Spherical codes with good separation, discrepancy and energy

Paul Leopardi
paul.leopardi@maths.anu.edu.au

Mathematical Sciences Institute, Australian National University.

For presentation at ICIAM 2007, Zurich, July 2007

Based on PhD thesis at the University of New South Wales

supervised by Ian Sloan and Rob Womersley, supported by UNSW and MASCOS.
Outline of talk

EQ codes: The Recursive Zonal Equal Area spherical codes,

$$\text{EQP}(d, \mathcal{N}) \subset S^d, \text{ with } |\text{EQP}(d, \mathcal{N})| = \mathcal{N}.$$

- Overview of properties of the EQ codes
- Some precedents
- Definitions: coordinates, partitions, diameter bounds
- The Recursive Zonal Equal Area (EQ) partition
- Details of properties of the EQ codes
- Separation and discrepancy bounds imply energy bounds
- Separation and diameter bounds imply energy bounds
- More details of properties (if time permits)
The spherical code EQP(2,33) on $S^2 \subset \mathbb{R}^3$
Geometric properties of the EQ codes

For \(\text{EQP}(d, \mathcal{N}) \)

Good:

- Centre points of regions of diameter \(= O(\mathcal{N}^{-1/d}) \),
- Mesh norm (covering radius) \(= O(\mathcal{N}^{-1/d}) \),
- Minimum distance and packing radius \(= \Omega(\mathcal{N}^{-1/d}) \).

Bad:

- Mesh ratio \(= \Omega(\sqrt{d}) \),
- Packing density \(\leq \frac{\pi^{d/2}}{2^d \Gamma(d/2+1)} \) as \(\mathcal{N} \to \infty \).
Not so bad?

- Normalized spherical cap discrepancy \(= O(N^{-1/d}) \),
- Normalized \(s \)-energy

\[
E_s = \begin{cases}
I_s \pm O(N^{-1/d}) & 0 < s < d - 1 \\
I_s \pm O(N^{-1/d} \log N) & s = d - 1 \\
I_s \pm O(N^{s/d-1}) & d - 1 < s < d \\
O(\log N) & s = d \\
O(N^{s/d-1}) & s > d.
\end{cases}
\]

Ugly:

- Cannot be used for polynomial interpolation: proven for large enough \(N \), conjectured for small \(N \).
Spherical codes with good separation, discrepancy and energy – p. 6/27
Some precedents

The EQ partition is based on Zhou’s (1995) construction for S^2 as modified by Saff, and on Sloan’s sketch of a partition of S^3 (2003).

Equidistibution without separation: Many constructions for S^2, eg. mapped Hammersley, Halton, (t, s) etc. sequences. Feige and Schechtman (2002) constructed a diameter bounded equal area partition of S^d. Put one point in each region.
Equal-area partitions of $\mathbb{S}^d \subset \mathbb{R}^d$

An *equal area partition* of $\mathbb{S}^d \subset \mathbb{R}^d$ is a finite set \mathcal{P} of Lebesgue measurable subsets of \mathbb{S}^d, such that

$$\bigcup_{R \in \mathcal{P}} R = \mathbb{S}^d,$$

and for each $R \in \mathcal{P}$,

$$\sigma(R) = \frac{\sigma(\mathbb{S}^d)}{|\mathcal{P}|},$$

where σ is the Lebesgue area measure on \mathbb{S}^d.
Diameter bounded sets of partitions

The *diameter* of a region $R \subset \mathbb{R}^{d+1}$ is defined by

$$\text{diam } R := \sup\{\|x - y\| \mid x, y \in R\}.$$

A set Ξ of partitions of $S^d \subset \mathbb{R}^{d+1}$ is *diameter-bounded* with *diameter bound* $K \in \mathbb{R}_+$ if for all $\mathcal{P} \in \Xi$, for each $R \in \mathcal{P}$,

$$\text{diam } R \leq K |\mathcal{P}|^{-1/d}.$$
Key properties of the EQ partition of S^d

$\text{EQ}(d, \mathcal{N})$ is the recursive zonal equal area partition of S^d into \mathcal{N} regions.

The set of partitions $\text{EQ}(d) := \{ \text{EQ}(d, \mathcal{N}) \mid \mathcal{N} \in \mathbb{N}_+ \}$.

The EQ partition satisfies:

Theorem 1. For $d \geq 1$, $\mathcal{N} \geq 1$, $\text{EQ}(d, \mathcal{N})$ is an equal-area partition.

