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Abstract

We construct representations of both Heiseberg and Clifford algebras on the equivariant cohomology of
the moduli space of framed torsion-free sheaves on P 2, as well as on the equivariant cohomology of the
Hilbert scheme of points on the resolution of a type A simple singularity. This generalizes the earlier work
of Nakajima, Grojnowski, and others.
© 2010 Published by Elsevier Inc.

Keywords: Representation Theory; Moduli space of sheaves; Infinite dimensional Lie algebra

1. Introduction

Denote by M(r, n) be the moduli space of rank r torsion free sheaves on CP2, framed at the
CP1 at ∞, with second Chern class equal to n. M(r, n) is a partial compactification of the moduli
space of U(r) instantons on R4 with instanton number n. An r-dimensional torus T = (C∗)r
acts on M(r, n), and the T -equivariant cohomology of M(r, n) has a natural subspace, denoted
by Hmid

T (M(r, n)), of dimension equal to the Euler characteristic χ(M(r,n)). The generating
function

∞∑
q=0

χ
(
M(r, n)

)
qn =

∞∑
q=0

dim
(
Hmid

T

(
M(r, n)

))
qn =

r∏
i=1

∞∏
m=1

1

(1 − qm)
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s the graded dimension of the r-colored bosonic Fock space representation of an r-dimensional
eisenberg algebra. For each �l ∈ Zr , there is twist of the T action on M(r, n), and we denote the

pace M(r, n) equipped with the �l-twisted T action by M�l(r, n). Considering a generating func-
ion for all M�l (r, n) together yields the graded dimension of the r-colored fermionic Fock space
epresentation of an r-dimensional Clifford algebra. In this paper we give geometric realization
f these Heisenberg and Clifford representations on the equivariant cohomology of the moduli
pace of framed, rank r torsion-free sheaves (see Theorems 2 and 4 of Section 9). When r = 1,

he moduli space M(1, n) is isomorphic to the Hilbert scheme C2[n]
of n points on C2; thus,

ur construction is a natural generalization of the original constructions of Nakajima [17] and
rojnowski [8], as modified by Vasserot [24], of one-dimensional Heisenberg algebra actions on

he cohomology of the Hilbert schemes C2[n]
.

Denote by Xr the resolution of the simple singularity C2/Zr . Parallel to our constructions
n M(r, n), we give a different construction of the same r-colored bosonic and fermionic Fock
paces using the equivariant cohomology of the Hilbert scheme X

[n]
r of n points on Xr . For the

eisenberg algebra, this construction has also been considered by Qin and Wang [21], and is a
econd natural generalization of the original Nakajima/Grojnowski construction on the Hilbert
cheme of points on C2 (which coincides with Xr when r = 1). Thus there are two natural gen-
ralizations of the same construction – in the first, one replaces the surface C2 by the surface Xr ,
nd in the second one replaces rank one torsion-free sheaves by rank r torsion-free sheaves.

Our representations are constructed by exhibiting explicit correspondences inside products
f T -stable subvarieties of the spaces M(r, n), respectively C∗-stable subvarieties of X

[n]
r , and

sing equivariant localization to prove that our correspondences satisfy the defining relations of
eisenberg and Clifford algebras. Representations of Heisenberg and Clifford algebras are very

losely related; in fact, starting from representations of a Clifford algebra, one can construct
epresentations of a Heisenberg algebra, and vice versa. The translation between the language
f bosonic and fermionic operators, which was initially discovered by physicists, is known in
he mathematics literature as the “boson–fermion correspondence”. Our constructions provide a
eometric interpretation of this correspondence. This extends results of Savage [22], who relates

he Heisenberg algebra action on the cohomology of the Hilbert schemes C2[n]
to a geometric

ealization of level one representations of the Lie algebra sl(∞).
The connection between the representation theory of affine Lie algebras and instanton geom-

try was discovered by H. Nakajima in the remarkable work [15,16]. In this work, Nakajima
onstructed representations of infinite dimensional Lie algebras on the homology of quiver
arieties, which are generalizations of U(r)-instanton moduli spaces. In particular, Nakajima
onstructs level r representations of an affine Lie algebra ĝ on the homology of moduli spaces of

(r) instantons on C̃2/Γ , where Γ ⊂ SL(2,C) is a finite subgroup and Γ and ĝ are related by
he McKay correspondence. In his construction the finite subgroup Γ determines the Lie algebra
eing represented and the gauge group U(r) determines the level of the representation.

It seems equally natural, however, to expect algebraic objects associated to G (rather than to

he finite subgroup Γ ) to be related to the topology of moduli spaces of G instantons on C̃2/Γ .
hen Γ = Zk is a cyclic group, a conjecture of I.B. Frenkel says that the homology of the moduli

pace of G instantons on C̃2/Zk should carry level k representations of the affine Lie algebra ĝ

ssociated to G. This second construction of affine Lie algebra representations is different from
he Nakajima construction, in that the gauge group G determines the algebra being represented,
nd the finite subgroup Zk determines the level of the representation.
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005
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To summarize, fix a simply-laced complex affine Lie algebra ĝ, corresponding to both a
compact Lie group G and a finite subgroup Γ . There should be two different constructions of
representations of the Lie algebra ĝ on the homology of instanton moduli spaces:

(a) ĝ acts on the homology of moduli spaces of U(k) instantons on C̃2/Γ . The level of the
representation is determined by the gauge group U(k); and

(b) ĝ acts on the homology of moduli spaces of G instantons on C̃2/Zk . The level of the repre-
sentation is determined by the finite subgroup Zk .

The construction (a) is contained in [15,16]; when k = 1 it is also a special case of a con-
struction of Baranovsky [1]. The constructions of Heisenberg and Clifford modules in this paper
essentially give the construction (b) when G = U(r) is of type A and k = 1. Algebraically, this
passage to representations of the affine Lie algebra ĝl(r) from Fock space representations of
Heisenberg/Clifford algebras uses vertex operators [5,23,10], and it is an interesting problem to
interpret all of the vertex operators used in this passage geometrically. We should also empha-
size that when G �= U(r), the construction (b) is still conjectural. If G �= U(r) and Γ �= Zk , it
is an open problem to determine what sort of exotic representations can be realized using the
corresponding instanton moduli spaces.

When both G and Γ are of type A, the above moduli spaces all have descriptions as Nakajima
quiver varieties, and we expect the constructions (a) and (b) together to give a geometric inter-
pretation of level-rank duality in the representation theory of ĝl(r), first studied algebraically by
Frenkel in [3].

The existence of two geometric constructions of the same representation, one using the vari-
eties M(r, n) and the other using the varieties X

[n]
r suggests a close relationship between these

two varieties. We begin to consider this relationship in the last section of the paper, where we ex-
hibit a curious numerical duality between the cohomologies of M(r, n) and X

[n]
r coming from the

decomposition theorem. This part of the paper owes its existence to discussions with N. Proud-
foot.

Equivariant cohomology and localization have been used before in order to study the topology
of the moduli space M(r, n). Of particular note are the papers [20,19] which contain much of the
equivariant topology used in this paper. The aim of [20,19], which is to study instanton counting,
does not require a geometric realization of representations, and it would be interesting to relate
instanton counting on surfaces to geometric realizations of affine Lie algebra representations. We
also thank H. Nakajima for drawing our attention to Ref. [18], where a very similar construction
of representations of affine Lie algebras is obtained using equivariant localization and the moduli
spaces M(r, n).

2. The Clifford algebra and the Heisenberg algebra

2.1. Partitions and symmetric functions

Let λ = (λ0 � · · · � λm > 0) be a partition of n, which we write using the notation λ � n.
We may associate to λ its Young diagram which we view as a subset of the first quadrant

of Z2, as in [20,19]. Given a pair of partitions λα,λβ , and a point s ∈ Z2, Nakajima and Yoshioka
define the relative hook length hα,β(s), as a function of the arm and leg lengths of s relative to
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005
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he partitions λα and λβ . We refer to [20] for the precise definition, but note here that if λα = λβ

nd s is a point in the Young diagram of the partition, then the relative hook length of s is equal
o its ordinary hook length.

Let Sym be the C-vector space of symmetric functions. Of the many important bases of this
pace, will have occasion to use the following [13]:

he monomial symmetric functions mλ,
he power-sum symmetric functions pλ,
he Schur functions sλ,
he elementary symmetric functions eλ,
he homogeneous symmetric functions hλ,
ym 	 C[p1,p2, . . .] is a polynomial algebra in the power-sum symmetric functions {pn}n>0.

.2. The Clifford algebra

Let Cl be Clifford algebra generated by ψ(k),ψ∗(k), k ∈ Z, and a central element c, with
nti-commutation relations

{
ψ(k),ψ(l)

} = {
ψ∗(k),ψ∗(l)

} = 0,
{
ψ(k),ψ∗(l)

} = δklc.

Define the spin module F to be the unique irreducible Clifford module which admits a vec-
or ν0 such that

cν0 = ν0,

ψ(k)ν0 = 0, ∀k � 0,

ψ∗(k)ν0 = 0, ∀k > 0.

he spin module F is also known as the fermionic Fock space, and this space has a nice realiza-
ion in terms of semi-infinite monomials. A semi-infinite monomial is an infinite expression of
he form

i0 ∧ i1 ∧ i2 ∧ · · ·

here i0 > i1 > i2 > · · · are integers and in = in−1 − 1 for n � 0.
For any semi-infinite monomial i0 ∧ i1 ∧ i2 ∧ · · · , there exists k ∈ Z such that for n � 0,

n = −n+ k, and we will refer to this k as the charge of the semi-infinite wedge i0 ∧ i1 ∧ i2 ∧· · · .
ut another way, the charge of i0 ∧ i1 ∧ i2 ∧ · · · is the integer k such that i0 ∧ i1 ∧ i2 ∧ · · · differs
rom k ∧ k − 1 ∧ k − 2 ∧ · · · at only finitely many places.

