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Abstract

This paper examines sparse grid quadrature on weighted tensor
products (WTP) of reproducing kernel Hilbert spaces on the unit
torus Td. We describe a WTP quadrature algorithm based on an algo-
rithm of Hegland [2], and also formulate a version of Wasilkowski and
Woźniakowski’s WTP algorithm [6], here called the WW algorithm.
We claim that our algorithm is generally lower in cost than the WW
algorithm, and therefore both algorithms have the optimal asymptotic
rate of convergence given by Theorem 3 of Wasilkowski and Woźnia-
kowski [6]. Even so, if the dimension weights decay slowly enough,
both algorithms need 2d points to produce a substantial reduction in
quadrature error.
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1 Introduction

This paper examines sparse grid quadrature on weighted tensor products of
reproducing kernel Hilbert spaces (RKHS) on the unit torus. The empirical
rates of convergence of the quadrature rules constructed here are compared
to the theory of Wasilkowski and Woźniakowski [6].

The setting is essentially the same as that used by Kuo and Sloan [4] to
examine quasi-Monte Carlo (QMC) quadrature on products of the sphere Ss,
but is confined to the special case of the unit circle S1. As noted by Kuo
and Sloan, this case corresponds to the setting of weighted Korobov spaces.
Rates of convergence and criteria for strong tractability of quadrature in
these spaces have been well studied by Hickernell and Woźniakowski [3] and
by Sloan and Woźniakowski [5].

There are a number of closely related dimension adaptive sparse grid al-
gorithms, including those of Wasilkowski and Woźniakowski [6], Hegland [2],
and Gerstner and Griebel [1]. Of these, the algorithm of Wasilkowski and
Woźniakowski has the most well-developed theory of the rate of convergence
of the worst case error.

2 Setting

Let D ⊂ Rs+1 be a compact manifold with probability measure µ. It follows
that the constant function 1, with 1(x) = 1 for all x ∈ D, is integrable and∫
D 1(x) dµ = 1. Then let H be a Hilbert space of functions f : D → R, with

a kernel K, satisfying

• for every x ∈ D there exists kx ∈ H such that

f(x) = 〈kx, f〉H , for all f ∈ H (1)

• every f ∈ H is integrable and∫
D
f(x) dµ = 〈1, f〉H , (2)

where the functions kx are given by kx(y) := K(x, y), and where 〈·, ·〉H
denotes the scalar product in H. We recognize H as a reproducing kernel
Hilbert space. In this framework, quadrature methods Q, defined by

Q(f) :=
n∑
i=1

wif(xi)
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are continuous linear functionals and Q(f) = 〈q, f〉H with q =
∑n

i=1wikxi .
We will assume that the quadrature points xi are given. An optimal

choice of weights wi minimizes the worst case quadrature error, which is
given by the norm ‖1− q‖H . The optimal q∗ is thus defined as

q∗ := argminq{‖1− q‖H | q ∈ span{kx1 , . . . , kxn}}.

The weights of an optimal quadrature method are thus obtained by solving
a linear system of equations with a matrix with elements being the values of
the reproducing kernel K(xi, xj) = 〈kxi , kxj〉H . The right-hand side of these
equations is a vector with elements all equal to one.

We now describe our more specific reproducing kernel Hilbert space H of
functions on D. The space H satisfies (1), but instead of (2), it also satisfies
the more specific ∫

D
f(x) dµ = 〈1, f〉H = 0.

We now extend H into the space Hγ, which consist of all functions of the
form g = a1 + f , where a ∈ R, and f ∈ H with the norm ‖ · ‖Hγ defined by

‖g‖2Hγ = |a|2 +
1

γ
‖f‖2H .

