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Abstract. We define a category of planar diagrams whose Grothendieck group contains
an integral version of the infinite rank Heisenberg algebra, thus yielding a categorification
of this algebra. Our category, which is a q-deformation of one defined by Khovanov, acts
naturally on the categories of modules for Hecke algebras of type A and finite general linear
groups. In this way, we obtain a categorification of the bosonic Fock space. We also develop
the theory of parabolic induction and restriction functors for finite groups and prove general
results on biadjointness and cyclicity in this setting.
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Introduction

In the 1970’s, Geissinger gave a representation-theoretic realization of the bialgebra Sym
of symmetric functions [5]. He considered the Grothendieck groups of representations of all
symmetric groups over a field k of characteristic zero and constructed an isomorphism of
bialgebras

Sym ∼=
⊕∞

n=0K0(k[Sn]-mod).

In Geissinger’s construction, the algebra structure is the map on the Grothendieck group
induced by the induction functor

[Ind] : K0(k[Sn]-mod)⊗K0(k[Sm]-mod)→ K0(k[Sn+m]-mod),

while the coalgebra structure is given by restriction. Mackey theory for induction and re-
striction in symmetric groups implies that the coproduct is an algebra homomorphism. Each
class [V ] ∈ K0(k[Sn]-mod) defines an endomorphism of

⊕∞
n=0K0(k[Sn]-mod) given by multi-

plication by [V ]. These endomorphisms, together with their adjoints, define a representation
of an infinite rank Heisenberg algebra on the Grothendieck group.

Several generalizations of Geissinger’s construction were subsequently given by Zelevinsky
in [17]. Two of these generalizations involve a kind of q-deformation: in one the group algebra
of the symmetric group k[Sn] is replaced by the Hecke algebra Hn(q), and in the other by the
group algebra k[GLn(Fq)] of the general linear group over a finite field. In these cases, too,
endomorphisms of the Grothendieck group given by multiplication by classes [V ], together
with their adjoints, generate a representation of the Heisenberg algebra.

In addition to the Heisenberg algebra action on the Grothendieck group, the categories⊕
n k[Sn]-mod,

⊕
nHn(q)-mod, and

⊕
n k[GLn(Fq)]-mod

are interesting for another reason: they are all examples of braided monoidal categories [8].
In each case, the monoidal operation is given by an induction functor, the very same functor
that defines the algebra structure at the level of the Grothendieck group. This algebra
structure accounts for the action of the creation operators in the Heisenberg algebra, which
are given by multiplication, but not the annihilation operators which are their adjoints. This
suggests that in order to describe a categorical Heisenberg action, one should consider not
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just induction functors, but also the dual restriction functors. These functors should descend
to a Heisenberg algebra action on the Grothendieck group. This categorical action should
also involve natural transformations that use both the braiding amongst compositions of
induction functors and the duality between induction and restriction, information that is
lost when passing to the Grothendieck group.

To define such categorical Heisenberg actions is the goal of the current paper. Precisely, we
define a family of categories that act naturally on the above module categories. This action is
a kind of modification of the notion of a braided monoidal category which takes into account
induction and restriction functors, their compositions, and natural transformations between
these compositions.

In [11], Khovanov takes a similar perspective in the study of induction and restriction
functors between characteristic zero representation categories of symmetric groups. He de-
fines a monoidal category H that acts naturally on the category of representations of all
symmetric groups, categorifying Geissinger’s construction. The Grothendieck group of Kho-
vanov’s H contains, and is conjecturally isomorphic to, an integral form of the Heisenberg
algebra.

In the current paper, we define and study a category H(q), which is a q-deformation
of Khovanov’s category. When q is not a nontrivial root of unity, the Grothendieck group
of H(q) contains, and is conjecturally isomorphic to, an integral form of the Heisenberg
algebra. When q is a root of unity, we expect the category H(q) to have an interesting
structure, though we do not say much about this in the current paper. The morphism
spaces in H(q) are also objects which we believe to be of independent interest. In particular,
a q-deformation of the degenerate affine Hecke algebra, which is a subalgebra of the affine
Hecke algebra, arises naturally from the morphisms of H(q).

Just as Khovanov’s categoryH is related to Geissinger’s construction, the categoryH(q) is
related to both of Zelevinsky’s constructions. In Section 4, we show that H(q) acts naturally
on
⊕

nHn(q)-mod, while in Section 5, we show that H(q) acts on
⊕

n k[GLn(Fq)]-mod.
In both cases, passing to the Grothendieck group recovers the Fock space representation
of the Heisenberg algebra. These two representations of the category H(q) provide a new
perspective on the relationship between Hecke algebras and finite general linear groups.

In [2], the first author, together with S. Cautis, gave graphical categorifications of a family
of Heisenberg algebras parameterized by the finite subgroups of SL2(C) and related these
categorifications to the geometry of Hilbert schemes on ALE spaces. The constructions of
the present paper suggest that a q-deformation of the categories in [2] should also exist. We
expect these deformations will be related to the “finite subgroups” of Uq(sl2).

Important in the constructions in the current paper is the fact that the Hecke algebras form
a so-called tower of algebras. It is natural to expect that other towers of algebras (for further
examples, see [1, 10] and the references therein) give rise to graphical categorifications.

The crucial observation that allows us to present our category H(q) using planar topology
is the cyclic biadjointness of the defining generating objects Q+, Q− of H(q). In any repre-
sentation of H(q), these generators are mapped to biadjoint functors, that is, functors that
are both left and right adjoint to each other. The importance of such functors in low dimen-
sional topology was emphasized in [12] and more recently in subsequent work [3, 13, 14, 16]
on categorified quantum groups. In the last section of this paper, we give some examples of
cyclic biadjoint functors arising in the representation theory of finite groups.
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The structure of this paper is as follows. In Section 1, we recall the definitions of the
Hecke algebras of type A and the Heisenberg algebra. We introduce the category H(q) in
Section 2 and deduce from the definitions various useful relations. In Section 3 we present
the main result giving a categorification of the Heisenberg algebra. We then define an
action of our category on modules for Hecke algebras and finite general linear groups in
Sections 4 and 5 respectively. In particular, in Section 4, we use the action to prove our main
theorem. Finally, in Section 6, we describe the cyclic biadjointness of parabolic induction
and restriction functors for finite groups.

Acknowledgements. We would like to thank M. Khovanov, D. Bump and S. Cautis for
useful discussions. We also thank M. Khovanov for making available to us the preprint [11]
and M. Mackaay for explaining to us the relationship between the Heiseberg algebra and its
integral version.

Comments: Check that you agree with the acknowledgement.

1. Hecke algebras and the Heisenberg algebra

In this section, we introduce our main algebraic objects of interest: the Hecke algebra of
type A and the Heisenberg algebra.

Let k be a ring and let q be either an indeterminate or an invertible element of k (in
which case k[q, q−1] = k).

Definition 1.1 (Hecke algebra). For n ≥ 2, the Hecke algebra Hn(q) is the k[q, q−1]-algebra
generated by t1, . . . tn−1 with relations

(a) t2i = q + (q − 1)ti,
(b) titj = tjti for i, j = 1, 2, . . . , n− 1 such that |j − i| > 1,
(c) titi+1ti = ti+1titi+1 for i = 1, 2, . . . , n− 2.

By convention, we set H0(q) = H1(q) = k[q, q−1]. We let 1n denote the identity element of
Hn(q). To simplify notation, we will write Hn for Hn(q) in the sequel.

The algebra Hn has a basis {tw}w∈Sn , where for w ∈ Sn, tw = ti1 . . . tik , where w =
si1 . . . sik is a reduced expression for w. Note that the generator ti is invertible with inverse
t−1
i = q−1ti + (q−1 − 1).

Definition 1.2 (Heisenberg algebra). The (infinite rank) Heisenberg algebra h is the asso-
ciative C-algebra with generators pi, qi, i ∈ N+ = {1, 2, . . . }, and relations

piqj = qjpi + δi,j1, pipj = pjpi, qiqj = qjqi, i, j ∈ N+.

Remark 1.3. The Heisenberg algebra plays a fundamental role in quantum field theory
and the theory of affine Lie algebras. Is it isomorphic to the Weyl algebra, which is the
algebra of operators on C[x1, x2, . . . ] generated by multiplication by xi, i ∈ N+, and partial
differentiation ∂/∂xi, i ∈ N+.

Definition 1.4 (Integral form of the Heisenberg algebra). Let hZ be the unital ring with
generators an, bn, n ∈ N+, and relations

(1.1) anbm = bman + bm−1an−1, anam = aman, bnbm = bmbn, n,m ∈ N+.

Here we adopt the convention that a0 = b0 = 1.
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The fact that hZ is an integral form of the Heisenberg algebra can be seen as follows.
Defining generating functions

A(t) = 1 + a1t+ a2t
2 + . . . , B(u) = 1 + b1u+ b2u

2 + . . . ,

we can rewrite the relations (1.1) as

(1.2) A(t)B(u) = B(u)A(t)(1 + tu).

Define

Ã(t) = 1 + tA′(−t)A(−t)−1, B̃(u) = 1 + uB′(−u)B(−u)−1,

Ã(t) = 1 + ã1t+ ã2t
2 + . . . , B(u) = 1 + b̃1u+ b̃2u

2 + . . . .

Using (1.2), one can show that

Ã(t)B(u) = B(u)Ã(t) +B(u)
ut

1− ut
,

from which it follows that
[ãn, bm] = δm,n for m ≤ n.

Now note that for each n ∈ N+, ãn is equal to (−1)n−1nan plus terms involving products of

am for m < n (and similarly for b̃n). Thus, by symmetry, it follows that

[ãn, b̃m] = (−1)n−1δn,mn ∀ m,n ∈ N+.

Therefore the elements 1
n
(−1)n−1an, bn, n ∈ N+, satisfy the defining relations of the Heisen-

berg algebra h. It follows that hZ ⊗Z C ∼= h and so hZ is an integral form of h.

2. A graphical category

2.1. Definition. We define an additive k[q, q−1]-linear strict monoidal category H′(q) as
follows. The set of objects is generated by two objects Q+ and Q−. Thus an arbitrary object
of H′(q) is a finite direct sum of tensor products Qε := Qε1 ⊗ · · · ⊗Qεn , where ε = ε1 . . . εn
is a finite sequence of + and − signs. The unit object 1 = Q∅.

The space of morphisms HomH′(q)(Qε, Qε′) is the k[q, q−1]-module generated by planar di-
agrams modulo local relations. The diagrams are oriented compact one-manifolds immersed
in the strip R × [0, 1], modulo rel boundary isotopies. The endpoints of the one-manifold
are located at {1, . . . ,m} × {0} and {1, . . . , k} × {1}, where m and k are the lengths of the
sequences ε and ε′ respectively. The orientation of the one-manifold at the endpoints must
agree with the signs in the sequences ε and ε′ and triple intersections are not allowed. For
example, the diagram

is a morphism from Q−+−−+ to Q−−+. Composition of morphisms is given by the natural
gluing of diagrams. An endomorphism of 1 is a diagram without endpoints. The local
relations are as follows.
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(2.1) = q + (q − 1)

(2.2) =

(2.3) = q − q = q

(2.4) = id = 0

Note that the upward crossing is invertible with inverse

(2.5) := q−1 + (q−1 − 1) .

The reader should note that the local relations on upward pointing strands are simply the
relations of the Hecke algebra, where the generator ti corresponds to the crossing of the i-th
and (i+ 1)-st strands (numbered from the right). The definitions of the other local relations
are motivated by the following result.

Lemma 2.1. In the category H′(q), we have

Q−+
∼= Q+− ⊕ 1.
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Proof. Consider the following morphisms of H′(q).

(2.6)

Q−+

Q−+

Q+− 1

ρ1 ρ2

ι1 ι2

q−1

It is immediate from the defining local relations of H′(q) and isotopies that

ρ2ι1 = 0, ρ1ι2 = 0, ρ1ι1 = id, ρ2ι2 = id, ι1ρ1 + ι2ρ2 = id,

which proves the desired isomorphism. �

Definition 2.2 (Grothendieck group). The (split) Grothendieck group of an additive cate-
gory C is the abelian group K0(C) (written additively) with generators [X], X ∈ Ob C, and
relations [Z] = [X] + [Y ] whenever Z ∼= X ⊕ Y .

It follows from Lemma 2.1 that in the Grothendieck group K0(H′(q)), we have

[Q−][Q+] = [Q+][Q−] + 1,

which is the Heisenberg relation.

