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Abstract

This paper examines sparse grid quadrature on Korobov spaces,
i.e. weighted tensor product (WTP) reproducing kernel Hilbert spaces
on the torus. We describe a dimension adpative quadrature algorithm
based on an algorithm of Hegland [3], and also formulate a version
of Wasilkowski and WozZniakowski’s wTP algorithm [I0], here called
the ww algorithm. We claim that our algorithm is generally lower in
cost than the ww algorithm, and therefore both algorithms have the
optimal asymptotic rate of convergence given by Theorem 3 of Wasil-
kowski and Wozniakowski [10]. Even so, if the dimension weights
decay slowly enough, both algorithms need 2¢ points to produce a
substantial reduction in quadrature error.
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1 Introduction

This paper examines sparse grid quadrature on weighted Korobov spaces,
that is, weighted tensor products of reproducing kernel Hilbert spaces (RKHS)
on the torus T?, the d-dimensional product of S!, the circle of unit radius.

A function defined on the d-dimensional unit torus is equivalent, from
the point of view of integration, to a function which is periodic on the d-
dimensional unit cube. The integration of functions on a high dimensional
unit cube occurs in many applications, most notably in finance. Often, such
integration cannot be performed analytically, but must be approximated by
quadrature, that is, by a linear combination of function values obtained at a
finite number of points in the cube.

The study of rates of convergence of quadrature of periodic functions on
the unit cube goes back at least as far as Korobov [5, 6], who studied classes of
functions defined by the rate of decay of the coefficients in the Fourier series
of the function. The rate of convergence of a quadrature rule, as the number
of points increases, generally depends on the properties of the function, or
space of functions, to which the quadrature rule is applied.

More recently, attention has shifted to Korobov spaces, defined as re-
producing kernel Hilbert spaces of periodic functions on the unit cube. In
a Korobov space, the reproducing kernel is the product of one dimensional
kernels. Weighted Korobov spaces are a generalization of Korobov spaces
where each one dimensional kernel is defined using a possibly different weight.
These weighted spaces are used to study tractability of quadrature rules.
The general question studied is how the rate of convergence of a quadrature
rule depends on the number of dimensions of the space where it is defined.
Rates of convergence and criteria for strong tractability of quadrature in
weighted Korobov spaces spaces have been well studied by Hickernell and
WoZniakowski [4] and by Sloan and Wozniakowski [§]. As noted by Kuo and
Sloan [7], the setting of weighted Korobov spaces is equivalent to the setting
they used to examine quasi-Monte Carlo (QMC) quadrature on d-dimensional
products of the unit sphere S* C R**!, confined to the special case where
s = 1, that is, the d-dimensional torus T¢. This is the setting used in this
paper, and it is described in more detail in the next section.

The idea of sparse grid quadrature is based on Smolyak’s quadrature
rules. Smolyak’s original paper studied the convergence of rules for non-
periodic functions on the unit cube, as well as Korobov’s classes [9].

In function spaces where the dimensions may have different weights,
Smolyak’s original sparse grid algorithm has been modified and generalized,
resulting in dimension adaptive sparse grid algorithms. Such algorithms in-
clude those of Wasilkowski and Wozniakowski [10], Hegland [3], and Gerstner



and Griebel [2]. Of these, the WP algorithm of Wasilkowski and WozZnia-
kowski has the most well-developed theory of the rate of convergence of the
worst case error, but this algorithm and its analysis are based on weighted
spaces of non-periodic functions on the unit cube, and must be modified for
our weighted Korobov setting.

The remainder of this paper is organized as follows. Section 2 describes
our weighted Korobov space setting in detail. Section 3 introduces our dimen-
sion adaptive sparse grid quadrature algorithm. Section 4 analyses our ver-
sion of the wTP algorithm of Wasilkowski and Wozniakowski, and compares
its theoretical rate of convergence with that of our dimension adaptive algo-
rithm. Section 5 contains numerical results, comparing the two algorithms,
and showing how our algorithm performs as the dimension is increased.

