
Project title

New approaches to the discretization of partial differential equations.

Project Quality and Innovation

This project aims to develop new methods for the solution of those problems encountered in physics and
engineering which can be formulated using partial differential equations, by combining and extending a
number of existing methods.

Typical problems involving partial differential equations include boundary value problems:

Lu(x) = f(x), (x ∈ Ω), Mu(x) = g(x), (x ∈ ∂Ω),

(for some region Ω ∈ Rn, and functions f, g and differential operators L,M), and eigenvalue problems:

Lu(x) = λu(x), (x ∈ Ω), Mu(x) = g(x), (x ∈ ∂Ω),

(where both the eigenvalues λ and the corresponding eigenfunctions u are to be found.)
Quite often, such problems are solved by using the Finite Element Method (FEM). Recently, a number

of refinements of the theory of the Finite Element Method, based on ideas from differential geometry, have
been developed. These are Discrete Exterior Calculus [44], and the Finite Element Exterior Calculus (FEEC)
[29, 30]. These theories explain how certain types of discretization can cause numerical instability and, in
the case of eigenvalue problems, spurious modes [35, 36], in other words, incorrect results. They also explain,
in terms of differential forms and their discretization, why certain other types of discretization work well.

Other existing methods for the solution of problems involving partial differential equations use ideas from
Clifford analysis, essentially, ideas from complex analysis which apply in higher dimensions. There is a large
overlap between problems treated by FEM and those which can be solved by Clifford analysis, but some
types of problem have traditionally been treated only by one of these two types of method. This project aims
to extend the theory and methods of Discrete Exterior Calculus and FEEC to cover the types of problems
which can be solved by the methods of Clifford analysis.

Background. In geometric algebras such as the Grassmann and Clifford algebras, the “numbers” embody
the idea of direction as well as quantity, that is they answer the question “which way?” as well as “how
much?” Examples of geometric algebras include the real numbers, the complex numbers, and real vector
spaces with Grassmann or Clifford multiplication. The elements of geometric algebras are often called
hypercomplex numbers or multivectors [55, 60]. Geometric algebras have been very important in the history
of mathematics in the nineteenth and twentieth centuries, especially in the area of differential geometry,
since the geometric algebra of differential forms is Grassmann’s exterior algebra [52].

The Clifford algebras [65, 60] are also important in the study of geometry. They are used in the study
of movement and transformations, such as reflections, rotations and translations. These algebras therefore
have applications in computer vision, animation and robotics, as well as applications in physics [58, 45].
Clifford algebras have been used in research leading to award-winning results such as the Atiyah-Singer
index theorem [31] (M. Atiyah and Singer, Abel prize 2004) and the solution of the Kato square root
problem [32] (A. McIntosh, Moyal medal 2002).

In physics, Dirac’s theory of the electron is based on an application of a Clifford algebra. As theoretical
tools in the higher calculus, Clifford algebras and a differential operator called the Dirac operator are very
important [31, 48]. The Dirac operator is essentially a type of directed derivative, generalizing the more
familiar gradient, divergence and curl operators used in three dimensional calculus [55, 43]. Clifford analysis
is essentially the study of the Dirac operator. The geometric calculus of Hestenes, Sobczyk and others, places
Clifford analysis into the wider context of geometric algebras. An important advantage of geometric calculus
in physics and engineering over traditional methods of vector and tensor calculus is the ability to formulate
problems without resort to coordinates. An advantage of geometric calculus over differential geometry with
exterior differential forms is that metric properties are incorporated naturally into the Clifford algebra.

The Finite Element Method is a method for solving certain types of differential and integral equations
over a region of space. It breaks the region up into small pieces, each one of which supports a small number
of basic functions, and uses linear algebra to find a combination of these basic functions which is a close
approximation to the solution of the original problem.



