
Conversion of a Sphere Optimization Program
from LAPACK to ScaLAPACK

Paul Leopardi1

The University of New South Wales,
School of Mathematics,

Department of Applied Mathematics

Draft only: 2002-12-03; Revised: TBD.

Abstract. The sphere optimization program, sphopt was originally
written as a sequential program using LAPACK , and was converted to
use ScaLAPACK , primariliy to overcome memory limitations. This docu-
ment describes the overall design of sphopt in relation to the principles
needed to convert LAPACK programs to ScaLAPACK, and gives details of
this conversion.

In particular, the ScaLAPACK version of sphopt uses a compressed block
cyclic storage scheme to store two symmetric matrices in little more than
the storage needed for one matrix.

1 Introduction

The sphere optimization program, sphopt was originally written as a sequential
program using LAPACK , and was converted to use ScaLAPACK , to overcome mem-
ory limitations, to speed processing, and to better use the resources provided by
the Australian Partnership for Advanced Computing (APAC.)

1.1 The Problem to be Solved

The sphere optimization program, sphopt , uses one of a number of optimization
methods to find a point set on the sphere which is optimal with respect to a
certain function defined on point sets.

The optimzation follows a typical iterative structure:

repeat
determine a search subspace;
find the optimal point set in this subspace;
update the current point set;

until the point set is locally optimal;

Finding the optimal point set within a subspace typically involves multiple func-
tion and gradient evaluations.

2 Paul Leopardi

The function we are interested in here is the determinant of a Gram matrix.
The Gram matrix, G , is a function of the point set x, defined by

Gi,j := g(xi · xj)

where g is a Gegenbauer polynomial function.
Evaluation of the gradient needs the inverse of G, and the value of the matrix

DG , the derivative of the Gram matrix:

DGi,j := g′(xi · xj)

1.2 The Need for ScaLAPACK

Typically, the Gram matrix is a large dense matrix. Its size depends on the size,
m, of the point set, which in turn depends on n, the maximum polynomial degree
for which the point set x is a fundamental system:

m := (n + 1)2

For example, for degree n = 99, x consists of m = (n + 1)2 = 10000 points, and
G is a 10000 by 10000 dense matrix. For large degrees, the amount of storage
needed for G and DG is too much for a typical uniprocessor system. This is why
ScaLAPACK is needed.

2 Principles Needed for ScaLAPACK Parallelization

The organizing principles behind the ScaLAPACK parallelization of existing code
containing LAPACK calls are those for ScaLAPACK code in general:

1. One program controls all processes
2. All processes run from the beginning of the program
3. ScaLAPACK and related calls imply some form of synchronization between

processes

To elaborate on the first two points: the way a ScaLAPACK job usually runs is that
a fixed number of processes run the same program. Processes are distinguished
only by process id, and the program controls the processes by branching on the
process id.

The third point needs a more elaborate explanation. You may want to also
refer to the ScaLAPACK [5] and BLACS [2] documentation.

Conversion from LAPACK to ScaLAPACK 3

2.1 ScaLAPACK and Synchronization

ScaLAPACK and related calls are divided into three basic types:

1. BLACS : The Basic Linear Algebra Communications Subprograms organize
communication between processes.

2. PBLAS : The Parallel Basic Linear Algebra Subroutines provide a parallel
version of BLAS.

3. ScaLAPACK proper: The ScaLAPACK routines provide a parallel version of
LAPACK.

When a ScaLAPACK or related call involves more than one process, it either
creates or requires some form of synchronization between processes.

A good example of a call which creates synchronization is DGEBR2D [3], which
is a broadcast receive.

“Broadcasts may be globally-blocking. This means no process is guaranteed
to return from a broadcast until all processes in the scope have called the ap-
propriate routine (broadcast/send or broadcast/receive).” [3]

All ScaLAPACK proper routines, in contrast, require synchronization.
“All ScaLAPACK routines assume that the data has been distributed on the

process grid prior to the invocation of the routine.” [4]
The result of all this is that to parallelize an existing program which uses

LAPACK , it is necessary to examine each LAPACK or BLAS call, and any Fortran
90 operations on matrices, and convert each, if necessary, to use the following
scheme:

1. Distribute operands
2. Synchronize
3. Operate
4. Distribute results

To parallelize an existing program which has LAPACK calls inside nested loops,
it is almost certainly necessary to duplicate the structure of the nested loops
so that all the participating processes execute the loops in parallel and stay in
synch. For fixed loops, this is no problem, since the program will execute the
same number of loops for all processes.

