AUTHOR QUERY FORM

	Journal: YAIMA	Please e-mail or fax your responses and any corrections to:
200 A	Article Number: 3554	E-mail: corrections.essd@elsevier.vtex.lt
ELSEVIER	Alucie Number, 5554	Fax: +1 61 9699 6735

Dear Author,

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Electronic file usage

Sometimes we are unable to process the electronic file of your article and/or artwork. If this is the case, we have proceeded by:

Scanning (parts of) your article Rekeying (parts of) your article Scanning the artwork

Articles in Special Issues: Please ensure that the words 'this issue' are added (in the list and text) to any references to other articles in this Special Issue.

Uncited references: References that occur in the reference list but not in the text – please			
position each reference in the text or delete it from the list.			
Missing references: References listed below were noted in the text but are missing from the			
reference list -	- please make the list complete or remove the references from the text.		
Location in	Query / remark		
article	Please insert your reply or correction at the corresponding line in the		
	proof		
Q1, Q2	Please check: we changed P (in CP^2), for consistency with text, – Ok? P^2 in abstract – Ok? (p. 1/ line 8,24)		
Q3, Q4, Q5, Q6, Q7, Q8	Please check: B ^{rv} (etc.); and B ^{vr} – Ok? (p. 22/ line 10,15,19,24; p. 29/ line 23,34)		
Q9	Ref. cited with mark [Na-ICM] in the text is missing from the References list. Please complete the list or remove citation from the text. (p. 35/ line 10)		

Thank you for your assistance.

JID:YAIMA AID:3554 /FLA

ARTICLE IN PRESS

[m1+; v 1.121; Prn:14/06/2010; 10:32] P.2(1-39)

A.M. Licata / Advances in Mathematics ••• (••••) •••--•••

is the graded dimension of the r-colored bosonic Fock space representation of an r-dimensional Heisenberg algebra. For each $\vec{l} \in \mathbb{Z}^r$, there is twist of the T action on $\mathfrak{M}(r, n)$, and we denote the space $\mathfrak{M}(r, n)$ equipped with the \vec{l} -twisted T action by $\mathfrak{M}_{\vec{l}}(r, n)$. Considering a generating funcз з tion for all $\mathfrak{M}_7(r, n)$ together yields the graded dimension of the r-colored fermionic Fock space representation of an r-dimensional Clifford algebra. In this paper we give geometric realization of these Heisenberg and Clifford representations on the equivariant cohomology of the moduli space of framed, rank r torsion-free sheaves (see Theorems 2 and 4 of Section 9). When r = 1, the moduli space $\mathfrak{M}(1, n)$ is isomorphic to the Hilbert scheme $\mathbb{C}^{2^{[n]}}$ of *n* points on \mathbb{C}^2 ; thus, our construction is a natural generalization of the original constructions of Nakajima [17] and Grojnowski [8], as modified by Vasserot [24], of one-dimensional Heisenberg algebra actions on the cohomology of the Hilbert schemes $\mathbb{C}^{2^{[n]}}$.

Denote by X_r the resolution of the simple singularity $\mathbb{C}^2/\mathbb{Z}_r$. Parallel to our constructions on $\mathfrak{M}(r, n)$, we give a different construction of the same r-colored bosonic and fermionic Fock spaces using the equivariant cohomology of the Hilbert scheme $X_r^{[n]}$ of n points on X_r . For the Heisenberg algebra, this construction has also been considered by Oin and Wang [21], and is a second natural generalization of the original Nakajima/Grojnowski construction on the Hilbert scheme of points on \mathbb{C}^2 (which coincides with X_r when r = 1). Thus there are two natural gen-eralizations of the same construction – in the first, one replaces the surface \mathbb{C}^2 by the surface X_r , and in the second one replaces rank one torsion-free sheaves by rank r torsion-free sheaves.

Our representations are constructed by exhibiting explicit correspondences inside products of T-stable subvarieties of the spaces $\mathfrak{M}(r,n)$, respectively \mathbb{C}^* -stable subvarieties of $X_r^{[n]}$, and using equivariant localization to prove that our correspondences satisfy the defining relations of Heisenberg and Clifford algebras. Representations of Heisenberg and Clifford algebras are very closely related; in fact, starting from representations of a Clifford algebra, one can construct representations of a Heisenberg algebra, and vice versa. The translation between the language of bosonic and fermionic operators, which was initially discovered by physicists, is known in the mathematics literature as the "boson-fermion correspondence". Our constructions provide a geometric interpretation of this correspondence. This extends results of Savage [22], who relates the Heisenberg algebra action on the cohomology of the Hilbert schemes $\mathbb{C}^{2^{[n]}}$ to a geometric realization of level one representations of the Lie algebra $sl(\infty)$.