2 Setting

Let D C R**! be a compact s-dimensional manifold with probability measure
p. It follows that the constant function 1, with 1(z) = 1 for all x € D, is
integrable and [, 1(2) du(x) = 1. Then let H be a Hilbert space of functions
f:D — R, with a kernel K, satisfying

e for every x € D there exists k, € H such that
f<x>: <kx7f>H; for allf€H7 (1)

e every f € H is integrable and
[ 1@ duta) = 1. P 2

where the functions k, are given by k,(y) := K(z,y), and where (-, )y
denotes the scalar product in H. We recognize H as a reproducing kernel
Hilbert space. In this framework, quadrature methods @), defined by

mn:Zwm»

are continuous linear functionals and Q(f) = (g, f)m with ¢ = Y"1 | wik,,.

We will assume that the quadrature points z; are given. An optimal
choice of weights w; minimizes the worst case quadrature error e(q), which
is given by the norm ||1 — ¢l|,; . The optimal ¢* is thus defined as

q" :=argmin {||1 — ql|z | ¢ € span{ks,,... ks, }}. (3)



The weights of an optimal quadrature method are thus obtained by solving
a linear system of equations with a matrix whose elements are the values of
the reproducing kernel K (z;, ;) = (ks,, kz;) . The right-hand side of these
equations is a vector with elements all equal to one.

We now describe our more specific reproducing kernel Hilbert space H of
functions on D. The space H satisfies , but as well as , it also satisfies
the more specific

/D f(@) dpx) = (1, f)z = 0.

We now extend H into the space H”, which consists of all functions of the
form g = al + f, where a € R, and f € ‘H with the norm || - |3~ defined by

1
2 2
g1l = lal* + = [[£1l5-
fy
It is easily verified that H” is an RKHS with reproducing kernel

]C’Y(x7y) = 1 +’7’C($7y)7

where K is the reproducing kernel of the RKHS H.

For functions on the domain D? we consider the tensor product space
Haq = ®z:1 H™ where 1 > 1 --- = 74 = 0. This is an RKHS of functions
on D? with reproducing kernel Ky(z,y) = [[i_,(1 + 7 K(zx,yx)) where
Tk, Yy € D are the components of z,y € D?. Moreover

. f(l’) d:ud(x) = <17 f>7-ld7

where 4 is the product measure, (-, ), is the scalar product on the tensor
product space Hg, and 1 is the constant function on D? with value 1. It
follows that the space H, satisfies the two conditions and and we can
derive optimal quadrature rules for given point sets.

We now describe our specific Korobov space setting, which is the setting
of Kuo and Sloan [7], with s := 1. We take our domain D to be the unit circle
T :=S!:={x € R?* | 2? + 23 = 1}, and consider the real space Ly(T). We
use the real Fourier basis defined by Yy o(x) := 1, Yz ((Cos 6, sin 9)) = cos /6,
ng’g((COS 0, sin@)) =sinlf, {=1,..., 0.

For f € Ly(T), we expand f in the Fourier series

f(aj) = f0,0 + Z Z fAE,mY’@,m(x)-

/=1 m=1



For positive weight v, we define the RKHS

HY) = {f € La(T) | | fllyp < oo}, where

0o 2
e £ 5 -1 2r £ A
<f7 g>H<12 T f0,0 Jo,0 + v Z Z 14 ff,m 9e.m-

/=1 m=1

The reproducing kernel of HQ is then

Kfr,z(x,y) =1+~A.(x-y), wherefor z € [-1,1],
2
AT(Z) = WTE(Z)’

