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Abstract

When does a sequence of spherical codes with “good” spherical cap discrepancy, and “good”
separation also have “good” Riesz s-energy?

For d > 2 and the Riesz s-energy for 0 < s < d, we consider asymptotically equidis-
tributed sequences of Sd codes with an upper bound δ on discrepancy and a lower bound ∆
on separation. For such sequences, the difference between the normalized Riesz s-energy and
the normalized energy double integral is bounded above by O

`
δ1−s/d ∆−s N−s/d

´
, where N

is the number of code points. For well separated sequences of spherical codes, this bound
becomes O

`
δ1−s/d

´
.

We apply these bounds to minimum energy sequences, sequences of well-separated spher-
ical designs, sequences of extremal fundamental systems, and sequences of equal area points.
Keywords: sphere, spherical cap discrepancy, separation, Riesz energy
MSC Subject Classification (2010): 11K38, 41A55, 65D30

1 Introduction and Main Results

We consider the unit sphere Sd :=
{
x ∈ Rd+1 | ‖x‖ = 1

}
, for d > 2, and call a finite set of points

of Sd a spherical code. There is a continuing interest in the generation and use of spherical codes
which are in some sense well distributed, and the properties which can be used to distinguish
better distributed codes from more poorly distributed ones. This paper examines the relationship
between three such properties of sequences of spherical codes X := (X1, X2, . . .), with

X` := {x`,1, . . . , x`,N`
} ⊂ Sd.

These properties are the Riesz s-energy, the spherical cap discrepancy, and the separation of code
points. It is known that a sequence of spherical codes with minimal Riesz s-energy and increasing
numbers of points has “good” spherical cap discrepancy, and “good” separation, in a sense which
is made more precise below. The question addressed in this paper concerns a partial converse to
this result:

When does a sequence of spherical codes with “good” spherical cap discrepancy, and
“good” separation also have “good” Riesz s-energy?

The following definitions make these concepts more precise.
The normalized Riesz s-energy of a spherical code X is defined as E(X)Us, where Us(r) := r−s,

the Riesz potential function, and E(X) is the normalized discrete energy functional

E(X)u :=
1
|X|2

∑
x∈X

∑
y∈X
y 6=x

u (‖x− y‖) .
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We also consider the corresponding normalized continuous energy functional, which is given by
the double integral

I u :=
∫

Sd

∫
Sd

u (‖x− y‖) dσ(x) dσ(y),

where σ is the spherical probability measure, the uniform measure on Sd normalized so that
σ(Sd) = 1. It is well known that for 0 < s < d, the normalized energy double integral of Us has
the value

I Us = 2d−s−1 Γ
(
(d+ 1)/2

)
Γ
(
(d− s)/2

)
√
π Γ(d− s/2)

. (1)

The normalized spherical cap discrepancy of a spherical code is the supremum over all spherical
caps of the difference between the normalized area of the cap and the proportion of code points
which lie in the cap. In other words, for y ∈ Sd, r ∈ (0, 2], let S(y, r) be the closed spherical cap
{x | ‖x− y‖ 6 r}, and let σX be the normalized counting measure defined for Y ∈ Sd by

σX(Y ) :=
|X ∩ Y |
|X|

.

Then the normalized spherical cap discrepancy of X is

disc(X) := sup
y∈Sd,r∈(0,2]

|σ
(
S(y, r)

)
− σX

(
S(y, r)

)
|.

We consider sequences X of spherical codes which are asymptotically equidistributed [6, Remark
4, p. 236], in the sense that the normalized spherical cap discrepancy is bounded above by a positive
decreasing function δ : N→ (0, 2], with δ(N)→ 0 as N →∞. Specifically,

disc(X`) < δ(N`). (2)

We consider sequences X of spherical codes such that the minimum distance between code
points is bounded below by a positive decreasing function ∆ : N→ (0, 2], specifically,

‖x− y‖ > ∆(N`) (3)

for all x, y ∈ X`.
An easy area argument shows that the order of the lower bound ∆(N) for the separation of

the solution of the Tammes problem [32], the sequence which has the largest separation for each
N, is Ω(N−1/d) [27, Theorem 2]. Therefore, for all sequences of Sd codes, ∆(N)N1/d is bounded
above by a constant, that is, ∆(N)N1/d is of order at most O(1).

