
Testing the Tests: Using Random Number
Generators to Improve Empirical Tests

Paul Leopardi1

Abstract The implementer of an empirical test for random number generators is
faced with some difficult problems, especially if the test is based on a statistic which
is known only approximately: How can the test be tested? How can the approxima-
tion be improved? When is it good enough? A number of principles can be applied to
these problems. These principles are illustrated using implementations of the over-
lapping serial “Monkey” tests of Marsaglia and Zaman.

1 Introduction

For many empirical tests of random number generators (RNGs), the distribution of
the test statistic is known only approximately or asymptotically. The use of two-level
testing with such empirical tests and “known good” random number generators can
reveal the goodness of fit between the empirical distribution of the test statistic and
the approximate theoretical distribution [10, Section 3.1] [11, Section 3]. Two-level
testing with a battery of tests can reveal which of the tests use approximations which
give a better fit for the size of the test used in the battery.

This paper describes the improvement of the implementation of the overlapping
serial “Monkey” tests of Marsaglia and Zaman [18, 17] in the TestU01 suite [13, 14].

The remainder of this paper is organized as follows. Section 2 describes some of
the principles of two-level testing with a battery of tests. Section 3 describes how
the PseudoDIEHARD battery of TestU01 was tested. Section 4 describes Marsaglia
and Zaman’s Monkey tests, shows how various differences with the TestU01 im-
plementation were detected, gives some new results for the theoretical moments for
these tests, and describes the improvements made to the tests in TestU01. Section
5 summarizes the results of the tests using the improved version of the Pseudo-

Mathematical Sciences Institute, Australian National University.
http://www.maths.anu.edu.au/˜leopardi

1

2 Paul Leopardi

DIEHARD battery of TestU01. Section 6 gives a brief summary of the computation
of the variances which are used in the Monkey tests.

2 Two-level testing with a battery of tests

The general idea of two-level testing with a battery of tests is that a battery may yield
b p-values; when the battery is repeated r times on disjoint subsequences generated
by an RNG, this yields a set of br p-values. This set is then tested using one or more
statistical tests for uniformity.

Two-level testing with a battery of tests is not a good idea in general if the inten-
tion is to test RNGs, since the individual tests must be short so that the battery can
be repeated enough times to give a meaningful result within a reasonable runtime. A
short test is less likely to give significant results on an individual RNG than a longer
test of the same type. Even worse, since the statistics on which a test is based may
be only approximate, performing a two-level test can lead to false rejection of an
RNG [10, Section 3.1] [11, Section 3]. For example, a series of papers by Kao and
Tang apparently wrongly rejects generators on the basis of failing two-level tests
[7, 25, 26].

The key to understanding repeated testing with a battery of empirical tests is to
realize that the outcome involves two independent null hypotheses.

H0: The RNG under test generates a U(0,1) sequence.
H1: Each test of the battery, when applied to a U(0,1) sequence, yields a p-value

from U(0,1).

These can be combined into the hypothesis:

H2: The battery, when repeatedly applied to the RNG under test, yields a se-
quence of independent p-values from U(0,1).

For a battery of tests on a single RNG, if H2 fails it may be hard to distinguish
failures of H0 from failures of H1. A possible solution is to look for consistent
failures of tests across multiple different “known good” RNGs. This approach may
not always work, since no RNG actually satisfies H0 [10, Section 3.4], but there are
enough RNGs which work well enough to make this approach feasible.

Once a failure of H1 for a test battery is detected, the next step is to repeat testing
but use each type of test in isolation, or equivalently, to extract from each sequence
of p-values produced by a run of the battery those p-values produced by each type
of test.

Some tests of a battery may produce multiple correlated p-values. If this causes
H1 to detectably fail for the battery as a whole, this failure will also be detected for
the individual test.

For tests using a statistic with a discrete distribution, H1 is never strictly true,
but this type of failure may only be revealed when the number of repetitions of the
test is large relative to the number of different p-values which the test can yield.

Testing the Tests 3

Models of an empirical test are given by L’Ecuyer and Hellekalek [12, Sec-
tion 3.1] and by L’Ecuyer and Simard [14, Section 3]. Essentially, a test is a two-step
process.

1. The test generates a value y taken by a test statistic Y , where Y is a real-valued
function of a number of values generated by the RNG.

