiple regression, the variables perform well when used as the
only predictors. It may however be a reasonable strategyderin an initial exploratory
analysis, in the absence of a an obviously better altemathgain, note that this section
is intended to draw attention to important issues and idBas .development of good vari-
able selection methods, in the context considered in tluisose is the subject of ongoing
research.

1044 Simplified version. The DAAG version has an additional pa rameters

## subset (to extract a subset of observations)
"simple.order.features" <-
function(dset, cl){
## Ensure that cl is a factor & has no redundant levels
cl <- factor(cl)
stat <- calc.matrixrows.f(dset, cl)
order(-stat) # Require largest first

}
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11.5.3 Accuracies and Scores for test data

One approach is to split the data into two sets, here namatlll.arhen set | can be used to

train discriminant functions and to determine discriminscores for the test observations
in set II. The key requirement is that the scores must retetdservations that are distinct
from those used to develop the discriminant functions, aadrae from the selection bias

that affects the set | scores. The set Il test data had noreigher the selection of features,
or the determination of the discriminant functions and efsded scores.

The process can then be reversed, with set Il used for tgaamia scores calculated for
set I. Two plots are then available, the first of which shoveses for set Il, and the second
scores for set Il. The two plots, conveniently identified fisand 11/1, will use different
features and different discriminant functions and caneaimply superposed.

Because of the small number of observations (3) irtBem category, the data used for
Figure 11.9A cannot satisfactorily be split into trainingdaest data. We can however use
this approach to examine the classification of the bone mg{Bd1.PB=="BM") samples
into ALL B-cell, ALL T-cell, and AML. Two approaches that nigbe used to determine
the optimum number of features, when developing a discamtinule from set I, are:

* Use the predicted accuracies for set Il.
* Use cross-validation on set |

Cross-validation can of course be used even if, as in theudata for Figure 11.9A, we do
not have a set Il. Cross-validation will be demonstrateerlat this section.

The graphs now presented will work with the grouping of thedbi3ervations into
ALL B-cell, ALL T-cell and AML categories. These will be splinto training and
test sets in which the relative numbers in the three groupssemilar. The function
balanced.sample() (DAAG) may conveniently be used for this purpose.

attach(golub.info)
Golub.BM <- Golub[, BM.PB=="BM"]
cancer.BM <- cancer[BM.PB=="BM"]
## Now split each of the BTM categories between two subsets
## Uses balanced.sample(), from DAAG
gp.id <- balanced.sample(cancer.BM, nset=2, seed=31)
# Set seed to allow exact reproduction of the results below
detach(golub.info)

Tabulating the division into two sets, we find:

> table(gp.id, cancer.BM)
cancer.BM
gp.id allB allT aml
117 4 11
2 16 4 10

The maximum number of features for calculations uddef) with the set | data are
28 (= 17+4+11-3-1) for set |, and 26 for set II. Hence we willhwwith a maximum of 25
features, in each case. Steps in handling the calculatiens a

1. Using set | as the training data, find the 25 features tbag tlassification of the data
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Figure 11.11: Panel A plots the test scores for the set |l idedecalculation where the training data
were set | (the I/ll split), as described in the text. Panell@the test scores for the set | data in
discriminant calculations where the roles of the two setthefdata were reversed i.e. the split was
1.

into three groups according to levels®TM have the largedt'-statistics.
2. Foreachvalueof; =1,2,...,25inturn
— Use the best features to develop discriminant functions
— Apply this function to the data in set Il, and calculate theuaacy
3. The accuracies that result will be called the I/1l accigsic
4. Now make set Il the training data and set | the test dataregpeht items 1 and 2. The
accuracies that result will be called the 11/l accuracies.

These calculations can be carried out using the fundiontrain.test() (from
hddplo).