Let F (m) be the C-vector space spanned by all semi-infinite monomials of charge m, and let

F =
⊕
m

F (m).
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005
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The action of ψ(k),ψ∗(k) on F is defined by wedging and contracting operators:

ψ(k)(i0 ∧ i1 ∧ · · ·) =
{

(−1)s i0 ∧ · · · ∧ is−1 ∧ k ∧ is · · · , is−1 > k > is,

0, k = is for some s,

ψ∗(k)(i0 ∧ i1 ∧ · · ·) =
{

(−1)s i0 ∧ · · · ∧ is−1 ∧ is+1 · · · , k = is ,

0, k �= is for all s.

If we define an inner product on F by declaring the semi-infinite monomials to be an orthonormal
basis, then ψ(k) and ψ∗(k) are adjoint operators. Note that

ψ(k) : F (m) → F (m + 1)

raises charge by one while

ψ∗(k) : F (m) → F (m − 1)

lowers charge by one.
There is also an r-tuple version of the Clifford algebra, denoted by Clr ; it is generated by

ψi(k),ψ∗
i (k), k ∈ Z, i = 1, . . . , r and a central element c, with anti-commutation relations{

ψi(k),ψj (l)
} = {

ψ∗
i (k),ψ∗

j (l)
} = 0,

{
ψi(k),ψ∗

j (l)
} = δij δklc.

We define the r-colored fermionic Fock space F r by taking the tensor product of r copies of the
space F ,

F r = F ⊗ · · · ⊗ F

so that Clr acts naturally on F r .

2.3. The Heisenberg algebra

The Heisenberg algebra H is the infinite dimensional Lie algebra generated by c, p(n), n ∈ Z,
with commutation relations [

p(n),p(m)
] = nδn+m,0c,[

p(n), c
] = 0.

Let B(k) be the unique irreducible H module which admits a vector ν0 such that

cν0 = ν0,

p(n)ν0 = 0, ∀n < 0,

p(0)ν0 = kν0

and let B = ⊕
B(k).
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005
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B is known as the bosonic Fock space, and this space has a nice realization in terms of sym-
etric functions.
Let Balg = C[q, q−1,p1,p2, . . .], where pi are the power-sum symmetric functions, and let

alg(k) = qkC[p1,p2, . . .] = qk Sym. Define the action of H on the space on Balg(k) by

cf = f,

p(n)f = pnf, ∀n > 0,

p(n)f = ∂

∂pn

f, ∀n < 0,

p(0)f = kf.

utting together the actions for different k, we have an action of H on Balg. We define an inner
roduct on Balg by declaring the elements qmsλ to be an orthonormal basis. With this inner
roduct, the operators p(n) and p(−n) are adjoints.

There is also an r-colored version of the Heisenberg algebra, denoted by Hr . This is the Lie
lgebra generated by c, pi(n), n ∈ Z, i = 1, . . . , r with commutation relations

[
pi(n),pj (m)

] = nδn+m,0δi,j c,[
pi(n), c

] = 0.

f we take r copies of Balg and set Br
alg = Balg ⊗ · · · ⊗ Balg, then we have a natural action of Hr

n Br
alg. We will refer to Br

alg as the r-colored bosonic Fock space.

. The boson–fermion correspondence

We may associate a partition λ = (λ0 � · · · � λk) to a semi-infinite monomial i0 ∧ i1 ∧ · · · of
harge m by setting

λj = ij − m + j.

he correspondence

i0 ∧ i1 ∧ . . . ↔ λ

llows us to define an isometric vector space isomorphism

φ : F → Balg,

φ(i0 ∧ i1 ∧ · · ·) = qmsλ

here i0 ∧ i1 ∧ · · · is a semi-infinite monomial of charge m.
We use this isomorphism to define an action of H on F , and an action of Cl on Balg. More

xplicitly, we define the operators h(k), e(k) as homogeneous components of the generating
unctions
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005
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exp

( ∞∑
n=1

zn

n
p(n)

)
=

∞∑
k=1

h(k)zk,

exp

( ∞∑
n=1

zn

n
p(−n)

)
=

∞∑
k=1

h(−k)z−k

and their inverses

exp

(
−

∞∑
n=1

zn

n
p(n)

)
=

∞∑
k=1

e(−k)z−k,

exp

(
−

∞∑
n=1

zn

n
p(n)

)
=

∞∑
k=1

e(k)zk.

The operators h(k), e(k) are adjoint to the operators h(−k), e(−k), respectively. As opera-
tors on the space of symmetric functions, h(k), k > 0 is multiplication by the homogeneous
symmetric function hk . Similarly, e(k), k > 0 is multiplication by the elementary symmetric
function ek [13].

We also define the shift operator

q : Balg(k) → Balg(k + 1),

q(f ) = qf.

Note that q and q−1 are adjoint operators.

Proposition 1. (See [4].)

(a) As operators on Balg, the bosons can be written in terms of the fermions:

p(n) =
∑
j∈Z

ψ(j + n)ψ∗(j)

if n �= 0, and

p(0) =
∑
j>0

ψ(j)ψ∗(j) −
∑
j�0

ψ∗(j)ψ(j).

(b) As operators B(m) → B(m ± 1), the fermions can be written in terms of the bosons and the
shift operator:

ψ(k) =
∑
n∈Z

qh(n)e(n − m + k),

ψ∗(k) =
∑
n∈Z

q−1e(n)h(n + m + k).
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There is an r-colored version of this correspondence, using the isomorphism F r 	 Br , and r

ifferent shift operators q0, . . . , qr−1. We define the operators hi(k) to be homogeneous compo-
ents of the generating function

exp

( ∞∑
n=1

zn

n
pi(n)

)
=

∞∑
k=1

hi(k)zk

nd similarly for the operators ei(k). In terms of symmetric functions, the operator hi(k) is
ultiplication by the ith coordinate homogeneous symmetric function 1 ⊗ · · · ⊗ hk ⊗ · · ·1 ∈
ymr , and similarly for the ei(k).

roposition 2.

a) As operators on Br
alg, the bosons can be constructed from the fermions:

pi(n) =
∑
k∈Z

ψi(k + n)ψ∗
i (k)

if n �= 0, and

pi(0) =
∑
j>0

ψi(k)ψ∗
i (k) −

∑
j�0

ψ∗
i (k)ψi(k).

b) As operators Br
alg( �m) → Br ( �m ± 1i ), the fermions can be constructed from the bosons and

the shift operators:

ψi(k) =
∑
n∈Z

qihi(n)ei(n − mi + k),

ψ∗
i (k) =

∑
n∈Z

q−1
i ei(n)hi(n + mi + k).

. Quiver varieties

.1. The moduli space M(r, n) of framed torsion-free sheaves on P2

Let V be an n-dimensional vector space, let W be an r-dimensional vector space, and define
paces

M(r, n) = {
(A,B, i, j) ∈ Hom(V ,V ) ⊕ Hom(V ,V ) ⊕ Hom(W,V ) ⊕ Hom(V ,W)

∣∣
[A,B] + ij = 0, stability

}
,

M(r, n) = M(r, n)/GL(n,C).

ere “stability” means that we take only those quadruples (A,B, i, j) satisfying the following
ondition:
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If i(W) ⊂ V ′ ⊂ V for some subset V ′ with A(V ′) ⊂ V ′ and B(V ′) ⊂ V ′, then V ′ = V.

The stability condition guarantees that GL(n,C) acts freely on M(r, n) [15].
M(r, n) is isomorphic to the moduli space of rank r torsion-free sheaves on P2, framed at

the P1 at infinity, with second Chern class equal to n (see [17, Chapter 3]).

4.2. The moduli space X
[n]
r of torsion-free sheaves on C̃2/Zr

For a positive integer r , let Zr ⊂ SL(2,C) be the cyclic subgroup of the diagonal matrices, let
Ri , i = 1, . . . , r be the irreducible representations of Zr , and let Q be the two-dimensional Zr

module defined by the inclusion Zr ↪→ SL(2,C). We also allow r = ∞, in which case we set
Z∞ = C∗, embedded in SL(2,C) as the diagonal matrices. A pair of endomorphisms A,B ∈
Hom(V ,V ) can be considered as a point (A,B) ∈ Hom(Q⊗V,V ). Thus, an action of Zr on the
vector spaces V and W induces an action on Hom(V ,W),Hom(W,V ), and Hom(Q ⊗ V,V ).
Define varieties

M( �w, �v) = {
(A,B, i, j) ∈ HomZk

(Q ⊗ V,V ) × HomZk
(W,V ) × HomZl

(V ,W)
∣∣

[A,B] + ij = 0, stability
}
,

M( �w, �v) = M( �w, �v)
/∏

i

GL(Vi).

Here �w = (w1, . . . ,wr), �v = (v1, . . . , vr ) are the dimension vectors of

W =
⊕

i

Wi ⊗ Ri

and

V =
⊕

i

Vi ⊗ Ri

into irreducible Zr -modules, and HomZr
(Xr,Y ) denotes the Zr -invariant part of Hom(Xr,Y ).

The spaces M( �w, �v) will be called Âr−1 quiver varieties (or A∞ quiver varieties in the case
r = ∞). In the special case that V is a power of the regular representation and W is the trivial
representation, so that �v = (n,n, . . . , n) and �w = (1,0, . . . ,0), the quiver variety M(�v, �w) is

isomorphic to the Hilbert scheme of n points on the ALE space Xr = C̃2/Zr [17]. We will
denote this quiver variety by X

[n]
r .

The r = ∞ case will be of particular importance to us, so for future use we record here the
following lemma.

Lemma 1. Let W = C be the trivial C∗-module, so that �w = (. . . ,0,1,0, . . .), and suppose
dim(V ) = n. Then

(a) The non-empty A∞ quiver varieties M( �w, �v) are all isolated points.
(b) The set of all non-empty A∞ quiver varieties {M( �w, �v)} is in natural bijection with the set

of partitions {λ � n}.
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roof. A proof of this can be found in [17], or [6]. �
Note that if r = 1, both X

[n]
r and M(1, n) are isomorphic to the Hilbert scheme C2[n]

of n

oints on C2.