(=1

e}

with 7} the Chebyshev polynomial of the first kind, T;(cos 8) := cos £0. Con-
vergence of A, requires that r > 1/2.
For v := (va1,...,%a4), we now define the tensor product space

d
(r ._ (r)
Hd7’7 T ®H1’7d,k‘
k=1

This is a weighted Korobov RKHS on T?, with reproducing kernel

d

ng)(x, y) = H K{,Ty)d,k(ﬂﬁk, Yk)-
k=1

This space is equivalent to the weighted Korobov space of periodic func-
tions on the unit cube, studied by Hickernell and Wozniakowski [4] and by
Sloan and Wozniakowski [§]. Quadrature is therfore strongly tractable on
Hgﬂi if and only if >"° | 74, < 00, and, in the case of exponentially decreas-
ing weights, as studied here, the optimal worst-case error has an upper bound
of order O(n™"), where n is the cost of the quadrature rule in terms of the
number of points [8]. The order of the lower bound is known to be the same
as that of the non-periodic setting [4].

3 Algorithm

Algorithm [I] studied here is an adaptation of the dimension adaptive algo-
rithm for the solution of variational problems suggested by Hegland [3]. We
describe our algorithm in our general RKHS setting, as given in Section



We assume here that the quadrature points in D are given and the same
for all spaces H”. We will only consider up to a maximum of n points which
we denote by x1,...,x, € D. The quadrature rules for A" are then defined
as some element of V;” = span{k] ,..., ki, } C€ H'. We denote the optimal

rule in V" by ¢;. Now define the pair-wise orthogonal spaces U] by Uj = V',
and by the orthogonal decomposition V;i; = V;" @ U} ,. Using the fact that
the ¢/ are optimal, one can see that

01 = ¢/ — ¢ € Ul

and 0y := ¢qj € U] = V{. Note that one has

z+1 7& span{k’xn +100 k“"z'ﬂ }

A sparse grid quadrature rule is then of the form

ng,::Z@VW

jeI k=1

for some index set I. From the orthogonal decomposition Vj7 = le U; one
derives the multidimensional orthogonal decomposition

- ORU"

]ejkl

where I = {i | i < j for some j € I}, where the comparison i < j has to hold
for all components of ¢ and j. When I = I, we say that [ is a down-set [1], p.
13]. One can then show that an optimal ¢ € V} is obtained as

Z@W'f.

jer k=1

Thus both V; and ¢} are obtained in terms of the down-set I, effectively
restricting our choice of the set I to index sets which are also down-sets.
We now describe our dimension adaptive (DA) algorithm to choose the

set I. We first define y = dim U;"" and (5( = §,". The algorithm then
uses the definitions

d
vj ::H ]k, ®5(k.
k=1

Here j, is the kth component of the multi-index j.



Algorithm 1: The dimension adaptive (DA) algorithm.

Data: accuracy e, incremental rules A; and their costs v; for j € N¢
Result: e approximation ¢P* and index set [
I:={0}; q:=Ay;
while ||1 —¢|| > e do
L Q= argmaxj{HAjHQ Jv; | TU{j}is a down-set};
I=1U{i}; ¢:=q+A4;;

4 Analysis

We first describe the situation on a single circle where, if 7 is large enough,
the norm of the one-point rule is less than the norm of the difference between
the optimal two-point rule and the one point rule, and show how this reverses
the usual order of norms between successive incremental rules in many cases.
In the following, we consider optimal weight rules in the sense of , and we

abbreviate Kl(rv) to K.

The squared norm of the optimal one-point rule on HQ is 1/K(z,z) =
1/(1 + vAT(l)). The optimal two point rule, with points z; and xz, and
weights w; and wy, has squared norm 2/(K (z1, 1)+ K (z1,x2)). Since A, is an
increasing function over [—1,1], K(z1,z5) is minimal when xo = —x;. (The
two-point rules used by the DA quadrature are of this form.) The optimal
two-point rule therefore has squared norm 2/(2+~(A,(1)+ A4,(—1))). This is
more than twice the squared norm of the one-point rule when A,(—1) < —1
and v > —1/A,(—1). It can be shown that A,(—1) < —1 for any » > 1/2. For
our numerical examples, which have r = 3, we have —1/A3(—1) ~ 0.50733.