Remark 2.3. For each r-tuple of complex numbers (u1, . . . , ur), one can define a “higher
level” Heisenberg categoryH′(q, u1, . . . , ur), generalizing the definition ofH′(q). The defining
objectsQ+, Q− are the same inH′(q, u1, . . . , ur) as inH′(q). The morphisms ofH′(q, u1, . . . , ur)
look like the morphisms inH′(q), with the caveat that strands are now allowed to carry a new
defining dot, which satisfies a degree r polynomial relation with roots u1, . . . , ur. (Thus any
diagram containing a strand with more than r dots on it can be written as a linear combina-
tion of diagrams whose strands carry fewer that r dots.) In this higher level categorification,
the fundamental relationship between Q+ and Q− becomes

Q−+
∼= Q+− ⊕ 1⊕r,

which categorifies the “higher level” Heisenberg relation

[Q−][Q+] = [Q+][Q−] + r.

As we will not have use for these higher level categories in the current paper, we have elected
not to give the details of this generalization here. We note, however, that these higher level
categorifications H′(q, u1, . . . , ur) are related to cyclotomic quotients of the degenerate affine
Hecke algebra in the same way that H′(q) is related to the Hecke algebra (which is the
cyclotomic Hecke algebra when r = 1).
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2.2. Triple point moves. We have the following equalities of triple point diagrams.

(2.7) =

(2.8) =

(2.9) =

(2.10) = + q(q − 1)

Proof. Equality (2.7) is one of the defining the relations. We see (2.8) as follows.

= q−1 − (1− q−1)

= q−1 − (1− q−1)

= + (1− q−1) − (1− q−1)

=

In the above, the first equality follows from (2.1) applied to the two strands at the top right.
The second equality follows from (2.2) applied to the middle three crossings (of the first
diagram) viewed sideways. The third equality follows from (2.1) applied to the bottom left
two crossings in the first diagram of the previous line.
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The proof of (2.9) is analogous and will be omitted. Finally, (2.10) is proven as follows.

= q−1 +

= q−1 + q + (q − 1)

= + q(q − 1)

Here the first equality follows from (2.1) applied to the two strands at the bottom right.
The second equality follows from applying (2.9) (viewed sideways) to the three middle three
crossings in the first diagram and (2.1) to the double crossing in the middle of the second
diagram. The third equality is obtained by applying the second relation of (2.3) to the first
and third diagrams and the second relation in (2.4) to the second diagram. �

2.3. Right curl moves. We will use a dot to denote a right curl and a dot labeled d to
denote d right curls.

= d =

}
d dots

We will see in Section 4.7 that dots correspond to Jucys-Murphy elements in Hecke algebras.

Lemma 2.4. We have the following equalities of diagrams.

= + (q − 1) + q

= + (q − 1) + q

Proof. We prove the first equality. The second is analogous.

= = q−1 +
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= q−1 + = + (1− q−1) +

= + (q − 1) − (q − 1) +

= + (q − 1) + q

�

It follows by induction that we have the following equalities.

d
=

d
+(q − 1)

∑d
a=1

a (d− a) +q
∑d−1

b=0 b (d− 1− b)

d

=
d

+(q − 1)
∑d

a=1
a (d− a) +q

∑d−1
b=0 b (d− 1− b)

Define c̃d to be a counterclockwise oriented circle with d right curls on it, and cd to be a
clockwise oriented circle with d right curls.

c̃d = d cd = d

Proposition 2.5. For d ≥ 0 we have

c̃d+1 = (q − 1)
d∑
a=1

c̃acd−a + q

d−1∑
b=0

c̃bcd−1−b.

Note, in particular, that this implies c̃1 = 0.

Proof.

c̃d+1 = d
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=

d

+ (q − 1)
∑d

a=1

a d− a

+ q
∑d−1

b=0

b d− 1− b

The result then follows from the fact that the left curl is equal to zero. �

2.4. Bubble moves. We can move clockwise circles past lines using so called “bubble
moves”.

Lemma 2.6. We have the following equality.

= + (1− q−1) +

Proof. We have

= q−1 + = + (1− q−1) +

where in the first equality we used (2.3) and in the second we used (2.1). �

More generally, we can move clockwise circles with dots past lines as follows.

=

d d

+ (d+ 1)(1− q−1) (d+ 1) + (d+ 1) d(2.11)

−(q − 1)(1− q−1)
∑d

a=1 a a

(d− a)

− (q − 1)
∑d−1

a=0(2a+ 1) a (d− 1− a)

− q
∑d−2

a=0(a+ 1) a (d− 2− a)

2.5. Endomorphism algebras and the affine Hecke algebra.

Theorem 2.7. The natural map

ψ0 : k[q, q−1][c0, c1, c2, . . . ]→ EndH′(q)(1)

is an isomorphism.
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Proof. Every element of EndH′(q)(1) is a linear combination of closed diagrams. Using the
local relations, any closed diagram can be expressed as a linear combination of crossingless
diagrams consisting of nested dotted circles. The bubble moves imply that nested dotted
circles can be written as linear combinations of dotted circles with no nesting. Finally,
counterclockwise circles can be expressed as linear combinations of clockwise ones by Propo-
sition 2.5. Therefore, any element of EndH′(q)(1) can be written as a linear combination of
products of dotted clockwise circles. It follows that ψ0 is surjective.

Assume q is an indeterminate and k = Z. We can view any field k′ as an Z[q, q−1]-module
via the map that sends q to 1. Consider the composition

k′[c0, c1, . . . ] ∼= Z[q, q−1][c0, c1, . . . ]⊗Z[q,q−1] k′
ψ0⊗id−−−→ EndH′(q)(1)⊗Z[q,q−1] k′ = EndH′(1),

where H′ is the category defined in [11] (for the field k′). This composition is precisely
the map ψ0 of [11], which is injective by [11, Proposition 3]. It follows that our map ψ0 is
also injective when we work over the ring k = Z and q is an indeterminate. Since, for an
arbitrary ring k, k[q, q−1] (where q is either an indeterminate or an invertible element of k)
is a Z[q, q−1]-module in the obvious way, we can tensor with k[q, q−1] and see that ψ0 is an
isomorphism in the general case. �

Let Haff
n denote the affine Hecke algebra of type A,

Haff
n = Hn ⊗k[q,q−1] k[q, q−1][x±1

1 , . . . x±1
n ].

The Hecke algebra Hn and k[x±1
1 , . . . x±1

n ] are subalgebras of Haff
n , and the defining relations

between these subalgebras are

tixk = xkti, for i 6= k, k + 1, and tixiti = qxi+1.

Lemma 2.8. Assume q ∈ k×, q 6= 1. If, for i = 1, . . . n, we define new elements of the affine
Hecke algebra yi by

yi = (q − 1)xi −
q

q − 1
,

then

yitk = tkyi, i 6= k, k + 1,(2.12)

tiyi+1 = yiti + (q − 1)yi+1 + q,(2.13)

yi+1ti = tiyi + (q − 1)yi+1 + q.(2.14)

Proof. The first relation is obvious. For the second relation above, we have

tiyi+1 = (q − 1)tixi+1 −
q

q − 1
ti,

while
yiti = (q − 1)xiti −

q

q − 1
ti.

Subtracting, we get

(2.15) tiyi+1 − yiti = (q − 1)(tixi+1 − xiti).
Since t−1

i = q−1ti + (q−1 − 1), after multiplying both sides of the relation tixiti = qxi+1 on
the left by t−1

i we get
xiti = tixi+1 + (1− q)xi+1,
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or
tixi+1 − xiti = (q − 1)xi+1.

Substituting into (2.15), we obtain

tiyi+1 − yiti = (q − 1)2xi+1.

Since xi+1 = (q − 1)−1yi+1 + q
(q−1)2

, we get

tiyi+1 − yiti = (q − 1)yi+1 + q,

as desired. The last relation is similar. �

Let H+
n be the k[q, q−1]-algebra with generators ti, yi, 1 ≤ i ≤ n, and defining relations

(2.12)–(2.14). By Lemma 2.8, if q ∈ k×, q 6= 1, we have

H+
n
∼= Hn ⊗k k[x1, . . . , xn] ⊆ Haff

n .

It follows from Lemma 2.4 that there is a natural morphism

φn : H+
n → EndH′(q)(Q+n)

taking tk to the crossing of the k and (k + 1)-st strands and taking yk to a right twist curl
(or dot) on the k-th strand. More generally, there is a natural morphism

ψn = φn ⊗ ψ0 : H+
n ⊗k[q,q−1] k[q, q−1][c0, c1, . . . ]→ EndH′(q)(Q+n),

where the dotted clockwise circles corresponding to elements of k[c0, c1, . . . ] are placed to
the right of the diagrams corresponding to elements of H+

n .

Theorem 2.9. The morphism ψn is an isomorphism of algebras.

Proof. Any diagram representing an element of EndH′(q)(Q+n) can be inductively simplified
to a linear combination of standard diagrams consisting of a element of y ∈ Hn (written as
a strand diagram), some number (possibly zero) of dots on each strand above the crossings,
and a product of dotted clockwise circles to the right:

.

The surjectivity of ψn then follows immediately from that of ψ0.
Assume q is an indeterminate and k = Z. We can view any field k′ as an Z[q, q−1]-module

via the map that sends q to 1. Consider the composition

H+
n ⊗Z[q,q−1] k′[c0, c1, . . . ] ∼=

(
H+
n ⊗Z[q,q−1] Z[q, q−1][c0, c1, . . . ]

)
⊗Z[q,q−1] k′

ψn⊗id−−−→ EndH′(q)(Q+n)⊗Z[q,q−1] k′ = EndH′(Q+n),

where H′ is the category defined in [11] (for the field k′). This composition is precisely the
map ψn of [11], which is injective by [11, Proposition 4]. It follows that our map ψn is
also injective when we work over the ring k = Z and q is an indeterminate. Since, for an
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arbitrary ring k, k[q, q−1] (where q is either an indeterminate or an invertible element of k)
is a Z[q, q−1]-module in the obvious way, we can tensor with k[q, q−1] and see that ψn is an
isomorphism in the general case. �

Having explicitly described EndH′(q)(Q+n), we now turn to the more general problem of
giving an explicit basis for HomH′(q)(Qε, Qε′) for any sequences ε, ε′. Let k denote the total
number of +s in ε and −s in ε′. We clearly have HomH′(q)(Qε, Qε′) = 0 if the total number
of −s in ε and +s in ε′ is not also equal to k. Thus, we assume from now on that k is also
the total number of −s in ε and +s in ε′.

Definition 2.10. For two sign sequences ε, ε′, let B(ε, ε′) be the set of planar diagrams
obtained in the following manner:

• The sequences ε and ε′ are written at the bottom and top (respectively) of the plane
strip R× [0, 1].
• The elements of ε and ε′ are matched by oriented segments embedded in the strip in

such a way that their orientations match the signs (that is, they start at either a +
of ε or a − of ε′, and end at either a − of ε or a + of ε′), each two segments intersect
at most once, and no self-intersections or triple intersections are allowed.
• Any number of dots may be placed on each interval near its out endpoint (i.e. between

its out endpoint and any intersections with other intervals).
• In the rightmost region of the diagram, a finite number of clockwise disjoint nonnested

circles with any number of dots may be drawn.

The set of diagrams B(ε, ε′) is parameterized by k! possible matchings of the 2k oriented
endpoints, a sequence of k nonnegative integers determining the number of dots on each
interval, and by a finite sequence of nonnegative integers determining the number of clockwise
circles with various numbers of dots.

An example of an element of B(−−+−+,+−+−+−−) is drawn below.

5

3 8

4

Proposition 2.11. For any sign sequences ε, ε′, the set B(ε, ε′) is a basis of the k[q, q−1]-
module HomH′(q)(Qε, Qε′).

The proof, which we include for the sake of completeness, is almost identical to that of
[11, Proposition 5].

Proof. It is straightforward to check that using the defining local relations of H′(q), any
element of HomH′(q)(Qε, Qε′) can be reduced to a direct sum of elements of B(ε, ε′). One uses
(2.1) and (2.3) to remove double crossings, Lemma 2.4 to move dots to the ends of intervals,
(2.11) to move circles to the rightmost region, etc.