For varying loops, eg. loops governed by a varying termination condition, the
situation is more complicated. In a ScaLAPACK program, the same data is not
necessarily available to all processes unless it is explicitly made available. The
safest way to implement varying loops in this case is to designate one process
as the control process, and send it all data which determines the termination
condition. The control process then broadcasts its decision to the other pro-
cesses. This broadcast per loop keeps the processes in synch and ensures that all
processes execute the same number of loops.

4 Paul Leopardi

3 Structure of Sphopt

3.1 Overall Structure

The following pages of simplified Fortran pseudocode show the overall structure
of both the sequential and parallel versions of sphopt.

PROGRAM sphopt
Initialize
DO trial = 1, ntrial

! Calculate log det on saved points before trial
IF (scalapack == 0) THEN

CALL ldw ! Sequential version
ELSE

! Broadcast points from process 0,0 to all processes
IF (myrow == 0 .AND. mycol == 0) THEN

CALL DGEBS2D ! Broadcast send to all processes
ELSE

CALL DGEBR2D ! Broadcast receive from process 0,0
END IF
CALL pldw ! Parallel version

END IF
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Set up random perturbation of points
END IF
! Call appropriate optimization routine
IF(INDEX(’MD’, spstr) /= 0) THEN

IF (scalapack == 1) THEN
Broadcast points from process 0,0 to all processes

END IF
IF (method == 5) THEN

CALL lmbfgs ! See below
ELSE

CALL maxdet ! See below
END IF

END IF
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Reload best stored point set
END IF
Calculate log det on stored points after trial
Calculate log det on current point set after trial
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Calculate update criteria and update point set, if necessary
END IF

END DO
Finalize
END PROGRAM sphopt

Conversion from LAPACK to ScaLAPACK 5

SUBROUTINE lmbfgs
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Initialize
END IF
IF (maxit == 0) THEN

RETURN
END IF
DO

IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN
call setulb ! Call the minimization routine
Set itask to the appropriate value

END IF
IF (scalapack == 1) THEN

Broadcast itask from process 0,0 to all processes
END IF
IF (itask == fg) THEN

! Calculate function and gradient
IF (scalapack == 0) THEN

CALL logdetfg ! Sequential version
ELSE

Broadcast points from process 0,0 to all processes
CALL plogdetfg ! Parallel version

END IF
ELSEIF (itask == newx) THEN

! Decide whether to stop
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Calculate stopit from stopping criteria
END IF
IF (scalapack == 1) THEN

Broadcast stopit from process 0,0 to all processes
END IF
IF (stopit == 1) THEN

RETURN
END IF

ELSE
RETURN

END IF
END DO
END SUBROUTINE lmbfgs

6 Paul Leopardi

SUBROUTINE maxdet
Initialize
IF (scalapack == 0) THEN
CALL logdetfg ! Sequential version

ELSE
CALL plogdetfg ! Parallel version

END IF
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Initialize search direction, beta in CG method
END IF
DO it = 1, itmax ! Main loop

IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN
Calculate stopit from stopping criteria

END IF
IF (scalapack == 1) THEN

Broadcast stopit from process 0,0 to all processes
END IF
IF (STOPIT(1) == 1) EXIT
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

IF (method == 1) THEN
Calculate conjugate gradient search direction

END IF
Set up for line search

END IF
Line search ! See below
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Calculate stopit from stopping criteria
END IF
IF (scalapack == 1) THEN

Broadcast stopit from process 0,0 to all processes
END IF
IF (STOPIT(1) == 1) EXIT
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