2. The test computes a p-value p := 1− f (y) by using an approximation f to the
theoretical distribution function F of the test statistic Y , where F is defined by

F(y) := 1−P[Y ≥ y].

Possible causes of the failure of H1 for a particular test may therefore include:

1. The implementation of the test does not match its description in the literature,
and actually generates a test statistic Y ′ 6= Y ;

2. The function f is not a good approximation to F for the particular parameters
used by the test;

3. The implementation of the test actually computes a function f ′ 6= f , giving a
different approximation to F from the one described in the literature.

Deeper investigation of the cause of the failure of H1 for a particular test may there-
fore require examination of the source code of the test, as well as its description.

3 Initial testing of PseudoDIEHARD in TestU01

TestU01 is a collection of “Utilities for empirical statistical testing of uniform ran-
dom number generators” [14]. It contains a library of empirical tests, arranged into
batteries. Typical use of TestU01 is to test an RNG using the Small Crush, Crush
and Big Crush batteries in succession. TestU01 also includes the PseudoDIEHARD
battery, which is based on Marsaglia’s DIEHARD battery [16].

To investigate the PseudoDIEHARD battery of TestU01, two high quality gener-
ators were used: Mersenne Twister mt19937 [20, 19], and Brent Xorgens xor4096
[1, 2]. For the remainder of this paper, the Mersenne Twister mt19937 generator is
referred to as MT and the Brent Xorgens xor4096 generator is referred to as BX.
Both generators pass all tests of the Small Crush battery. BX passes all tests of the
Crush and Big Crush batteries while MT fails Crush and Big Crush in tests of linear
complexity [14].

The first testing method used is to perform 64 repetitions of the PseudoDIEHARD
battery using an RNG with each of 4 different seeds, yielding a sequence of
N = 32256 p-values, and submit this sequence to a second-level test. The two-sided
one sample Kolmogorov test is used to compare the empirical cumulative distribu-
tion function (CDF) of the sequence of p-values to the CDF for U(0,1). Hypothesis
H2 is rejected if the second-level test yields a p-value less than 0.001.

The results using TestU01 version 0.6.1 are as follows.

4 Paul Leopardi

D p
BX: 0.0118 0.0002466
MT: 0.0136 1.408×10−5

We see that hypothesis H2 is rejected for both generators, throwing suspicion on
hypothesis H1.

One way to gain more confidence in these results is to increase the number of
repetitions. Under hypothesis H0 this should yield an empirical distribution of p-
values which more closely approximates the distribution which is produced by the
PseudoDIEHARD test battery. The results using TestU01 0.6.1 PseudoDIEHARD
repeated 1024 times, giving 129024 p-values each, are as follows.

D p
BX: 0.0113 1.221×10−14

MT: 0.011 5.951×10−14

Figure 1 plots the difference between the p-values from 1024 repetitions of
TestU01 0.6.1 PseudoDIEHARD using BX, sorted in increasing order, and the cor-
responding values of the U(0,1) distribution, in this case the numbers (k−1/2)/N,
for k from 1 to N = 129024. A systematic pattern resembling a sideways S is easily
visible.

Fig. 1 1024 × PseudoDIEHARD 0.6.1 (BX)

When the p-values for each type of test are extracted from a run of 1024 repe-
titions of TestU01 0.6.1 PseudoDIEHARD, the tests which produce failures of hy-
pothesis H1 are seen to be the Run test, the OQSO test and the DNA test.

The Run test implemented in TestU01 0.6.1 is essentially the test described in the
1981 version of Knuth [8], with a slight difference. The RNG is called n + 1 times
rather than n times. The improvement to the Run test, which was incorporated into

Testing the Tests 5

TestU01 version 1.2.1, essentially consists of implementing the description given in
the 1998 version of Knuth [9, pp. 66-69]. Details of this improvement are omitted.

4 Overlapping serial tests

Of the 126 p-values generated by PseudoDIEHARD, 82 come from three overlap-
ping serial (Monkey) tests [18]: 23 OPSO tests, 28 OQSO tests, and 31 DNA tests.

These Monkey tests use an alphabet of size α , form a string of length n = 221 by
taking n× log2 α bits from an RNG, and examine the n− t +1 overlapping words of
length t. According to [18], the number of missing words should be approximately
normal with expected value µ and variance σ2 as given by Table 1.