It remains to show that B(ε, ε′) is linearly independent. Moving the lower endpoints of
a diagram up using cup diagrams, or moving the upper endpoints of a diagram down using
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cap diagrams, yields canonical isomorphisms

HomH′(q)(Qε, Qε′) ∼= HomH′(q)(1, Qε̄ε′) ∼= HomH′(q)(1, Qε′ε̄),

where ε̄ is the sequence ε with the order and all signs reversed. It thus suffices to show that
B(∅, ε) is linearly independent for any sequence ε with k pluses and k minuses. We prove this
by induction on k and (for each k) by induction on the lexicographic order (where + < −)
among length 2k sequences. Theorem 2.9 implies the base cases k = 0, 1 and ε = +k−k for
any k. Now assume ε = ε1−+ ε2 for some sequences ε1 and ε2. By the inductive hypothesis,
B(∅, ε1ε2) and B(∅, ε1 +− ε2) are linearly independent. Lemma 2.1 (more precisely, the two
upper morphisms in (2.6)) gives a canonical isomorphism

Qε1+− ε2 ⊕Qε1ε2
∼= Qε1−+ ε2 .

This isomorphism maps the sets B(∅, ε1ε2) and B(∅, ε1 + − ε2) to subsets B1 and B2 of
HomH′(q)(Qε1−+ ε2). Let B = B1 ∪ B2. It is straightforward to check that B(∅, ε1 − + ε2)
is linearly independent if and only if B is. Since we know B is linearly independent by
induction, we are done. �

2.6. Symmetries. There are some obvious symmetries of the category H′(q). Let ξ2 be
the symmetry of H′(q) given on diagrams by reflecting in the horizontal axis and reversing
orientation of strands. This is an involutive monoidal contravariant autoequivalence ofH′(q).

Let ξ3 be the symmetry of H′(q) given on diagrams by reflecting in the vertical axis and
reversing orientation. This is an involutive antimonoidal covariant autoequivalence of H′(q).
By antimonoidal, we mean that ξ3(M ⊗N) = ξ3(N)⊗ ξ3(M).

The functors ξ2 and ξ3 commute and hence define an action of (Z/2Z)2. When q = 1,
these symmetries reduce to ones defined in [11]. There is a third symmetry, ξ1, defined in
[11]. This also has a q-deformation but one needs to pass to an appropriate completion of the
category H′(q). It follows from Proposition 2.11 and Lemma 2.4 that the morphism spaces
of H′(q) are filtered by numbers of dots. Let H̃′(q) be the category whose objects are those
of H̃′(q), but where HomH̃′(q)(Qε, Qε′) is the space of formal infinite linear combinations of

elements of HomH′(q)(Qε, Qε′) which are locally finite with respect to the filtration by number
of dots; thus an element of HomH̃′(q)(Qε, Qε′) is an infinite linear combination of diagrams
such that for all n ≥ 0 the number of summands with fewer than n dots is finite. Note that
composition of such infinite sums is well-defined. Then let ξ1 be the endofunctor of H̃′(q)
defined locally by

7→ − q = − − (1− q) ,

ξ1 is the identity on right-oriented caps and cups, and on left-oriented caps and cups, ξ1 acts
as

7→ − (q−1 − 1)

and

7→
∑∞

n=0 (q−1 − 1)n

n

.
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One can compute directly that the action of ξ1 on left, right and downward-oriented crossings
is given by

7→ − − (1− q) ,

7→ − − (1− q) ,

7→ − ,

and the action on dots is

7→ −
∑∞

n=0 (q−1 − 1)
n

n+ 1 .

A straightforward computation shows that ξ1 is an involutive monoidal covariant autoequiv-
alence of H̃′(q). One sees immediately that, when q = 1, the infinite sums in the definition of
ξ1 become finite, there is no need to pass to the completion H̃′(q), and this autoequivalence
reduces to the one defined in [11].

3. Categorification of the Heisenberg algebra

In this section, we assume k is a field of characteristic zero and q ∈ k∗ is not a nontrivial
root of unity.

3.1. Projectors. Let H(q) be the Karoubi envelope of H′(q). More precisely, the objects
of H(q) are pairs (Qε, e) where e : Qε → Qε is an idempotent endomorphism, e2 = e.
Morphisms (Qε, e)→ (Qε′ , e

′) are morphisms f : Qε → Qε′ in H′(q) such that the following
diagram is commutative.

Qε
f //

f

!!B
BB

BB
BB

B

e

��

Qε′

e′

��
Qε

f
// Qε′

In the case q = 1, the category H(1) is the (conjectural) categorification of the Heisenberg
algebra defined by Khovanov [11].

It follows from the local relations (2.1) and (2.2) that upward oriented crossings satisfy
the Hecke algebra relations and so we have a canonical homomorphism

(3.1) Hn → EndH′(q)(Q+n).
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Similarly, since each space of morphisms in H′(q) consists of diagrams up to isotopy, down-
ward oriented crossings also satisfy the Hecke algebra relations and give us a canonical
homomorphism

(3.2) Hn → EndH′(q)(Q−n).

Introduce the complete q-symmetrizer and q-antisymmetrizer

(3.3) e(n) =
1

[n]q!

∑
w∈Sn

tw, e′(n) =
1

[n]q−1 !

∑
w∈Sn

(−q)−l(w)tw, where [n]q =
n−1∑
i=0

qi.

Both e(n) and e′(n) are idempotents in Hn (see [6, §1]). We will use the notation e(n) and
e′(n) to also denote the image of these idempotents in EndH′(q)(Q+n) and EndH′(q)(Q−n)
under the canonical homomorphisms (3.1) and (3.2). We then define the following objects
in H(q):

Sn+ = (Q+n , e(n)), Sn− = (Q−n , e(n)), Λn
+ = (Q+n , e

′(n)), Λn
− = (Q−n , e

′(n)).

Following [4, §6.1, 6.2], which contains diagrammatics for Young symmetrizers and antisym-
metrizers for the symmetric group, we depict Sn+ as a white box labeled n. The inclusion
morphism Sn+ → Q+n is depicted by a white box with n upward oriented lines leaving from
the top. The projection Q+n → Sn+ is depicted by a white box with n upward oriented lines
entering the bottom. The composition Qn

+ → Sn+ → Q+n is depicted by a white box with n
upward oriented lines leaving the top and n upwards oriented lines entering the bottom.

n n n n

We depict the object Λn
+ and its related inclusions and projections by the same diagrams

but with white boxes replaced by black boxes.

n n n n

The objects Sn− and Λn
−, together with their related inclusions and projections, are depicted

by the same diagrams but with downward oriented lines instead of upward oriented lines.

Lemma 3.1. Crossings are absorbed into q-symmetrizers at the cost of a factor of q and
into q-antisymmetrizers at the cost of a factor of −1. More precisely, we have the following
equalities.

= q = −



18 ANTHONY LICATA AND ALISTAIR SAVAGE

Here the arrows can either be oriented up or down. We also have analogous relations with
the lines emanating from the bottom of the boxes instead of the top.

Proof. This follows immediately from (3.3) (see [6, p. 843]). �

Lemma 3.2. We have following relation.

n

n

= qn

n

n

− qn[n]q

n

n

Proof. We prove this result by induction. The case n = 1 is simply the left hand relation
in (2.3). Now assume the result holds for n− 1. Then

n

n

= q

n

n

− q

n

n

= q

n

n

− q2n−1

n

n

= qn

n

n

− qn[n− 1]q

n

n

− q2n−1

n

n

= qn

n

n

− qn[n]q

n

n

where in the third equality we used the inductive hypothesis and the fact that a symmetrizer
of size n − 1 on top of (or below) a symmetrizer of size n is equal to a symmetrizer of size
n. �
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Lemma 3.3. We have the following relation.

m

m

= qm

m

m

− q[m]q

m

m

Proof. The proof is similar to that of Lemma 3.2 and is therefore omitted. �

Lemma 3.4. We have the following relations, where the strands can be oriented up or down.

n = 1
[n]q n− 1 + [n−1]q

[n]q

n− 1

n− 1

m = 1
[m]q−1 m− 1 − [m−1]q

[m]q

m− 1

m− 1

Proof. These statements are q-analogues of Equations (6.10) and (6.19) of [4]. We sketch
the proof of the second. The proof of the first is analogous and will be omitted. First note
that

m = 1
[m]q−1

(
m− 1 + (−q)−1 m− 1 + (−q)−2 m− 1 + · · ·

+ (−q)−(m−1) m− 1

)
.
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We now apply a q-antisymmetrizer of size m − 1 to the rightmost m − 1 strands. On the
left hand side of the equation, we use the fact that a q-antisymmetrizer of size m followed
by a q-symmetrizer of size m− 1 equals a q-antisymmetrizer of size m, to see that this side
remains unchanged. We then use Lemma 3.1 to simplify all the terms on the right hand side
of the equation. �

Define the following morphisms in H(q).

Λm
+ ⊗ Sn−

Sn− ⊗ Λm
+

Λm−1
+ ⊗ Sn−1

−

α1 β1

α2 β2

n

m

m

n

m

n

n

m

n

m− 1

m

n− 1

m− 1

n

n− 1

m

Proposition 3.5. We have the following:

α1β2 = 0,

α2β1 = 0,

α1β1 = qmnid,

α2β2 =
q(m−1)(n−1)

[m]q−1 [n]q
id.
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Proof. We have

α1β2 =

m− 1

n

n− 1

m

m n

=

m− 1 n− 1

m n

= 0.

In the second equality, we use the fact that since the middle q-symmetrizer and q-antisym-
metrizer are linear combinations of various crossings, the triple point moves (2.8) and (2.9)
allow us to pull them through through the lines above them and absorb them into the upper
q-symmetrizer and q-antisymmetrizer. In the third equality, we used the fact that a left
twist curl is zero. The proof that α2β1 = 0 is analogous. The relation α1β1 = qmnid follows
immediately from the right hand relation in (2.3).

The relation involving α2β2 is proved as follows. By applying Lemma 3.4 to the middle
two boxes of α2β2, one gets four summands. Two of these contain a left curl and are therefore
equal to zero. Another contains a left curl after applying the right hand relation in (2.3).
Thus only one summand is nonzero. This summand contains a counterclockwise circle,
which is the identity by (2.4). Proceeding in the same way as for α1β1, one gets the factor
of q(m−1)(n−1). �

Define

β′1 = q−mnβ1, β′2 =
[m]q−1 [n]q
q(m−1)(n−1)

β2.

Then, by Proposition 3.5, we have

(3.4) α1β
′
2 = 0, α2β

′
1 = 0, α1β

′
1 = id, α2β

′
2 = id.

Proposition 3.6. We have

β′1α1 + β′2α2 = id.

Proof. We give only a sketch of the proof, which is a straightforward computation. First,
one computes β′1α1. As in the proof of Proposition 3.5, the middle q-symmetrizer and q-
antisymmetrizer can be pulled through the crossings and absorbed into the upper ones. Then
one uses Lemmas 3.1 and 3.2 (or 3.3) to show that

β′1α1 = id− [n]q[m]q−1

n

n

m

m

.
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In showing this relation (and the next), one notes that any diagram containing a q-symmetrizer
and q-antisymmetrizer connected by two or more strands is zero (this follows immediately
from Lemma 3.1 since q 6= −1). In a similar fashion, one shows that

β′2α2 = [n]q[m]q−1

n

n

m

m

.

Adding these two expressions then gives the desired relation. �

Theorem 3.7. In the category H(q), we have

Sn− ⊗ Sm− ∼= Sm− ⊗ Sn−,
Λn

+ ⊗ Λm
+
∼= Λm

+ ⊗ Λn
+,

Sn− ⊗ Λm
+
∼=
(
Λm

+ ⊗ Sn−
)
⊕
(
Λm−1

+ ⊗ Sn−1
−
)
.

Proof. To see the second isomorphism, consider the morphisms

n

m

m

n

m

n

n

m

where we recall the definition (2.5) of the inverse crossing, denoted by an open circle. One
easily verifies that these two morphisms compose in either order to yield the identity. The
proof of the first isomorphism in the statement of the theorem is analogous. The third
isomorphism follows immediately from (3.4) and Proposition 3.6. �

3.2. The Heisenberg 2-category. In the sequel, we will define actions of our graphical
categories on categories of modules for Hecke algebras and general linear groups over finite
fields. These actions are most naturally described in the language of 2-categories. Therefore,
we define here a 2-category built from the graphical category H(q).

Definition 3.8 (Heisenberg 2-category). We define the Heisenberg 2-category H′(q) as fol-
lows. The objects of H′(q) are the integers. For n,m ∈ Z = ObH′(q), HomH′(q)(n,m) is the
full subcategory of H′(q) containing the objects Qε, ε = ε1 . . . εl, for which

m− n = #{i | εi = +} −#{i | εi = −}.
We then define H(q) to be the 2-category whose objects are the integers and for n,m ∈ Z,
HomH(q)(n,m) is the Karoubi envelope of HomH′(q)(n,m).