Theorem 2. For $d \geq 1$, $\text{EQ}(d)$ is diameter-bounded.
Spherical polar coordinates on \mathbb{S}^d

Spherical polar coordinates describe $x \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ by one longitude, $\xi_1 \in \mathbb{R}$ (modulo 2π), and $d - 1$ colatitudes, $\xi_j \in [0, \pi]$, for $j \in \{2, \ldots, d\}$.

The spherical polar to Cartesian coordinate map

$\circledast : \mathbb{R} \times [0, \pi]^{d-1} \to \mathbb{S}^d \subset \mathbb{R}^{d+1}$ is

$$\circledast(\xi_1, \xi_2, \ldots, \xi_d) = (x_1, x_2, \ldots, x_{d+1}),$$

where $x_1 := \cos \xi_1 \prod_{j=2}^{d} \sin \xi_j$, $x_2 := \prod_{j=1}^{d} \sin \xi_j$,

$$x_k := \cos \xi_{k-1} \prod_{j=k}^{d} \sin \xi_j, \quad k \in \{3, \ldots, d + 1\}.$$
Spherical caps, zones, and collars

The spherical cap $S(p, \theta) \subset \mathbb{S}^d$ is

\[S(p, \theta) := \{ q \in \mathbb{S}^d \mid p \cdot q \geq \cos(\theta) \} . \]

For $d > 1$, a zone can be described by

\[Z(\tau, \beta) := \{ \bigcirc(\xi_1, \ldots, \xi_d) \in \mathbb{S}^d \mid \xi_d \in [\tau, \beta] \} , \]

where $0 \leq \tau < \beta \leq \pi$.

$Z(0, \beta)$ is a North polar cap and $Z(\tau, \pi)$ is a South polar cap.

If $0 < \tau < \beta < \pi$, $Z(\tau, \beta)$ is a collar.
EQ(3,99) Steps 1 to 2

\[V(\theta_c) = V_R = \sigma(S^3)/99 \]

\[\Delta = V_R^{1/3} \]

EQ(3,99) Steps 3 to 5

\[y_1 = 14.8... \]

\[y_2 = 33.7... \]

\[y_3 = 33.7... \]

\[y_4 = 14.8... \]

EQ(3,99) Steps 6 to 7

\[\theta_1 \]

\[\theta_2 \]

\[\theta_3 \]

\[\theta_4 \]

\[\theta_5 \]
Centre points of regions of $\text{EQ}(d, \mathcal{N})$

The placement of the centre point $a = \odot(\alpha)$ of a region

$$R = \odot ([\tau_1, \beta_1] \times \ldots \times [\tau_d, \beta_d])$$

is

$$\alpha_1 := \begin{cases} 0 & \beta_1 = \tau_1 \pmod{2\pi} \\ (\tau_1 + \beta_1)/2 \pmod{2\pi} & \text{otherwise}, \end{cases}$$

and for $j > 1$,

$$\alpha_j := \begin{cases} 0 & \tau_j = 0 \\ \pi & \beta_j = \pi \\ (\tau_j + \beta_j)/2 & \text{otherwise}. \end{cases}$$
The \textit{minimum distance} of \(X := \{x_1, \ldots, x_N\} \subset \mathbb{S}^d \) is

\[
\text{min dist } X := \min_{x \neq y \in X} \|x - y\|,
\]

and the \textit{packing radius} of \(X \) is

\[
\text{prad } X := \min_{x \neq y \in X} \cos^{-1}(x \cdot y)/2.
\]

It can be shown that \(\text{min dist } \text{EQP}(d, N) = \Omega(N^{-1/d}) \),

and therefore \(\text{prad } \text{EQP}(d, N) = \Omega(N^{-1/d}) \).
Minimum distance of EQP(4) codes

\[\text{Min dist} \times N^{1/4} \]

Spherical codes with good separation, discrepancy and energy – p. 16/27
Normalized spherical cap discrepancy

We use the probability measure \(\sigma^* := \sigma / \sigma(\mathbb{S}^d) \).

For \(X := \{x_1, \ldots, x_N\} \subset \mathbb{S}^d \) the normalized spherical cap discrepancy is

\[
\text{disc } X := \sup_{y \in \mathbb{S}^d} \sup_{\theta \in [0, \pi]} \left| \frac{|X \cap S(y, \theta)|}{\mathcal{N}} - \sigma^*(S(y, \theta)) \right|.
\]

It can be shown that

\[
\text{disc } \text{EQP}(d, \mathcal{N}) = O(\mathcal{N}^{-1/d}).
\]
Normalized s-energy

For $X := \{x_1, \ldots, x_N\} \subset S^d$, $s \in \mathbb{R}$, the normalized s-energy is

$$E_s(X) := \mathcal{N}^{-2} \sum_{i=1}^{N} \sum_{x_i \neq x_j \in X} \|x_i - x_j\|^{-s},$$

and the normalized energy double integral for $0 < s < d$ is

$$I_s := \int_{S^d} \int_{S^d} \|x - y\|^{-s} \, d\sigma^*(x) d\sigma^*(y).$$
Theorem 3.