Consider two incremental DA rules A; and A/, on Hg:i, with jp = j;. for
all k£ except that jix = 0 and j;, = 1. Since the norms of the incremental
rules are the products of difference rules on each circle, if v, > —1/A4,(—1),
then || > 1A,

We now turn to estimates for rules on a single circle, in order to use them
with an adapted version of the theory of Wasilkowski and WozZniakowski.

On a single circle, our sparse grid quadrature rule is an optimal weight
rule ¢; := ¢,,(5;), based on a set of equally spaced points S; on the unit

circle, with n; := |S;|. The series expansion of the function A, then yields

(r)

14> namely

the following error bound for quadrature on H

dr —2r

) < 5



For our numerical example, we also have n; = 27. Since €*(¢;) > 0, we can
therefore show that ||q; — ¢j—1[lym < /7C 2777, where
1,y

C:=2""/r/(2r —1). (4)

In our setting, and our notation, the criteria needed by Wasilkowski and
WoZniakowski [10), Theorem 3] become

njy DP <1, forallj>1, (5)
and
g — qj_lHng) <VACD?, forall j > 1, (6)

for some D € (0,1) and some positive C' and p. For the points used by our
DA quadrature rules, these criteria hold with C' as per , D = 27" and
p=1/r

We now describe a second variant of wrp quadrature, ¢"Y'W) on ]I-]Ig:),
identical to the sequence of quadrature rules ¢P*) described in Section
above, except that the order in which the incremental rules are added to
this second variant rule is essentially the order used by Wasilkowski and
Wozniakowski [10, Section 5]. As a consequence of @, we have

d
(k) :
HA]H]HI’(;“’)Y = H 5jk ) < b(d7j)7
’ k=1 Ld,k
where
d 1-4,
b(d,j) := H (\/Aax CDI) "%k
k=1
Let (&4x), k = 1,...,d, be a sequence of positive numbers. In contrast

to Wasilkowski and Wozniakowski [10, Section 5], we do not stipulate that
&ir = 1. Define

d
e(d,g) = [T e (7)
k=1

We therefore have b(d, j)/£(d, j) — 0 as ||j||; — oo. We order the incremental
rules in order of non-decreasing b(d, 7)/£(d, j) for each multi-index j, creating
an order on the multi-indices jWW)(h) . We adjust £(d, k) so that this order

8



agrees with the lattice partial ordering of the multi-indices. For our numerical
examples, we use &, := C'D, with C and D defined as above. We now define

I = (jOWW)(1) . 5 OYW)(N)}, and define the quadrature rule

w) = Z Aj.

jer"™)
To obtain a quadrature error of at most € € (0, 1), we set
. . . 1/(1—
N(e,d) = {7 1 6(d, 1)/€(d,5) > (e/Crd,m) Y

where n € (0,1) and

2(1-n) 4 2(1 ) D2n
N 2 n
Ci(d,n) == 1—D2H(1+ (C*vak)"€; 1—D277)'
Finally, we define
(WW)
AT ®
JEIN(e,q)

We can now present our version of Wasilkowski and Wozniakowski’s main
theorem on the error and cost of wrp quadrature [10, Theorem 3].

Theorem 1. Let n € (0,1). Then the quadrature rTule qgjw) defined by

has worst-case quadrature error e(qe(ww)) < €, and its cost (in number of

quadrature points) is bounded by

ww 1 p/(1-n)
cost(qéd )) < C(d,e) (—) ,

€
where
Cld ) o S Tlima O+ O/ ok ) f(k
o (1 — Dp)(1 — D?)p/C-n) 7
p2 A\ V@1-m)
; ._ 2 2(1—n)
f(l7€) = (].‘f’cnfydl di 1_D2n) ,
o8 (Cﬁfi/@.ka — D2 T, (£(G e>>e‘”“‘"))
g(k,e) =

log D1

By |z] 1, we mean max(0, x).