A sequence X of Sd codes is called well separated if there exists a constant γ > 0 such that we
can set ∆(N) = γN−1/d.

With these definitions in hand, we define an admissible sequence of spherical codes to be a
triple (X , δ,∆) such that (2) and (3) are satisfied. We can now state our main result.

Theorem 1. For an admissible sequence (X , δ,∆) of Sd spherical codes, the normalized Riesz
s-energy for 0 < s < d is bounded by(

E(X`)− I
)
Us = O

(
δ(N`)1−s/d ∆(N`)−sN

−s/d
`

)
, (4)(

I −E(X`)
)
Us = O

(
δ(N`)1−s/d). (5)

This result immediately implies the following.

Corollary 2. For a well separated admissible sequence (X , δ,∆) of Sd spherical codes, the nor-
malized Riesz s-energy for 0 < s < d can be estimated by

E(X`)Us = I Us + O
(
δ(N`)1−s/d). (6)
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Remarks

Measures with bounded density
Götz obtains a result [12, Proposition 13] similar to Corollary 2, that is, an estimate of Riesz

energy in terms of ball discrepancy, but his result is for the difference in energy double integral
between two probability measures satisfying a density bound [12, (12)], and so the result does not
apply in our case. It is interesting to note, though, that if we set β = d in [12, (12)], then the
energy difference given by [12, Proposition 13] is also bounded by C δ1−s/d, where in this case δ
is the discrepancy between the two probability measures.

Asymptotic equidistribution and weak-star convergence
It has long been known that such a sequence X of spherical codes is asymptotically equidis-

tributed if and only if it is weak-star convergent, i.e. the corresponding sequence (σX`
) of normal-

ized counting measures converges weakly to σ,∫
Sd

f(x) dσX`
(x) :=

1
N`

∑
x∈X`

f(x)→
∫

Sd

f(x) dσ(x)

as `→∞ for all continuous f : Sd → R.
Theorem 4.1 of R. Ranga Rao [28, p. 665] states that given a measure µ on Rd+1 such that

µL−1 is continuous for every linear function L on Rd+1, a sequence of measures converges weakly
to µ if and only if it converges to µ for certain discrepancies defined on half spaces. This theorem
can be used to show that a sequence of Sd codes is weak-star convergent if and only if it converges
to zero in normalized spherical cap discrepancy. Brauchart proves this equivalence relationship
in another way in his Diplomarbeit [3], by appealing to Grabner’s [13] Erdös-Turán inequality on
the sphere.

Bounds in the best case
For any sequence of spherical codes, the normalized spherical cap discrepancy is bounded

below such that δ(N`) = Ω
(
N
−1/2−1/2d
`

)
, as stated by Beck [2, p. 10]. Thus, for a well separated

sequence with the best possible normalized spherical cap discrepancy the estimate (6) gives an
upper bound for the normalized Riesz s-energy of no better than

E(X`)Us − I Us 6 O
(
N

(s−d)(d+1)/(2d2)
`

)
.

In contrast, the best known upper bound for E(XN )Us − I Us for a minimum s-energy sequence
Ωs, for d > 2 and s ∈ (0, d), is

E(Ωs,N )Us − I Us 6 −cNs/d−1, with c > 0, (7)

as given by Kuijlaars and Saff [19, (1.6)].

2 Applications of Theorem 1

It is known that the following sequences of spherical codes are admissible.

1. Minimum energy sequences.

See Section 3.

2. Well-separated sequences of spherical designs.

See Section 4.
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3. Sequences of extremal fundamental systems.

Let {p1, . . . , pDt
} be a basis for the spherical polynomials of degree at most t. An extremal

fundamental system is a spherical code X which maximizes the determinant detA(X), where
A is the interpolation matrix of size Dt × Dt with entries Ai,j := pi(xj). See [29, 31] for
details.

A sequence Ξ of extremal fundamental systems with increasing degree t is known to be
well separated [29]. Marzo and Ortega-Cerdà [24] have recently shown that Ξ is asymptoti-
cally equidistributed. Corollary 2 therefore implies that the normalized Riesz s-energy of Ξ
converges to the normalized energy double integral for all s ∈ (0, d).