> acchoth <- acc.train.test(dset = Golub.BM, cl = cancer.BM ,
traintest=gp.id)

Training/test split Best accuracy, less 1SD Best accuracy
| (training) / Il (test) 0.89 (7 features) 0.93 (16 features)
Il (training) / | (test) 0.77 (12 features) 0.81 (16 features

Notice that, as well as giving the number of features thag¢gthe maximum accuracy,
the output gives the number which achieves the maximum acgutess one standard
deviation. This gives a more conservative estimate of themmn number of features.

( The standard deviation is estimatedyd$ — p)/n, wherep is the estimated maximum
accuracy, ana is the number of observations used for estimatiop.pf

We now calculate both sets of test scores (I/Il and Il/l) foe tmore conservative
choices of numbers of features (7 and 12 respectively), dotdtipe scores. The func-
tion plot.train.test() can conveniently be used for this purpose. Figure 11.11A
shows the test scores for the /11 split, while Figure 11.kt®ws the test scores for the
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I1/1 split. *'Readers should repeat the plots with other divisions of #ta ithto training and
test sets. To determine each new division, specify:

gp.id <- balanced.sample(cl=cancer.BM, nset=2, seed=NUL L)

The graphs can vary greatly, depending on how the data haredmit. The ALL T-cell
points seem more dispersed than points for the other twgaaés.

It is instructive to compare the choices of features betwékeand 11/1. The first twelve
in the two cases are, by row number:

> rbind(accboth$subl.2[1:12],accboth$sub2.1[1:12])

(11 [.2] [,3] [4] [.5] [.6] [.7] [.8] [9] [10] [11] [12]
[1,] 6606 6510 4847 5542 4050 5543 4377 4342 6236 1694 3594 126 8
[2,] 4050 2794 6696 4342 6510 1207 4055 2335 3252 6180 6236 554 3
> ## Find the order of the first list in the second, if present
> match(accboth$subl.2[1:12],acchboth$sub2.1[1:12])
[1] NA° 5 NA NA 1 12 NA 4 11 NA NA NA

Note that the feature that is first in the first list is fifth ietbecond list, and that the feature
that is first in the second list does not appear in the first list

Cross-validation to determine the optimum number of fesgtur

We will demonstrate the use of cross-validation to deteerhiow many features to choose.
For the use of cross-validation, data are split ihtsets. The cross-validation must be
repeated for each choice of number of features that is urthsideration.

Consider again the classification of a subset of the ALL B-Gellub data for which
gender is known int@M:f , BM:m andPB:m, but omitting the on®B:f sample. There
are 31 observations, divided into three groups, so that thémum number of features that
can be used for discrimination is 26 (=31-3-2). In order toase the optimum number of
features, the cross-validation must be repeated for eagicebfg = number of features
in the range 1, 2, .. .94 = 26, calculating the cross-validation accuracy for each such
choice. The number of features will be chosen to give an aoguthat is, or is close to,
the maximum.

The full procedure is:

Forg=1, 2, ... ,9maz, do the following:
For each fold = 1, ...k in turn (¢ = number of folds) do the following:
Split data: Take theith set as the test data, and use the remaining data (all
except theth set) for training;
Select: Choose the features that have the largest anova between gféup
statistics;
Classify: Determine discriminant functions, using the chosen festand
the current training data;
Prediction: Predict the group to which the current test observationrgso

z# Use function plot.train.test() from hddplot
plot.train.test(dset=Golub.BM, nfeatures=c(7,12),
cl=cancer.BM, traintest=gp.id)
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A: Golub data (as for Figure 11.9) B: Random data
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Figure 11.12: Comparison of different accuracy measunate development of a discriminant rule
for the classification, into the categoriBM:f , BM:mandPB:m, of the B-cell ALL data for which
gender is known. The resubstitution measurg is a severely biased measure. Cross-validation,
but with features selected using all the datg,(is less severely biased. An acceptable measure of
predictive accuracyof requires re-selection of features at each fold of the evafidation. The right
panel shows the performance of each of these measures whergtession values are replaced by
random data.

Record, against the numberof features used, the proportion of correct predic-
tions.