. Torus actions on quiver varieties

.1. Torus actions on M(r, n)

Let T ′ = (C∗)r ⊂ GL(r,C) be the maximal torus of diagonal matrices.
Let �a = diag(a1, . . . , ar ) ∈ T ′, and for �l = (l1, . . . , lr ) ∈ Zr let b�l = diag(t l1, . . . , t lr ). We

efine an action of an (r + 1)-dimensional torus T = C∗ × T ′ on M(r, n) via

(t, �a)(A,B, i, j) = (
tA, t−1B, i�a−1b−1

�l , b�l �aj
)
.

e denote the space M(r, n) with the above T -action, which depends on the vector �l ∈ Zr , by
�l (r, n). The following lemmas address the structure of the fixed point components of M(r, n)

nder the action of the (r + 1)-dimensional torus T and the r-dimensional torus T ′.

emma 2. The fixed point components M�l (r, n)T
′

are products of Hilbert schemes:

M�l (r, n)T
′ =

∐
∑

ni=n

Ml1(1, n1) × · · · × Mlr (1, nr) 	
∐

∑
i ni=n

C2[n1] × · · · × C2[nr ]
.

roof. A proof of this lemma can be found in [20]. �
The spaces Ml (1, n), l ∈ Z which occur in the above products are all T = C∗-equivariantly

somorphic to the Hilbert scheme C2[n]
, but we will think of spaces corresponding to different

as different moduli spaces. More precisely, for l ∈ Z, let Ll denote the line bundle C2 ×C∗ C,
here C∗ acts on C via t �→ t l . We think of Ml (1, n) as the moduli space of rank 1 framed

orsion-free subsheaves E ⊂ Ll with c2(E ) = n. The map⊗
Ll : Mk(1, n) → Mk+l (1, n)

s a C∗-equivariant isomorphism.
In order to study the fixed points of M�l (r, n) under the action of the larger torus T , we first

onsider the case r = 1:

emma 3. Let �wl be the vector which is 1 in the lth spot and 0 elsewhere. Then the T -fixed point
et Ml (1, n)T consists of isolated points, which are naturally identified with the set of A∞ quiver
arieties:

Ml(1, n)T =
∐

∑
vi=n

M( �wl, �v).
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

Original text:
Inserted Text:
$r+1$

Original text:
Inserted Text:
$r+1$

Original text:
Inserted Text:
correponding



ARTICLE IN PRESS
JID:YAIMA AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.11 (1-39)

A.M. Licata / Advances in Mathematics ••• (••••) •••–••• 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

Proof. A proof of this lemma can be found in either [17] or [22]. �
This implies that for all k ∈ Z, the collection of A∞ quiver varieties

∐∑
vi=n M( �wk, �v) can

be naturally identified with the set of partitions {λ � n} of charge k.
Putting these lemmas together, we can identify the T -fixed points M(r, n)T :

Lemma 4. The T fixed points M�l (r, n)T are isolated and naturally identified with the set of
r-tuples of A∞ quiver varieties,

M�l(r, n)T =
∐

(�v1,...,�vr )|∑vi,j =n

M( �wl1, �v1) × · · · × M( �wlr , �vr),

or, equivalently, with the set of all r-tuples of partitions (λ1, . . . , λr ) whose total size is n.

Proof. This follows immediately from the previous lemmas. �
The important point to note is that for each �l ∈ Zr and each n � 0 we have a space M�l (r, n),

equipped with an action of the torus T , and the fixed point components of this action have been
identified as r-tuples of A∞ quiver varieties.

5.2. Torus actions on X
[n]
r

There is a natural embedding [7,9]

Xr ↪→ (
C2[r])Zr ,

where the Zr action on C1[n]
is induced from the action of Zr on C2. This Zr action commutes

with the C∗ action on C2[n]
; as a result, both Xr and all of the Hilbert schemes X

[n]
r inherit C∗

actions. In order to distinguish the situation when C∗ acts on X
[n]
r from torus actions on M(r, n),

we will denote the torus which acts on X
[n]
r by T ∨.

For each �l ∈ H 2
C∗(Xr,Z) 	 Zr , we have a line bundle L�l whose first equivariant Chern class

is �l. Given �l ∈ Zr , we define Xr
[n]
�l to be the moduli space of rank 1 torsion-free subsheaves of L�l .

The idea of using these various moduli spaces together for different line bundles L�l together at
once also appears in [21]. We have isomorphisms

⊗
L�k : Xr

[n]
�l → Xr

[n]
�l+�k.

Lemma 5. The fixed points (Xr
[n]
�l )T

∨
are isolated, and in natural bijection with r-tuples of A∞

quiver varieties with dim(V ) = n, or, equivalently, with the set of all r-tuples of partitions
(λ1, . . . , λr) whose total size is n.

Proof. The set XT ∨
r consists of r isolated points, corresponding to the r hook partitions (k,1n−k)

of (C2[r]
)T = {λ � r} under the [7,9] embedding. The fixed points x1, . . . , xr are thus naturally
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005
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rdered. There is an open cover (constructed explicitly, for example, in [21]) of Xr by r open sets
1, . . . ,Ur , such that xi is the origin of Ui 	 C2, and the action of T ∨ on Ui in local coordinates

s of the form t (u, v) = (tru, t−rv). Since any point y ∈ (Xr
[n]
�l )T

∨
is supported on XT ∨

r , we have

y 	 y1 ⊕ · · · ⊕ yr

here yi ∈ (U
[ni ]
i ) and

∑
i ni = n. �

Alternatively, another proof of this lemma can also be found in [12]. This implies the follow-
ng corollary, which motivates our parallel treatment of the quiver varieties Xr

[n]
�l and M�l(r, n).

orollary 1. For any n � 0 and any �l ∈ Zr , there is a canonical identification of fixed point sets

(
Xr

[n]
�l

)T ∨ ↔ M�l (r, n)T .

roof. Both sets are in canonical bijection with the set of r-tuples of partitions of total size n,
nd with the set of all r-tuples of A∞ quiver varieties with dim(V ) = n. �
.3. Weight spaces at �λ ∈ M�l(r, n)T

Let eα , α = 1, . . . , r denote the one-dimensional T character

eα : (t, e1, . . . , er ) �→ eα.

imilarly, we regard t as a T character. Let �λ = (λ1, . . . , λr) be a T -fixed point of M�l(r, n). The
angent space U�λ to M�l(r, n) at �λ is a T -module.

roposition 3. The weight space decomposition of the T -module U�λ is given by

U�λ =
r∑

α,β=1

N
α,β

�λ

here

N
α,β

�λ = eβe−1
α t lβ−lα ×

(∑
s∈λα

t−hβ,α(s) +
∑
s∈λβ

thα,β (s)

)
,

nd hα,β(s) is the relative hook length of s, relative to the partitions λα,λβ .

roof. This computation can be found in [20]. �
Since the fixed point components M�l (r, n)T

′
are products of Hilbert schemes, the tangent

pace U ′
�λ to the subvariety M�l(r, n)T

′
at �λ can be inferred from the r = 1 special case of the

bove formula:
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Proposition 4. The weight space decomposition of the T -module U ′
�λ is given by

U ′
�λ =

r∑
α=1

Nα
�λ

where

Nα
�λ =

∑
s∈λα

t−hα(s) +
∑
s∈λα

thα(s),

and hα(s) = hα,α(s) is the ordinary hook length of s in the partition λα .

Proof. Follows from taking r = 1 in the last proposition on each of the partitions λ1, . . . , λr

separately. �
Note that U ′

�λ picks out exactly the terms α = β from U�λ.

Corollary 2. The weight space decomposition of the normal bundle N�λ to M�l(r, n)T
′
in M�l(r, n)

at �λ is given by

N�λ =
∑
α �=β

N
α,β

�λ .

Proof. This follows immediately from the previous two propositions. �
5.4. Weight spaces at �λ ∈ (Xr

[n]
�l )T

∨

Let �λ be a T ∨-fixed point in X
[n]
r . The tangent space U ∨

�λ to X
[n]
r at �λ is a T ∨ module, and the

weight space decomposition is given by the following proposition.

Proposition 5. The weight space decomposition of the T ∨ module U ∨
�λ is given by

U ∨
�λ =

r∑
α=1

(
N∨)α

�λ

where (
N∨)α

�λ =
∑
s∈λα

t−rhα(s) +
∑
s∈λα

trhα(s),

and hα(s) = hα,α(s) is the ordinary hook length of s in the partition λα .

Proof. We write the T ∨ action at xα ∈ XT ∨
r in terms of local coordinates – if u,v are local

coordinates of the C2 chart who’s origin is the fixed point xα ∈ XT ∨
r , then the action is
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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t (u, v) = (
t ru, t−rv

)
.

hus, the weight space decomposition is just the same as in the bundle U ′ of the previous section,
ith t replaced by t r . �
. Equivariant cohomology of quiver varieties

Let M be a quiver variety of complex dimension 2m, and suppose that T = (C∗)k acts on M

ith isolated fixed points. Let BT be the classifying space of T , and let ET be the universal
undle. T acts freely on the space ET , and hence freely on the product M×ET . The equivariant
ohomology of M is defined to be the ordinary cohomology of the quotient space M ×T ET .