The idea of compatible (or mimetic) discretization [34, 72] is to create a discrete description of a physical
phenomenon which preserves many or all of the same conservation laws which are obeyed by the continuous
description given by a differential equation. A feature of many formulations of compatible discretization,
such as the Discrete Exterior Calculus of Desbrun et al. [44] is the use of discrete differential forms and
exterior calculus, often using both primal and dual cell complexes (“meshes”).

In Discrete Exterior Calculus [44], there are fundamental objects called chains and cochains. These are
discrete objects which correspond in some continuous limit to domains of integration and to differential
forms, respectively. Concepts of chains and cochains are important in the foundations of a number of
branches of higher calculus, including differential geometry and algebraic topology (H. Cartan, Wolf Prize
1980; H. Whitney, Wolf Prize, 1982).

Finite Element Exterior Calculus [29, 30] essentially concentrates on discretizing the spaces involved in
a problem, rather than the operators. This often results in problems being discretized over a single mesh.
D. White, J. Koning and R. Rieben [73] recently formulated, implemented and tested a high order finite
element compatible discretization method for Maxwell’s electromagnetic equations, using only the primal
mesh. Recently, M. Costabel and A. McIntosh have produced regularity results for certain integral operators
[42] which can be used to explain the convergence of compatible discretization methods for Maxwell eigenvalue
problems [36].

It has been known for quite some time how Clifford analysis, in the form of geometric calculus, relates
both to differential forms and to cell complexes [67, 45, 68]. Theoretical frameworks for discrete versions
of Clifford analysis and geometric calculus have recently been developed, notably the work of N. Faustino
[49, 50] and of the Clifford research group at Ghent University in Belgium [37], but these have been mainly
oriented towards Finite Difference rather than Finite Element methods [53, 54].

Methodology. This project is split into two streams: a theory stream, and an implementation stream.

Theory stream. The aim of the theory stream is to create a theory of Finite Element Geometric Calculus
(FEGC), based on combinations of Discrete Exterior Calculus, Finite Element Exterior Calculus, and Clifford
analysis. There are two relatively straightforward approaches.

(1) The first approach is to extend the methods of Discrete Exterior Calculus to problems involving
Dirac operators, essentially by discretizing the Dirac operator on a simplex in the context of function spaces
appropriate to the solution of the problem. This approach takes an existing finite element space defined on
cells, and ensure that Stokes’ theorem holds exactly for the appropriate Dirac operator on each cell. The
simplest case would be in for the vector derivative in Euclidean space, with each cell a simplex.

A first illustration of this approach is contained in the paper I wrote on the prospects for Finite Element
Geometric Calculus [2], and presented at ICCA 9, the International Conference on Clifford Algebras and
their Applications to Mathematical Physics, in Weimar, and at the International Council on Industrial and
Applied Mathematics ICIAM, both in July 2011. This illustration follows.

Following Cnops [40, Chapter 3], we have, for a compact k-dimensional submanifold C of anm-dimensional
manifold M , with boundary ∂C, and multivector-valued functions f and g,∫

C

f(x)dMk(x)g(x) '
∑
j

f(yj)vk(Tj)g(yj),

for some yj near Tj, where vk(T ) := 1
k!

(x1−x0)∧ . . .∧ (xk−x0), for the k-simplex T with vertices x0, . . . , xk,
where x is the main anti-involution of x in the relevant Clifford algebra, and where dMk is defined via oriented
k dimensional surface elements in M , or alternatively, via differential forms, or via Lebesgue measure. Also
Stokes’ theorem for the vector derivative, VM on M, gives us∫

∂C

f(x)dMm−1(x)g(x) =

∫
C

VMf(x)dMm(x)g(x) + (−1)m
∫
C

f(x)dMm(x)VMg(x).