IF (method == 1) THEN
Conjugate gradient update: Polyak-Ribiere

END IF
Update values, including new points

END IF
END DO ! End main loop
Finalize
END SUBROUTINE maxdet

Conversion from LAPACK to ScaLAPACK 7

maxdet line search:
DO lsit = 1, lsmax

IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN
xnew = x + step*d

END IF
! Calculate function and gradient
IF (scalapack == 0) THEN

CALL logdetfg ! Sequential version
ELSE

Broadcast xnew from process 0,0 to all processes
CALL plogdetfg ! Parallel version

END IF
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Calculate variables related to step
END IF
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Calculate stopit from stopping criteria
END IF
IF (scalapack == 1) THEN

Broadcast stopit from process 0,0 to all processes
END IF
IF (STOPIT(1) == 1) EXIT
IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN

Calculate step
END IF

END DO

Distribution of Work to Processes The amount of work and storage needed
to determine a search subspace and to perform the optimization is small in com-
parison to the amount needed to calculate the function and gradient. Therefore,
in lmbfgs , the routine setulb is called only by process 0,0. Similarly, in maxdet ,
all work other than calculation of the function and gradient is done by process
0,0.

Control Variables, Broadcasting Data The variables scalapack , myrow
and mycol are used for overall structure and control. scalapack is set to 0 if
the program is running in sequential mode and set to 1 if the program is running
in ScaLAPACK parallel mode. myrow and mycol are the process id. Process 0,0
is the control process.

If scalapack is 0, there is only one process and it must execute the sequential
version of all routines. Otherwise, the program must broadcast relevant data from
process 0,0 to all processes, before executing the parallel version. Each broadcast
is globally blocking and acts as a synchronization point.

The following pseudocode snippet shows how these control variables are typ-
ically used.

8 Paul Leopardi

Note that process 0,0 here broadcasts all points to all processes, even though
any one process may need only some of the points for local computation. The
matrices G and DG themselves need never be distributed.

! Calculate log det
IF (scalapack == 0) THEN

CALL ldw ! Sequential version
ELSE

! Broadcast points from process 0,0 to all processes
IF (myrow == 0 .AND. mycol == 0) THEN

CALL DGEBS2D ! Broadcast send to all processes
ELSE

CALL DGEBR2D ! Broadcast receive from process 0,0
END IF
CALL pldw ! Parallel version

END IF

Broadcasting Variables to Stop Loops The variable stopit is used to con-
trol loop termination. Typically, the sequential version of the code will calculate
stopit and use its value to determine when to terminate a loop. The parallel
version will ensure that process 0,0 has all necessary information to calculate
stopit , rely on process 0,0 to perform this calculation, broadcast stopit from
process 0,0 to all processes, then use the value of stopit to determine when to
terminate a loop.

The following pseudocode snippet illustrates this.

IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN
Calculate stopit from stopping criteria

END IF
IF (scalapack == 1) THEN

Broadcast stopit from process 0,0 to all processes
END IF
IF (stopit == 1) THEN

Exit loop
END IF

Broadcasting Variables to Control Execution Flow In subroutine lmbfgs ,
the variable itask is used to control flow of execution.

The sequential version of the code calls setulb which determines itask and
uses its value to determine what to do next. In the parallel version, process 0,0
calls setulb which determines itask , then broadcasts itask to all processes.
All processes then use the value of itask to determine what to do next.

Conversion from LAPACK to ScaLAPACK 9

The following pseudocode snippet illustrates this.

IF (scalapack == 0 .OR. (myrow == 0 .AND. mycol == 0)) THEN
call setulb ! Call the minimization routine
Set itask to the appropriate value

END IF
IF (scalapack == 1) THEN

Broadcast itask from process 0,0 to all processes
END IF
IF (itask == fg) THEN

Calculate function and gradient
ELSEIF (itask == newx) THEN

Decide whether to stop
ELSE

RETURN
END IF

4 Compressed Block Cyclic Storage of Symmetric
Matrices

4.1 Requirements

We want to store two symmetric matrices, say A and B, in block cyclic storage,
such that:

1. the memory requirement is minimized, and
2. we can perform element-by-element operations on A and B locally.

To elaborate point 2, we want to store corresponding global blocks of A and B
on the same process.

4.2 Block Cyclic Storage

The usual storage scheme for ScaLAPACK is called the Block Cyclic storage
scheme [1] [5]. This uses two views of a matrix: the global view and the local
(per process) view. Each of the two dimensions of a matrix (ie. rows, columns)
is treated, separately, orthogonally, but in exactly the same way, so it is only
necessary to describe one of the two dimensions, say rows.