H ∗
T (M) = H ∗(M ×T ET ).

e will always use complex coefficients for the equivariant cohomology of M . H ∗
T (M) is a

odule over R = H ∗
T (pt). Let R denote the field of fractions of R, and let H∗

T (M) = H ∗
T (M)⊗R

be the localized equivariant cohomology of M.
All of the usual cohomological constructions carry over to the equivariant setting. In partic-

lar, if V is a T -equivariant vector bundle on M, we have equivariant Chern classes ck(V ) ∈
2k
T (M). If V is an n-dimensional vector bundle, the top equivariant Chern class cn(V ) is called

he equivariant Euler class of V , and is denoted by e(V ).
We endow H∗

T (M) with an inner product given by

〈 , 〉 : H∗
T (M) × H∗

T (M) → R,

〈x, y〉 = (−1)mp∗(i∗)−1(x ∪ y)

here i is the inclusion

i : MT ↪→ M

nd p is the unique map from MT to a point

p : MT → {pt}.

or a T -stable smooth subvariety Y ⊂ M, the normal bundle NY to Y in M is a T -equivariant
ector bundle. If a one-parameter subgroup C∗ ↪→ T acts trivially on Y , then this subgroup
nduces a splitting

NY = N+
Y ⊕ N0

Y ⊕ N−
Y

here

N+
Y =

⊕
n>0

NY (n)

s the positive weight space of C∗,
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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N−
Y =

⊕
n<0

NY (n)

is the negative weight space of C∗, and N0
Y is the zero weight space.

If T̃ ⊂ T is the subgroup of T which acts trivially on Y , then by choosing a generic one-
parameter subgroup C∗ ↪→ T̃ to define our splitting,we can guarantee that N0

Y = 0, so that the
C∗-fixed points of Y are isolated.

We can choose a splitting such that the equivariant Euler classes of the bundles N+
Y ,N−

Y

satisfy

e
(
N+

Y

) = (−1)ke
(
N−

Y

)
,

where k = 1
2 codimC(Y ). We will describe this splitting for our quiver varieties M�l (r, n) and

Xr
[n]
�l in the next subsection.

6.1. Equivariant Euler classes for M�l (r, n) and Xr
[n]
�l

Example 1. Let

Y = M�l(r, n)T
′ =

∐
∑

ni=n

C2[n1] × · · · × C2[nr ]
.

Then the Normal bundle U ′ to Y splits as a direct sum

U ′ =
⊕
α �=β

Nα,β .

We choose the one-parameter subgroup given by (1,1) × (1, t, t2, . . . , t r−1) ∈ T so that

U ′+ =
⊕
α<β

Nα,β,

U ′− =
⊕
α>β

Nα,β .

Then, looking at the character for the tangent bundle, we see that

e
(

U ′+) = (−1)(r−1)ne
(

U ′−)
.

Example 2. On the other hand, if we let

Y = M�l(r, n)T ,

then the fixed points are isolated, and the normal bundle at �λ is the full tangent bundle U . We
choose the one-parameter subgroup (tr , t−r ) × (1, t, t2, . . . , t r−1) ∈ T , which also has isolated
fixed points. Then,

e
(

U +) = (−1)rne
(

U −)
.
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xample 3. Finally, let

Y = (
Xr

[n]
�l

)T ∨
.

ince T ∨ is already one-dimensional, there is no need to choose a one-parameter subgroup- the
angent bundle splits naturally, and

e
(

U ∨+) = (−1)ne
(

U ∨−)
.

.2. Localization and the transport map η

We return now to the general case of a smooth, T -stable subvariety Y ⊂ M. Let iY : Y → M

e the inclusion. For x ∈ H ∗
T (Y ), define η(x) by

η(x) = iY ∗(x) ∪ e
(
N−)−1 =

∑
j

iYj ∗(x) ∪ e
(
N−

j

)−1

here {Yj } are the connected components of Y .
By the localization theorem, the map η is injective, and a priori the image of η lies in the

ocalized equivariant cohomology of M. However, the argument of [14], Section 6 shows the
ollowing:

emma 6. If x ∈ H ∗
T (Y ) then η(x) ∈ H ∗

T (M).

roof. Repeat the argument of [14] Section 6. �
Thus, η : H ∗

T (Y ) → H ∗
T (M) is a well-defined injective map on (non-localized) equivariant

ohomology. The image of η is a subspace of the equivariant cohomology of M which is central
o all of our constructions, so for the rest of the paper we will denote η(H 0

T (MT )) by

Hmid
T (M) := η

(
H 0

T

(
MT

))
.

roposition 6. The dimension of Hmid
T (M) is equal to the Euler characteristic χ(M).

roof. The dimension of Hmid
T (M) is clearly equal to the number of fixed points #{MT }. This

umber is equal to the dimension of the total ordinary cohomology H ∗(M), since M has a
ialinicki–Birula decomposition with one complex cell for each fixed point. Thus M has no odd
imensional homology, and

dim
(
Hmid

T (M)
) = dim

(
H ∗(M)

) = χ(M). �
emma 7. Let Y ⊂ M be a T -stable smooth subvariety, and let

η : H ∗
T

(
MT

) → H ∗
T (M),

η′ : H ∗
T

(
YT

) → H ∗
T (Y ),

η′′ : H ∗(Y ) → H ∗(M)
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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be the corresponding transport maps. Then

η′′(Hmid
T (Y )

) ⊂ Hmid
T (M).

Proof. Let y ∈ YT , and let N,N ′ be the tangent bundles to M at y and to Y at y, respectively.
Then N = N ′ ⊕ N ′′, where N ′′ is the normal bundle to Y in M at y. It follows that

η = η′′η′. �
Proposition 7. The restriction of 〈 , 〉 to Hmid

T (M) is non-degenerate and C valued.

Proof. By the localization theorem, the classes η(1λ) for points λ ∈ MT form a basis of
Hmid

T (M). So, we compute〈
η(1λ), η(1μ)

〉 = (−1)mp∗(i∗)−1(η(1λ) ∪ η(1μ)
)

= (−1)mp∗(i∗)−1(iλ∗(1λ) ∪ iμ∗(1μ) ∪ e
(
N−

λ

)− ∪ e
(
N−

μ

)−)
= δλ,μ(−1)me(Nλ)

−2e(Tλ) = δλ,μ.

Thus, the classes η(1λ) form an orthonormal basis, and the bilinear form restricted to Hmid
T (M)

is C-valued and non-degenerate. �
We will denote the restriction of 〈 , 〉 to Hmid

T (M) by 〈 , 〉 as well.

Corollary 3.

η : Hmid
T (Y ) → Hmid

T (M)

is an isometry.

Proof. Let

η1 : H 0
T

(
YT

) → Hmid
T (Y ),

η2 : H 0
T

(
YT

) → Hmid
T (M).

Then, by the computation in the above lemma, η1 and η2 are isometries. But η2 = ηη1, and η1 is
surjective. Thus η is an isometry. �
6.3. Localization of correspondences

Let M1,M2 be quiver varieties with a T -action, and let Y1 ⊂ M1, Y2 ⊂ M2 be T -stable
smooth subvarieties. Let Z ⊂ Y1 × Y2 be a T -stable correspondence, so that the fundamental
class [Z] defines a linear map

[Z] : H ∗
T (Y1) → H ∗

T (Y2),

[Z](a) = q2∗
(
q∗(a) ∪ [Z]).
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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ere q1, q2 are the projections from Y1 × Y2 to Y1, Y2 respectively. We extend η to a map on
orrespondences by setting

η
([Z]) = (i1 × i2)∗

([Z]) ∪ (
e
(
N+

1

)−1 ⊗ e
(
N−

2

)−1)
o that η([Z]) defines a linear map

η
([Z]) : H ∗

T (M1) → H ∗
T (M2),

η
([Z])(b) = p2∗

(
p∗

1(b) ∪ η
([Z])).

ere p1,p2 are the projections from M1 × M2 to M1,M2, respectively.

heorem 1.

η
([Z])(η(x)

) = η
([Z](x)

)
.

roof. Let

pj : M1 × M2 → Mj j = 1,2

nd

qj : Y1 × Y2 → Yj j = 1,2

e the projection maps, and let

ij : Yj → Mj j = 1,2

e the inclusion. Then

η
([Z])(η(x)

) = p2∗
(
p∗

1

(
η(x)

) ∪ η
([Z]))

= p2∗
(
p∗

1

(
i1∗(x) ∪ e

(
N−

1

)−1) ∪ (i1 × i2)∗
([Z]) ∪ e

(
N+

1

)−1 ∪ e
(
N−

2

)−1)
= p2∗

(
p∗

1

(
i1∗(x)

) ∪ (i1 × i2)∗
([Z]) ∪ e(N1)

−1 ∪ e
(
N−

2

)−1)
= p2∗(i1 × i2)∗

(
(i1 × i2)

∗p∗
1

(
i1∗(x)

) ∪ [Z] ∪ e(N1)
−1 ∪ e

(
N−

2

)−1)
= i2∗q2∗

(
q∗

1 i∗1
(
i1∗(x)

) ∪ [Z] ∪ e(N1)
−1 ∪ e

(
N−

2

)−1)
= i2∗q2∗

(
q∗

1 (x) ∪ e(N1) ∪ [Z] ∪ e(N1)
−1 ∪ e

(
N−

2

)−1)
= i2∗q2∗

(
q∗

1 (x) ∪ [Z]) ∪ e
(
N−

2

)−1

= η
([Z](x)

)
. �
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Corollary 4. If [Z] : Hmid
T (Y1) → Hmid

T (Y2) then

η
([Z]) : Hmid

T (M1) → Hmid
T (M2).

Proof. If x ∈ Hmid
T (Y1), then η(x) ∈ Hmid

T (M1). By assumption [Z](x) ∈ Hmid
T (Y2), so that

η([Z](x)) ∈ Hmid
T (M2). The claim now follows from the above theorem. �

The above theorem and corollary will allow us to compute the (anti-)commutation relations
of an operator [Xr ] and its adjoint [Xr ]∗ on

⊕
n,�l H

mid
T (M�l (r, n)) by computing relations of the

transported operators η−1([Xr ]), η−1([Xr ]∗) on
⊕

n,�l H
∗
T (Y (n)) for suitably chosen T -stable

subvarieties Y(n) ⊂ M�l (r, n).
In particular, the inclusions

M�l (r, n)T
′
↪→ M�l (r, n),

M�l(r, n)T ↪→ M�l(r, n),(
Xr

[n]
�l

)T ∨
↪→ Xr

[n]
�l

give rise to three different maps

η′ : Hmid
T

(
M�l(r, n)T

′) → Hmid
T

(
M�l(r, n)

)
,

η : Hmid
T

(
M�l(r, n)T

) → Hmid
T

(
M�l (r, n)

)
,

η∨ : Hmid
T ∨

((
Xr

[n]
�l

)T ∨) → Hmid
T ∨

(
Xr

[n]
�l

)
,

which will be used to check that the Heisenberg and Clifford operators defined in the subsequent
chapters satisfy the defining relations of the Heisenberg and Clifford algebras.