The connection between the representation theory of affine Lie algebras and instanton geom-etry was discovered by H. Nakajima in the remarkable work [15,16]. In this work, Nakajima constructed representations of infinite dimensional Lie algebras on the homology of quiver varieties, which are generalizations of U(r)-instanton moduli spaces. In particular, Nakajima constructs level r representations of an affine Lie algebra \hat{g} on the homology of moduli spaces of U(r) instantons on \mathbb{C}^2/Γ , where $\Gamma \subset SL(2,\mathbb{C})$ is a finite subgroup and Γ and \hat{g} are related by the McKay correspondence. In his construction the finite subgroup Γ determines the Lie algebra being represented and the gauge group U(r) determines the level of the representation.

It seems equally natural, however, to expect algebraic objects associated to G (rather than to the finite subgroup Γ) to be related to the topology of moduli spaces of G instantons on \mathbb{C}^2/Γ . When $\Gamma = \mathbb{Z}_k$ is a cyclic group, a conjecture of **I**.B. Frenkel says that the homology of the moduli space of G instantons on $\mathbb{C}^2/\mathbb{Z}_k$ should carry level k representations of the affine Lie algebra \hat{g} associated to G. This second construction of affine Lie algebra representations is different from the Nakajima construction, in that the gauge group G determines the algebra being represented, and the finite subgroup \mathbb{Z}_k determines the level of the representation.

JID:YAIMA AID:3554 /FLA

q

ARTICLE IN PRESS [m1+; v 1.121; Prn:14/06/2010; 10:32] P.3 (1-39)

To summarize, fix a simply-laced complex affine Lie algebra \hat{g} , corresponding to both a compact Lie group G and a finite subgroup Γ . There should be two different constructions of representations of the Lie algebra \hat{g} on the homology of instanton moduli spaces:

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

- (a) \hat{g} acts on the homology of moduli spaces of U(k) instantons on \mathbb{C}^2/Γ . The level of the representation is determined by the gauge group U(k); and
- (b) ĝ acts on the homology of moduli spaces of G instantons on C²/Z_k. The level of the representation is determined by the finite subgroup Z_k.

The construction (a) is contained in [15,16]; when k = 1 it is also a special case of a con-struction of **Baranovsky** [1]. The constructions of Heisenberg and Clifford modules in this paper essentially give the construction (b) when G = U(r) is of type A and k = 1. Algebraically, this passage to representations of the affine Lie algebra gl(r) from Fock space representations of Heisenberg/Clifford algebras uses vertex operators [5,23,10], and it is an interesting problem to interpret all of the vertex operators used in this passage geometrically. We should also empha-size that when $G \neq U(r)$, the construction (b) is still conjectural. If $G \neq U(r)$ and $\Gamma \neq \mathbb{Z}_k$, it is an open problem to determine what sort of exotic representations can be realized using the corresponding instanton moduli spaces.

When both G and Γ are of type A, the above moduli spaces all have descriptions as Nakajima quiver varieties, and we expect the constructions (a) and (b) together to give a geometric interpretation of level-rank duality in the representation theory of $\widehat{gl(r)}$, first studied algebraically by Frenkel in [3].

The existence of two geometric constructions of the same representation, one using the varieties $\mathfrak{M}(r, n)$ and the other using the varieties $X_r^{[n]}$ suggests a close relationship between these two varieties. We begin to consider this relationship in the last section of the paper, where we exhibit a curious numerical duality between the cohomologies of $\mathfrak{M}(r, n)$ and $X_r^{[n]}$ coming from the decomposition theorem. This part of the paper owes its existence to discussions with N. Proudfoot.

Equivariant cohomology and localization have been used before in order to study the topology of the moduli space $\mathfrak{M}(r, n)$. Of particular note are the papers [20,19] which contain much of the equivariant topology used in this paper. The aim of [20,19], which is to study instanton counting, does not require a geometric realization of representations, and it would be interesting to relate instanton counting on surfaces to geometric realizations of affine Lie algebra representations. We also thank H. Nakajima for drawing our attention to Ref. [18], where a very similar construction of representations of affine Lie algebras is obtained using equivariant localization and the moduli spaces $\mathfrak{M}(r, n)$.

2. The Clifford algebra and the Heisenberg algebra

2.1. Partitions and symmetric functions

Let $\lambda = (\lambda_0 \ge \cdots \ge \lambda_m > 0)$ be a partition of n, which we write using the notation $\lambda \vdash n$. We may associate to λ its Young diagram which we view as a subset of the first quadrant of \mathbb{Z}^2 , as in [20,19]. Given a pair of partitions $\lambda_{\alpha}, \lambda_{\beta}$, and a point $s \in \mathbb{Z}^2$, Nakajima and Yoshioka define the *relative hook length* $h_{\alpha,\beta}(s)$, as a function of the arm and leg lengths of s relative to 47

