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The sphere

�

De�nition 1. For dimension

�

, theunit sphere

�

�

embeddedin

�

�
� �

is de�nedas

�

���

�

�

	

�

�

� �


�
�
�
�


�
� �

��


�

�

�

�

�

�

�

De�nition 2. Sphericalpolarcoordinatesdescribea point � of

�

�

usingonelongitude, �

�

	

�����

���

�

, and

�

�

�

colatitudes,

���

	

�����

�

�

, for

�

	

�

�

� � � ��

�

 

.
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Equal-measurepartitions

De�nition 3. Let

�

bea measurablesetand � a measure with

�

�

�

�

�

�

�

�

�

Anequal-measurepartitionof

�

for � is a nonempty�nite set

�

of
measurablesubsetsof

�

, such that for each �

�

	

�

with

�

�

�

,

�

� �

�

�

�

�

�

�

�

�

�

�	


�




and

�

�

�

�

�

�

�

�

A partitionof theunit sphere

�

���

�

�

�
	

into regionsof equalmeasureandsmalldiameter– p. 4/26



Diameter boundedsetsof partitions

De�nition 4. Thediameterof a region

��� �

�
� �

is de�nedby

�

���

�

�

�

�

�
� 	

��
 �

�

�

�

�


�

�

�

	

�

 

�

where 


�

�

�

�

�

is the

�

�
� �

Euclideandistance


�


�

�

�


�


.

De�nition 5. A set

�

of partitionsof
�

	

�

�
� �

is saidto have
diameterbound

	

�

� if for all
�

	

�

, for each

�

	

�

, for

�

�




�




,

�

���

�

�
�

�

�

�

�

�

�

is saidto bediameterboundedif there exists

	

�
� such that

�

hasdiameterbound .
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Keypropertiesof the RZ partition of

�

Therecursivezonal(RZ) partitionof

�

�

into regionsis denoted
as

� �

�

�

�

�

.
Thesetof partitions

� �

�

�

�

�

�

�

� �

�

�

�

�


	

�

�

 

.
TheRZ partitionsatis�esthefollowing theorems.

Theorem1. For dimension

�

�

�

, let � betheusualsurface
measure on

�

�

inheritedfromtheLebesguemeasure on

�

via the
usualembeddingof

�

�

in

�

�
� �

.
Thenfor

�

�

,

� �

�

�

�

�

is anequal-measure partition for � .

Theorem2. For

�
�

�

,
� �

�

�

�

is diameter-boundedin thesense
of De�nition 5.
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Precedents

TheRZ partitionis basedonZhou's (1995)constructionfor

�

�

as
modi�ed by EdSaff, andon IanSloan'ssketchof a partitionof

�

�

(2003).

Alexander(1972)usestheexistenceof a diameter-boundedsetof
equal-areapartitionsof

�

�

to analysethemaximumsumof
distancesbetweenpoints.Alexander(1972)suggestsaconstruction
differentfrom Zhou(1995).

Equal-areapartitionsof

�

�

usedin thegeosciencesandastronomy
donothavea provenboundon thediameterof regions.
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Stolarsky's “Conjectur e”

Stolasky (1973)assertstheexistenceof adiameter-boundedsetof
equal-measurepartitionsof

�

�

for all

�

, but offersno construction
or existenceproof.

BeckandChen(1987)quotesStolarsky. Bourgain and
Lindenstrauss(1988)quotesBeckandChen.

Wagner(1993)impliestheexistenceof anRZ-like constructionfor

�

�

. Bourgain andLindenstrauss(1993)givesapartialconstruction.

A partitionof theunit sphere

�

���

�

�

�
	

into regionsof equalmeasureandsmalldiameter– p. 8/26



Spherical zones,capsand collars

For

�

�

�

, a zonecanbedescribedby

�

���

�

�

�

�

�

�

�

	

�

�




�

�

	

�

�

�

�

�

�

�

where

�

�

�

�

�

�

� .

�

�

���

�

�

is aNorthpolarcapand

�

���

�

�

�

is a Southpolarcap.
If

�

�

�

�

�

�

� ,

�

���

�

�

�

is a collar.

For

�

�

�

, themeasureof a sphericalcapof sphericalradius

�

is

�

�

�

�

�

�

�

�

�

�

���

�

�

	

�




�
�

�

�

��


�

�

�

�

�

�

�

�

where 


�

�

�

�

�

�

�

�

.
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Outline of the RZ algorithm

TheRZ algorithmis recursive in dimension

�

.
Algorithm for

� �

�

�

�

�

:

��

�

�

�

���




Thereis a singleregionwhich is thewholesphere;

�

�

� �

��

�

�

�

�

���




Divide thecircle into equalsegments;

�

�

� �

Divide thesphereinto zones,
eachthesamemeasureasanintegernumberof regions:

NorthandSouthpolarsphericalcaps
andanumberof sphericalcollars;

Partitioneachsphericalcollar into regionsof equalmeasure,
usingtheRZ algorithmfor dimension

�

�

�

;

�




�

��

.
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RZ(3,99) Steps 1 to 2

q
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V(q
c
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q
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Rounding the number of regionsper collar

Similarly to Zhou(1995),giventhesequence �

� for � collars,with

�

�




�

�
�

�

�

�

�

de�ne thesequences� and � by:

�

�

�

�

�

, andfor

�

	

�

�

� � � ��

�

 

,

�

�

�

�

�

�

� 


�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�




�

�

�

�

�

�

�

�

�

Then �

� is therequirednumberof regionsin collar

�

, andwe can
show that �

�

	

�

�

�

	

�

�

�

	

�

�

and �

�

�

�

.
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Geometryof regions

Eachregion

�

in collar

�

of

� �

�

�

�

�

is of theform

�

�

�

�

�

�

�

�

�
�

�

�
�

� �

�

�

in sphericalpolarcoordinates,where

�

�

�

�

�

���

�

�

�

�

�

�

� � �

�

���

�

�

�

�

�

�

�

�

�

, with

�

�

�

	

�

�

�

�

.