Accuracies are now available for all choices of number ditfess. Choose the smallest
number of features that gives close to the maximum accuracy.

Leave-one-out cross-validation will be used in the subsatdiscussion. This is slightly
simpler to implement than general cross-validation, ardbidlancing of samples is auto-
matic. It gives a more discrete view of the variability tharpossible when the test set is a
larger part of the total data.

Computations can be greatly reduced and simplified by détémgrthe ordering of
features in advance. This will use a matrix of charactereslwith as many columns as
there are folds, and with the number of rows equal to the maximumber of features
that will be considered for use. A rigid upper limit is the nloen of features that can be
accommodated on the discriminant analysis, which is 36 (sl&grvations - 3 groups -
1). When the preliminary calculations are finished, the matill have stored, in column
1, the 36 features that give the highésistatistic for the observations that form the feld
training data. For selecting the “best’; features, one set for each different fold, the first
ny rows of this matrix will be used.

The key to getting the cross-validation to work correctlyhie use, at each fold of the
cross-validation, of the choice of features that is optifoathe training data at that fold.
The blue curve in Figure 11.12A shows the result. Calcutatiare conveniently handled
using the functiorevdisc()  (hddplo), thus:

tissue.mfB.acc <- cvdisc(GolubB, cl=tissue.mfB, nfeatur es=1:26,
selectonce=TRUE, cv=TRUE)
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# Accuracy measures are cv: tissue.mfB.acc$acc.cv
# Resubstitution (red points): tissue.mfB.acc$acc.resub
# "Select once" (gray): tissue.mfB.acc$acc.sell

The red and gray points show biased and therefore inapjtepaccuracy measures.
The red points show the proportion of correct predictiongmthe discrimination rule is
applied to the data used to develop the rule. The gray pom® groportion of correct
predictions when the same features, selected using alldtze dre used at each fold, and
do not change from one fold to the next.

Figure 11.12B applies the same calculations to random déte. bias in the red and
gray curves is now very obvious. The grey points now do wdraa thance for more than
3 or 4 features. At each fold, the rule has been tuned to benaptor the training data. It
therefore overfits, at each fold, relative to what is optifoathe one test observation.

Feature selection at each fold

Note the comparison between the simpler code that seleatisrés initially prior to the
cross-validation, and code that repeats feature seleatieach fold of the cross-validation.
The code for the calculation that selects features ingtigliior to the cross-validation, is:

## This code does (less than) half the required task.
## It gives biased and therefore incorrect results.
maxfeatures <- 26
ord <- order.features(GolubB, source.mfB)
selectonce.df <- data.frame(t(GolubBford, , drop=F]))
acc.sell <- numeric(maxfeatures)
for(nf in l:maxfeatures){
hat.selB <- Ida(tissue.mfB ~ .,
data=selectonce.df[, 1:nf, drop=FALSE],
CV=TRUE)$class
tabl <- table(hat.selB, tissue.mfB)
acc.sell[nf] <- sum(tabl[row(tabl)==col(tabl)])/sum(t abl)
}

For the correct use of cross-validation, the line that datesselectonce.df disap-
pears. The line that calculateat.sell  expands into &or loop that is repeated once
for each fold. Within each fold, there are steps akin to:

## Repeat for each fold of the cross-validation

Vector traini will be TRUE for training observations
Vector testi will be TRUE for test observations

cli <- tissue.mfBtraini]

ordi <- order.features(GolubBJ, traini], cli)

dfi <- t(GolubB[ordi[1:ng], traini)

newdfi <- t(GolubBJordi[1:ng], testi)

hati <- predict(Ida(dfi, cli), newdata=newdfi)$class

H H H O HF H R
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Cross-validation: bone marrowB() samples only

. It turns out to be sufficient to calculate accuracies for,1, 2, 20 feature$?The maxi-
mum is 92%, from use of 14 features. A more conservative assa#, based on the one
standard deviation rule, suggests use of 11 features wititeuracy of 89%.