4. Well-separated, diameter-bounded equal area sequences.

The sequence EQP(d) of recursive zonal equal area spherical codes, as described in the au-
thor’s PhD thesis [23, 4.1], and implemented in the EQSP Matlab toolbox [22] is well sepa-
rated [23, Theorem 4.3.2] and has normalized spherical cap discrepancy disc

(
EQP(d,N)

)
=

O(N−1/d) [23, Theorem 5.4.1]. Our estimate (6) therefore yields the normalized energy
estimate

E(EQP(d,N))Us = I Us + O
(
N (s−d)/d2

)
.

See [23, Section 5.4].

3 Minimum energy sequences

Minimum Riesz s-energy

For q > 0, let Ωq = (Ωq,1, Ωq,2, . . .) be a sequence of Sd codes such that |Ωq,N | = N and such that
Ωq,N has the minimum Riesz q-energy for any Sd code with N code points.

It is known that for q ∈ (0, d), Ωq is asymptotically equidistributed [21, Chapter 2, 12, pp.
160–162] [6, Theorem 3, p. 236] [15, Theorem 1.1 p. 176]. Brauchart [4, Theorem 2.2, p. 24] gives
a bound for the normalized spherical cap discrepancy of Ωq of

disc(Ωq,N ) = O(N−α/d). (8)

where α := (d− q)/(d− q + 2).
For q ∈ (d− 2, d), Ωq is also known to be well separated [10, Theorem 1.5, p. 143]. Therefore,

for q ∈ (d − 2, d) and s ∈ (0, d), Corollary 2 implies that E(Ωq,N )Us → I Us as N → ∞. Using
Brauchart’s bound (8) we obtain, for this case, the estimate

E(Ωq,N )Us = I Us + O
(
N−(1−s/d)α/d

)
= I Us + O

(
N−(1−s/d)(1−q/d)/(d−q+2)

)
.

For general q > 0, the situation is more complicated, and the known results on discrepancy
and separation split into a number of cases. Let φq,s(N) be the order in N of the upper bound on
E(Ωq,N )Us − I Us given by (4) above, given the currently known values of the bounds δ(N) and
∆(N) for Ωq. Table 1 lists these results, giving references.

The result for q = d in Table 1 is peculiar. The upper bound

φd,s(N) = (logN)(3s/d−1)/2 (log logN)(1−s/d)/2

decreases to 0 as N →∞ when s < d/3, but increases when s > d/3. Kuijlaars and Saff comment
that the order of the separation bound ∆(N) for Ωd “most likely is not best possible” [19, p. 525].
This seems reasonable, since both Ωd+ε and Ωd−ε are known to be well separated.

The result for q ∈ (0, d− 2) in Table 1 is also remarkable. The exponent

f(d, q, s) := −(1− s/d)(d− q)/(d− q + 2)/d− s/d+ s/(q + 2)
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q δ(N) ∆(N) φq,s(N)

(0, d− 2] O(N−α/d) Ω(N−1/(q+2)) O
(
N−(1−s/d)α/d−s/d+s/(q+2)

)
(d > 3) [4, Ch.2] [8, Th.3.5]

(d− 2, d− 1) O(N−α/d) Ω(N−1/d) O
(
N−(1−s/d)α/d

)
[4, Ch.2] [10, Th.1.5]

d− 1 O(N−1/d logN) Ω(N−1/d) O
(
N−(1−s/d)/d(logN)−(1−s/d)

)
[11, Th.4] [11, Th.3]

(d− 1, d) O(N−α/d) Ω(N−1/d) O
(
N−(1−s/d)α/d

)
[4, Ch.2] [20, Th.8]

d O
(√

log logN
logN

)
Ω
(
(N logN)−1/d

)
O
(
(logN)(3s/d−1)/2 (log logN)(1−s/d)/2

)
[7, Th.1] [19, (1.13)]

(d,∞) → 0 Ω(N−1/d) → 0

[15, Th.2.2] [19, (1.12)]

Table 1: Discrepancy, separation and s-energy bounds for minimum q-energy sequences

is not always negative. In particular for φs,s(N), the upper bound from (4) for the normalized
Riesz s-energy of the optimal Riesz s-energy points, the exponent f(d, s, s) is not always negative:

f(d, s, s) = −(1− s/d)(d− s)/(d− s+ 2)/d− s/d+ s/(s+ 2)

=
(d− 1)s3 + (−2d2 + 2d− 2)s2 + (d3 − d2)s− 2d2

d2 (s+ 2) (d− s+ 2)
.