Wasilkowski and Wozniakowski’s proof, with s := 2, := 1, applies di-
rectly to our Theorem [I} once the change in &g, is taken into account. For
exponentially decreasing dimension weights 74, Theorem 4 of Wasilkowski
and Wozniakowski [10] shows that the ¢W'W) rules are strongly polynomial.

We conjecture that our sequence of rules ¢(P*) is in general more efficient
than ¢™WW) | since ¢P» relies on an ordering of multi-indices in terms of
decreasing average squared norm W,/N;, and this ordering is greedy with
respect to minimizing the error of the overall quadrature rule with respect to
its cost in terms of function evaluations. Our conjecture is true when v4; <
—1/A,(—1), since then the ordering with respect to nondecreasing norm W,
nondecreasing average squared norm W;/N;, and nonincreasing number of
points agree for each single dimension, and therefore the ordering of their
products respects the lattice partial ordering. This makes the sequence ¢(P*)
optimal. When 747 > —1/A,(—1), our numerical results indicate that the
conjecture is still true.

5 Numerical results

With the estimates given by our analysis in hand, we are now in a position
to compare these to our numerical results. Our numerical results use r = 3
and v, = ¢¥, for g = 0.1, 0.5, and 0.9, to see how our rules ¢*) and ¢"'W)
behave as the decay of the dimension weights is varied.

For the pA and ww weighted tensor product algorithms, each program
run used » = 3; g = 0.1, 0.5, or 0.9; a particular dimension d, from d = 1
to 16; a particular maximum 1l-norm for multi-indices, typically 20; and a
particular maximum number of points, up to 1 000 000. The numerical results
are potentially affected by two problems. First, if 7 is close to zero, and the
number of points is large, then the matrix used to compute the weights
becomes ill-conditioned, and the weights may become inaccurate. Second,
if the current squared error is close to zero, and the squared norm for the
current multi-index is close to machine epsilon, then severe cancellation may
occur. If either problem is detected, the calculation of the quadrature rule is
terminated.

Figure (1] displays the typical convergence behaviour of the bA and ww
rules for the cases examined. The particular case shown is that of T?, r = 3,
Yap = 0.5*. The number of points used varies from n = 1 to 1000 000.
In general, the DA algorithm has a cost no greater than that of the ww
algorithm. Both are bounded by the ww bound of Theorem [} and judging
from the plot, the rates of convergence of both algorithms appear consistent
with that of the bound. The Ww cost bound itself has an asymptotic rate

10
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Figure 1: Error of DA and Ww rules vs Ww bound for T4, r = 3, 744 = 0.5".

of convergence of O(e~1/3) for all of our cases.
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Figure 2: Error of DA rules for T4, d = 1,2,4,8,16; r = 3, 4% = 0.1%.

For v, = 0.1%, Figure [2| shows how the convergence rate of the error of
the DA quadrature rules varies with dimension d, for d = 1, 2, 4, 8, and 16.
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The cases d = 8 and d = 16 are almost indistinguishable on this graph. This
is an example of the convergence in dimension.
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Figure 3: Error of DA rules for T% d = 1,2,4,8,16; r = 3, 744 = 0.9%.

Figure |3 shows the equivalent results for the DA quadrature rules for
Yar = 0.9%. As d increases to 16, the initial rate of convergence to zero of
the error becomes much slower than that for 45 = 0.1%. This behaviour is
expected, given the ww bound.

The most remarkable novel feature of Figure |3| is the series of distinct
bumps and kinks, evident for d = 4 and d = 8. The main reason for these
bumps and kinks for these values of d is the interaction between the lattice
partial ordering constraint and the reversal of the order of norms described in
Section[d] For d = 8, this results in the first 256 incremental rules each adding
one point to the main rule, with each successive multi-index corresponding
to the binary expansion of the total number of points minus one. Figure
shows the average norm squared of each incremental rule, up to 512 points.
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