Table 1 Marsaglia and Zaman’s 1993 Monkey test means and standard deviations

α t µ σ

OPSO: 210 2 141909.4653 290.27
OQSO: 25 4 141909.4737 290
DNA: 4 10 141910.5378 290

In TestU01 the Monkey tests are treated as instances of the overlapping Collision
sparse serial tests [13, p. 106, pp. 121–122] [15].

The two-level tests for the Monkey tests use the same method as the Run test.
The PseudoDIEHARD battery is repeated 1024 times. From each subsequence of
126 p-values generated by each repetition, the corresponding p-values are extracted:
28 for the OQSO tests and 31 for the DNA tests.

The Kolmogorov test results using the corresponding sequences of p-values ex-
tracted from 1024 repetitions of the TestU01 0.6.1 PseudoDIEHARD battery are as
follows.

D p
OQSO BX: 0.0085 0.033 11

MT: 0.0061 0.24
DNA BX: 0.0389 < 2.2×10−16

MT: 0.0374 < 2.2×10−16

Hypothesis H2 is rejected for the DNA test for both generators. Figure 2 shows
the difference between the sorted p-values and the U(0,1) distribution for BX. The
distinct sideways S shaped curve of the graph casts suspicion on the variance used
to calculate the p-values for the DNA test.

6 Paul Leopardi

Fig. 2 DNA tests from 1024 × PseudoDIEHARD 0.6.1 (BX)

For all three Monkey tests, TestU01 0.6.1 calculates the values k := α t and λ :=
n/α t = 2 and then obtains

µ = ke−λ = 220e−2 ' 141909.329955,

σ = ke−λ (1−3e−λ) = 210
√

e−2−3e−4 ' 290.3331.

These values of µ and σ agree with those of Table 1 to the nearest integer, except
for the expected value for the DNA test.

As part of the project which produced the DIEHARD battery of tests [16],
Marsaglia in 1995 produced a revised version of his joint paper with Zaman [18].
The newer paper [17] revises the values of σ for the OQSO and DNA tests to 295
and 339 respectively. These revised values were obtained by simulation.

The author submitted a patch to TestU01 to use the revised values of σ for the
OQSO and DNA tests. The patch also sets the number of words used to calculate λ

to n− t + 1 so that λ = (n− t + 1)/k, matching the description of the overlapping
collision test in the User’s Guide [13, Version 0.6.1 p. 121, Version 1.2.1 p. 131].
This patch is used in TestU01 1.2.1.

The Kolmogorov test results, using the corresponding sequences of p-values ex-
tracted from 1024 repetitions of the TestU01 1.2.1 PseudoDIEHARD battery, are as
follows.

D p
OQSO BX: 0.0109 0.002 0921

MT: 0.0093 0.0141
DNA BX: 0.0127 6.802×10−5

MT: 0.0109 0.001 052

Testing the Tests 7

Hypothesis H2 is still rejected for the DNA test for BX, and the p-values for DNA
for MT and OQSO for BX are suspiciously low.

Figure 3 shows a U shaped curve which represents the difference between the
sorted p-values for the patched DNA test using BX, and the U(0,1) distribution.
The sideways S shaped curve from Figure 2 is also shown for comparison. It appears
that at least for the DNA test, TestU01 1.2.1 no longer uses an inaccurate variance
but instead uses an inaccurate mean.

Fig. 3 DNA tests from 1024 × PseudoDIEHARD 1.2.1 (BX)

A deeper investigation into the source code of TestU01 1.2.1 reveals two key
differences between this implementation and Marsaglia and Zaman’s description of
the Monkey tests [18, 17].

1. Different test.
The OPSO, OQSO and DNA tests as described by Marsaglia and Zaman [18, 17]
each use a string of length n. Their implementations in TestU01 use words on a
cycle of length n rather than a string, yielding n not n− t + 1 words of length
t [13, p. 106, pp. 121–122] [15]. This produces a different test with a different
expected outcome.
The expected number of missing words in the cyclic case is different from the
non-cyclic case. Using the methods of Guibas and Odlyzko [6], and Rivals and
Rahmann [23], and Maple code provided by Edlin and Zeilberger [3], the cor-
responding µ for the cyclic versions of the OPSO, OQSO and DNA tests was
calculated to be:

OPSO: 141 909.194 619 723 81
OQSO: 141 909.194 525 907 72
DNA: 141 909.184 583 083 19

The corresponding σ is not yet known.