It is easily verified that Hγ is an RKHS with reproducing kernel

Kγ(x, y) = 1 + γK(x, y),

where K is the reproducing kernel of the RKHS H.
For functions on the domain Dd we consider the tensor product space

Hd :=
⊗d

k=1Hγk where 1 > γ1 · · · > γd > 0. This is an RKHS of functions

on Dd with reproducing kernel Kd(x, y) :=
∏d

k=1(1 + γkK(xk, yk)) where
xk, yk ∈ D are the components of x, y ∈ Dd. Moreover∫

Dd
f(x) dµd = 〈1, f〉Hd ,

where µd is the product measure, 〈·, ·〉Hd is the scalar product on the tensor
product space Hd, and 1 is the constant function on Dd with value 1. It
follows that the space Hd satisfies the two conditions (1) and (2) and we can
derive optimal quadrature rules for given point sets.

We now describe our specific Korobov space setting, which is the setting
of Kuo and Sloan [4], with s := 1. We take our domain D to be the unit circle
T := S1 := {x ∈ R2 | x2

1 + x2
2 = 1}, and consider the real space L2(T). We
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use the real Fourier basis defined by Y0,0(x) := 1, Y`,1
(
(cos θ, sin θ)

)
= cos `θ,

Y`,2
(
(cos θ, sin θ)

)
= sin `θ, ` = 1, . . . ,∞.

For f ∈ L2(T), we expand f in the Fourier series

f(x) = f̂0,0 +
∞∑
`=1

2∑
m=1

f̂`,mY`,m(x).

For positive weight γ, we define the RKHS

H(r)
1,γ := {f ∈ L2(T) | ‖f‖H(r)

1,γ
<∞}, where

〈f, g〉H(r)
1,γ

:= f̂0,0 ĝ0,0 + γ−1

∞∑
`=1

2∑
m=1

`2r f̂`,m ĝ`,m.

The reproducing kernel of H(r)
1,γ is then

K
(r)
1,γ(x, y) := 1 + γAr(x · y), where for z ∈ [−1, 1],

Ar(z) :=
∞∑
`=1

2

`2r
T`(z),

with T` the Chebyshev polynomial of the first kind, T`(cos θ) := cos `θ. Con-
vergence of Ar requires that r > 1/2.

For γ := (γd,1, . . . , γd,d), we now define the tensor product space

H(r)
d,γ :=

d⊗
k=1

H(r)
1,γd,k

.

This is a weighted Korobov RKHS on Td, with reproducing kernel

K
(r)
d,γ(x, y) :=

d∏
k=1

K
(r)
1,γd,k

(xk, yk).

This space is equivalent to the weighted Korobov space of periodic func-
tions on the unit cube, studied by Hickernell and Woźniakowski [3] and by
Sloan and Woźniakowski [5]. Quadrature is therfore strongly tractable on

H(r)
d,γ if and only if

∑d
k=1 γd,k < ∞ as d → ∞, and, in the case of exponen-

tially decreasing weights, as studied here, the optimal worst-case error has
an upper bound of order O(n−r), where n is the cost of the quadrature rule
in terms of the number of points [5]. The order of the lower bound is known
to be the same as that of the non-periodic setting [3].
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3 Algorithm

Algorithm 1 studied here is an adaptation of the dimension-adaptive algo-
rithm for the solution of variational problems suggested by Hegland [2]. We
describe our algorithm in our general RKHS setting, as given in Section 2.

We assume here that the quadrature points in D are given and the same
for all spaces Hγ. We will only consider up to a maximum of n points which
we denote by x1, . . . , xn ∈ D. The quadrature rules for Hγ are then defined
as some element of V γ

i = span{kγx1
, . . . , kγxni} ⊂ H

γ. We denote the optimal

rule in V γ
i by qγi . Now define the pair-wise orthogonal spaces Uγ

i by Uγ
0 = V γ

0 ,
and by the orthogonal decomposition V γ

i+1 = V γ
i ⊕ U

γ
i+1. Using the fact that

the qγi are optimal, one can see that

δγi+1 := qγi+1 − q
γ
i ∈ U

γ
i+1

and δ0 := qγ0 ∈ U
γ
0 = V γ

0 . Note that one has

Uγ
i+1 6= span{kxni+1 , . . . , kxni+1

}.
This is the fundamental reason why one needs the admissibility condition
discussed in this section.