For d > 5, f(d, s, s) takes on positive values for s in some interval within (0, d− 2). For example,
f(5, s, s) > 0 for s ∈ (4−

√
11, 5/2), and our upper bound therefore diverges for this range of s.

In fact, our upper bound φs,s(N) is never tight for any s ∈ (0, d), since it is always positive,
and the best known upper bound for E(Ωs,N )Us − I Us is given by (7), which is negative.

Minimum logarithmic energy

For d > 2, the normalized logarithmic energy of a spherical code X is given by E(X)Ulog, where
Ulog(r) := − log(r) is the logarithmic potential function. Let Ωlog be a sequence of Sd codes with
such that |Ωlog,N | = N and such that Ωlog,N has the minimum normalized logarithmic energy for
any Sd code with N code points.

The best known bound on the normalized spherical cap discrepancy disc(Ωlog,N ) is Brauchart’s
bound, O(N−1/(d+2)) [5, Theorem 1.6]. For d = 2, the logarithmic energy points are also known
to be well-separated [26, Theorem 1]. In this case, our estimate (6) implies the normalized energy
estimate

E(Ωlog,N )Us = I Us + O
(
N−(1−s/2)/4

)
for s ∈ (0, 2).
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4 Well-separated sequences of spherical designs

A spherical t-design is a spherical code such that the corresponding normalized counting measure
gives an equal weight quadrature functional which exactly integrates all spherical polynomials of
degree to and including t [9]. In [17] it was proved that for a well separated sequence of spherical
designs on S2 such that each t-design has (t + 1)2 points, the normalized Coulomb energy (i.e.
Riesz 1-energy) has the same first term and a second term of the same order as the minimum
normalized Coulomb energy for S2 codes.

The proof in [17] was the joint work of Hesse and the author, based on a problem posed by
Sloan. Hesse [16] generalized the results of [17] to cover the Riesz s-energy for 0 < s < 2.

To compare the results of [17] and [16] to energy bounds of the type treated here, we need a
variant of Corollary 2.

From [13, Theorem 1] [14, (2.1)] we know that there is a constant CG such that for any spherical
t-design Xt on S2, we have

disc(Xt) 6
CG
t+ 1

. (9)

We therefore need to modify Corollary 2 to treat sequences X of spherical codes with normalized
spherical cap discrepancy bounded by

disc(X`) < δ(`). (10)

Corollary 3. For a well separated sequence X of Sd spherical codes, with normalized spherical
cap discrepancy bounded by (10) the normalized Riesz s-energy for 0 < s < d can be estimated by

E(X`)Us = I Us + O
(
δ(`)1−s/d). (11)

We define a well separated admissible sequence of Sd designs to be the pair (X , γ), where
X = (X1, X2, . . .), with each spherical design Xt having strength t, and where X is well separated
with separation constant γ.

We can now compare the results of [17] and [16] with the result obtained by combining the
estimate (11) with the bound (9) on the normalized spherical cap discrepancy of spherical designs.

First we restate the main results from [17] with notation adjusted to match this paper, and
recall from (1) the well known result that I U1 = 1.

Theorem 4. Let (X , γ) be a well separated admissible sequence of S2 designs. Then the normalized
Coulomb energy E(Xt)U1 of each spherical design Xt ∈ X of cardinality Nt is bounded above by

E(Xt)U1 6 1 + Cγ (t+ 1)−3/2N
1/4
t − 1

2
1

t+ 3/2
− 1

2
(t+ 1)(t+ 2)

t+ 3/2
N−1
t .

The constant Cγ > 0 depends on the separation constant γ, but is independent of t.