Definition 3.9 (Representation of H(q)). Let X =
⊕

n∈ZXn be a Z-graded additive cate-
gory. Then the endofunctors of X naturally form a 2-category whose objects are the integers,
whose 1-morphisms from n to m, n,m ∈ Z, are the functors from Xn to Xm, and whose 2-
morphisms are natural transformations. A representation of H(q) is a functor from H(q) to
such a 2-category of endofunctors.
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3.3. A modified Heisenberg algebra. The algebra hZ is Z-graded after setting

deg bm = m, deg am = −m, m ∈ N+.

For n ∈ Z, let hZ(n) be the subspace of hZ consisting of homogeneous elements of degree n.
Any graded ring can be thought of as an idempotented ring (with an idempotent corre-

sponding to projection onto each graded piece) or, equivalently, as a preadditive category
with an object for each graded piece. In this way, we obtain the following category.

Definition 3.10. Let ḣZ be the preadditive category defined as follows:

• Ob ḣZ = Z.
• For m,n ∈ Z, the morphisms from n to m are hZ(m− n).

Composition of morphisms is simply given by multiplication in hZ.

3.4. A categorification of the Heisenberg algebra. There is a natural bijection between
the set P(n) of partitions of n and the set of isomorphism classes of representations of Hn

(see, for example, [15, Chapter 3]). To a partition λ = (λ1, . . . , λk) of n, there corresponds
the irreducible representation Lλ. This is the unique common irreducible summand of the
representation induced from the trivial representation of the parabolic subgroup Hλ = Hλ1×
· · ·×Hλk of Hn, and the representation induced from the sign representation of the parabolic
subgroup Hλ∗ , where λ∗ is the dual partition. Let eλ ∈ Hn be the corresponding Young
idempotent, so that e2

λ = eλ and Lλ = Hneλ.
For λ ∈ P(n), let Q+,λ = (Q+n , eλ) ∈ H(q). Here we are viewing eλ as an idempotent in

EndH(q)(Q+n) via the map (3.1). Similarly, define Q−,λ = (Q−n , eλ), where we view eλ as an
idempotent in EndH(q)(Q−n) via (3.2). In particular,

Sn+ = Q+,(n), Λn
+ = Q+,(1n), Sn− = Q−,(n), Λn

− = Q−,(1n).

Recall that if C is a 2-category, then the (split) Grothendieck group K0(C) of C is the
category whose objects are the objects of C and whose sets of morphisms are the (split)
Grothendieck groups of the corresponding morphism categories in C. The Grothendieck
group K0(H(q)) of H(q) is naturally a preadditive category.

Definition 3.11. Define a functor F : ḣZ → K0(H(q)) as follows. On objects, we define
F(n) = n for all n ∈ Z. We define F on morphisms by

F(an) = [Sn−], F(bn) = [Λn
+],

and requiring F to be monoidal. The functor F is well defined by Theorem 3.7.

We can identify the subring of hZ generated by the an, n ≥ 1, with the ring of symmetric
functions so that an corresponds to the n-th complete symmetric function hn. Let aλ denote
the polynomial in the an’s associated to the Schur function corresponding to the partition
λ. Then

F(aλ) = [Q−,λ].

Similarly, we identity the subring of hZ generated by the bn, n ≥ 1, with the ring of symmetric
functions so that bn corresponds to the n-th elementary symmetric function en. Let bλ denote
the polynomial in the bn’s associated to the Schur function corresponding to the partition λ.
Then

F(bλ) = [Q+,λ∗ ].
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The ring hZ has a basis {bλaµ}λ,µ, where λ and µ run over all partitions. It follows that

{[Q+,µ][Q−,λ]}λ,µ spans the subring F(ḣZ) of K0(H(q)).

Theorem 3.12. For q not a root of unity, the functor F is faithful.

The proof of Theorem 3.12 is given in Section 4.6.

Conjecture 3.13. For q not a root of unity, the functor F is an equivalence.

Remark 3.14. When q is a root of unity, the Hecke algebra and its representation theory
changes considerably. It would be interesting to study the category H(q) in this case. When
q is not a root of unity, we conjecture that the categories H(q) for various q are equivalent
to one another.

3.5. Symmetries. The symmetries of H′(q) described in Section 2.6 naturally induce sym-
metries of H(q), H(q), and K0(H(q)). The induced involutions of K0(H(q)) preserve the

image of F (which we identify with ḣZ).
Since ξ2 preserves the q-symmetrizer e(n) and the q-antisymmetrizer e′(n) (see (3.3)), it

follows that it preserves the objects Sn+, Sn−, Λn
+, and Λn

− of H(q). The symmetry ξ2 then
naturally induces an involution of H(q) that is the identity on objects. The induced functor

on ḣZ is the identity.
It is easy to check that the induced action of ξ3 on H(q) interchanges Sn+ with Sn− and Λn

+

with Λn
−. It induces a symmetry on H(q) that, on objects, sends n to −n, for n ∈ Z. The

induced involutive functor on ḣZ is the contravariant functor that sends the object n, n ∈ Z,
to −n, and interchanges an and bn.

4. Action on modules for Hecke algebras

In this section, we will describe how our graphical category acts on the category of modules
for Hecke algebras of type A. We refer the reader to [10] for an overview of the type of
diagrammatic presentation of functors, natural transformations, and biadjointness we use
here.

4.1. Bimodules for Hecke algebras. For 1 ≤ k ≤ n, we can view Hk as a subalgebra of
Hn via the embedding ti 7→ ti. We introduce here some notation for bimodules. First note
that Hn is naturally an (Hn, Hn)-bimodule. Via our identification of Hk, 1 ≤ k ≤ n, with
a subalgebra of Hn, we can naturally view Hn as an (Hk, Hl)-bimodule for 1 ≤ k, l ≤ n.
We will write k(n)l to denote this bimodule. If k or l is equal to n, we will often omit the
subscript. Thus, for instance,

• (n) denotes Hn, considered as an (Hn, Hn)-bimodule,
• (n)n−1 denotes Hn, considered as an (Hn, Hn−1)-bimodule, and
• n−1(n) denotes Hn, considered as an (Hn−1, Hn)-bimodule.

4.2. Decompositions. We collect here various results that will be used in the sequel.

Lemma 4.1. The algebra Hn+1 is free of rank n + 1 as both a right and a left Hn-module.
In particular, we have the following.

(a) The set {tntn−1 . . . tj | 1 ≤ j ≤ n + 1} is a basis of Hn+1 as a left Hn-module. Here
we interpret tntn−1 . . . tj as being 1n+1 when j = n+ 1.
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(b) The set {tj . . . tn−1tn | 1 ≤ j ≤ n+ 1} is a basis of Hn+1 as a right Hn-module.

Proof. We prove the second statement since the first is analogous. To prove that our set
generates Hn+1 as a right Hn-module, it suffices to show that each tw, w ∈ Sn+1, can be
written as a right Hn-multiple of tj · · · tn for some 1 ≤ j ≤ n + 1. Let w ∈ Sn+1 and set
j = w(n+ 1). Then

snsn−1 · · · sjw(n+ 1) = n+ 1.

Thus snsn−1 · · · sjw = w̃ for some w̃ ∈ Sn (viewed as the subgroup of Sn+1 fixing n + 1).
Then

(4.1) w = sj · · · sn−1snw̃

and any reduced expression of w̃ gives a reduced expression of w via substitution in (4.1).
Therefore,

tw = tj · · · tn−1tntw̃, tw̃ ∈ Hn,

as desired.
It remains to show that the tj · · · tn−1tn are linearly independent. But this is clear since

tj · · · tn−1tnHn is the right Hn-submodule of Hn+1 spanned by the tw for w ∈ Sn+1 with
w(n+ 1) = j. �

The following lemma, which is a Mackey formula for Hn-modules, is well known. We
include a proof for the sake of completeness.

Lemma 4.2. We have the following isomorphism of (Hn, Hn)-bimodules:

n(n+ 1)n ∼= (n)⊕
(
(n)n−1(n)

)
.

Proof. Let Ĥn+1 be the subspace of Hn+1 spanned by {tw | w ∈ Sn+1 \ Sn}. That is, Ĥn+1

is spanned by those tw for which w(n+ 1) 6= n+ 1. Then it is clear that

Hn+1
∼= Hn ⊕ Ĥn+1 as (Hn, Hn)-bimodules.

It remains to show that Ĥn+1 is isomorphic to (n)n−1(n) as an (Hn, Hn)-bimodule. Define a
map

(4.2) (n)n−1(n)→ Ĥn+1, tw ⊗ tw′ 7→ twtntw′ .

Since elements of Hn−1 commute with tn, this map is well defined. It is also clearly a
surjective homomorphism of (Hn, Hn)-bimodules. Now, the dimension of Ĥn+1 is

dim Ĥn+1 = |Sn+1| − |Sn| = (n+ 1)!− n! = n · n!.

On the other hand, the dimension of (n)n−1(n) is the dimension of Hn times the rank of Hn

considered as a right Hn−1-module. Therefore, by Lemma 4.1, we have

dim(n)n−1(n) = n · n! = dim Ĥn+1.

Therefore, the map (4.2) is an isomorphism as desired. �
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4.3. Adjunctions. Let Res denote the functor of restriction from the category of Hn-
modules to the category of Hn−1-modules and let Ind denote the functor of induction from
Hn−1-modules to Hn-modules. In a slight abuse of notation, we use the notation Res, Ind for
different values of n. The goal of this section is to show that these functors are biadjoint.
Note that restriction and induction are realized by tensoring with appropriate bimodules.
In particular:

ResM = n−1(n)⊗Hn M, M ∈ Hn-mod, and

IndN = (n)n−1 ⊗Hn−1 N, N ∈ Hn−1-mod.

Similarly, compositions of induction and restriction functors are given by tensoring by appro-
priate bimodules. Then natural transformations between such functors are simply bimodule
homomorphisms. We can thus either work in the 2-category of categories, functors, and
natural transformations or in the 2-category of modules, bimodules, and bimodule homo-
morphisms. Most often, it will be convenient for us to work in the language of bimodules.
In any 2-category, one can talk of adjoint 1-morphisms and so we will often talk of adjoint
bimodules.

We now define some important bimodule maps.

(a) Let RCap denote the bimodule map

RCap : (n+ 1)n(n+ 1)→ (n+ 1), x⊗ y 7→ xy,

given by multiplication.
(b) Let RCup denote the bimodule map

RCup : (n) ↪→ n(n+ 1)n, z 7→ z.

(c) Let LCap denote the bimodule map

LCap : n(n+ 1)n → (n)

given by declaring

LCap|Hn = id, LCap(tn) = 0.

(d) Let LCup denote the bimodule map

LCup : (n+ 1)→ (n+ 1)n(n+ 1)

determined by

1n+1 7→
n+1∑
i=1

qi−(n+1)ti . . . tn−1tn ⊗ tntn−1 . . . ti.

We set tn+1 = 1 in the above formula, so that the i = n+ 1 term in the sum is 1⊗ 1.

It is clear that RCap, RCup, and LCap are indeed maps of bimodules.

Lemma 4.3. The map LCup is a map of bimodules.

Proof. It suffices to show that the sum appearing in the definition commutes with tj for all
1 ≤ j ≤ n. Now, if j < i− 1, we clearly have

tj(ti · · · tn ⊗ tn · · · ti) = (ti · · · tn ⊗ tn · · · ti)tj.
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If j > i, then

tj(ti · · · tn ⊗ tn · · · ti) = titi+1 · · · tj−2(tjtj−1tj)tj+1 · · · tn ⊗ tn · · · ti
= titi+1 · · · tj−2(tj−1tjtj−1)tj+1 · · · tn ⊗ tn · · · ti
= titi+1 · · · tntj−1 ⊗ tn · · · ti
= titi+1 · · · tn ⊗ tj−1tn · · · ti
= titi+1 · · · tn ⊗ tn · · · tj+1(tj−1tjtj−1)tj−2 · · · ti
= titi+1 · · · tn ⊗ tn · · · tj+1(tjtj−1tj)tj−2 · · · ti
= (ti · · · tn ⊗ tn · · · ti)tj.