8 Paul Leopardi

2. Different number of words.
In the Marsaglia and Zaman [18, 17] (string) versions of the OPSO, OQSO and
DNA tests, the number of words in the sequence is n− t +1. In the TestU01 1.2.1
(cyclic) implementation of these tests, the number of words in the sequence is n,
yet the number of words used to calculate the expected value µ and the variance
σ2 is n− t +1. As a result, TestU01 1.2.1 sets µ to the following values.

OPSO: 141 910.329 955
OQSO: 141 912.329 955
DNA: 141 918.329 955

The effect of the combination of differences 1 and 2 results in an inaccurate
expected value being used to calculate the p-value.

Precise values of the expected value and variance for the number of miss-
ing words in the Monkey tests were calculated using the methods of Guibas and
Odlyzko [6], and Rivals and Rahmann [23, 22], with the help of Maple code pro-
vided by Noonan and Zeilberger [21], and Edlin and Zeilberger [3]. Calculation of
the variance for the OPSO test needs the calculation of 6 generating functions, the
OQSO test needs 55, and the DNA test needs 4592. The methods used for the cal-
culation are described in Section 6 below. The resulting values of µ and σ are listed
in Table 2 to 20 decimal places.

Table 2 Improved Monkey test means and standard deviations

µ σ

OPSO: 141 909.329 955 006 918 91 290.462 263 403 751 797 69
OQSO: 141 909.600 532 131 639 00 294.655 872 365 832 448 93
DNA: 141 910.402 604 762 935 66 337.290 150 690 427 643 65

An improved patch for the TestU01 implementations of the Monkey tests elim-
inates differences 1 and 2 above, and uses the improved means and standard de-
viations listed in Table 2. The Kolmogorov test results using the corresponding
sequences of p-values extracted from 1024 repetitions of the improved TestU01
PseudoDIEHARD battery are as follows.

D p
OQSO BX: 0.008 0.05186

MT: 0.006 0.2456
DNA BX: 0.0038 0.7527

MT: 0.0034 0.8589

Testing the Tests 9

5 Final TestU01 results

The summarized Kolmogorov test results for 1024 repetitions of the PseudoDIEHARD
battery, for different versions of TestU01 for the generators MT and BX, are as fol-
lows.

Version D p
0.6.1 BX: 0.0113 1.221×10−14

MT: 0.011 5.951×10−14

1.2.1 BX: 0.0063 7.01×10−5

MT: 0.0056 0.000 6376
Improved BX: 0.0032 0.1352

MT: 0.0025 0.3982

The improved version no longer results in rejection of hypothesis H2.

6 Computation of the variances for the Monkey tests

The following analysis is based on that of Rahmann and Rivals [22]. The problem
is to find the mean and variance of the distribution of the number of missing words
in a random string. A random string S of length n is formed from an alphabet of size
α , with each character equally likely. The string S contains n− t + 1 overlapping
words of length t. There are therefore αn possible strings Si, and α t possible words
Wj.

For the remainder of this section, consider α and t to be fixed. Define the indi-
cator variable vi, j to be 1 if word Wj is missing from string Si, and 0 otherwise. The
number of words missing from string Si is thus

Xi := ∑
j

vi, j.

The probability that both words Wj and Wk are missing from a random string S
of length n is

a(n)
j,k := α

−n
∑

i
vi, jvi,k.

Define the generating functions A j,k(z) := ∑n a(n)
j,k zn and A j := A j, j. Define the

random variable X (n) to be the number of words missing from a random string S of
length n. The expected value of X := X (n) is then

E[X] = α
−n

∑
i

Xi = α
−n

∑
i

∑
j

vi, j = ∑
j

a(n)
j, j .

The variance is Var[X] = E[X2−X]+E[X]− (E[X])2, with

10 Paul Leopardi

E[X2−X] = α
−n

∑
i

∑
j 6=k

vi, jvi,k = ∑
j 6=k

a(n)
j,k .

Given words B and C of length t, with B = B0 . . .Bt−1 etc. define the (word over-
lap) correlation vector BC by BCs = 1 if Br+s = Cr for r ∈ {0, . . . , t − s− 1}, and
BCs = 0 otherwise. Figure 4 shows an example of a correlation vector. The correla-
tion vectors BB,CC are called autocorrelations [5, 23].