7. Geometric construction of the Clifford operators

7.1. The spaces Br and Br∨

We begin by defining the fundamental spaces

Br =
⊕
n,�l

Hmid
T

(
M�l (r, n)

)
and

Br∨ =
⊕
n,�l

Hmid
T ∨

(
Xr

[n]
�l

)
.

Br and Br∨ will be the underlying vector spaces of our representations of Heisenberg, Clifford,
and affine Lie algebras.
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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.2. Clifford operators on B for r = 1

For simplicity, we begin with the case r = 1; note that in this case B = B∨. Moreover, when
= 1, the quadruple of quiver data (A,B, i, j) always have j = 0, see [17].

For x = (A,B, i) ∈ M(1l , �v), y = (A′,B ′, i′) ∈ M(1l , �u), we write

x � y

f there exists S ⊂ V an A,B-stable subspace of dimension �v − �u such that

(AV/S,BV/S, iV/S) = (
A′,B ′, i′

)
.

ere M(1l , �v) is the affine space used to define the A∞ quiver variety M(1l , �v), and AV/S,BV/S

re the endomorphisms of the quotient space V/S induced from A and B .
For a Z-graded vector space V of dimension �v and homogeneous maps A,B ∈ Hom(V ,V ),

et A(V ) and B(V ) denote the images of the linear maps A and B . Let a(�v) and b(�v) denote the
imension vectors of the vector spaces A(V ),B(V ) respectively.

If x = (A,B, i) ∈ M(1l , �v), note that A(x) := (AA(V ),BA(V ),Ai) defines a point in
(1l+1, a(�v)).
Similarly, B(x) := (AB(V ),BB(V ),Bi) defines a point in M(1l−1, b(�v)).
Given a pair of integers k > l let �kl be the vector

kl(i) =
{

1, l < i < k,

0, otherwise.

Define α(k)l,�v ⊂ M(1l , �v) × M(1l+1, �v + �kl) as follows:

α(k)l,�v = {
(x, y)

∣∣ y � A(x)
}
.

odding out by the GL(Vk) actions in both factors, α(k)l,�v defines a correspondence, which we
enote by α(k)l,�v

α(k)l,�v ⊂ M(1l , �v) × M
(
1l+1, �v + �kl

)
.

et β(k)l,�v denote the adjoint correspondence obtained by swapping the factors M(1l , �v) and
(1l+1, �v + �kl).
Similarly, if k � l, let �kl be the vector

kl(i) =
{

1, k − 1 < i < l,

0, otherwise.

efine β(k)l,�v ⊂ M(1l , �v) × M(1l−1, �v + �kl) as follows:

β(k)l,�v = {
(x, y)

∣∣ y � B(x)
}
.
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Modding out by the GL(Vk) actions in both factors, β(k)l,�v defines a correspondence

β(k)l,�v ⊂ M(1l , �v) × M(1l−1, �v + �kl).

Let α(k)l,�v denote the adjoint correspondence obtained by swapping the factors M(1l , �v) and
M(1l−1, �v + �kl).

For k, l ∈ Z, �v = (vm)m∈Z, let

n(k, l, �v) =
{

vk, k > l,

vk + l − k, k � l.

Define operators ψ(k), ψ∗(k), k ∈ Z by

ψ(k) =
⊕
l∈Z,�v

(−1)n(k,l,�v)
[
α(k)l,�v

]
,

ψ∗(k) =
⊕
l∈Z,�v

(−1)n(k,l,�v)
[
β(k)l,�v

]
,

and these operators act on the cohomology of all of the A∞ quiver varieties.

Since the fixed points
∐

n,l(C
2
l

[n]
)C∗

are canonically identified with the A∞ quiver varieties,
we may define operators

η
(
ψi(k)

)
, η

(
ψ∗

i (k)
) : B → B,

by using the map

η :
⊕
n,l

Hmid
C∗

((
C2

l

[n])C∗) →
⊕
n,l

Hmid
C∗

(
C2

l

[n]) = B,

extended naturally to a map on correspondences, as described in Section 6.3. Note that, by con-
struction, the operators η(ψi(k)) and η(ψ∗

i (k)) are adjoint to one another with respect to the
inner product on B.

7.3. Clifford operators on Br for r > 1

On r-component products of A∞ quiver varieties we have r different correspondences

αi(k)l,�v, βi(k)l,�v, i = 1, . . . , r

modifying only the r different factors of the product. Denote by ψi(k),ψ∗
i (k), i = 1, . . . , r the

resulting operators, which act on the homology of the ith factor of the product. Since the fixed
points

∐
n,�l M�l (r, n)T are naturally r-component products of A∞ quiver varieties, we can define

operators

ηr

(
ψi(k)

)
, ηr

(
ψ∗(k)

) : Br → Br ,
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Q3

Q4

Q5

Q6

here

ηr :
⊕
n,�l

Hmid
T

(
M�l (r, n)T

) →
⊕
n,�l

Hmid
T

(
M�l(r, n)

) = Br

s extended to a map on correspondences as in Section 6.3. Note that, by construction, the op-
rators ηr(ψi(k)) and ηr(ψ

∗
i (k)) are adjoint to one another with respect to the geometric inner

roduct on Br .

.4. Clifford operators on Br∨ for r > 1

Since the T ∨ fixed points of Xr
[n]
�l are also naturally given by r-component products of A∞

uiver varieties, we can also define operators

η∨
r

(
ψi(k)

)
, η∨

r

(
ψi

∗(k)
) : Br∨ → Br∨

sing the map

η∨
r :

⊕
n,�l

Hmid
T ∨

((
Xr

[n]
�l

)T ∨) → H mid
T ∨

(
Xr

[n]
�l

) = Br∨
.

ote that the operators η∨
r (ψi(k)) and η∨

r (ψi
∗(k)) are adjoint with respect to the geometric inner

roduct on Br∨.

. Geometric construction of Heisenberg operators

.1. Heisenberg operators on B for r = 1

We begin first which the case r = 1; in this case the construction of Heisenberg operators is
ue independently to Nakajima [17] and Grojnowski [8]. Define

Zo ⊂
∐
n,k

C2[n] × C2[k] × C2[n+k]

o be the variety of triples (A,B,C) such that A and B have disjoint support, and there exists an
xact sequence

0 → A → C → B → 0.

et Z = Zo. The fundamental classes [Z] of the components of Z define a multiplication

[Z] : B ⊗ B → B

hich makes B into a commutative algebra. Define a C∗ action on C2 by

t � (x, y) = (tx, y).
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This induces a C∗ action (also denoted by �) on the Hilbert scheme C2[n]
, and this action com-

mutes with symplectic action of C∗ used when taking equivariant cohomology. The fixed point
components with respect to the � action (which are not in general isolated) are naturally enu-
merated by partitions λ � n [17], and we denote the fixed point component corresponding to λ

by Cλ.

For n > 0, define classes p(n), e(n),h(n) ∈ Hmid
C∗ (C2[n]

) by

p(n) =
[{

z ∈ C2[n] ∣∣ lim
t→0

t � z ∈ C(n)

}]
,

e(n) =
[{

z ∈ C2[n] ∣∣ lim
t→0

t � z ∈ C(1n)

}]
,

h(n) =
[{

z ∈ C2[n] ∣∣ lim
t→0

t � z exists
}]

.

The class p(n) has an alternative description as the fundamental class of the subvariety

P(n) ⊂ C2[n]

of schemes supported at a single point somewhere on the x-axis of C2.
Multiplications by the above classes give operators

p(n), e(n),h(n) : B → B.

For n < 0, define p(n), h(n), e(n) as the adjoints to p(−n),h(−n), e(−n), respectively, with
respect to the geometric inner product on B. The operators p(n) will be our Heisenberg operators,
while the operators e(n),h(n) will be important for our geometric interpretation of the boson–
fermion correspondence.

8.2. Heisenberg operators on Br for r > 1

Recall the action of T ′ = (C∗)r on M�l(r, n), and that the T ′-fixed point components of
M�l (r, n) are products of Hilbert schemes:

M�l(r, n)T
′ =

∐
∑

ni=n

C2[n1] × · · · × C2[nr ]
.

We can define operators

η′
r

(
p(n)

)
, η′

r

(
e(n)

)
, η′

r

(
h(n)

) : Br → Br

using the map

η′
r :

⊕
n,�l

Hmid
T

(
M�l(r, n)T

′) →
⊕
n,�l

Hmid
T

(
M�l(r, n)

) = Br ,

extended naturally to correspondences, as in Section 6.3.
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.3. Heisenberg operators on Br∨ for r > 1

Define

Zo ⊂
∐
n,k

X[n]
r × X[k]

r × X[n+k]
r

o be the variety of triples (A,B,C) such that A and B have disjoint support, and there exists an
xact sequence

0 → A → C → B → 0.

et Z = Zo. The fundamental classes [Z] of the components of Z define a multiplication

[Z] : Br∨ ⊗ Br∨ → Br∨

hich makes Br∨ into a commutative algebra, just as in the case r = 1. For a closed, T ∨-invariant
urve Σ ⊂ Xr , we define the closed subvariety

PΣ(n) ⊂ X[n]
r

o be the set of all length n subschemes of Xr which are supported at a single point of Σ .
ultiplication by the fundamental class [P(Σ)] ∈ Hmid

T ∨ (X
[n]
r ) gives an operator

pΣ(n) : Br∨ → Br∨
.

ince the fundamental classes of T ∨-invariant curves Σ span the vector space H 2
T ∨(Xr), we

ay extend by linearity and define an operator pα(n) for any α ∈ H 2
T ∨(Xr). In particular, if ηr

enotes the map

η∨
r : H 0

T ∨
(
XT ∨

r

) → H 2
T ∨(Xr),

hen each fixed point xi , i = 1, . . . , r gives rise to an operator p(η∨
r (xi)). We will abuse notation

lightly to preserve the symmetry with the construction of Section 8.2, and denote these operators
y η∨

r (pi(n)).
In order to define the operators η∨

r (hi(n)) and η∨
r (ei(n)), we will use the following lemma.

emma 8. Let r = 1, so that Xr = C2, and suppose n > 0. Then the classes h(n) and e(n) are
olynomials in the {p(k)}k∈Z.

roof. This statement is proven in the last chapter of [17]. �
In other words, there are polynomials Hn,En such that

h(n) = Hn

(
. . . , p(−2),p(−1), . . . , p(k), . . .