Setting g ≡ 1, so that VMg ≡ 0, on a single m-dimensional simplex T with vertices x0, . . . xm, and boundary
∂T consisting of faces S0, . . . Sm, we obtain

m∑
j=0

f(yj)vm−1(Sj) ' VMf(y)vm(T ), (1)



for some y near T and yj near Sj. We can use this to define the discrete vector derivative VE of a multivector-
valued affine function f on an m-simplex T in Euclidean space as:

VEf(y) := vm(T )−1
m∑
j=0

vm−1(Sj)
∑
i 6=j

f(xi)/m.

for any y in T , with xi and Sj as per (1) above. We must then verify that this definition agrees with the usual
definitions, and that Stokes’ theorem holds for T as well as in the limit. Thus a function which is piecewise
affine on simplices has a discrete vector derivative which is piecewise constant on these same simplices.

This exercise will be repeated with more sophisticated and higher order elements, including Whitney [74],
Raviart-Thomas [66], and Nédélec [62, 63] elements. This will yield pairs of function spaces, which will then
be compared to the spaces obtained by decomposition followed by discretization, as described in the second
approach, below. This exercise will also be done for the the spinor Dirac and Hodge-Dirac operators on
manifolds [40, Chap. 3]. The bulk of the theoretical work in the development of this type of discretization
includes proving the consistency stability, and rates of convergence of the schemes corresponding to each
such pair of function spaces.

(2) A second approach is to discretize equations involving the Dirac operator by using Hodge decomposi-
tion followed by the use of the existing techniques of Finite Element Exterior Calculus. This is the subject of
my joint paper with Ari Stern [59, in preparation]. In the paper, we start with a closed and densely defined
operator d on a Hilbert space W, such that d2 = 0, and perform an abstract Hodge decomposition on W .
We also give the domain V , of d, a Hilbert space structure, and a corresponding Hodge decomposition. This
leads to an abstract Poincaré inequality. We define the abstract Hodge–Dirac operator to be D = d + d∗,
where d∗ is the adjoint of d with respect to the Hilbert space W . We consider a variational problem:
Find (u, p) ∈ V × H such that

〈du, v〉+ 〈u, dv〉+ 〈p, v〉 = 〈f, v〉 , ∀v ∈ V,
〈u, q〉 = 0, ∀q ∈ H,

(2)

where H = ker d ∩ (dV )⊥W . We prove that problem (2) is well-posed, and then use a bounded, commuting
projection πh from V to a finite dimensional subspace Vh, that is, πhdv = dπhv for all v ∈ V. This projection
discretizes our problem. We then prove that the discrete problem is well posed, and give error bounds as
h → 0. FEEC discretization uses smoothed projection operators [29, 39], and the project will investigate
corresponding projection operators for use with the Hodge-Dirac operator. The role of variational crimes
[56, 57] in FEGC will also be examined in detail.

Implementation stream. The implementation stream will develop practical methods based on the theory
developed in the theory stream. The project will also investigate whether explicit calculation with Grassmann
and Clifford algebras is useful in implementation, by interfacing the GluCat library, including PyClical [25]
with Finite Element Exterior Calculus libraries such as FEMSTER/EMSolve [38, 73], FEniCS [51] and
PyDEC [33], and using the combined software to implement numerical examples and conduct numerical
experiments arising from the theory stream. This will be useful in a number of ways, firstly as a check on
estimates arising from the theory stream, secondly, as a source of new ideas, and thirdly as open source
software. The open-source software could be used to duplicate the results of this project, and also used as
the basis of more robust software for the solution of practical problems.

Research Environment

ANU has an active world-class research environment in Pure Mathematics, as evidenced by its scoring 5 in
the recent ARC ERA exercise. Ten of the academic staff of the MSI (P. Bouwknegt, C. Burden, A. Carey,
M. Eastwood [48], A. Hassell, J. Huerta, A. Isaev, A. McIntosh [32], A. Rennie, and B. Wang) have published
research which involves Clifford algebras or Dirac operators. M. Eastwood [47] and A. McIntosh [42] have
also published research directly relevant to FEEC. Also, Computational Mathematics and High Performance
Computing are key developing areas for ANU in the near future, as evidenced by the ARC Linkage project
LP110200410 with Fujitsu Laboratories of Europe Limited. More detail on this is given in the Strategic
Statement.