Let \((X_1, X_2, \ldots)\) be a sequence of \(S^d\) codes for which there exist \(c_1, c_2 > 0\) and \(0 < q < 1\) such that each \(X_N = \{x_{N,1}, \ldots, x_{N,N}\}\) satisfies

\[
\|x_{N,i} - x_{N,j}\| > c_1 N^{-1/d}, \quad (i \neq j)
\]

\[\text{disc } X_N \leq c_2 N^{-q}.\]

Then for the normalized \(s\) energy for \(0 < s < d\), we have for some \(c_3 \geq 0\),

\[
E_s(X_N) \leq I_s + c_3 N^{(s/d-1)q}.
\]
Separation and diameter imply energy

Theorem 4.

Let \(((X_1, \mathcal{P}_1), (X_2, \mathcal{P}_2), \ldots)\) be a sequence of pairs of \(\mathbb{S}^d\) codes and equal area partitions such that \(|X_N| = |\mathcal{P}_N| = N\), each \(x_{N,i} \in X_N\) lies in \(R_{N,i} \in \mathcal{P}_N\), and such that \((X_1, X_2, \ldots)\) is well separated and \((\mathcal{P}_1, \mathcal{P}_2, \ldots)\) is diameter bounded.

Then for the normalized \(s\) energy we have

\[
E_s(X_N) = \begin{cases}
I_s \pm O(N^{-1/d}) & 0 < s < d - 1 \\
I_s \pm O(N^{-1/d} \log N) & s = d - 1 \\
I_s \pm O(N^{s/d-1}) & d - 1 < s < d \\
O(\log N) & s = d \\
O(N^{s/d-1}) & s > d.
\end{cases}
\]
Comparison to minimum energy

For \(s > d - 1 \), Theorem 4 yields energy bounds of the same order as \(\mathcal{E}_s(\mathcal{N}) \), the minimum normalized \(s \) energy for \(\mathcal{N} \) points on \(\mathbb{S}^d \).

\[
\mathcal{E}_s(\mathcal{N}) = \begin{cases}
I_s - \Theta(\mathcal{N}^{s/d-1}) & 0 < s < d \\
0 & s = d \\
O(\log \mathcal{N}) & s > d \\
O(\mathcal{N}^{s/d-1}) & s > d
\end{cases}
\]

(Wagner; Rakhmanov, Saff & Zhou; Brauchart)

(Kuijlaars & Saff)

(Hardin & Saff).
$d - 1$ energy of EQP(2), EQP(3), EQP(4)
$2d$ energy of $\text{EQP}(2), \text{EQP}(3), \text{EQP}(4)$
The *mesh norm* of \(X := \{ x_1, \ldots, x_N \} \subset \mathbb{S}^d \) is

\[
\text{mesh norm } X := \sup_{y \in \mathbb{S}^d} \min_{x \in X} \cos^{-1}(x \cdot y).
\]

Since \(\text{EQ}(d) \) is diameter bounded,

\[
\text{mesh norm } \text{EQP}(d, \mathcal{N}) = O(\mathcal{N}^{-1/d}).
\]
Mesh ratio and packing density

The mesh ratio of $X := \{x_1, \ldots, x_N\} \subset S^d$ is

$$\text{mesh ratio } X := \text{mesh norm } X / \text{prad } X.$$

The packing density of X is

$$\text{pdens } X := N^* \sigma(S(x, \text{prad } X)).$$

Regions of $\text{EQ}(d, N)$ near equators \rightarrow cubic as $N \rightarrow \infty$, so

$$\text{mesh ratio } \text{EQP}(d, N) = \Omega(\sqrt{d}), \quad \text{and}$$

$$\text{pdens } \text{EQP}(d, N) \leq \frac{\pi^{d/2}}{2^d \Gamma(d/2 + 1)}$$

as $N \rightarrow \infty$.
Packing density of EQP(4) codes
For EQSP Matlab code

See SourceForge web page for EQSP:

Recursive Zonal Equal Area Sphere Partitioning Toolbox:

http://eqsp.sourceforge.net