)
,

e(n) = En

(
. . . , p(−2),p(−1), . . . , p(k), . . .

)
,
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so, for α ∈ H 2
T ∨(Xr), we define hα(n) and eα(n) by replacing p(k) with pα(k) in these expres-

sions:

hα(n) = Hn

(
. . . , pα(−2),pα(−1), . . . , pα(k), . . .

)
,

eα(n) = En

(
. . . , pα(−2),pα(−1), . . . , pα(k), . . .

)
.

In particular, we have operators corresponding to the fixed point classes η∨
r (xi) ∈ H 2

T ∨(Xr), and
we denote these operators by η∨

r (hi(n)) and η∨
r (ei(n)). Finally, for n < 0, define

η∨
r

(
pi(n)

)
, η∨

r

(
hi(n)

)
, η∨

r

(
ei(n)

)
as adjoints of

η∨
r

(
pi(−n)

)
, η∨

r

(
hi(−n)

)
, η∨

r

(
ei(−n)

)
with respect to the inner product on Br∨.

9. The proof of the relations

9.1. The Clifford algebra

For simplicity in the statement of the main proposition, we will drop the η, η∨ notation of
the previous sections in the statement of the main proposition. Thus, what follows, the operators
ψi(k),ψ∗

i (k) can be interpreted as either the operators ηr(ψi(k)), ηr(ψ
∗
i (k)) of Section 7.3 or as

the operators η∨
r (ψi(k)), η∨

r (ψ∗
i (k)) of Section 7.4.

Let ν0 = 1 ∈ H 0
T (M(r,0)) = H 0

T (pt), respectively ν0 = H 0
T ∨(X

[0]
r ) = H 0

T ∨(pt).

Proposition 8. The operators ψi(k),ψ∗
i (k) satisfy the following anti-commutation relations:

ψi(k)ν0 = 0, ∀k � 0, i = 0, . . . , r − 1,

ψ∗
i (k)ν0 = 0, k > 0, i = 0, . . . , r − 1,{

ψi(k),ψj (l)
} = {

ψ∗
i (k),ψ∗

j (l)
} = 0,

{
ψi(k),ψ∗

j (l)
} = δij δkl .

Proof. We will prove the proposition for the operators of the first construction, Section 7.3. The
proof for the operators of Section 7.4 is identical.

Let

F r =
⊕
n,�l

H 0
T

(
M�l (r, n)T

)
.

We will consider the operators

η−1(ψi(k)
)
, η−1(ψ∗(k)

) : F r → F r
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nd prove that they have the above commutation relations. For convenience, we will drop the
otation η−1, and denote our transported operators by ψi(k), ψ∗

i (k) as well. In addition, since
i (k),ψ∗

i (k) and ψj(k),ψ∗
j (k) for i �= j act on different coordinates in the product of A∞ quiver

arieties, the only interesting case is the case i = j ; thus we may consider the case r = 1, and
rop the subscripts i, j .

In order to prove this proposition for r = 1, it will be convenient to identify the vector space F
ith the semi-infinite wedge space. Given an A∞ quiver variety M(1l , �v), we define subsets
+
�v,l

,C−
�v,l

,C�v,l ⊂ Z by

C+
�v,l

= {k > l | vk �= vk−1},
C−

�v,l
= {k � l | vk = vk−1},
C�v,l = C+

�v,l
∪ C−

�v,l
.

rranging the elements of C�v,l in descending order, C�v,l = {i0, i1, . . .} we get a semi-infinite
edge

C�v,l �→ i0 ∧ i1 ∧ i2 ∧ · · · .
e define the charge of a semi-infinite wedge i0 ∧ i1 ∧ i2 ∧ · · · to be the integer m such that

n = m−n for n sufficiently large; in this way the quiver variety M(1l , �v) corresponds to a semi-
nfinite wedge of charge l. Let Fl denote the C-span of the semi-infinite wedges of charge l. We
efine a vector space isomorphism

Fl =
⊕

�v
H 0

C∗
(
M(1l , �v)

) → Fl

y mapping 1 ∈ H 0
C∗(M(1l , �v)) to the semi-infinite wedge corresponding to M(1l , �v). The fol-

owing lemma, which is easy to check, relates to coordinate entries vk of �v to the integers
ppearing in the corresponding semi-infinite monomial.

emma 9. If M(1l , �v) corresponds to the wedge i0 ∧ i1 ∧ i2 ∧ · · · then the number of elements
n the set {i0, i1, i2, . . .} which are greater than k is

vk, if k > l,

vk + l − k, if k � l.

The anti-commutation relations of the operators ψ(k), ψ∗(k) will follow immediately from
he following proposition.

roposition 9.

ψ(k)(i0 ∧ i1 ∧ · · ·) =
{

(−1)s i0 ∧ · · · ∧ is−1 ∧ k ∧ is · · · , is−1 > k > is,

0, k = is for some s,

ψ∗(k)(i0 ∧ i1 ∧ · · ·) =
{

(−1)s i0 ∧ · · · ∧ is−1 ∧ is+1 · · · , k = is ,

0, k �= is for all s.
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Proof. Fix l ∈ Z. It suffices to show that the proposition holds for the operators ψ(k), k > l and
ψ∗(k), k � l.

We begin with the operators ψ(k), k > l.
Suppose M(1l , �v) is non-empty and M(1l , �v) ↔ (i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·).
Then M(1l+l , �v + �kl) is non-empty if and only if k /∈ {i0, i1, i2 . . .}. If M(1l+1, �v + �kl) is

non-empty, then the projections

p1 : α(k) → M(1l , �v),

p2 : α(k) → M
(
1l+1, �v + �kl

)
induce identity maps on cohomology, since the varieties involved are all points.

It follows that

[
α(k)

]
(i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·) = i0 ∧ i1 ∧ · · · ∧ is ∧ k ∧ is+1 ∧ · · ·

= (−1)s+1k ∧ i0 ∧ i1 ∧ · · · ∧ in ∧ · · · ,

where is > k � is+1. Therefore

ψ(k)(i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·) = (−1)vk
[
α(k)

]
(i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·).

But by the previous lemma vk is the number of elements in the set {i0, i1, . . .} which are greater
than k, i.e. vk = s, where is−1 > k > is .

�⇒ ψ(k)(i0 ∧ i1 ∧ · · ·) =
{

(−1)si0 ∧ · · · ∧ is−1 ∧ k ∧ is · · · , is−1 > k > is,

0, k = is for some s.

Now suppose that k � l. We will consider the operators ψ∗(k). We have that M(1l+1, �v + �kl) is
non-empty if and only if k ∈ {i0, i1, i2, . . .}. As in the case ψ(k), k > l, we have

ψ∗(k)(i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·) = (−1)vk+l−k
[
β(k)

]
(i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·)

=
∑
j∈Z

δij ,k(−1)vk+l−ki0 ∧ i1 ∧ · · · ∧ îj ∧ · · · .

But vk + l − k is the number of elements in {i0, i1, i2, . . .} which are greater than k

�⇒ ψ∗(k)(i0 ∧ i1 ∧ · · · ∧ in ∧ · · ·) =
∑
j∈Z

δij ,k(−1)j i0 ∧ i1 ∧ · · · ∧ îj ∧ · · ·

=
{

(−1)s i0 ∧ · · · ∧ is−1 ∧ is+1 · · · , k = is ,

0, k �= is for all s.

This completes the proof of the proposition. �
As an immediate corollary, we get the following theorems.
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heorem 2. The operators ηr(ψi(k)), ηr (ψ
∗
i (k)) on the space

Br =
⊕
�l,n

Hmid
T

(
M�l (r, n)

)
ive a geometric realization of an irreducible module for the Clifford algebra Clr .

heorem 3. The operators η∨
r (ψi(k)), η∨

r (ψ∗
i (k)) on the space

B∨r =
⊕
�l,n

Hmid
T ∨

(
Xr

[n]
�l

)
ive a geometric realization of an irreducible module for the Clifford algebra Clr .

.2. The Heisenberg algebra

roposition 10. The operators η′(pi(n)), n ∈ Z, i = 0, . . . , r − 1 satisfy

η′(pi(n)
)
ν0 = 0, n < 0,[

η′(pi(n)
)
, η′(pj (m)

)] = nδi,j δn+m,0Id.

roof. Recall the isomorphism

η′ :
⊕

n

Hmid
T

(
M�l(r, n)T

′) →
⊕

n

Hmid
T

(
M�l (r, n)

)
.

e will consider the operators pi(n) := η′−1(η(pi(n))), and show that they satisfy the same
elations. Since pi(n) and pj (m) act on different factors of M�l(r, n)T

′
, the only interesting case

s i = j ; thus we may consider the case r = 1.