There are essentially three types of facilities needed for this project, computing, information and col-
laboration. Available computing facilities include workstations, the Orac research cluster, and a teaching
cluster which is currently being purchased. Large-scale computation would be conducted via the National
Computation Infrastructure (NCI) through the ANU Supercomputer Time Allocation Scheme and the sep-
arate NCI Merit Allocation Scheme. Information facilities include the ANU Library, ANU Library access to
electronic sources, interlibrary loans and Article Reach. Collaboration would include collaboration within
the Computational Mathematics group (especially R. Brent, M. Hegland, S. Roberts, L. Stals), within MSI
(especially M. Eastwood, A. McIntosh, A. Neeman, A. Rennie, B. Wang and their postdoctoral researchers),
and external collaboration. External collaborators include A. Stern at Washington University, and the Clif-
ford group in Portugal, including Uwe Kähler, who expressed great interest in the ideas of this project while
I visited Weimar.

I will promote and spread my research outcomes through a number of channels, including local and
external collaboration, presentations at national and international academic conferences, and journal articles.
Besides these traditional means, the project aims to disseminate the resulting implementations of algorithms
as open source software. The vehicles to be used for this software will vary, but will most likely include the
GluCat library, PyClical [25] and the Sage computer algebra system [69]. I also aim to use the algorithms
and software to conduct “special topics” courses at the Honours level at ANU.

Feasibility and Benefit

Feasibility. The two approaches of the theory stream, along with the implementation stream, are highly
feasible. A first illustration of the first approach is contained in the paper [2] and reproduced above. The
second approach has been successful so far: the first step in this directions is the subject of the joint paper
[59], in preparation with my colleague Ari Stern, who is very familiar with both Discrete Exterior Calculus
and FEEC (e.g. [56, 57, 70, 71, 72]). The implementation stream is based on the interfacing of existing
software, written in C++ and Python, and I am very familiar with both languages.

Benefit. Ideally, Finite Element Geometric Calculus (FEGC) would combine the techniques of FEEC with
those of Clifford analysis on manifolds on a fundamental level.

The advantages of FEGC over FEEC alone could stem from the advantages of Clifford analysis over the
use of differential forms in differential geometry and the formulation and solution of differential equations.
These advantages could include: a unified treatment of problems in Euclidean, Projective and Conformal
geometries; a more natural treatment of problems involving Dirac-type operators and their inverses; a more
natural treatment of problems involving multivector fields, especially mixed-grade fields, rather than treating
these as collections of homogeneous differential forms; a different and possibly more natural treatment of
the metric, as embodied in Clifford algebras on tangent or cotangent bundles; a more general and natural
formulation of problems involving generalized Stokes’ theorems, Green’s functions and Cauchy integral for-
mulas; greater economy of expression of some problems; and greater geometrical insight on the formulation
of some problems.

Ideally, the problems which could be addressed by FEGC would include those currently treated by
numerical methods for Clifford analysis [53, 54], as well as the problems treated by FEEC. The problems
which would initially yield the most insight on how to develop FEGC, could be those currently treated by
both methods. Such problems include boundary and initial value problems, such as the Poisson problem,
Stokes’ equations, Maxwell’s equations, and the equations of elasticity.

Success in this project would:

• Improve our understanding of the relationship between continuous problems involving Dirac operators
and discrete versions of these problems.

• Improve our understanding of the stability of discretization of these problems, and circumstances in
which spurious modes may arise in eigenvalue problems involving Dirac operators, eg. [28].

• Lead to improved methods of solution for these problems, and lead to a better understanding of how
well these methods work in practice.

• Provide open-source software for use in duplicating results, and as a basis for software to be used in
solving practical problems.
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