In ScaLAPACK , the processes are also numbered using a two-dimensional
scheme, with each process having a process row number and a process column
number.

The concept of a block is common to the global and local views of a matrix.
For a given matrix, there is a fixed row block size, ie. there is a fixed number
of rows in a block, for all row blocks except possibly the last, which may be
incomplete. Each row block in the global view is given a row block number and
is allocated cyclically to a process row.

10 Paul Leopardi

Eg. If there are n process rows, we have:

ROW BLOCK: 1 2 ... n n+1 n+2 n+3 ... 2n 2n+1 ...
PROCESS ROW: 1 2 ... n 1 2 3 ... n 1 ...
ROW CYCLE: 1 1 ... 1 2 2 2 ... 2 3 ...

In the local view of process row m, we have:

ROW CYCLE: 1 2 3 ... k
LOCAL ROW BLOCK: 1 2 3 ... k
GLOBAL ROW BLOCK: m n+m 2n+m ... (k-1)n+m

A more concrete example, with 8 global rows, 2 process rows and block size
3:

GLOBAL ROW: 1 2 3 4 5 6 7 8
ROW BLOCK: 1 1 1 2 2 2 3 3
PROCESS ROW: 1 1 1 2 2 2 1 1
ROW CYCLE: 1 1 1 1 1 1 2 2
CYCLIC ROW: 1 2 3 4 5 6 1 2

Local view of process row 1:

GLOBAL ROW: 1 2 3 7 8
GLOBAL ROW BLOCK: 1 1 1 3 3
GLOBAL ROW CYCLE: 1 1 1 2 2
GLOBAL CYCLIC ROW:1 2 3 1 2
LOCAL ROW BLOCK: 1 1 1 2 2
LOCAL ROW: 1 2 3 4 5

Local view of process row 2:

GLOBAL ROW: 4 5 6
GLOBAL ROW BLOCK: 2 2 2
GLOBAL ROW CYCLE: 1 1 1
GLOBAL CYCLIC ROW:4 5 6
LOCAL ROW BLOCK: 1 1 1
LOCAL ROW: 1 2 3

So, we have that each global row cycle corresponds exactly to a local row
block for each process row, except possibly the last row cycle, which corresponds
to a row block for the first few process rows.

Conversion from LAPACK to ScaLAPACK 11

4.3 Symmetric Matrix Scheme

In the following, we must assume that the row and column block sizes are equal.
We can now go back to considering the matrix as a 2D structure in terms of

row and column cycles:
Cycle := (Row cycle, column cycle):

1,1 1,2 1,3 ...
2,1 2,2 2,3 ...
3,1 3,2 3,3 ...
...

For a symmetric matrix, in the global view, cycle (m, n) equals cycle (n, m)
transposed. ScaLAPACK supplies routines which only examine the upper or lower
triangle of a symmetric matrix, so, at the cycle level, we need only store the
upper or lower triangle of cycles. Also, all cycles are square, except possibly the
last cycle in a row or column.

Let’s choose the upper triangle. We can store the upper triangle of cycles
of symmetric matrix A according to the usual block cyclic storage scheme. This
means that ScaLAPACK can operate directly on matrix A. For matrix B, we need
to store three types of cycle:

1. Square cycles of the strict upper triangle of B.
2. Square cycles of the diagonal of B.
3. Non-square cycles of the ragged right hand edge of B.

We can store cycles of type 1, say cycle (m, n) with m < n, in the lower triangle
of A, as cycle (n, m). The most important thing to note here is that the cycle
is stored as-is – it is not transposed. This is essential to ensure that we can
perform element-by-element operations on A and B locally. Keeping the cycle
as-is preserves the correspondences between the process row and the global cyclic
row, and the process column and global cyclic column.

Cycles of type 2 and 3 must be stored in extra storage. Globally, for type
2, we need one cycle of columns and a full set of rows; for type 3, we need up
to one cycle of columns and a full set of rows except for the last cycle, which
overlaps with the last cycle of type 2. In both cases, we store the cycle as-is, not
transposed.