A generalized sparse grid quadrature rule is then of the form

q ∈ VI =
∑
j∈I

d⊗
k=1

V
γd,k
jk

for some index set I. From the orthogonal decomposition V γ
j =

⊕j
i=1 U

γ
i one

derives the multidimensional orthogonal decomposition

VI =
⊕
j∈I

d⊗
k=1

U
γd,k
jk

,

where I = {i | i 6 j for some j ∈ I}, where the comparison i 6 j has to hold
for all components of i and j. One can then show that an optimal q ∈ VI is
obtained as

q∗I =
∑
j∈I

d⊗
k=1

δ
γd,k
jk

.

We will now describe our algorithm to choose the set I. We first define
ν

(k)
jk

:= dimU
γd,k
jk

and δ
(k)
jk

:= δ
γd,k
jk

The algorithm then uses the definitions

νj :=
d∏

k=1

ν
(k)
jk
, ∆j :=

d⊗
k=1

δ
(k)
jk
.

Here jk is the kth component of the multi-index j.
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Algorithm 1: The dimension adaptive algorithm.

Data: accuracy ε, incremental rules ∆j and their costs νj for j ∈ Nd

Result: ε approximation q(HL) and index set I
I := {0}; q := ∆0;
while ‖1− q‖ > ε do

i := argmaxj{‖∆j‖2 /νj | I ∪ {j} is a down-set};
I := I ∪ {i}; q := q + ∆i ;

4 Analysis

We first describe the situation on a single circle where, if γ is large enough,
the norm of the one-point rule is less than the norm of the difference between
the optimal two-point rule and the one point rule, and show how this reverses
the usual order of norms between successive incremental rules in many cases.
In the following, we abbreviate K

(r)
1,γ to K.

The squared norm of the optimal one-point rule on H(r)
1,γ is 1/K(x, x) =

1/
(
1 + γAr(1)

)
. The optimal two point rule, with points x1 and x2 and

weights w1 and w2, has squared norm 2/(K(x1, x1)+K(x1, x2)). Since Ar is an
increasing function over [−1, 1], K(x1, x2) is minimal when x2 = −x1. (The
two-point rules used by the HL quadrature are of this form.) The optimal
two-point rule therefore has squared norm 2/

(
2+γ(Ar(1)+Ar(−1))

)
. This is

more than twice the squared norm of the one-point rule when Ar(−1) < −1
and γ > −1/Ar(−1). It can be shown that Ar(−1) < −1 for any r > 1/2. For
our numerical examples, which have r = 3, we have −1/A3(−1) ' 0.50733.

Consider two incremental HL rules ∆j and ∆j′ , on H(r)
d,γ, with jk = j′k for

all k except that jk′ = 0 and j′k′ = 1. Since the norms of the incremental
rules are the products of difference rules on each circle, if γd,k > −1/Ar(−1),
then ‖∆j′‖ > ‖∆j‖ .

We now turn to estimates for rules on a single circle, in order to use them
with an adapted version of the theory of Wasilkowski and Woźniakowski.

On a single circle, our sparse grid quadrature rule is an optimal weight
rule qj := qr,γ(Sj), based on a set of equally spaced points Sj on the unit
circle, with nj := |Sj|. The series expansion of the function Ar then yields

the following error bound for quadrature on H(r)
1,γ, namely

e2(qj) 6
4r

2r − 1
γn−2r

j .