11.5.4 Graphs derived from the cross-validation process

With a methodology available for choosing the number offesd, it is now possible to
look for a better alternative to Figure 11.9A. Figure 11.192/ygested that the optimum
number of features is, conservatively, either 1 or 3. Theuwations that will be described
here will use three features. This is more interesting, fle@point of view of the method-
ology, than the use of a single feature. (Use of one featlowaljust one discriminant
axis, i.e. it does not lead to a scatterplot.)

It is of interest to see what features have been used at tleeadif folds. This informa-
tion is available from the list elemegenelist , in the objectissue.mfB.acc that
was obtained earlier. As the interest is in working with ehfeatures, it is the first three
rows that are relevant. The following table summarizesittitemation:

> tabf <- table(tissue.mfB.acc$genelist[1:3,])
> nam <- names(sort(-tabf))
> tab <- with(tissue.mfB.acc, table(genelist[1:3,],
+ row(genelist[1:3,])))
> tab[nam, ]
1 2 3

M58459_at 30 0 1

X54870_at 023 5

U91327_at 0 4 23

L08666_at 0 1 o

S74221 at 0 1 0

U29195 at 1 0 O

U49395_at 0 1 0

X00437_s_at 0 1 O

X53416_at 0 0 1

X62654 mal at 0 0 1

Observe that M58458t is almost always the first choice.

Test scores can be calculated for the test data at each aflttsee However the different
pairs of scores (pairs is all that is possible when theredgtaee groups) relate to different
discriminant functions and to different choices of feafiignd are thus appropriately called
“local” test scores. Local fold training scores are similarly available.

These local training scores are used to make the conneatorebn the different folds.
Details of the way this is done are in the vignette that accamgs the packadeddplot
The methodology is similar, but not identical to, that désed in Maindonald and Burden
(2005).

12attach(golub.info)
BMonly.acc <- cvdisc(Golub, cl=cancer, nf.use=1:20, subs et=BM.PB=="BM")

round(BMonly.acc$acc.cv, 2)
detach(golub.info)
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A: B—cell subset — 3 features
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Figure 11.13: This plot is designed to fairly reflect the parfance of a linear discriminant in distin-
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guishing between the categorieM:f , BM:mandPB:m, from the ALL B-cell subset of the Golub

data for which gender is known. The additional pdd&:f is plotted on the same axes. In the right

panel, scores were derived and plotted for B-cell samplés on
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A: BM & PB samples — 13 features B: BM samples - 13 features
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Figure 11.14: Scores are plotted for the classificationafitwone marrow samples into ALL B-cell,
ALL T-cell and AML. Points wheresender is known are identified as male or female.

Figure 11.13A shows the resdfifigure 11.13B has applied the same methodology to
the classification of the bone marrow samples according neeratype. Points where
Gender is known are identified as male or femafe.

Notice the clear clustering of points from females on thedéthe graph. This compli-
cates interpretation; is there a bias from the differentigeibalances in the three groups?
Enough has been done to indicate that the heterogeneityedfamples is an important
issue for the analysis of this data, and for the interpratadi the graphs of the graphs that
have been presented. There is scope to extend further treedirinvestigation that have
been pursued in this section.

L3attach(golub.info)
## Uses tissue.mfB.acc from above
tissue.mfB.scores <-
cvscores(cvlist = tissue.mfB.acc, nfeatures = 3, cl.other = NULL)
cvplot(scorelist = tissue.mfB.scores, cl.circle=NULL,
prefix="B-cell subset -")
detach(golub.info)

14BMonly.scores <- cvscores(cvlist=BMonly.acc, nfeatures =13,
cl.other=NULL)
cvplot(scorelist=BMonly.scores, cl.circle=tissue.mf[ BM.PB=="BM"],

circle=source.mf[BM.PB=="BM"]|%in%c("BM:f","BM:m"),

circle.colr=c("cyan","gray”), prefix="B: BM samples -")