With this type of storage scheme for matrices A and B, we can perform
element-by-element operations on A and B by remapping the global row and
column indices of A and B to the local indices used by the storage scheme. For
A, this mapping is the usual block cyclic mapping for the upper triangle. For B,
the mapping uses local blocks corresponding to the three types of cycle listed
above.

Note that while we can operate on A directly using ScaLAPACK routines,
we cannot operate on B with ScaLAPACK while it is stored according to this
scheme. We would need to copy the upper triangle of B to other storage to allow
ScaLAPACK to work on B.

12 Paul Leopardi

4.4 Iteration and Indexing

The general organizing principle of iteration and indexing when converting code
from LAPACK to ScaLAPACK is to iterate over global indexes and operate using
local indexes. To accomplish this, it is necessary to use a number of mappings,
which can be defined as functions, or more efficiently, as lookup tables.

DO j = 2, m
IF (gtoproc(j) == mycol) THEN

lj = gtolocal(j)
DO i = 1, j-1

IF (gtoproc(i) == myrow) THEN
li = gtolocal(i)
Operate on local data using (li,lj)

END IF
END DO

END IF
END DO

4.5 The Case of Sphopt

In the case of Sphopt, we want to store the matrices G and DG in minimal storage.
We want to be able to use ScaLAPACK with G , so we store G in the usual block
cyclic scheme. We split the storage of DG into three parts:

1. Strict upper triangle cycles of DG in the strict lower triangle of G
2. Diagonal cycles of DG in the local array DGDIAG
3. Ragged right hand edge cycles of DG in the local array DGRAGG.

The following code snippet shows how the locally relevant parts of G and DG are
calculated from the point set X and stored in compressed block cyclic storage.

DO j = 2, m
IF (gtoproc(j) == mycol) THEN

lj = gtolocal(j)
bj = ltoblock(lj)
libj = ltolib(lj)
! Calculate strict upper triangle elements in column j
lim = 0
DO i = 1, j-1

IF (gtoproc(i) == myrow) THEN
li = gtolocal(i)
z(li) = X(1,i)*X(1,j) + X(2,i)*X(2,j) + X(3,i)*X(3,j)
lim = lim + 1

END IF
END DO
IF (lim > 0) THEN

Conversion from LAPACK to ScaLAPACK 13

CALL sphrkd(n, lim, z, gj, dgj, c1, c2, c3)
! Store elements and symmetric elements
DO i = 1, j-1

IF (gtoproc(i) == myrow) THEN
li = gtolocal(i)
bi = ltoblock(li)
libi = ltolib(li)
G(li,lj) = gj(li)
IF (bi == bj) THEN

dgdiag(li, libj) = dgj(li)
ELSEIF (bj*mb+libi > lm) THEN

dgragg(li, libj) = dgj(li)
ELSE

G(bj*mb + libi, bi*mb + libj) = dgj(li)
END IF

END IF
END DO

END IF
END IF

END DO

The following code snippet shows element by element multiplication of G and
DG.

DO i = 1, m
IF (gtoproc(i) == myrow) THEN

li = gtolocal(i)
bi = ltoblock(li)
libi = ltolib(li)
DO j = i, m

IF (gtoproc(j) == mycol) THEN
lj = gtolocal(j)
bj = ltoblock(lj)
libj = ltolib(lj)
IF (bi == bj) THEN

dgij = dgdiag(li, libj)
ELSE IF (bj*mb+libi > lm) THEN

dgij = dgragg(li, libj)
ELSE

dgij = G(bj*mb + libi, bi*mb + libj)
END IF
G(li,lj) = G(li,lj) * dgij

END IF
END DO

END IF
END DO

14 Paul Leopardi

5 Initialization and Contexts

What follows is a commentary on a slightly simplified version of the initialization
code in sphopt.

ScaLAPACK programs run as one program with multiple processes. The first
step in initialization is to determine which is the current process (iam) and what
is the total number of processes (npall).

CALL BLACS_PINFO(iam, npall)

BLACS uses system contexts to organize communication between processes. The
next step gets the default system context (icxt).