For a partition λ ∈ (C2[n]
)C∗

, we have a class [λ] = η(1λ) ∈ Hmid
C∗ (C2[n]

). The classes {[λ]}λ�n

orm an orthonormal basis of Hmid
C∗ (C2[n]

), so we can construct an isometric vector space iso-
orphism

φ : Sym →
⊕

n

Hmid
C∗

(
C2[n])

,

φ(sλ) = [λ]
y sending the Schur function sλ to the class [λ]. Then we have the following two lemmas.

emma 10. The map φ is an isomorphism of algebras.

roof. This is proved in [24]. �
emma 11. The monomial symmetric functions are realized geometrically by the varieties Lλ:

φ(mλ) = [Lλ].
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Proof. This is proved in [24]. �
In particular, the operator p(n), n > 0 is the image under φ of multiplication by the power-

sum symmetric function pn. Since φ is an isometry, the adjoint operator p(−n) corresponds to
the differential operator ∂/∂pn. The proposition then follows from

∂/∂pn(1) = 0

and

[pn, ∂/∂pm] = nδn,mId. �
Thus we have the following theorem:

Theorem 4. For any �l ∈ Zr , the operators η′(pi(n)) on the space

Br
�l =

⊕
n

Hmid
T

(
M�l (r, n)

)
give a geometric realization of an irreducible module for the Heisenberg algebra Hr .

Moreover, the same proof works on the space B∨r (see also [17] and [21]) giving us the
companion theorem:

Theorem 5. For any �l ∈ Zr , the operators η∨(pi(n)) on the space

B∨r
�l =

⊕
n

Hmid
T ∨

(
Xr

[n]
�l

)
give a geometric realization of an irreducible module for the Heisenberg algebra Hr .

Of course, the construction of Heisenberg algebra actions on ordinary cohomology analog of
the space B∨r is due to Nakajima [17] and Grojnowski [8]. The modification of this Heisen-

berg action to equivariant cohomology in the case of the Hilbert scheme C2[n]
(r = 1) is due

to Vasserot [24], while the straightforward modification to equivariant cohomology on X
[n]
r also

appears in Qin and Wang [21]. The main new point for us is that these same representations can
be realized using moduli spaces M(r, n) of higher rank torsion-free sheaves.

9.3. Level one representations of ĝl(r)

Let gl(r) denote the Lie algebra of r × r matrices. Let hi = eii be the diagonal matrix units.
The Cartan subalgebra of diagonal matrices will be denoted by h. We denote the weight lattice
of gl(r) by P . Let g̃l(r) denote the corresponding affine Lie algebra

g̃l(r) = gl(r) ⊗ C
[
t, t−1] ⊕ Cc ⊕ Cd,
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here c is a basis for the one-dimensional central extension and d is the degree operator. Let
= P ⊕ Zc ⊕ Zd be the weight lattice of ĝl(r), and let

P̂ ++ = {a−1d + a0h0 + · · · + ar−1hr−1 | a−1 � a0 � · · · � ar−1}

enote the set of dominant weights. For λ ∈ P̂ ++, denote by V (λ) the irreducible ĝl(r) module
ith highest weight λ. The integer m = 〈λ, c〉 is called the level of the representation V (λ).
One constructs highest weight representations of ĝl(r) [5,23,10] from the fermionic or

osonic Fock spaces constructed above by using vertex operators to extend the action of the
lifford or Heisenberg algebra to an action of the entire affine Lie algebra. In order to construct

he level one representations of ĝl(r) inside the fermionic Fock space F r , we introduce the nor-
al ordering

:ψi(k)ψ∗
j (l): =

{
ψi(k)ψ∗

j (l), if j > 0,

−ψ∗
j (l)ψi(k), if j � 0.

e can then define an action of ĝl(r) on F r by setting

ei,j ⊗ tk �→
∑
n∈Z

:ψi(n + k)ψ∗
j (n):.

n particular, the r-dimensional Heisenberg algebra (called the “homogeneous Heisenberg sub-
lgebra”)

Hr = h ⊗ C
[
t, t−1] ⊕ Cc

cts on F r as in the boson–fermion correspondence above

hi ⊗ tk �→
∑
n∈Z

:ψi(n + k)ψ∗
i (n):.

he spaces

F r (m) =
∑

m0+···+mr−1=m

F (m0) ⊗ · · · ⊗ F (mr−1)

re all irreducible level one representations of ĝl(r), and all of the irreducible level one represen-
ations of ĝl(r) are realized as F r (m) for some m. The representation corresponding to m = 0 is
nown as the basic representation.

Alternatively, one can start from the tensor product of the irreducible Heisenberg algebra
epresentation Symr and the lattice group algebra C[Zr ], and construct the bosonic Fock space

Br
alg = Symr ⊗C

[
Zr

]
.

he operators given by the action of the Heisenberg algebra and translation in the lattice can
e put together using vertex operators to define an action of ĝl(r) on the space Br , which
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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decomposes into irreducible level one representations; this construction is known as the Frenkel
and Kac construction [5]. The isomorphism between the constructions of ĝl(r) on F r and on Br

essentially follows from the boson–fermion correspondence, and is discussed in [4].
Passing from representations of the Heisenberg algebra Hr or Clifford algebra Clr to a rep-

resentation of the affine Lie algebra ĝl(r), we can use our geometric constructions identify the
basic representation of ĝl(r). Let Q 	 Zr−1 ⊂ Zr be the balanced sublattice whose entries sum
to 0. Then our construction of Heisenberg and Clifford modules immediately implies the follow-
ing theorem.

Theorem 6. The basic representation of ĝl(r) can be realized geometrically on the vector space⊕
�l∈Q,n

Hmid
T

(
M�l (r, n)

)
,

as well as on the vector space ⊕
�l∈Q,n

Hmid
T ∨

(
Xr

[n]
�l

)
.

Proof. This construction can be accomplished using the Heisenberg operators η′
r (pi(n)) and

η∨
r (pi(n)) as in the Frenkel–Kac construction [5], or using the Clifford operators ηr(ψi(k)),

ηr(ψ
∗
i (k)) and η∨

r (ψi(k)), η∨
r (ψ∗

i (k)), as in [2] and [11]. �
In [17,16,8], the basic representation of the affine Lie algebra ŝl(r) is constructed on the

ordinary cohomology of moduli spaces of rank one torsion-free sheaves on Xr . Our construction
on Br∨ extends this construction to an action of ĝl(r) on equivariant cohomology. The ĝl(r)

action on Br , however, is quite different from the action on Br∨, in that the appearance of the
rank r Lie algebra gl(r) is related to the rank of the sheaves in M(r, n), whereas in [17,16,8],
the Lie algebra is related to the geometry of the underlying surface Xr .

10. Geometric interpretation of the boson–fermion correspondence

10.1. The boson–fermion correspondence

We have constructed fermionic operators η(ψi(k)), η(ψ∗
i (k)) and bosonic operators η(pi(n))

on the space

Br =
⊕
n,�l

Hmid
T

(
M�l(r, n)

)
,

as well as fermionic operators η∨(ψi(k)), η∨(ψ∗
i (k)) and bosonic operators η∨(pi(n)) on the

common space

Br∨ =
⊕

�
Hmid

T ∨
(
Xr

[n]
�l

)
.
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n both cases, we can relate the bosonic operators to the fermionic operators, giving a geometric
ealization of the boson–fermion correspondence. The result in this section should be compared
o the main result of [22], which considers the case r = 1 and uses localization to relate the action
f the bosonic operators p(n) on B with an action of sl(∞) on B . We remark that the sl(∞)

ction considered in [22] can be constructed from the Clifford algebra action we constructed
n the previous chapter. In order to state the result concisely, we drop the ηr and η∨

r from the
otation, so that pi(n) denotes either ηr(pi(n)) or η∨

r (pi(n)).
In order to state our geometric boson–fermion correspondence, we need to define r other

perators qi , i = 1, . . . , r which acts as our translation operator in the lattice Zr . Recall that

H 2
C∗

(
M(r,1)T

′
,Z

) 	 Zr ,

H 2
C∗(Xr,Z) 	 Zr ,

nd that for all �l ∈ Zr there are line bundles L�l ,L
∨
�l on M(r,1)T

′
,Xr respectively with equiv-

riant Chern class equal to �l. In particular, for coordinate vectors 1i = (0, . . . ,1, . . . ,0) we have
ine bundles Li,L

∨
i . Define operators, both denoted by Qi , by tensoring with these line bundles:

Qi =
⊗

L∨
i : Br∨ → Br∨

,

Qi = η′(⊗Li

) : Br → Br .

hese operators are geometric versions of the shift operators qi needed in the boson–fermion
orrespondence.

heorem 7.

a) As operators on Br or Br∨, the bosons can be written in terms of the fermions:

pi(n) =
∑
k∈Z

ψi(k)ψ∗
i (k + n)

if n �= 0, and

pi(0) =
∑
j>0

ψi(k)ψ∗
i (k) −

∑
j�0

ψ∗
i (k)ψi(k).

b) For fixed �m ∈ Zr , as operators Br ( �m) → Br ( �m ± 1i ) or Br∨( �m) → Br∨( �m ± 1i ), the
fermions can be written in terms of the bosons and the shift operators:

ψi(k) =
∑
n∈Z

Qihi(n)ei(n − mi + k),

ψ∗
i (k) =

∑
n∈Z

Q−1
i ei(n)hi(n + mi + k).
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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Proof. Recall the algebraic version of the r-colored bosonic Fock space

Br
alg = Balg ⊗ · · · ⊗ Balg,

where

Balg = C
[
q, q−1,p1,p2, . . .

]
.

We denote the vector q
l0
0 sλ0 ⊗ · · · ⊗ qlr−1sλr−1 ∈ Br

alg by q
�ls�λ. The vectors {q�ls�λ}λ,�l form an

orthonormal basis of Br
alg.

The maps

φ : Br
alg → Br

and

φ∨ : Br
alg → Br∨

given by

φ
(
q

�ls�λ
) = η

([�λ]�l
) ∈ Hmid

T

(
M�l(r, n)

)
and

φ∨(
q

�ls�λ
) = η∨([�λ]�l

) ∈ Hmid
T ∨

(
Xr

[n]
�l

)
are isometric algebra isomorphisms. This implies that the operators hi(n), ei(n) correspond un-
der φ to multiplication by the homogeneous symmetric functions (hi)n and the elementary
symmetric functions (ei)n for n > 0 and to their adjoints for n < 0. Of course, since φ is an
isometry and an algebra isomorphism, it is also an isomorphism of Heisenberg modules.