It remains to consider the terms with j = i− 1, i. We have

tj
(
qj−(n+1)tj · · · tn ⊗ tn · · · tj + qj−ntj+1 · · · tn ⊗ tn · · · tj+1

)
= qj−(n+1)(q + (q − 1)tj)tj+1 · · · tn ⊗ tn · · · tj + qj−ntjtj+1 · · · tn ⊗ tn · · · tj+1

= qj−ntj+1 · · · tn ⊗ tn · · · tj + (q − 1)qj−(n+1)tj · · · tn ⊗ tn · · · tj + qj−ntj · · · tn ⊗ tn · · · tj+1

=
(
qj−(n+1)tj · · · tn ⊗ tn · · · tj + qj−ntj+1 · · · tn ⊗ tn · · · tj+1

)
tj.

The result follows. �

We will now start using string diagram notation for 2-categories. In particular, the above
bimodule homomorphisms will correspond to diagrams as follows:

RCap = n+ 1 , RCup = n ,

LCap = n , LCup = n+ 1 .

We refer the reader to [10] for an overview of this notation for 2-categories. Note that the
labels of the regions of a string diagram are uniquely determined by the label of one region
and the fact that, as we move from right to left, labels increase by one as we cross upward
pointing strands and decrease by one as we cross downward pointing strands. An example
of a diagram with all regions labeled is as follows.

nn−1
n+ 1

n
n+ 2n+ 2

n+3 n+2
n+1 n

The above diagram corresponds to a bimodule map

n+2(n+ 3)n+3(n+3)n+2(n+2)n+1(n+1)n(n+1)n+1(n+1)n → (n+2)n+1(n+2)n+2(n+2)n+1(n+1)n.

In what follows, we will use various natural bimodule isomorphisms, such as (n + 1)n(n) ∼=
(n+ 1)n, without mention. When we draw a diagram without the regions labeled, we assert
that that the relation in question holds for all possible labelings.

Proposition 4.4. The adjunction maps LCap, LCup, RCap, RCup defined above make
(Res, Ind) into a biadjoint pair.
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Proof. This amounts to proving the following four equalities:

= , = , = , = .

We will prove the third equality. The rest are similar. If the rightmost region is labeled n+1,
the left hand side of the third equality is the bimodule homomorphism n(n+ 1)→ n(n+ 1)
given by the composition

n(n+ 1)
LCup−−−→ n(n+ 1)n(n+ 1)

LCap⊗id−−−−−→ (n)n(n+ 1)
∼=−→ n(n+ 1).

Since n(n + 1) is generated by 1n+1, it suffices to determine the image of this element. We
have

1n+1 7→
n+1∑
i=1

qi−(n+1)ti · · · tn−1tn ⊗ tntn−1 . . . ti 7→ 1n ⊗ 1n+1 7→ 1n+1.

Hence the composition is the identity map, as desired. �

As a result of the above proposition, any endomorphism of Ind defines an endomorphism
of Res in two possible ways (one using the adjunctions RCap and RCup, and one using
LCap and LCup.) When the two endomorphisms of Res defined in this way are equal to one
another (for every endomorphism of Ind), the adjunction data (RCap,RCup,LCap,LCup) is
said to be cyclic. We refer the reader to [10] for a further description of cyclic biadjointness
and its relationship to planar diagrammatics for bimodules.

Proposition 4.5. The adjunction data above is cyclic when q is an indeterminate or a prime
power.

Proof. We prove this in Section 6, where we work in the setting of parabolic induction and
restriction for finite groups (see Corollary 6.12). �

4.4. Crossings. We define the following bimodule map

Ucross = n : (n+ 2)n → (n+ 2)n, z 7→ ztn+1.

It follows from Proposition 4.5 that any two isotopic diagrams involving the 2-morphism

n

as well as cups and caps are equal, when q is an indeterminate. Furthermore, specializing q
to any element of k× implies that this is true in general. We define left, right, and downward
crossings to be equal to any composition of cups and caps and an upward crossing yielding a
bimodule map between the appropriate bimodules. By the above, any two such definitions
are equivalent. For instance, we can define the left, right and downward crossings as follows.

(4.3) n = n
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(4.4) n = n

(4.5) n = n

Lemma 4.6. We have

Dcross = n : n(n+ 2)→ n(n+ 2), z 7→ tn+1z,

Rcross = n : (n)n−1(n) ↪→ n(n+ 1)n, w ⊗ z 7→ wtnz,

Lcross = n : n(n+ 1)n � (n)n−1(n), 1n+1 7→ 0, tn 7→ q1n ⊗ 1n.

Proof. We prove the third statement. The proofs of the others are similar. We need to
compute the following map of bimodules.

n

This is the bimodule map n(n+ 1)n → (n)n−1(n) given by the composition

n(n+ 1)n
∼=−→ n(n+ 1)n(n)

id⊗LCup−−−−−→ n(n+ 1)n(n)n−1(n)
∼=−→ n(n+ 1)n−1(n)

Ucross⊗id−−−−−→ n(n+ 1)n−1(n)
∼=−→ n(n+ 1)n(n)n−1(n)

LCap⊗id⊗id−−−−−−−→ (n)n(n)n−1(n)
∼=−→ (n)n−1(n).

We compute

1n+1 7→ 1n+1 ⊗ 1n 7→
n∑
i=1

1n+1 ⊗ qi−nti . . . tn−1 ⊗ tn−1 . . . ti 7→
n∑
i=1

qi−nti . . . tn−1 ⊗ tn−1 . . . ti

7→
n∑
i=1

qi−nti . . . tn−1tn ⊗ tn−1 . . . ti 7→
n∑
i=1

qi−nti . . . tn−1tn ⊗ 1n ⊗ tn−1 . . . ti 7→ 0,

and

tn 7→ tn ⊗ 1n 7→
n∑
i=1

tn ⊗ qi−nti . . . tn−1 ⊗ tn−1 . . . ti 7→
n∑
i=1

qi−ntnti . . . tn−1 ⊗ tn−1 . . . ti

7→
n∑
i=1

qi−ntnti . . . tn−1tn ⊗ tn−1 . . . ti 7→
n∑
i=1

qi−ntnti . . . tn−1tn ⊗ 1n ⊗ tn−1 . . . ti.
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Now, all terms except the i = n term are mapped to zero. The i = n term is equal to

t2n ⊗ 1n ⊗ 1n = (q + (q − 1)tn)⊗ 1n ⊗ 1n 7→ q1n ⊗ 1n ⊗ 1n 7→ q1n ⊗ 1n.

�

4.5. Categorification of bosonic Fock space.

Proposition 4.7. The relations (2.1)–(2.4) hold when these diagrams are interpreted as
maps of bimodules.

Proof. Relations (2.1) and (2.2) follow immediately from the definition of Ucross and the
relations

t2i = q + (q − 1)ti, titi+1ti = ti+1titi+1,

in the Hecke algebra. The remaining relations encode the bimodule decomposition

n(n+ 1)n ∼= (n)⊕
(
(n)n−1(n)

)
of Lemma 4.2. �

Definition 4.8. Let A be the 2-category defined as follows.

• ObA = N ∪ {∇}.
• The 1-morphisms from n to m for n,m ∈ N, are functors from Hn-mod to Hm-mod

that are direct summands of compositions of induction and restriction functors. The
only 1-morphism from ∇ to ∇ is the identity. For n ∈ N, there are no 1-morphisms
from n to ∇ or from ∇ to n.
• The 2-morphisms are natural transformations of functors.

Note that any (Hm, Hn)-bimodule M yields a functor

Hn-mod→ Hm-mod, V 7→M ⊗ V,

and any homomorphism M1 → M2 of (Hm, Hn)-bimodules gives rise to a natural transfor-
mation between the corresponding functors. In particular, the bimodules (n)n−1 and n−1(n)
correspond to induction and restriction, respectively.

Definition 4.9. It follows from Proposition 4.7 that we can define a 2-functor A : H′(q)→ A
as follows.

• For n ∈ Z = ObH′(q), A(n) = n if n ≥ 0, and A(n) = ∇ if n < 0.
• On 1-morphisms, A maps Qε ∈ HomH′(q)(n,m) for a sequence ε = ε1ε2 . . . εk, to the

tensor product of induction and restriction bimodules, where each + corresponds to
the induction bimodule and each − corresponds to the restriction bimodule. For
instance, for Q++−−+−− ∈ HomH′(q)(n, n− 1),

A(Q++−−+−−) = (n− 1)n−2(n− 2)n−3(n− 2)n−2(n− 1)n−1(n− 1)n−2(n− 1)n−1(n).

If, for some k, the last k terms of ε contain at least (n+ 1) more −’s than +’s, then
A maps Qε ∈ HomH′(q)(n,m) to 0.
• On 2-morphisms, A maps a planar diagram (a 1-morphism of H′(q)) to the cor-

responding bimodule map (or, more precisely, to the natural transformation corre-
sponding to this bimodule map) according to the definitions given in this section.
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Since A is idempotent complete, the functor A induces a functor A : H(q) → A (which we
denote by the same symbol) on the Karoubi envelope H(q) of H′(q), and hence a functor

[A] : K0(H(q))→ K0(A).

The functor A is a representation of H(q) in the sense of Definition 3.9.

Remark 4.10. The reader should compare the functor A to the analogous functor defined
in [11]. In [11], which is in the language of 1-categories, the category in question is monoidal
but the functor is not. This is one of the main motivations for the 2-category point of view.

Elements of HomA(n,m) are direct summands of finite compositions of induction and re-
striction functors from Hn-mod to Hm-mod. Therefore, descending to Grothendieck groups,
we obtain a functor

θ : K0(A)→
⊕
n,m∈N

HomZ(K0(Hn-mod), K0(Hm-mod)),

where we view the bigraded ring
⊕

n,m∈N HomZ(K0(Hn-mod), K0(Hm-mod)) as a category
in the natural way. Namely, the objects are nonnegative integers, and the set of morphisms
from n to m is HomZ(K0(Hn-mod), K0(Hm-mod)).

Consider the composition

θ[A] : K0(H(q))→
⊕
n,m∈N

HomZ(K0(Hn-mod), K0(Hm-mod)).

For [M ] ∈ K0(Hn-mod), we have

(θ[A])([Q+,µ])([M ]) =
[
Ind

H|µ|+k
H|µ|×Hn(Lµ ⊗M)

]
,

(θ[A])([Q−,λ])([M ]) =

{
0 if |λ| > n,

HomH|λ|(Lλ,M) ∈ Hn−|λ|-mod, if |λ| ≤ n,

where, for a partition λ = (λ1, λ2, . . . , λk), we define |λ| =
∑k

i=1 λk. In the expression
HomH|λ|(Lλ,M), we restrict M to an H|λ| ×Hn−|λ|-module and take homomorphisms from
the irreducible module Lλ for H|λ|. This hom-space is naturally an Hn−|λ|-module.

Remark 4.11. When k is a field of characteristic zero and q ∈ k× is not a nontrivial
root of unity, the functor A : H(q) → A is a categorification of the (bosonic) Fock space
representation of the Heisenberg algebra.

4.6. Proof of Theorem 3.12. Since HomḣZ
(n,m) = hZ(m− n) = HomḣZ

(n+ k,m+ k) for

any m,n, k ∈ Z, we have a natural functor Sk : ḣZ → ḣZ defined on objects by Sk(n) = n+k,
n ∈ Z. This functor is clearly an isomorphism.

Consider the composition

θ[A]FSk : ḣZ →
⊕
m,n∈N

HomZ(K0(Hn-mod), K0(Hm-mod)).

We claim that the direct sum of these maps over all k is injective, from which it follows that
F is faithful. This sum is clearly injective on objects, and so it suffices to show it is injective
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on morphisms. Fix m,n ∈ Z = Ob ḣZ. An arbitrary element of HomḣZ
(n,m) = hZ(m− n) is

a finite sum of the form
y =

∑
λ,µ

yλ,µbµaλ, yλ,µ ∈ Z,

where only partitions λ and µ satisfying |µ|− |λ| = m−n appear in the sum. Assume y 6= 0.
Let

l = max{|λ| | yλ,µ 6= 0 for some µ},
and choose a partition ν with |ν| = l such that yν,τ 6= 0 for some τ . Let k = |ν| − n. We
have

FSk(y) =
∑
λ,µ

yλ,µ[Q+,µ∗ ][Q−,λ] ∈ HomK0(H(q))(|ν|, |τ |).

Now, for λ with |λ| = |ν|,
θ[A]FSk(aλ) = θ[A]([Q−λ]) ∈ HomZ(K0(H|ν|-mod), K0(H0-mod))

maps [Lρ] to 0 if |ρ| = |ν| and ρ 6= λ. It also takes [Lλ] to [L∅], where L∅ is the irreducible
module over H0 = k. Thus, θ[A]FSk(y) takes [Lν ] to∑

µ

yν,µ[Lµ∗ ] 6= 0,

and so θ[A]FSk(y) is a nonzero map.