For our numerical example, we also have nj = 2j. Since e2(qj) > 0, we can
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therefore show that ‖qj − qj−1‖H(r)
1,γ

6
√
γC 2−rj, where

C := 21−r
√
r/(2r − 1). (3)

In our setting, and our notation, the criteria needed by Wasilkowski and
Woźniakowski [6, Theorem 3] criteria become

nj+1 D
jp 6 1, for all j > 1, (4)

and

‖qj − qj−1‖H(r)
1,γ

6
√
γCDj, for all j > 1. (5)

for some D ∈ (0, 1) and some positive C and p. For the points used by our
HL quadrature rules, these criteria hold with C as per (3), D = 2−r, and
p = 1/r.

We will now describe a second variant of WTP quadrature, q(WW ) on H(r)
d,γ,

identical to the sequence of quadrature rules q(HL) described in Section 3
above, except that the order in which the incremental rules are added to
this second variant rule is essentially the order used by Wasilkowski and
Woźniakowski [6, Section 5]. As a consequence of (5), we have

‖∆j‖H(r)
d,γ

=
d∏

k=1

∥∥∥δ(k)
jk

∥∥∥
H(r)

1,γd,k

6 b(d, j), where

b(d, j) :=
d∏

k=1

(√
γd,k CD

jk
)1−δ0,jk .

Let (ξd,k), k = 1, . . . , d, be a sequence of positive numbers. In contrast
to Wasilkowski and Woźniakowski [6, Section 5], we do not stipulate that
ξd,k = 1. Define

ξ(d, j) :=
d∏

k=1

ξ
1−δ0,jk
d,k . (6)

We therefore have b(d, j)/ξ(d, j) → 0 as ‖j‖1 → ∞. We order the incre-
mental rules in order of non-decreasing b(d, j)/ξ(d, j) for each multi-index
j, creating an order on the multi-indices j(WW )(h) . We adjust ξ(d, k) so
that this order agrees with the lattice partial ordering of the multi-indices.
For our numerical examples, we use ξd,k := CD, with C and D defined as
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above. We now define I
(WW )
N := {j(WW )(1), . . . , j(WW )(N)}, and define the

quadrature rule

q
(WW )
N :=

∑
j∈I(WW )

N

∆j.

To obtain a quadrature error of at most ε ∈ (0, 1), we set

N(ε, d) := |{j | b(d, j)/ξ(d, j) >
(
ε/C1(d, η)

)1/(1−η)}|,
where η ∈ (0, 1) and

C1(d, η) :=

√√√√ ξ
2(1−η)
d,1

1−D2

d∏
k=2

(
1 + (C2γd,k)ηξ

2(1−η)
d,k

D2η

1−D2η

)
.

Finally, we define

q(WW )
ε :=

(WW )∑
j∈IN(ε,d)

∆j. (7)

We can now present our version of Wasilkowski and Woźniakowski’s main
theorem on the error and cost of WTP quadrature [6, Theorem 3].

Theorem 1. Let η ∈ (0, 1). Then the quadrature rule q
(WW )
ε,d defined by (7)

has worst-case quadrature error e(q
(WW )
ε ) 6 ε, and its cost (in number of

quadrature points) is bounded by

cost(q
(WW )
ε,d ) 6 C(d, ε)

(
1

ε

)p/(1−η)
, where

C(d, ε) :=
ξpd,1
∏d

k=2

(
1 + Cpγ

p/2
d,k /ξ

p
d,k g(k, ε)

)
f(k, ε)p

(1−Dp)(1−D2)p/(2(1−η)) ,

f(i, ε) :=

(
1 + C2ηγηd,iξ

2(1−η)
d,i

D2η

1−D2η

)1/(2(1−η))

,

g(k, ε) :=

 log

(
Cγ

1/2
d,k /(ξd.k(1−D2))1/(2(1−η))∏k

i=2

(
f(i, ε)

)
ε−1/(1−η)

)
logD−1


+

.

By bxc+, we mean max(0, x).
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Wasilkowski and Woźniakowski’s proof, with s := 2, α := 1, applies di-
rectly to our Theorem 1, once the change in ξd,1 is taken into account.