Theorem 5. Let (X , γ) be a well separated admissible sequence of S2 designs such that for some
positive constant µ, |Xt| = Nt 6 µ(t+ 1)2. Then the normalized Coulomb energy of each Xt ∈ X
is bounded above by

E(Xt)U1 6 1 + C(γ,µ)N
−1/2
t ,

where C(γ,µ) > 0 is independent of t.

It is not yet known whether an infinite sequence of spherical designs exists which satisfies
the premise of Theorem 5. If such a sequence X exists, Theorem 5 implies that its normalized
Coulomb energy converges to the corresponding normalized energy double integral at the rate of
O(t−1), that is

E(Xt)U1 6 1 + O(t−1).
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Applying our estimate (11) and the bound (9) to a well separated admissible sequence X of
spherical designs on S2, we obtain

E(Xt)U1 6 1 + O(t−1/2).

This is a slower rate of convergence than predicted by Theorem 5, but the result does not
depend on the relationship between cardinality and strength required by Theorem 5.

If we use Theorem 4 with the sequence of spherical designs on S2 with the lowest known
cardinality, that of [18, Theorem 2.3], which has cardinality of O(t3), we obtain

E(Xt)U1 6 1 + O(t−3/4).

This assumes that the sequence of [18, Theorem 2.3] is well separated. From the construction
given in [18, Section 5], this assumption seems reasonable. Thus Theorem 4 gives a faster rate of
convergence for this sequence than is predicted by Corollary 3.

If instead of the normalized Coulomb energy, we use the normalized Riesz s energy for s ∈ (0, 2),
then for a well admissible separated sequence X of spherical designs on S2, the estimate (11) and
the bound (9) yield

E(Xt)Us 6 I Us + O
(
ts/2−1

)
. (12)

Hesse’s result [16, Theorem 2] implies that for a sequence X of spherical designs which satisfies
the premise of Theorem 5, the Riesz s for s ∈ (0, 2) is bounded as

E(Xt)Us 6 I Us + O
(
ts−2

)
.

Again, this result is better than our corresponding result (12).

5 Preliminary lemmas

Our proof of Theorem 1 needs a a few well known results, which we state here as lemmas.

Lemma 6. The Lebesgue area measure of the sphere Sd ⊂ Rd+1 is given by

ωd := ωd(Sd) =
2π

d+1
2

Γ(d+1
2 )

.

Remarks. This usage of ωd agrees with Müller [25] and Reimer [30], but not with Landkof [21,
Chapter 1, 2, p. 45] or Andrews, Askey and Roy [1, Section 9.6, p. 455], who would put ωd+1

where we have ωd.

Lemma 7. For R ∈ (0, 2] and any x ∈ Sd, the normalized area integral Vd(R) := σ (S(x,R)) can
be evaluated by

Vd(R) =
ωd−1

ωd

∫ R

0

rd−1

(
1− r2

4

) d
2−1

dr,

independent of the point x, and the derivative DVd is given by

DVd(R) =
ωd−1

ωd
Rd−1

(
1− R2

4

) d
2−1

,

where the limit for the derivative is defined from above at 0, and from below at 2.
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Lemma 8. For R ∈ (0, T ], T ∈ (0, 2] the normalized area integral Vd(R) can be estimated by

Vd(R) ∈
[
CL,d(T ), CH,d

) Rd
d
,

where

CL,d(T ) :=
(

1− T 2

4

) d
2−1

CH,d, CH,d :=
ωd−1

ωd
. (13)

Lemma 9. For R ∈ (0, 2] and any x ∈ Sd, for any integrable function u : (0, 2] → R, the single
integral

J d(x;R)u :=
∫
‖x−y‖6R

u(‖x− y‖) dσ(y)

can be evaluated by

J d(x;R)u = J d(R)u =
∫ R

0

u(r)dVd(r)

=
ωd−1

ωd

∫ R

0

u(r) rd−1

(
1− r2

4

) d
2−1

dr, (14)

which is independent of x.

Corollary 10. For any integrable function u : (0, 2]→ R, the double integral I u can be evaluated
by

I u = J d(2)u,

where J d is defined by (14).

Corollary 11. For s ∈ (0, d), R ∈ (0, T ], T ∈ (0, 2] the integral J d(R)Us can be estimated by

J d(R)Us ∈
[
CL,d(T ), CH,d

) Rd−s
d− s

, (15)

where CL,d and CH,d are defined by (13).