CALL BLACS_GET(0, 0, ictxt)

sphopt uses a square process grid, so the number of processes per row or column
is the square root of npall. The next steps initialize the grid and obtain the
current process row (myrow) and column (mycol).

nproc = FLOOR(SQRT(DBLE(npall)))
CALL BLACS_GRIDINIT(ictxt, ’’, nproc, nproc)
CALL BLACS_GRIDINFO(ictxt, nproc, nproc, myrow, mycol)

The compressed block cyclic storage scheme allocates enough space to accom-
modate the local number of rows (locnrows) and columns (locncols) corre-
sponding to the current process row and column.

locnrows = NUMROC(m, mb, myrow, 0, nproc)
locncols = NUMROC(m, mb, mycol, 0, nproc)
ALLOCATE(G(locnrows,locncols))
ALLOCATE(DGDIAG(locnrows,mb))
ALLOCATE(DGRAGG(locnrows,mb))

sphopt needs a special context (dctxt) for diagonal processes. These processes
are the only ones which have access to the diagonal of G. The initialization sets
up a process map (dmap) and uses it to create dctxt.

ALLOCATE(dmap(nproc,1))
DO i = 1, nproc

dmap(i,1) = BLACS_PNUM(ictxt, i-1, i-1)
END DO
CALL BLACS_GET(ictxt, 10, dctxt)
CALL BLACS_GRIDMAP(dctxt, dmap, nproc, nproc, 1)
IF (myrow /= mycol) THEN

dctxt = -1
ENDIF

Finally, the initialization sets up the global to local and global to process lookup
tables.

CALL setuplookups(m, nproc, mb, MAX(locnrows,locncols))

Conversion from LAPACK to ScaLAPACK 15

6 Calculating the Function Value and Derivative

What follows is a commentary on a slightly simplified version of the code in
plogdetfg which is used to calculate the function value f and gradient df.
The commentary is given as a series of imperatives: actions to be performed.

Note the use of the following scheme:

1. Distribute operands
The routine DESCINIT is used to create the descriptors needed by the various
ScaLAPACK routines.

2. Synchronize
The routine BLACS BARRIER is used for synchronization, where necessary.

3. Operate
4. Distribute results

The routine PDGEMR2D is used to distribute results to process 0,0, where
necessary.

6.1 Commentary on Plogdetfg

SUBROUTINE plogdetfg

Convert the point set s from spherical coordinates to cartesian coordinates (cx .)
Each process does this locally and so has a local copy of cx.

n = nval
CALL s2x(ns, s, m, cx)

Calculate the Gram matrix G and derivative DG from cx.

CALL pgramxd(n, m, lm, ln, cx)

Use PDLANSY to calculate the 1-norm of G . The corresponding LAPACK call is
DLANSY ([1] p136.)

CALL DESCINIT(descg, m, m, mb, mb, 0, 0, ictxt, lm, INFO)
CALL BLACS_BARRIER(ictxt, ’All’)
gnorm = PDLANSY(norm, uplo, m, G, 1, 1, descg, work)

Use PDPOTRF to calculate the Cholesky factorization of G. The corresponding
LAPACK call is DPOTRF ([1] p25.)

CALL BLACS_BARRIER(ictxt, ’All’)
CALL PDPOTRF(uplo, m, G, 1, 1, descg, info)

Save the logs of the diagonal elements.
This is another example of “iterate over a global index and operate using a

local index.” In this case, the global index is j and the local index is lj. The
variable lgj is the local part of the global vector used to store the logs of the
diagonal elements of G. Use PDGEMR2D to distribute lgj to the copy vector clgj
in process 0,0.

16 Paul Leopardi

IF (myrow == mycol) THEN
DO j = 1, m

IF (gtoproc(j) == mycol) THEN
lj = gtolocal(j)
lgj(lj) = log(G(lj,lj))

END IF
END DO
CALL DESCINIT(desclgj, m, 1, mb, mb, 0, 0, dctxt, lm, INFO)
CALL DESCINIT(descclgj,m, 1, m, 1, 0, 0, dctxt, m, INFO)
! Distribute global lgj to process 0,0 copy clgj
CALL PDGEMR2D(m, 1, lgj, 1, 1, desclgj, clgj, 1, 1, descclgj, dctxt)

END IF

Use PDPOTRI to calculate the inverse of G. The corresponding LAPACK call is
DPOTRI ([1] p25.)