4.7. Jucys-Murphy elements. For k = 0, 1, 2, . . . n, let

Lk+1 =
k∑
i=1

qi−kti · · · tk · · · ti

= tk + q−1tk−1tktk−1 + q−2tk−2tk−1tktk−1tk−2 + · · ·+ q1−kt1 · · · tk · · · t1.

By convention, L1 = 0. The Lk (or, more precisely, q−1Lk) are called Jucys-Murphy elements
of Hn+1 (see, for example, [15, §3.3]). The Lk are significant in the theory of Hecke algebras,
at least in part, because of the following facts.

(a) The elements Lk, k = 1, . . . n+ 1, generate an abelian subalgebra of Hn+1.
(b) The space of symmetric polynomials in the Lk is the center of Hn+1.
(c) The element Lk in Hn+1, 1 ≤ k ≤ n+1, commutes with Hk−1, viewed as a subalgebra

of Hn+1 in the usual way.

Proposition 4.12. Under the definitions of crossings, caps and cups given above, the right
curls are the Jucys-Murphy elements.

Comments: Remove the word ‘twist’ throughout.

More precisely,

n

corresponds to the bimodule map

(n+ 1)n → (n+ 1)n, z 7→ zLn+1.

Proof. This straightforward calculation will be omitted. �
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This interpretation of Jucys-Murphy elements as dots in our graphical calculus allows us
to give a purely graphical proof of the following well-known relations (see, for example, [15,
Proposition 3.26]).

Corollary 4.13. We have

(a) tlLn+1 = Ln+1tl for all 1 ≤ l ≤ n− 1,
(b) Ln+1tn = tnLn + (q − 1)Ln+1 + q, and
(c) tnLn+1 = Lntn + (q − 1)Ln+1 + q.

Proof. This follows immediately from Proposition 4.12 and Lemma 2.4. �

5. Action on modules for finite general linear groups

In this section, we will describe how our graphical category acts on the category of modules
for finite general linear groups.

5.1. Representations of finite general linear groups. Let p be a prime number and let
Fq denote a finite field with q = pm elements. We will write GLn for the group of invertible
n× n matrices with entries in Fq. We embed GLn into GLn+1 in the upper left, so that the
image of GLn in GLn+1 consists of those invertible matrices whose last row is (0, . . . , 0, 1)
and whose last column is (0, . . . , 0, 1)t. This embedding of groups induces an embedding of
k-algebras k[GLn] ↪→ k[GLn+1]. Unless explicitly mentioned otherwise, all of the embeddings
in this section will be induced from this embedding of algebras. For notational simplicity,
we will write An = k[GLn].

Let Un,n+1 ⊆ GLn+1 denote the subgroup of upper triangular invertible matrices whose
upper left n× n block is the n× n identity matrix and whose last column is arbitrary. For
example, U2,3 is the subgroup of matrices of the form 1 0 a

0 1 b
0 0 c

 , c 6= 0.

Note that Un,n+1 is a normal subgroup of Pn,n+1 = GLn · Un,n+1. Define an idempotent
vn+1 ∈ An+1 by

vn+1 =
1

|Un,n+1|
∑

u∈Un,n+1

u.

Note that the element vn+1 satisfies

• v2
n+1 = vn+1,

• for all x ∈ k[Un,n+1], xvn+1 = vn+1x = vn+1, and
• for all y ∈ An, yvn+1 = vn+1y.

We may considerAn+1vn+1 as an (An+1, An)-bimodule. Similarly we may consider vn+1An+1

as a (An, An+1)-bimodule. We will use notation for these bimodules and their tensor products
similar to the notation used for bimodules over Hecke algebras. In particular,

• (n) denotes An, considered as an (An, An)-bimodule,
• (n)n−1 denotes Anvn, considered as a (An, An−1)-bimodule,
• n−1(n) denotes vnAn, considered as an (An−1, An)-bimodule,
• n−1(n)n−1 denotes vnAnvn, considered as an (An−1, An−1) bimodule, and
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• tensor products of these bimodules are denoted by juxtaposition.

The bimodule (n)n−1 = Anvn gives rise to an induction functor

Ind : An−1-mod→ An-mod, M 7→ Anvn ⊗An−1 M.

Similarly, the bimodule n−1(n) = vnAn gives rise to a restriction functor

Res : An-mod→ An−1-mod, N 7→ vnAn ⊗An N.
More generally, an (An, Am)-bimodule X gives rise to a functor from the category of left
Am-modules to the category of left An-modules: this functor takes an Am-module M to the
An-module X ⊗AmM . Composition of functors corresponds to tensor product of bimodules,
and natural transformations correspond to bimodule maps. Therefore, in order to define
natural transformations of compositions of the functors Ind and Res, we will define bimodule
maps between tensor products of the bimodules (n)n−1 and n−1(n).

5.2. Adjunctions.

(a) Let RCap denote the bimodule map

RCap : (n+ 1)n(n+ 1)→ (n+ 1), xvn+1 ⊗ vn+1y 7→ xvn+1y.

(b) Let RCup denote the bimodule map

RCup : (n) ↪→ n(n+ 1)n, z 7→ vn+1zvn+1.

(c) Let LCap denote the bimodule map

LCap : n(n+ 1)n → (n)

given as follows. For a group element g ∈ GLn+1, we set

LCap(vn+1gvn+1) =

{
vn+1gvn+1, g ∈ Pn,n+1,

0, g /∈ Pn,n+1.

Extending by k-linearity, this defines a (An, An) bimodule map

vn+1An+1vn+1 → vn+1k[Pn,n+1]vn+1
∼= An,

as desired. The isomorphism of the last line follows immediately from the properties
of the idempotent vn+1 listed above.

(d) Let LCup denote the bimodule map

LCup : (n+ 1)→ (n+ 1)n(n+ 1)

determined as follows. Let GLn+1 =
∐s

i=1 Pn,n+1gi be a decomposition of GLn+1 into
left Pn,n+1 cosets. The element

s∑
i=1

g−1
i vn+1 ⊗ vn+1gi ∈ (n+ 1)n(n+ 1)

does not depend on the choice of coset representatives {gi}si=1. Moreover, this element
is a Casimir element, so that

a

(
s∑
i=1

g−1
i vn+1 ⊗ vn+1gi

)
=

(
s∑
i=1

g−1
i vn+1 ⊗ vn+1gi

)
a
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for all a ∈ An+1. Thus there is a natural bimodule map (n + 1) → (n + 1)n(n + 1)
determined by

1n+1 7→
s∑
i=1

g−1
i vn+1 ⊗ vn+1gi.

Proposition 5.1. The adjunction maps LCap, LCup, RCap, RCup above make (Res, Ind)
into a cyclic, biadjoint pair.

Proof. We prove this in Section 6, where we work in the more general setting of parabolic
induction and restriction for arbitrary finite groups (see Corollary 6.11). �

5.3. Crossings. Let sn ∈ GLn+1 denote the symmetric group element

sn =

 In−1 0 0
0 0 1
0 1 0

 ,

where In−1 is the (n− 1)× (n− 1) identity matrix. Let tn = qvn+1snvn+1 ∈ An+1.
Let (n + 2)n denote the bimodule (n + 2)n = (n + 2)n+1(n + 1)n = An+2vn+2vn+1. We

define a bimodule map

n : (n+ 2)n → (n+ 2)n, zvn+2vn+1 7→ ztn+1vn+2vn+1.

Since An commutes with vn+2, vn+1 and sn+1, it follows that the above is a well-defined
map of (An+2, An)-bimodules. By Proposition 5.1, this 2-morphism is cyclic. Therefore, any
two isotopic diagrams involving this crossing as well as cups and caps are equal. We define
left, right, and downward crossings to be equal to any composition of cups and caps and
an upward crossing yielding a bimodule map between the appropriate bimodules. By the
above, any two such definitions are equivalent. For instance, we can define the left, right
and downward crossings as in (4.3)–(4.5).

Lemma 5.2. We have

n : n(n+ 2)→ n(n+ 2), vn+1vn+2z 7→ vn+1vn+2tn+1z,

n : (n)n−1(n) ↪→ n(n+ 1)n, wvn ⊗ vnz 7→ vn+1wtnzvn+1,

n : n(n+ 1)n � (n)n−1(n), vn+1 7→ 0, vn+1tnvn+1 7→ qvn ⊗ vn.

Proof. All three statements are straightforward computations. In the third computation,
it is useful to note that n(n + 1)n has a bimodule basis consisting of 1n and tn; thus any
bimodule map from n(n+ 1)n is completely determined by the image of these two elements.
We omit the details of these three computations. �

5.4. Another representation of the graphical category. The following proposition
should be compared to Proposition 4.7.

Proposition 5.3. The relations (2.1)–(2.4) hold when these diagrams are interpreted as
maps of bimodules.
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Proof. This follows by direct computation from the definitions and results of Sections 5.1–
5.3. �

Some comments about the above proposition are in order. The relations involving only
upward pointing strands follow from the classical work of Iwahori [7]. The analogues of
our upward pointing strands were introduced in Chuang-Rouquier [3] in the context of sl2
categorifications in the modular representation theory ofGLn. The relations amongst upward
pointing braid-like diagrams — that is, diagrams with no local minima or maxima — are
essentially contained in [9], which studies the braided monoidal structure on the category of
characteristic zero representations of all GLn.

Let Bn ⊆ GLn denote the Borel subgroup of upper triangular matrices. The relations
involving only upward pointing strands imply that there is a canonical morphism from the
Hecke algebra Hn to EndAn(IndAnk[Bn]1), the endomorphism algebra of the induction to An of

the trivial k[Bn]-module.

Definition 5.4. Let B be the 2-category defined as follows.

• ObB = N ∪ {∇}.
• The 1-morphisms from n to m for n,m ∈ N, are functors from An-mod to Am-mod

that are direct summands of compositions of induction and restriction functors. The
only 1-morphism from ∇ to ∇ is the identity. For n ∈ N, there are no 1-morphisms
from n to ∇ or from ∇ to n.
• The 2-morphisms are natural transformations of functors.

It follows from Proposition 5.3 that we can define a 2-functor B : H(q) → B as in
Definition 4.9 (with Hn replaced by An).

The representations of H(q) given here and in Section 4.5 are closely related. Thus our
categorical Heisenberg actions provide another perspective on the appearance of the Hecke
algebra in the representation theory of GLn. Let us explain the relationship between the
two H(q) representations in a bit more detail. Let Cn ⊆ An-mod denote the full subcategory
of An-mod consisting of direct summands of modules of the form IndrM , r ∈ N, M an A0-
module. Equivalently, the objects of Cn are the unipotent An-modules, that is, the modules
which occur as a direct summand of the induction of a trivial k[Bn]-module to An. Let C be
the 2-category defined as in Definition 5.4, but with An-mod replaced by Cn. It follows that
the category C is a representation of H(q). Define the idempotent

bn =
1

|Bn|
∑
b∈Bn

b = vnvn−1 · · · v1

in the Borel Bn. The subalgebra bnAnbn ⊆ An is the sum of the unipotent blocks of An.
Note that any M ∈ Cn contains a vector fixed by k[Bn]. Thus, the inclusion of M into a
free module A⊕kn , k ∈ N, factors through (Anbn)⊕k. Since HomAn(Anbn, Anbn) = bnAnbn, we
have a functor

HomAn(Anbn,−) : Cn → bnAnbn-mod.

It is straightforward to check that this functor is an equivalence of categories, with the inverse
functor given by tensoring with the (An, bnAnbn)-bimodule Anbn.

Iwahori’s theorem [7] implies that for each n there is an isomorphism

bnAnbn ∼= Hn.



HEISENBERG CATEGORIFICATION 37

These isomorphisms for all n are compatible with the embeddings bnAnbn ⊆ bn+1An+1bn+1

and Hn ⊆ Hn+1, and thus with the actions of the 1-morphisms Q+ and Q−. It is then easy
to see that the isomorphisms bnAnbn ∼= Hn are compatible with the defining cup, cap, and
crossing 2-morphisms. Thus we have the following proposition.

Proposition 5.5. The equivalence of categories⊕
n HomAn(Anbn,−) :

⊕
n Cn →

⊕
nHn-mod

induces an equivalence C→ A of H(q) representations. In other words,

H(q) //

!!CC
CC

CC
CC

C

��
A

is a commutative diagram (up to isomorphism) with the functor C→ A being an equivalence
of 2-categories.