Lemma 12. Let X be a spherical code with cardinality |X| = N > 2 and minimum Euclidean
distance ∆. For x ∈ X, for R ∈ (∆,

√
2], the normalized counting measure σX of the spherical cap

S(x,R) can be estimated by

σX
(
S(x,R)

)
:=
|X ∩ S(x,R)|

|X|
6 4d

CH,d

CL,d(
√

2)

(
R

∆

)d
N−1 = 25d/2−1

(
R

∆

)d
N−1.

6 Proof of Theorem 1

We fix d and drop all subscripts d where this does not cause confusion. We fix s ∈ (0, d), fix a
sequence X having the required properties. We also fix `, drop all subscripts `, and examine the
spherical code X := {x1, . . . , xN}. We use the abbreviations E := E(X), U := Us, ∆ := ∆(N),
δ := δ(N).

We calculate the normalized energy EU using a sum of Riemann-Stieltjes integrals, one for
each of the N nodes. We have

EU =
1
N

N∑
k=1

Ek U
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where for any integrable function u : (0, 2]→ R,

Ek u :=
1
N

N∑
j=1

j 6=k

u (‖xk − xj‖) .

We use the punctured normalized counting function gk defined by

gk(r) := σ
(
S(xk, r)\{xk}

)
=
|X ∩ S(xk, r)| − 1

N
.

Then

Ek u =
∫ 2

0

u(r) dgk(r) =
∫ 2

∆

u(r) dgk(r).

where the last equation is a result of the separation condition (3). If u is differentiable on (∆, 2]
we can integrate by parts to obtain

Ek u = [u(r)gk(r)]2∆ −
∫ 2

∆

gk(r) du(r) = u(2) (1−N−1)−
∫ 2

∆

Dgk(r) du(r).

Since U(r) = r−s, we have dU(r) = −sr−s−1 dr, and so

Ek U = 2−s(1−N−1) +
∫ 2

∆

sr−s−1 gk(r) dr. (16)

Upper bound
We use the packing argument of Lemma 12 to show that

gk(r) 6 C1 ∆−dN−1rd −N−1,

where

C1 := 25d/2−1.

From the normalized spherical cap discrepancy δ and Lemma 8 we also know that

gk(r) 6 V(r) + δ−N−1 6 C2 r
d + δ−N−1,

where

C2 :=
CH,d
d

.

We now find the point ρ where these two upper bounds are equal. We want

C1 ∆−dN−1ρd = C2 ρ
d + δ,

so we need (C1 ∆−dN−1 − C2) ρd = δ, and we therefore define

ρ :=
(

1
C1 ∆−dN−1 − C2

) 1
d

δ1/d

=
(

1
C1 − C2 ∆dN

) 1
d

δ1/d ∆N1/d. (17)
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We know that ∆dN is at most O(1), so

ρ = O(δ1/d ∆N1/d) (18)

We now have

gk(r) 6 h(r) :=


0, r ∈ [0,∆]
C1 ∆−dN−1rd −N−1, r ∈ (∆, ρ)
V(r) + δ−N−1, r ∈ [ρ, 2].

On substitution back into (16) we obtain

Ek U = 2−s(1−N−1) +
∫ ρ

∆

sr−s−1 gk(r) dr +
∫ 2

ρ

sr−s−1 gk(r) dr

6 2−s(1−N−1) + C1 ∆−dN−1

∫ ρ

∆

srd−s−1 dr

+
∫ 2

ρ

sr−s−1 V(r) dr + δ

∫ 2

ρ

sr−s−1 dr −N−1

∫ 2

∆

sr−s−1 dr

= 2−s(1−N−1) + C1
s

d− s
∆−dN−1 (ρd−s −∆d−s)

+
∫ 2

ρ

sr−s−1 V(r) dr + δ (ρ−s − 2−s)−N−1 (∆−s − 2−s).

We see that this upper bound is independent of our code point index k and therefore we have

EU 6 2−s(1−N−1) + C1
s

d− s
∆−dN−1 (ρd−s −∆d−s)

+
∫ 2

ρ

sr−s−1 V(r) dr + δ (ρ−s − 2−s)−N−1 (∆−s − 2−s).