Fig. 4 The correlation vector for the words B=DANGER, C=ANGERS.
B : D A N G E R
C : A N G E R S

A N G E R S
. . .

BC : 0 1 0 0 0 0

For the correlation vector v, define the correlation polynomial

Pv(z) := v0 + v1z+ . . .+ vt−1zt−1.

For Pj := PW jW j , the generating function A j is given by Guibas and Odlyzko [6,
Theorem 1.1], and Rahmann and Rivals [22, Lemma 2.1] as

A j(z) =
Pj(z/α)

(z/α)t +(1− z)Pj(z/α)
.

For Pg,h := PWg,Wh , the correlation matrix is M j,k(z) :=
[

Pj, j(z) Pj,k(z)
Pk, j(z) Pk,k(z)

]
.

Given M :=
[

m11 m12
m21 m22

]
, define MV :=

[
m22 m21
m12 m11

]
and

R(M) := m11 +m22−m12−m21.

Define the equivalence class [M] := {M, MT , MV , MTV}, so that

[M j,k(z)] = {M j,k(z), MT
j,k(z), Mk, j(z), MT

k, j(z)}.

Note that M′ ∈ [M] implies detM′ = detM and R(M′) = R(M).
The generating function A j,k for the pair Wj,Wk is given by Rahmann and Rivals

[22, Lemma 3.2] as

A j,k(z) =
Q j,k(z/α)

(1− z)Q j,k(z/α)+(z/α)tR j,k(z/α)
,

where Q j,k(z) := detM j,k(z), and R j,k(z) := R(M j,k(z)). See also [6, 21, 24].

Testing the Tests 11

Standard methods are used to obtain a(n)
j,k = [zn]A j,k(z) from each A j,k(z). See e.g.

Graham, Knuth and Patashnik [4, Section 7.3].
We could simply sum a(n)

j,k for all α2t−α t word pairs Wj 6=Wk, but for Marsaglia’s
tests, α2t = 240. So instead we enumerate correlation classes and count the word
pairs for each class.

Each word pair Wj,Wk containing β distinct letters yields a partition of the set
{0, . . . ,2t−1} into β nonempty subsets, which is equivalent to a restricted growth
string of length 2t having exactly β distinct letters. The string S of length 2t is a
restricted growth string if Sk 6 S j + 1 for each j from 0 to k− 1, for k from 1 to
2t−1.

Each permutation of the alphabet preserves the correlation matrix. The set of
word pairs having β distinct letters splits under the symmetry group Sα into orbits
of size α!/(α−β)!.

Define N[M](α) =]{(j,k) |M j,k = [M]}, the number of word pairs associated to
the correlation class [M]. For α 6 2t, the following algorithm is used to determine
all correlation classes [M], and find N[M](α) for each one.

For each β from 1 to α , for each restricted growth string of length 2t having
exactly β distinct letters:

1. Find the correlation class for the corresponding word pair.
2. Add α!

(α−β)! to the count for the correlation class.

For each correlation class [M], N[M](α) is a polynomial in α of maximum degree
2t. For α > 2t, to find N[M](α), first find N[M](γ) for γ from 1 to 2t, and then
interpolate the resulting polynomial.

Acknowledgements This paper is the result of correspondence with Richard Simard of the Uni-
versity of Montreal, and with Eric Rivals at LIRMM, Montpellier. Art Owen of Stanford encour-
aged this paper and the presentation on which it is based. Jörg Arndt assisted in programming
and proofreading. The combinatorial, statistical and programming techniques used were refined
through various discussions with Sacha van Albada, Peter Drysdale, and others at Complex Sys-
tems, School of Physics, University of Sydney; and Jörg Arndt, Sylvain Forêt, John Maindonald,
Judy-anne Osborn, and others at the Mathematical Sciences Institute, Australian National Univer-
sity.