We canshow that

�

���

�

�
�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

where

�

�

�

�

�
�

� �

�

�
� and �

�

�

�

�
�

���
�

	

��

� ��

�

�

�

�

��


�

.
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The inductive step

Assumingthat

� �

�

�

�

�

�

hasdiameterbound � , de�ne

�

�

�

�

�

�

� �

�

�
�

�

�

�

�

Thenwe canshow that

�

���

�

�
�

�
�

�

�

�

�

�

�� � � �

�

�

�

�

�

�

�
�

�

�

�

�

�

�� � � �

�

�

�

�

�

�
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Continuousanalogs

De�ne

�

�

�

�

�

�

,

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�
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�

�

�

� �

�

��


�

�

�
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�

�

�
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���
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�

�

� ���
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�

�

�

�

�
�

�

�
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Propertiesof continuousanalogs

For eachcollar

�

	

�

�

� � � ��

�

 

, if wede�ne

�

�

�

�

�

�

���

�

�

�

�

�

�

���

, thenwecanshow that

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
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�
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�
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�
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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Feasibledomains

De�ne thefeasibledomain

�

�

�

���

�

���

�

���

, where

�

�

�

�

� �

�
�




�

�
�

�





	

�

�

�

	

�

�

�

	

�

�  

�

�
�

�

�

� ���

�




�

�

�


�

	

�

�

�

	

�

�

�

	

�

�

�




	

�

�

�

	

�

�

�

	

�

�

�

�

	

�

�

�

�

�

�

�

�

�
�

�

�

���

�  

�

���

�

�

� ���

�

���

�

�

�
�

�

���

�


�

	

�

�

�

	

�

�

�

	

�

�  

�

Assumingthat

� �

�

�

�

�

�

hasdiameterbound � , thenfor

�

�

, for

�

in collar

�

of
� �

�

�

�

�

, wecanshow

�

���

�

�
�

�
�

�
	

�

�

�

�
�

�
	

�

�

�
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Propertiesand estimatesof

�

�

is smoothon

�����

�

�

andis monotonicincreasingin

�

���

�

�

.

�

�

is positive andmonotonicincreasingin
�

�
�

�

	

�

�

.

�

�

�

�

�

�

�

�

�

�

�

�

.

� For

�

�

�

�

�

and

�

�

�

	

�����

�

	

�

�

,

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

� �

�

�

�

�

� �

�

� For

�

	

�

���

�

	

�

�

,

�

�

�

�

	

���

�

�

�

�

�

�

�

�

, where

�

�

�

�




�

�

�

�

�

�

and �
�

�




�

�
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Cap, , bounds

We canusepropertiesandestimatesof

�

to show that:

� Thereis a constant �

�

�

suchthatfor
�

�

, the
diameterof eachpolarcapof

� �

�

�

�

�

is boundedby

�

�

�

�

�

.

� For

�

�

�
�

�

, if

� �

�

�

�

�

�

is diameterbounded,then
thereareconstants �

�

�
�

�

�

�

, �

�

�

	

�

such
thatfor

� �

�

�

�

�

with
�

�
�

�

�

�

�

�

�

,

�
�

�
	

�

�

�

�

�

�

�

�

�
�

�
	

�

�

�

�

�

�

�

�
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Outline of proof of Theorem2

Assumethat

�

�

and

�

�

�

.
De�ne �

�

�

�
�

�

�

�

�

�

�

.

Thenif

�
�

�

, if

� �

�

�

�

�

�

hasdiameterbound � , andif

�

� , wehave ��

�

�

���

�

�

�

�

�

�

�

�

�

�

�

, where

�

�

�

�
�

�

�

�

�

�

�

�

� .

Thediameterof any region is boundedby 2.
Thereforefor

�

� , �
�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

, where

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

consistsof equalsegments,so

� �

�

�

�

has
diameterbound

���

. Theresultfollows by induction.
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Numerical results- constants

�

�

� � �

�

�

� ��

�

�

�

� � �

�

�

�

�

� �

�

� �

�

� �

�

�

�

�

�

�

�

� �

�

� �

�

�

�

�

� �

�

Zhouobtains �

�

�

for his (1995)algorithm.
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Stereographicprojection of

�

to

�

In Cartesiancoordinates,thestereographicprojection

�

�

�

�

�

� is

�

�

�

�

�

�

�

�

�

�

�

�

��� �

�

�

�

�

�

�

�

�

�	 �

�

�

�

�

�

� if �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

Whenrestrictedto

�

�

,

� Thenorthpoleprojectsto � .

� Thesouthpolarcapprojectsto a ball.

� Collarsprojectto differencesbetweenballs.

� Spheresprojectto generalizedspheres.
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Illustration of RZ partition of

�
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