Remark 5.6. Proposition 5.5 implies that the functor H(q)→ C is another categorification
of bosonic Fock space. The functor B to the entire category B is a categorification of an
infinite sum of bosonic Fock spaces.

6. Parabolic induction and restriction for finite groups

The purpose of this section is to describe the cyclic biadjointness of parabolic induction
and restriction functors which show up naturally in the representation theory of finite groups.
We recommend the survey [10] for an introduction to cyclic biadjoint functors.

6.1. Bimodules from the group algebra of a semi-direct product. Recall that k is a
field of characteristic zero. Let L and U be subgroups of a finite group G such that

• L normalizes U , i.e. U is a normal subgroup of P = LU ,
• L ∩ U = {1}.

Let θ : U → C∗ be a multiplicative character of U normalized by L, so that

θ(mum−1) = θ(u) for all m ∈ L, u ∈ U.
Let vθ ∈ k[P ] be defined by

vθ =
1

|U |
∑
u∈U

θ(u)−1u.

Lemma 6.1. The element vθ satisfies the following:

• vθvθ = vθ,
• for u ∈ U , uvθ = vθu = θ(u)vθ,
• for m ∈ L, mvθ = vθm.

Proof. All three facts follow from direct computations which are omitted. �

The space k[P ]vθ has the natural structure of a (k[P ],k[P ])-bimodule, and, by restriction,
the structure of a (k[L],k[L])-bimodule.

Corollary 6.2. k[P ]vθ ∼= k[L] as a (k[L],k[L])-bimodule.



38 ANTHONY LICATA AND ALISTAIR SAVAGE

Proof. It follows from Lemma 6.1 that the map

k[L]→ k[P ]vθ, 1 7→ vθ,

is a (k[L],k[L])-bimodule isomorphism. �

6.2. Parabolic induction and restriction functors. We define functors

IndU,θ : k[L]-mod→ k[G]-mod

and
ResU,θ : k[G]-mod→ k[L]-mod

depending on the subgroup U and the character θ, as follows.

Definition 6.3. The parabolic induction functor

IndU,θ : k[L]-mod→ k[G]-mod

is defined by tensoring with the (k[G],k[L])-bimodule k[G]⊗k[P ] k[P ]vθ ∼= k[G]vθ:

IndU,θ(M) :=
(
k[G]⊗k[P ] k[P ]vθ

)
⊗k[L] M.

Definition 6.4. The parabolic restriction functor

ResU,θ : k[G]-mod→ k[L]-mod

is defined by tensoring with the (k[L],k[G])-bimodule k[P ]vθ ⊗k[P ] k[G]:

ResU,θ(M
′) =

(
k[P ]vθ ⊗k[P ] k[G]

)
⊗k[G] M

′.

Note that the functors IndU,θ, ResU,θ, depend on both the subgroup U and on the character
θ. Some basic properties of the functors IndU,θ and ResU,θ are listed below. We also refer
the reader to [17] for further details:

(a) IndU,θ and ResU,θ are additive.
(b) Let N and V be subgroups of L and let θ′ be a character of V such that the functors

IndV,θ′ : k[N ]-mod → k[L]-mod and ResV,θ′ : k[L]-mod → k[N ]-mod are defined.
Define a character θ0 of U0 = UV by

θ0(uv) = θ(u)θ′(v), u ∈ U, v ∈ V.
Then there are isomorphisms of functors

IndU,θ ◦ IndV,θ′ ∼= IndU0,θ0 , ResV,θ′ ◦ ResU,θ ∼= ResU0,θ0 .

(c) Let H be another finite group. For M ∈ k[H]-mod, there are functors

T lM : k[L]-mod→ k[L×H]-mod, T lM(M ′) = M ⊗k M
′

and
T rM : k[L]-mod→ k[H × L]-mod, T rM(M ′) = M ′ ⊗k M

given by outer tensor product with M on the left and on the right. The parabolic
induction functor

IndU,θ : k[L]-mod→ k[G]-mod

induces a parabolic induction functor

IndU×1,θ×1 : k[L×H]-mod→ k[G×H]-mod.
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Then there are isomorphisms of functors

T rM ◦ IndU,θ ∼= IndU×1,θ×1 ◦ T rM .

In other words, parabolic induction commutes with T rM (and also with T lM). Similarly,
parabolic restriction commutes with T rM and T lM .

6.3. Cyclic biadjointness for parabolic induction and restriction. We now define nat-
ural transformations RCap,RCup,LCap,LCup which will serve as biadjunction morphisms.

(a) Let

RCap : IndU,θ ◦ ResU,θ → idk[G],

where idk[G] is the identity functor on the category of k[G]-modules, be the natural
transformation given as follows. The left hand side is given as a functor by tensoring
with the (k[G],k[G])-bimodule

k[G]⊗k[P ] k[P ]vθ ⊗k[L] k[P ]vθ ⊗k[P ] k[G] ∼= k[G]⊗k[P ] k[P ]vθ ⊗k[P ] k[G].

Thus the bimodule map defined on a k-basis by

g ⊗ bvθ ⊗ h 7→ gbvθh ∈ k[G]

gives a natural transformation to idk[G].
(b) Let

RCup : idk[L] → ResU,θ ◦ IndU,θ

be the natural transformation given by the bimodule map

k[L]→ k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ,

determined by

1 7→ vθ ⊗ 1⊗ vθ.
(c) Let

LCap : ResU,θ ◦ IndU,θ → idk[L]

be the natural transformation given by the bimodule map

k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ → k[L],

defined as follows. Let ProjP : k[G] → k[P ] be the k-linear map defined, for g ∈ G,
by

ProjP (g) =

{
g, g ∈ P,
0, otherwise.

Then define LCap as the composition

LCap : k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ
1⊗ProjP⊗1−−−−−−→ k[P ]vθ ⊗k[P ] k[P ]⊗k[P ] k[P ]vθ

µ−→ k[P ]vθ ' k[L],

where µ is the multiplication map bvθ ⊗ p⊗ b′vθ 7→ bvθpb
′vθ = bpb′vθ.
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(d) Let

LCup : idk[G] → IndU,θ ◦ ResU,θ

be the natural transformation given by the bimodule map

LCup : k[G]→ k[G]⊗k[P ] k[P ]vθ ⊗k[P ] k[G]

defined as follows. Let G =
∐m

i=1 Pgi be a decomposition of G into left P -cosets. The
element

m∑
i=1

g−1
i ⊗ vθ ⊗ gi ∈ k[G]⊗k[P ] k[P ]vθ ⊗k[P ] k[G]

does not depend on the choice of representatives {gi}mi=1. Indeed, if g′i = pigi for
1 ≤ i ≤ m, then

m∑
i=1

(g′i)
−1 ⊗ vθ ⊗ g′i =

m∑
i=1

g−1
i p−1

i ⊗ vθ ⊗ pigi =
m∑
i=1

g−1
i ⊗ vθ ⊗ gi

(since elements of P move across the tensor products and past vθ). Thus we may
define a bimodule map LCup by declaring that

1 7→
m∑
i=1

g−1
i ⊗ vθ ⊗ gi.

Then, for g ∈ G,

LCup(g) =
m∑
i=1

g−1
i ⊗ vθ ⊗ gig =

m∑
i=1

gg−1
i ⊗ vθ ⊗ gi.

The last equality is needed to ensure that we have a bimodule map, and is proven
as follows. Suppose that gig = pig

′
i for some pi ∈ P and some bijection i 7→ i′ of

{1, . . . ,m}. Then

m∑
i=1

g−1
i ⊗ vθ ⊗ gig =

m∑
i=1

g−1
i ⊗ vθ ⊗ pig′i =

m∑
i=1

g−1
i pi ⊗ vθ ⊗ g′i

=
m∑
i=1

g(g′i)
−1 ⊗ vθ ⊗ g′i =

m∑
i=1

gg−1
i ⊗ vθ ⊗ gi,

as desired.

Proposition 6.5. The natural transformations RCap,RCup,LCap,LCup make IndU,θ and
ResU,θ into a biadjoint pair.

Proof. We must show four adjunction relations.

(a) (RCap⊗ idIndU,θ)(idIndU,θ ⊗ RCup) = idIndU,θ .
To show this we must show that the composition of bimodule maps

k[G]⊗k[P ] k[P ]vθ
id⊗RCup−−−−−→ k[G]⊗k[P ] k[P ]vθ ⊗k[L] k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ

RCap⊗id−−−−−→ k[G]⊗k[P ] k[P ]vθ
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is the identity. We check that for g ∈ G and b ∈ P ,

g ⊗ bvθ 7→ (g ⊗ bvθ)⊗ (vθ ⊗ 1⊗ vθ) 7→ gbvθ ⊗ vθ = g ⊗ bvθ,

as desired.
(b) (idResU,θ ⊗ RCap)(RCup⊗ idResU,θ) = idResU,θ .

The composition of bimodule maps

k[P ]vθ ⊗k[P ] k[G]
RCup⊗id−−−−−→ k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ ⊗k[L] k[P ]vθ ⊗k[P ] k[G]

id⊗RCap−−−−−→ k[P ]vθ ⊗k[P ] k[G]

is given, for b ∈ P and g ∈ G, by

bvθ ⊗ g 7→ bvθ ⊗ 1⊗ vθ ⊗ g 7→ bvθ ⊗ vθg = bvθ ⊗ g,

as desired.
(c) (LCap⊗ idResU,θ)(idResU,θ ⊗ LCup) = idResU,θ .

The composition of bimodule maps

k[P ]vθ ⊗k[P ] k[G]
id⊗LCup−−−−−→ k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ ⊗k[P ] k[G]

LCap⊗id−−−−−→ k[L]⊗k[L] k[P ]vθ ⊗k[P ] k[G] ∼= k[P ]vθ ⊗k[P ] k[G]

is given, for b ∈ P , g ∈ G, by

bvθ ⊗ g 7→
m∑
i=1

bvθ ⊗ gg−1
i ⊗ vθ ⊗ gi 7→ bvθgg

−1
j vθ ⊗ gj = bvθ ⊗ g,

where j ∈ {1, . . . ,m} is the unique index such that gg−1
j ∈ P (the other summands

are killed by LCap). Thus the composition is the identity, as desired.

(d) (idIndU,θ ⊗ LCap)(LCup⊗ idIndU,θ) = idIndU,θ .

The composition of bimodule maps

k[G]⊗k[P ] k[P ]vθ
LCup⊗id−−−−−→ k[G]⊗k[P ] k[P ]vθ ⊗k[P ] ⊗k[G]⊗k[P ] k[P ]vθ

id⊗LCap−−−−−→ k[G]⊗k[P ] k[P ]vθ

is given, for g ∈ G and b ∈ P , by

g ⊗ bvθ 7→
m∑
i=1

g−1
i ⊗ vθ ⊗ gig ⊗ bvθ 7→ g−1

j ⊗ vθgjgbvθ = g ⊗ bvθ,

where j ∈ {1, . . . ,m} is the unique index such that gjg ∈ P . Thus the composition
is the identity, as desired.

This completes the proof of biadjointness. �
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6.4. Bimodule endomorphisms. We begin by discussing the endomorphism algebra of
the functors ResU,θ and IndU,θ. Consider the (k[L],k[G])-bimodule k[P ]vθ ⊗k[P ] k[G]. Let
(k[P ]vθ ⊗k[P ] k[G])P denote the subspace of P -invariants under the conjugation action of P :

(k[P ]vθ ⊗k[P ] k[G])P = {x ∈ k[P ]vθ ⊗k[P ] k[G] | mx = xm for all m ∈ P}.
Any x ∈ (k[P ]vθ ⊗k[P ] k[G])P gives rise to a (k[L],k[G])-bimodule map

′x : k[P ]vθ ⊗k[P ] k[G]→ k[P ]vθ ⊗k[P ] k[G],

determined by setting
′x(vθ ⊗ 1) = x,

so that, for b ∈ L, g ∈ G,
′x(bvθ ⊗ g) = bxg.

Therefore, any x ∈ (k[P ]vθ ⊗k[P ] k[G])P may be considered as a natural transformation

ResU,θ → ResU,θ.

We may define a multiplication on (k[P ]vθ ⊗k[P ] k[G])P by(∑
g∈G

λg(bgvθ ⊗ g)

)(∑
h∈G

µh(dhvθ ⊗ h)

)
=

∑
(g,h)∈G×G

λgµh(dhbgvθ ⊗ gh).

(Note the order of the terms in the product on the right.) It follows from Lemma 6.6 that
this multiplication makes (k[P ]vθ ⊗k[P ] k[G])P into a k-algebra, with unit element vθ ⊗ 1.