References

1. Brent, R.P.: Some uniform and normal random number generators (2006–2008). URL http:
//wwwmaths.anu.edu.au/˜brent/random.html

2. Brent, R.P.: Some long-period random number generators using shifts and xors. ANZIAM
Journal 48 (CTAC2006)(1), C188–C202 (2007). URL http://anziamj.austms.org.
au/ojs/index.php/ANZIAMJ/article/view/40

12 Paul Leopardi

3. Edlin, A.E., Zeilberger, D.: The Goulden-Jackson cluster method for cyclic words. Advances
in Applied Mathematics 25, 228–232 (2000)

4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, second edn. Addison-
Wesley, New Jersey (1994)

5. Guibas, L.J., Odlyzko, A.M.: Periods in strings. Journal of Combinatorial Theory Series A
30, 19–43 (1981)

6. Guibas, L.J., Odlyzko, A.M.: String overlaps, pattern matching, and nontransitive games. Jour-
nal of Combinatorial Theory Series A 30, 183–208 (1981)

7. Kao, C., Tang, H.C.: Several extensively tested multiple recursive random number generators.
Comput. Math. Appl. 36(6), 129–136 (1998)

8. Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, vol. 2, second
edn. Addison-Wesley, Reading, Massachusetts (1981)

9. Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, vol. 2, third edn.
Addison-Wesley, Reading, Massachusetts (1998)

10. L’Ecuyer, P.: Testing random number generators. In: WSC ’92: Proceedings of the 24th
conference on Winter simulation, pp. 305–313. ACM, New York, NY, USA (1992). DOI
10.1145/167293.167354

11. L’Ecuyer, P.: Random number generators and empirical tests. In: Monte Carlo and quasi-
Monte Carlo methods 1996 (Salzburg), Lecture Notes in Statistics, vol. 127, pp. 124–138.
Springer, New York (1998)

12. L’Ecuyer, P., Hellekalek, P.: Random number generators: selection criteria and testing. In:
Random and quasi-random point sets, Lecture Notes in Statistics, vol. 138, pp. 223–265.
Springer, New York (1998)

13. L’Ecuyer, P., Simard, R.: TestU01: a software library in ANSI C for empirical testing of
random number generators: User’s guide, detailed version. Département d’Informatique et
de Recherche Opérationnelle Université de Montréal (2005). URL http://www.iro.
umontreal.ca/˜simardr/testu01/tu01.html

14. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number gener-
ators. ACM Trans. Math. Software 33(4), Art. 22, 40 (2007)

15. L’Ecuyer, P., Simard, R., Wegenkittl, S.: Sparse serial tests of uniformity for random number
generators. SIAM Journal on Scientific Computing 24(2), 652–668 (2002). DOI 10.1137/
S1064827598349033

16. Marsaglia, G.: The Marsaglia random number CDROM including the Diehard battery of tests
of randomness (1995). URL http://www.stat.fsu.edu/pub/diehard/

17. Marsaglia, G.: Monkey tests for random number generators, (revised extract, 1995). Journal
of Statistical Software 14(13), 1–10 (2005). URL http://www.jstatsoft.org/v14/
i13/supp/1

18. Marsaglia, G., Zaman, A.: Monkey tests for random number generators. Computers and Math-
ematics with Applications 26(9), 1–10 (1993)

19. Matsumoto, M.: Mersenne Twister with improved initialization (2002). URL http://www.
math.sci.hiroshima-u.ac.jp/˜m-mat/MT/MT2002/emt19937ar.html

20. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation 8(1), 3–30 (1998). DOI 10.1145/272991.272995

21. Noonan, J., Zeilberger, D.: The Goulden-Jackson cluster method: Extensions, applications,
and implementations. J. Difference Eq. Appl. 5, 355–377 (1999)

22. Rahmann, S., Rivals, E.: On the distribution of the number of missing words in random texts.
Combinatorics, Probability and Computing 12, 73–87 (2003)

23. Rivals, E., Rahmann, S.: Combinatorics of periods in strings. Journal of Combinatorial Theory
Series A 104(1), 95–113 (2003)

24. Rukhin, A.L.: Distribution of the number of words with a prescribed frequency and tests of
randomness. Advances in Probability 34(4), 775–797 (2002)

25. Tang, H.C.: A statistical analysis of the screening measure of multiple recursive random num-
ber generators of orders one and two. J. Statist. Comput. Simulation 71(4), 345–356 (2001)

26. Tang, H.C., Kao, C.: Searching for good multiple recursive random number generators via a
genetic algorithm. INFORMS J. Comput. 16(3), 284–290 (2004)