CALL BLACS_BARRIER(ictxt, ’All’)
CALL PDPOTRI(uplo, m, G, 1, 1, descg, info)

Use PDLANSY to calculate the 1-norm of G inverse.

CALL BLACS_BARRIER(ictxt, ’All’)
ginorm = pdlansy(norm, uplo, m, G, 1, 1, descg, work)
gcond = gnorm*ginorm

Calculate integration weights. Use PDSYMV to multiply the symmetric matrix G
by the vector ones , which contains all ones, giving the vector w. The corre-
sponding BLAS call is DSYMV ([1] p142.)

This produces the sum of the columns of inv(G) , since at this point, the
global G contains the inverse of the original G . Use PDGEMR2D to distribute w to
the copy vector cw in process 0,0.

CALL DESCINIT(desco, m, 1, mb, mb, 0, 0, ictxt, lm, INFO)
CALL DESCINIT(descw, m, 1, mb, mb, 0, 0, ictxt, lm, INFO)
CALL DESCINIT(desccw, m, 1, m, 1, 0, 0, ictxt, m, INFO)
CALL PDSYMV(uplo, m, 1d0, G, 1, 1, descg, &

ones, 1, 1, desco, 1, 0d0, w, 1, 1, descw, 1)
CALL PDGEMR2D(m, 1, w, 1, 1, descw, cw, 1, 1, desccw, ictxt)

Calculate function value f and weight statistics only in process 0,0.

IF (myrow == 0 .AND. mycol == 0) THEN
Sum clgj to calculate function value f
Use cw to calculate weight statistics wmin and wms

END IF

Set G to G.*DG by element by element multiplication. This sets G to inv(G).*DG
with respect to the original value of G.

For code, see ‘‘The Case of Sphopt’’ above.

Conversion from LAPACK to ScaLAPACK 17

Create local part of global x from local copy cx .

DO j = 1, m
IF (gtoproc(j) == mycol) THEN

x(:,gtolocal(j)) = cx(:,j)
END IF

END DO

Calculate derivatives with respect to x . Use PDSYMM to multiply the symmetric
matrix G by the matrix cx , giving the matrix dx. The corresponding BLAS call
is DSYMM ([1] p142.) Use PDGEMR2D to distribute dx to the copy vector cdx in
process 0,0.

CALL DESCINIT(descx, 3, m, 3, mb, 0, 0, ictxt, 3, INFO)
CALL DESCINIT(descdx, 3, m, 3, mb, 0, 0, ictxt, 3, INFO)
CALL BLACS_BARRIER(ictxt, ’All’)
CALL PDSYMM(’r’, uplo, 3, m, 2D0, G, 1, 1, descg, &

x, 1, 1, descx, 0D0, dx, 1, 1, descdx)
CALL DESCINIT(desccdx, 3, m, 3, m, 0, 0, ictxt, 3, INFO)
CALL PDGEMR2D(3, m, dx, 1, 1, descdx, cdx, 1, 1, desccdx, ictxt)

Calculate gradient df only in process 0,0.

IF (myrow == 0 .AND. mycol == 0) THEN
Use cdx to calculate gradient df

END IF

END SUBROUTINE plogdetfg

References

1. E. Anderson; et al., LAPACK Users’ Guide, 2nd edition, SIAM, 1995.

http://www.netlib.org/lapack/lug/index.html

2. BLACS Routines

http://www.netlib.org/blacs/BLACS/QRef.html

3. “Broadcast/Receive” in [2].

http://www.netlib.org/blacs/BLACS/QRef.html#BR

4. “Call the ScaLAPACK Routine” in [5]

http://www.netlib.org/scalapack/slug/node36.html

5. L. S. Blackford; et al., ScaLAPACK Users’ Guide, 1997.

http://www.netlib.org/scalapack/slug/index.html

6. J. Dongarra, D. Walker, “Software Libraries for linear Algebra Computations on
High Performance Computers”, SIAM Review, Vol 37, Issue 2, June 1995, pp151–
180.