For exponentially decreasing dimension weights γd,k, Theorem 4 of Wasil-
kowski and Woźniakowski [6] shows that the q(WW ) rules are strongly poly-
nomial.

We conjecture that our sequence of rules q(HL) is in general more efficient
than q(WW ), since q(HL) relies on an ordering of multi-indices in terms of
decreasing average squared norm Wj/Nj, and this ordering is greedy with
respect to minimizing the error of the overall quadrature rule with respect to
its cost in terms of function evaluations. Our conjecture is true when γd,1 <
−1/Ar(−1), since then the ordering with respect to nondecreasing norm Wj,
nondecreasing average squared norm Wj/Nj, and nonincreasing number of
points agree for each single dimension, and therefore the ordering of their
products respects the lattice partial ordering. This makes the sequence q(HL)

optimal. When γd,1 > −1/Ar(−1), our numerical results indicate that the
conjecture is still true.

5 Numerical results

With the estimates given by our analysis in hand, we are now in a position
to compare these to our numerical results. Our numerical results use r = 3
and γk = gk, for g = 0.1, 0.5, and 0.9, to see how our rules q(HL) and q(WW )

behave as the decay of the dimension weights is varied.
For the HL and WW WTP algorithms, each program run used r = 3;

g = 0.1, 0.5, or 0.9; a particular dimension d, from d = 1 to 16; a particular
maximum 1-norm for multi-indices, typically 20; and a particular maximum
number of points, up to 1 000 000. The numerical results are potentially af-
fected by two problems. First, if γ is close to zero, and the number of points is
large, then the matrix used to compute the weights becomes ill-conditioned,
and the weights may become inaccurate. Second, if the current squared error
is close to zero, and the squared norm for the current multi-index is close
to machine epsilon, then severe cancellation may occur. If either problem is
detected, the calculation of the quadrature rule is terminated.

Figure 1 displays the typical convergence behaviour of the HL and WW
WTP rules for the cases examined. The particular case shown is that of T4,
r = 3, γd,k = 0.5k. The number of points used varies from n = 1 to 1 000 000.
In general, the HL WTP algorithm has a cost no greater than that of the
WW WTP algorithm. Both are bounded by the WW bound of Theorem
1, and judging from the plot, the rates of convergence of both algorithms
appears consistent with that of the bound. The WW cost bound itself has
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Figure 1: Error of HL and WW WTP rules vs WW bound for T4, r = 3,
γd,k = 0.5k.

an asymptotic rate of convergence of O(ε−1/3) for all of our cases.
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Figure 2: Error of HL WTP rules for Td, d = 1, 2, 4, 8, 16; r = 3, γd,k = 0.1k.

For γd,k = 0.1k, Figure 2 shows how the convergence rate of the error of
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the HL WTP quadrature rules varies with dimension d, for d = 1, 2, 4, 8,
and 16. The cases d = 8 and d = 16 are almost indistinguishable on this
graph. This is an example of the convergence in dimension.
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Figure 3: Error of HL WTP rules for Td, d = 1, 2, 4, 8, 16; r = 3, γd,k = 0.9k.

Figure 3 shows the equivalent results for the HL WTP quadrature rules
for γd,k = 0.9k. As d increases to 16, the initial rate of convergence to zero of
the error much becomes slower than that for γd,k = 0.1k. This behaviour is
expected, given the WW bound.

The most remarkable novel feature of Figure 3 is the series of distinct
bumps and kinks, evident for d = 4 and d = 8. The main reason for these
bumps and kinks for these values of d is the interaction between the lattice
partial ordering constraint and the reversal of the order of norms described in
Section 4. For d = 8, this results in the first 256 incremental rules each adding
one point to the main rule, with each successive multi-index corresponding
to the binary expansion of the total number of points minus one. Figure 4
shows the average norm squared of each incremental rule, up to 512 points.
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