Similarly, our Clifford algebra action was constructed so that φ is also an isomorphism of
Clifford modules. The theorem now follows from the algebraic formulation of the boson–fermion
correspondence. �
10.2. Geometric realization of level k representations

The decomposition of
∐

n,�l M�l (r, n) into connected components induces a natural grading on
the vector space

Br =
⊕
n,�l

Hmid
T

(
M�l (r, n)

)
.

For any matrix unit ei,j ∈ gl(r), the operator ei,j ⊗ tm ∈ ĝl(r) is homogeneous with respect to
this grading in the sense that if x ∈ Br is supported in one summand, then ei,j ⊗ tm(x) will be a
class supported in one summand of Br .
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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The inclusion Zk ↪→ C∗ × 1 ⊂ T induces an action of Zk on the spaces M�l(r, n) such that the

onnected components of the fixed point set
∐

n,�l M�l (r, n)Zk are Âk−1 quiver varieties.

Since the T -fixed points of
∐

n,�l M�l(r, n) are the same as the T -fixed points of
∐

n,�l M�l(r, n)Zk ,
here is a natural vector space isomorphism

Br =
⊕
n,�l

Hmid
T

(
M�l (r, n)

) 	
⊕
n,�l

Hmid
T

(
M�l(r, n)Zk

)
,

nd the decomposition of
∐

n,�l M�l(r, n)Zk into connected components induces another (more re-
ned) grading of Br . In general, elements of the form ei,j ⊗ tm are not homogeneous with respect

o this new grading, but elements of the form ei,j ⊗ tkm are homogeneous with respect to it. Thus,

he operators in the subalgebra ĝl(r)k = gl(r) ⊗ C[tk, t−k] ⊕ Cc can be constructed naturally as
quivariant cohomology classes inside the products of Âk−1 quiver varieties. We hope to study
his geometric realization of both the subalgebra ĝl(r)k and of Nakajima’s commuting level r ac-
ion of ŝl(k) in future work. We expect these commuting operators to give a geometric realization
f the level-rank duality first discovered in [3].

1. Comparing the geometry of M(r,n) and X
[n]
r

Since the same representation can be geometrically constructed using two different geome-
ries, we may ask for geometric relationships between the underlying moduli spaces. In the
resent case, we seek a relationship between

U(r) instantons on C̃2/Zk

nd

U(k) instantons on C̃2/Zr .

n the rest of this section we address this question for k = 1 by considering the associated semi-
mall resolutions.

1.1. The resolution π∨ : X[n]
r → Sn(C2/Zr )

Let Sn(C2/Zr ) denote the nth symmetric product of the singular variety C2/Zr . Sn(C2/Zr )

s naturally stratified

Sn
(
C2/Zr

) =
∐

0�k�n λ�n−k

Sn−k
λ

(
C2/Zr

)
,

here Sn−k
λ (C2/Zr ) is the subspace of the symmetric product where the singular point (the

rigin) occurs with multiplicity k, and the rest of the configuration is of partition type λ. The
ilbert–Chow morphism

X[n]
r → Sn(Xr)
Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and
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and the resolution

Xr → C2/Zr

together give a resolution

π∨ : X[n]
r → Sn

(
C2/Zr

)
which is semismall with respect to the above stratification, [Na-ICM]. For a point y ∈
Sn−k

λ (C2/Zr ), denote the fiber (π∨)−1(y) by F∨λ
k . Then the decomposition theorem gives a

graded vector space isomorphism

H ∗(X[n]
r

) =
⊕
k,λ

IH∗(Sn−k
λ

(
C2/Zr

)) ⊗ H top(F∨λ
k

)
.

11.2. The resolution π : M(r, n) → M0(r, n)

Let M0(r, n) denote the Uhlenbeck compactification of the moduli space of framed locally-
free sheaves Mreg(r, n) [17, Chapter 3]. M0(r, n) has a stratification

M0(r, n) =
∐

0�k�n λ�n−k

Mk
λ

where

Mk
λ = Mreg(r, k) × Sn−k

λ

(
C2),

and Mreg(r, k) is the moduli space of framed locally-free sheaves on P2 with second Chern class
c2 = k. By a result of Baranovsky [1], the resolution

π : M(r, n) → M0(r, n),

E �→ (
E ∨∨, supp

(
E ∨∨/E

))
is semismall with respect to the above stratification. For x ∈ Mk

λ, let π−1(x) = Fλ
n−k denote the

fiber of π over x. The decomposition theorem gives a graded vector space isomorphism

H ∗(M(r, n)
) =

⊕
k,λ

IH∗(Mk
λ

) ⊗ H top(Fλ
n−k

)
.

11.3. Numerical symplectic duality for M(r, n) and X
[n]
r

We may now state the main result of this section. Recall that Fλ
n−k denotes the fiber of π over

a point x ∈ Mk , while F∨λ denotes the fiber of π∨ over a point y ∈ Sn−k(C2/Zr ).
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heorem 8. For all k, 0 � k � n, and any partition λ � n − k, we have

dim
(
IH∗(Sn−k

λ

(
C2/Zr

))) = dim
(
H top(Fλ

n−k

))
nd

dim
(
IH∗(Mk

λ

)) = dim
(
H top(Fλ

k

∨))
.

Thus, in the decomposition of the vector spaces H ∗(M(r, n)) and H ∗(X[n]
r ) provided by the

esolutions π and π∨, the dimensions of top fiber cohomology and total intersection cohomology
re exchanged. In the rest of this section we will prove Theorem 8.

roposition 11. There is an equality of generating functions

∞∑
n=0

dim
(
H ∗(X[n]

r

))
qn =

∞∑
n=0

dim
(
H ∗(M(r, n)

))
qn =

∞∏
m=1

1

(1 − qm)r
.

roof. A Bialinicki–Birula cell decomposition of X
[n]
r and M(r, n) gives

dim
(
H ∗(X[n]

r

)) = #
(
X[n]

r

)T ∨

nd

dim
(
H ∗(M(r, n)

)) = #
(
M(r, n)

)T
.

ince both fixed point sets are naturally identified with the set of r-tuples of partitions of total
ize n, the proposition follows from the standard generating function for partitions. �
roposition 12. The generating function for the Uhlenbeck compactification is given by

∞∑
n=0

dim
(
IH∗(M0(r, n)

))
qn =

∞∏
m=1

1

(1 − qm)r−1
.

roof. In [1], Baranovsky computes the ratio of generating functions∑∞
n=0 dim

(
H ∗(M(r, n)

))
qn∑∞

n=0 dim
(
IH∗(M0(r, n)

))
qn

=
∞∏

m=1

1

(1 − qm)
,

hich, along with the previous proposition, gives the result. �
roposition 13. The generating function for the middle oridinary cohomology of the Hilbert
cheme is given by

∞∑
n=0

dim
(
Hmid(X[n]

r

))
qn =

∞∏
m=1

1

(1 − qm)r−1
.
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Proof. This follows directly from a theorem of Göttsche, see [17], which computes the generat-
ing function of graded Poincaré polynomials for the Hilbert scheme. �

Let F∨(n) = π∨−1
(0) denote the central fiber of the resolution

π∨ : X[n]
r → Sn

(
C2/Zr

)
.

Corollary 5. For all n � 0,

dim
(
H top(F∨(n)

)) = dim
(
IH∗(M0(r, n)

))
.

Proof. It follows from Propositions 11 and 12 that

∞∑
n=0

dim
(
IH∗(M0(r, n)

))
qn =

∞∏
m=1

1

(1 − qm)r−1

which, by the Proposition 13, implies that

∞∑
n=0

dim
(
Hmid(X[n]

r

))
qn =

∞∑
n=0

dim
(
IH∗(M0(r, n)

))
qn,

i.e.

dim
(
Hmid(X[n]

r

)) = dim
(
IH∗(M0(r, n)

))
.

Since F∨(n) is a deformation retract of X
[n]
r and

dim
(
F∨(n)

) = 1

2
dim

(
X[n]

r

)
,

it follows that

H top(F∨(n)
) 	 Hmid(X[n]

r

)
,

which proves the corollary. �
We can now prove Theorem 8.

Proof. We first show that

dim
(
IH∗(Sn−k

λ

(
C2/Zr

))) = dim
(
H top(Fλ

n−k

)) 	 C.

Let Sλ(C2/Zr ) = Sν1(C2/Zr ) × · · · × Sνn(C2/Zr ), where λ = (1ν12ν2 · · ·nνn) � k. The map
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κ : Sλ
(
C2/Zr

) → Sn−k
λ

(
C2/Zr

)
,

κ(C1, . . . ,Cn) =
∑
j

jCj

s finite and birational [17], and respects the natural stratifications on both varieties. Thus,

IH∗(Sn−k
λ

(
C2/Zr

)) 	 IH∗(Sλ
(
C2/Zr

)) 	 C.

n the other hand, Fλ
n−k is irreducible, [1], so

H top(Fλ
n−k

) 	 C

s well, proving the first half of Theorem 8.
Now we will show that

dim
(
IH∗(Mk

λ

)) = dim
(
H top(Fλ

k

∨))
.

nce again, there is a finite birational morphism respecting the induced stratifications [1]

κ : M0(r, k) × Sλ
(
C2) → Mk

λ,

o that

dim
(
IH∗(Mk

λ

)) = dim
(
IH∗(M0(r, k)

))
.

On the other hand, F∨λ
k , the fiber over x ∈ Sn−k

λ (C2/Zr ), is isomorphic to F∨(k) × Q,
here Q is irreducible, and F∨(k) is the central fiber of the resolution

π∨ : X[k]
r → Sk

(
C2/Zr

)
.

ince Q is irreducible,

dim
(
H top(F∨λ

k

)) = dim
(
H top(F∨(k)

))
.

hus, the second half of Theorem 8 follows from the equality

dim
(
IH∗(M0(r, k)

)) = dim
(
H top(F∨(k)

))
U
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