Lemma 6.6. The assignment a 7→ ′a induces an isomorphism of k-algebras

(k[P ]vθ ⊗k[P ] k[G])P ' Hom(ResU,θ,ResU,θ),

where Hom(ResU,θ,ResU,θ) denotes the k-algebra of natural transformations of the functor
ResU,θ.

Proof. The k-algebra Hom(ResU,θ,ResU,θ) is isomorphic to the space of (k[L],k[G])-bimodule
maps

{f : k[P ]vθ ⊗k[P ] k[G]→ k[P ]vθ ⊗k[P ] k[G]}.
First we show that the map a 7→ ′a intertwines the multiplication on the two sides. To see
this, let a =

∑
g∈G λg(bgvθ⊗g) and c =

∑
h∈G µh(dhvθ⊗h) be elements of (k[P ]vθ⊗k[P ]k[G])P .

Then
′(ac)(vθ ⊗ 1) =

∑
(g,h)∈G×G

λgµh(dhbg ⊗ gh).

We also have

(′a′c)(vθ ⊗ 1) = ′a

(∑
h∈G

µh(dhvθ ⊗ h)

)
=
∑
h∈G

µhdh
′a(vθ ⊗ 1)h =

∑
(g,h)∈G×G

λgµh(dhbg ⊗ gh),

so that
′(ac)(vθ ⊗ 1) = (′a′c)(vθ ⊗ 1), and therefore ′a′c = ′(ac).

To see that the map a 7→ ′a is injective, let a, c ∈ (k[P ]vθ ⊗k[P ] k[G])P such that ′a = ′c as
bimodule maps. Then

a = a(vθ ⊗ 1) = ′a(vθ ⊗ 1) = ′c(vθ ⊗ 1) = c(vθ ⊗ 1) = c.
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Thus the map is injective. It also now follows that (k[P ]vθ ⊗k[P ] k[G])P is an algebra, since
it is a subalgebra of Hom(ResU,θ,ResU,θ).

To see surjectivity, suppose that

f : k[P ]vθ ⊗k[P ] k[G]→ k[P ]vθ ⊗k[P ] k[G]

is a bimodule map, and set a = f(vθ ⊗ 1). Then is it easy to check that

a ∈ (k[P ]vθ ⊗k[P ] k[G])P

and that f = ′a as bimodule maps. �

Thus the k-algebra (k[P ]vθ ⊗k[P ] k[G])P is isomorphic to the algebra of natural trans-
formations of ResU,θ. Similarly, we may consider (k[G] ⊗k[P ] k[P ]vθ)

P as an algebra, with
multiplication(∑

g∈G

λg(g ⊗ bgvθ)

)(∑
h∈G

µh(h⊗ dhvθ)

)
=

∑
(g,h)∈G×G

λgµh(hg ⊗ bgdhvθ).

Lemma 6.7. The map

τ : (k[P ]vθ ⊗k[P ] k[G])Pop → (k[G]⊗k[P ] k[P ]vθ)
P ,∑

g∈G

λg(bgvθ ⊗ g) 7→
∑
g∈G

λg(g ⊗ bgvθ)

is an isomorphism of algebras.

Proof. The proof of this statement is a straightforward check, which is omitted. Note that
the subscript “op” denotes the opposite algebra. �

Thus, in complete analogy with Lemma 6.6, we have the following.

Lemma 6.8. The algebra (k[G]⊗k[P ] k[P ]vθ)
P is isomorphic to the algebra of natural trans-

formations of the functor IndU,θ, with the element a ∈ (k[G]⊗k[P ] k[P ]vθ)
P giving a bimodule

map via a′(1⊗ vθ) = a.

Proof. The proof is essentially the same as the proof of Lemma 6.6. �

6.5. Cyclicity. Given an element a ∈ (k[P ]vθ ⊗k[P ] k[G])P , we may also consider a as an
element of the opposite algebra

a ∈ (k[P ]vθ ⊗k[P ] k[G])Pop
τ−→ (k[G]⊗k[P ] k[P ]vθ)

P .

Thus the element a of the opposite algebra is identified with the element τ(a) in the algebra
(k[G] ⊗k[P ] k[P ]vθ)

P . From now on, we will identify the bimodule maps ′a and a′ with the
corresponding natural transformations of ResU,θ and IndU,θ. So we have

′a : ResU,θ → ResU,θ, and a′ : IndU,θ → IndU,θ.

Proposition 6.9. For any a ∈ (k[P ]vθ ⊗k[P ] k[G])P , there are the following equalities of
natural transformations:

(a) RCap(a′ ⊗ idResU,θ) = RCap(idIndU,θ ⊗ ′a),
(b) (′a⊗ idIndU,θ)RCup = (idResU,θ ⊗ a′)RCup,
(c) LCap(′a⊗ idIndU,θ) = LCap(idResU,θ ⊗ a′),
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(d) (a′ ⊗ idResU,θ)LCup = (idIndU,θ ⊗′ a)LCup.

Proof. For a ∈ (k[P ]vθ ⊗k[P ] k[G])P , denote by a the image of a under the natural multipli-
cation map in k[G],

(k[P ]vθ ⊗k[P ] k[G])P → k[G]P , a 7→ a.

Similarly, for a ∈ (k[G]⊗k[P ] k[P ]vθ)
P , we will also denote by a the image of a in k[G] under

the multiplication map

(k[G]⊗k[P ] k[P ]vθ)
P → k[G]P , a 7→ a.

Note that
′a(vθ ⊗ 1) = a′(1⊗ vθ) = a ∈ k[G]P ,

so this abuse of notation is mostly harmless.

(a) The left and right hand sides are given by bimodule maps

k[G]⊗k[P ] k[P ]vθ ⊗k[P ] k[G]→ k[G].

For g ∈ G, b ∈ L, the left hand side is the map

g ⊗ bvθ ⊗ h 7→ (gab)⊗ h 7→ gabh ∈ k[G],

while the right hand side is the map

g ⊗ bvθ ⊗ h 7→ g ⊗ (bah) 7→ gbah.

But ba = ab, since b ∈ P and a ∈ k[G]P . Hence the two sides agree.
(b) The left and right hand sides are given by bimodule maps

k[L]→ k[P ]vθ ⊗k[P ] k[G]⊗k[G] k[G]⊗k[P ] k[P ]vθ.

Write a ∈ (k[P ]vθ ⊗k[P ] k[G])P as a =
∑

g∈G λg(vθ ⊗ g), λg ∈ k, so that the left hand
side is the map which sends

1 7→ vθ ⊗ 1⊗ 1⊗ vθ 7→ a⊗ 1⊗ vθ =
∑
g∈G

λg(vθ ⊗ g ⊗ 1⊗ vθ),

while the right hand side is given by

1 7→ vθ ⊗ 1⊗ 1⊗ vθ 7→ vθ ⊗ 1⊗ a =
∑
g∈G

λg(vθ ⊗ 1⊗ g ⊗ vθ),

where now
a =

∑
g∈G

λg(g ⊗ vθ) ∈ (k[G]⊗k[P ] k[P ]vθ)
P

induces the natural transformation a′. Since g moves across the middle tensor product
⊗k[G], the left and right hand sides agree.

(c) The left and right hand sides are given by bimodule maps

k[P ]vθ ⊗k[P ] k[G]⊗k[P ] k[P ]vθ → k[P ]vθ ' k[L].

The left hand side is given by the bimodule map

vθ ⊗ g ⊗ vθ 7→ ag ⊗ vθ 7→ ProjP (ag)vθ.

Similarly, the right hand side is given by the bimodule map

vθ ⊗ g ⊗ vθ 7→ vθ ⊗ ga 7→ ProjP (ga)vθ.
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The agreement of the two sides is given by the equality ProjP (ga) = ProjP (ag), for
a ∈ k[G]P , g ∈ G, which is straightforward to check.

(d) Both sides are bimodule maps

k[G]→ k[G]⊗k[P ] k[P ]vθ ⊗k[P ] k[G].

Writing a =
∑

g∈G λg(vθ ⊗ g), the bimodule map on the left hand side is determined
by the image

1 7→
m∑
i=1

g−1
i ⊗ vθ ⊗ gi 7→

∑
g∈G

m∑
i=1

λg(g
−1
i g ⊗ vθ ⊗ gi).

Since the element
∑m

i=1 g
−1
i ⊗ vθ ⊗ gi is independent of the choice of left P coset

representatives gi, the left hand side can also be written as

1 7→
∑
g∈G

m∑
i=1

λg(g
−1
i′ p

−1
i g ⊗ vθ ⊗ pigi′),

for any pi ∈ P and bijections i 7→ i′ of {1, . . . ,m}, one bijection for each g ∈ G.
The right hand side, on the other hand, is given by

1 7→
m∑
i=1

g−1
i ⊗ vθ ⊗ gi 7→

∑
g∈G

m∑
i=1

λg(g
−1
i ⊗ vθ ⊗ ggi).

Now, for each fixed g, we may write ggi = pigi′ , for some pi ∈ P and some bijection
i 7→ i′ of {1, . . . ,m}. Then g−1

i = g−1
i′ p

−1
i g, and the right hand side may be written as

1 7→
∑
g∈G

m∑
i=1

λg(g
−1
i′ p

−1
i g ⊗ vθ ⊗ pigi′),

which agrees with the left hand side.

�

Thus we have the following theorem.

Theorem 6.10. The natural transformations RCap,RCup,LCap,LCup make IndU,θ and
ResU,θ into a cyclic biadjoint pair.

Corollary 6.11. The functors Ind and Res from Section 5.2 are a cyclic biadjoint pair.

Proof. This follows immediately from Theorem 6.10 after setting G = GLn, L = GLn−1,
U = Un−1,n, and taking θ to be the trivial character. �

Corollary 6.12. The adjunction data of Section 4.3 is cyclic when q is an indeterminate
or a prime power.

Proof. Corollary 6.11, together with the equivalence⊕
n HomAn(Anbn,−) :

⊕
n bnAnbn-mod→

⊕
nHn-mod

of Section 5.4, gives the result for q a prime power. Now suppose that q is an indeterminate.
Proving the adjunction data is cyclic amounts to proving four equalities of bimodule maps
as in Proposition 6.9. After choosing a k[q, q−1]-basis, such maps can be represented by
matrices with entries in k[q, q−1]. Since we have the desired equalities when q is specialized
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to any prime power, the equalities follow for q an indeterminate (here we use the fact that if
two elements of k[q, q−1] are equal at an infinite number of values of q, they are equal). �
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[4] P. Cvitanović. Group theory. Princeton University Press, Princeton, NJ, 2008. Available online.
[5] L. Geissinger. Hopf algebras of symmetric functions and class functions. In Combinatoire et

représentation du groupe symétrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg,
Strasbourg, 1976), pages 168–181. Lecture Notes in Math., Vol. 579. Springer, Berlin, 1977.

[6] A. Gyoja. A q-analogue of Young symmetrizer. Osaka J. Math., 23(4):841–852, 1986.
[7] N. Iwahori. On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. Sci. Univ.

Tokyo Sect. I, 10:215–236 (1964), 1964.
[8] A. Joyal and R. Street. Braided tensor categories. Adv. Math., 102(1):20–78, 1993.
[9] A. Joyal and R. Street. The category of representations of the general linear groups over a finite field.

J. Algebra, 176(3):908–946, 1995.
[10] M. Khovanov. Categorifications from planar diagrammatics. Japan. J. Math. (N.S.), to appear.

arXiv:math/1008.5084.
[11] M. Khovanov. Heisenberg algebra and a graphical calculus. arXiv:math/1009.3295.
[12] M. Khovanov. A functor-valued invariant of tangles. Algebr. Geom. Topol., 2:665–741 (electronic), 2002.
[13] M. Khovanov and A. D. Lauda. A categorification of quantum sl(n). Quantum Topol., 1(1):1–92, 2010.
[14] A. D. Lauda. A categorification of quantum sl(2). arXiv:math/0803.3652.
[15] A. Mathas. Iwahori-Hecke algebras and Schur algebras of the symmetric group, volume 15 of University

Lecture Series. American Mathematical Society, Providence, RI, 1999.
[16] R. Rouquier. 2-Kac-Moody algebras. arXiv:math/0812.5023.
[17] A. V. Zelevinsky. Representations of finite classical groups, volume 869 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 1981. A Hopf algebra approach.

Department of Mathematics, Stanford University

Department of Mathematics and Statistics, University of Ottawa