Using (14), we have

I U =
∫ 2

0

U(r) dV(r) = U(2)−
∫ 2

0

DU(r)V(r) dr = 2−s +
∫ 2

0

sr−s−1 V(r) dr.

Using (17) we therefore have

EU − I U 6 −2−sN−1 + C1
s

d− s
∆−dN−1 (ρd−s −∆d−s)

−
∫ ρ

0

sr−s−1 V(r) dr + δ (ρ−s − 2−s)−N−1 (∆−s − 2−s)

= −2−sN−1 + C1
s

d− s
∆−dN−1 (ρd−s −∆d−s)

+ ρ−s V(ρ)−
∫ ρ

0

r−s dV(r) + δ (ρ−s − 2−s)−N−1 (∆−s − 2−s),

where the last equation is obtained by integration by parts.
We now use the estimate (15) to obtain

EU − I U 6 −2−sN−1 + C1
s

d− s
∆−dN−1 (ρd−s −∆d−s)

+ ρ−s V(ρ)− C3
1

d− s
ρd−s + δ (ρ−s − 2−s)−N−1 (∆−s − 2−s)

6 C1
s

d− s
∆−dN−1 ρd−s + C2ρ

d−s + δ ρ−s

− (C1
s

d− s
+ 1)∆−sN−1 − C3

1
d− s

ρd−s − 2−s δ .
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where C3 := CL,d(
√

2).
Substituting the order estimate ρ = O(δ1/d ∆N1/d) from (18) we obtain

EU − I U 6 O(δ1−s/d ∆−sN−s/d) + O(δ1−s/d ∆d−sN1−s/d),

but as mentioned above, we know that ∆dN is at most O(1), so we obtain our upper bound (4).

Lower bound

Using arguments similar to those for the upper bound, we obtain

gk(r) > λ(r) :=

{
0, r ∈ [0, τ ]
V(r)− δ−N−1, r ∈ [τ, 2],

where τ is defined by V(τ) = δ+N−1. Thus

τ = O(δ1/d). (19)

On substitution back into (16) we obtain

Ek U = 2−s(1−N−1) +
∫ 2

τ

sr−s−1 gk(r) dr

> 2−s(1−N−1) +
∫ 2

τ

sr−s−1 V(r) dr − (δ+N−1)
∫ 2

τ

sr−s−1 dr

= 2−s(1−N−1) +
∫ 2

τ

sr−s−1 V(r) dr − (δ+N−1) (τ−s − 2−s).

We see that this lower bound is independent of our code point index k and therefore we have

EU > 2−s(1−N−1) +
∫ 2

τ

sr−s−1 V(r) dr − (δ+N−1) (τ−s − 2−s).

Similarly to the argument for the upper bound, we obtain

I U − EU 6 2−sN−1 +
∫ τ

0

sr−s−1 V(r) dr + (δ+N−1) (τ−s − 2−s)

= 2−sN−1 − τ−s V(τ) +
∫ τ

0

r−s dV(r) + (δ+N−1) (τ−s − 2−s)

6 O(N−1) + O(τd−s) + O(δ τ−s) + O(N−1 τ−s).

Using (19) we now have

I U − EU 6 O(N−1) + O(δ1−s/d) + O(N−1 δ−s/d),

yielding our lower bound (5). �

Remarks

1. The proof assumes that ∆ < ρ < 2. This is justified by the order estimate ρ = O(δ1/d ∆N1/d),
because δ(N)N is at least Ω(1), ∆(N)N1/d is at most O(1), and δ(N)→ 0 as N →∞.
The proof also assumes that ∆ < τ < 2. This is true for sufficiently large N , because we
know that δ(N) = Ω(N−1/2−1/2d) from [2], and δ(N)→ 0.

2. The technique used to prove Theorem 1 might be able to be adapted for use with any smooth
compact manifold, if the potential is a function of geodesic distance in the manifold itself
as opposed to Euclidean distance in the embedding space, and the normalized spherical cap
discrepancy is defined using balls defined via geodesic distance.
For the proof to work properly, it would probably be necessary for the manifold to satisfy
the equivalent of the standard packing argument, this time for small geodesic balls inside
larger geodesic balls.
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