ITD	
4	$[mi+; \forall 1.121; Prn:14/06/2010; 10:32] P.4(1-39)$ $A M Licata / Advances in Mathematics \bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$
the	partitions λ_{α} and λ_{β} . We refer to [20] for the precise definition, but note here that if $\lambda_{\alpha} = \lambda_{\beta}$
and	s is a point in the Young diagram of the partition, then the relative hook length of s is equal
to it	ts ordinary hook length.
I	Let Sym be the \mathbb{C} -vector space of symmetric functions. Of the many important bases of this
sna	ce will have occasion to use the following [13]:
spa	ee, whi have beeasion to use the following [15].
tha	monomial symmetric functions m
the	monomiai symmetric functions m_{λ} ,
the	power-sum symmetric functions p_{λ} ,
the	Schur functions s_{λ} ,
the	elementary symmetric functions e_{λ} ,
the	homogeneous symmetric functions h_{λ} ,
Syn	$n \simeq \mathbb{C}[p_1, p_2, \ldots]$ is a polynomial algebra in the power-sum symmetric functions $\{p_n\}_{n>0}$.
2.2.	The Clifford algebra
I	Let CL be Clifford algebra generated by $\psi(k)$ $\psi^*(k)$ $k \in \mathbb{Z}$ and a central element c with
anti	Let ψ be enhibid algorithd generated by $\psi(k), \psi(k), k \in \mathbb{Z}$, and a contrar element ψ , with commutation relations
anti	
	$\{\psi(k), \psi(l)\} = \{\psi^*(k), \psi^*(l)\} = 0, \qquad \{\psi(k), \psi^*(l)\} = \delta_{kl}c.$
т	Define the spin module \mathcal{T} to be the unique impeduaible Clifford module which admits a use
1	Define the spin module \mathcal{F} to be the unique meducible Chilord module which admits a vec-
tor	v_0 such that
	$C\nu_0 = \nu_0$
	$\psi(k)v_0=0, \forall k\leqslant 0,$
	$\psi^*(k)\nu_0=0, \forall k>0.$
The	e spin module \mathcal{F} is also known as the fermionic Fock space, and this space has a nice realiza-
tion	in terms of semi-infinite monomials. A semi-infinite monomial is an infinite expression of
the	form
	$i_0 \wedge i_1 \wedge i_2 \wedge \cdots$
whe	ere $i_0 > i_1 > i_2 > \cdots$ are integers and $i_n = i_{n-1} - 1$ for $n \gg 0$
T I	For any semi-infinite monomial $i_0 \wedge i_1 \wedge i_2 \wedge \dots$ there exists $k \in \mathbb{Z}$ such that for $n \gg 0$
i	- $n \pm k$ and we will refer to this k as the charge of the semi infinite wedge is $A = A^{-1}$.
$\iota_n =$	$-n + \kappa$, and we will refer to this κ as the charge of the setting of the setting we use the above $u_0 \wedge l_1 \wedge l_2 \wedge \cdots$.
rut	another way, the charge of $i_0 \wedge i_1 \wedge i_2 \wedge \cdots$ is the integer k such that $i_0 \wedge i_1 \wedge i_2 \wedge \cdots$ differs
Iron	In $\kappa \wedge \kappa - 1 \wedge \kappa - 2 \wedge \cdots$ at only finitely many places.
1	Let $\mathcal{F}(m)$ be the \mathbb{C} -vector space spanned by all semi-infinite monomials of charge m , and let

 $\mathcal{F} = \bigoplus_{m} \mathcal{F}(m).$

ARTICLE IN PRESS

JTD:YATMA

ATD: 3554 /FLA

LA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.5 (1-39)A.M. Licata / Advances in Mathematics ••• (••••) •••-••• 5

The action of $\psi(k), \psi^*(k)$ on \mathcal{F} is defined by wedging and contracting operators:
$$\begin{split} \psi(k)(i_0 \wedge i_1 \wedge \cdots) &= \begin{cases} (-1)^s i_0 \wedge \cdots \wedge i_{s-1} \wedge k \wedge i_s \cdots, & i_{s-1} > k > i_s, \\ 0, & k = i_s \text{ for some } s, \end{cases} \\ \psi^*(k)(i_0 \wedge i_1 \wedge \cdots) &= \begin{cases} (-1)^s i_0 \wedge \cdots \wedge i_{s-1} \wedge i_{s+1} \cdots, & k = i_s, \\ 0, & k \neq i_s \text{ for all } s. \end{cases} \end{split}$$
If we define an inner product on \mathcal{F} by declaring the semi-infinite monomials to be an orthonormal basis, then $\psi(k)$ and $\psi^*(k)$ are adjoint operators. Note that $\psi(k): \mathcal{F}(m) \to \mathcal{F}(m+1)$ raises charge by one while $\psi^*(k): \mathcal{F}(m) \to \mathcal{F}(m-1)$ lowers charge by one. There is also an r-tuple version of the Clifford algebra, denoted by Cl^{r} ; it is generated by $\psi_i(k), \psi_i^*(k), k \in \mathbb{Z}, i = 1, \dots, r$ and a central element c, with anti-commutation relations $\{\psi_i(k), \psi_i(l)\} = \{\psi_i^*(k), \psi_i^*(l)\} = 0, \qquad \{\psi_i(k), \psi_i^*(l)\} = \delta_{ij}\delta_{kl}c.$ We define the r-colored fermionic Fock space \mathcal{F}^r by taking the tensor product of r copies of the space \mathcal{F} . $\mathcal{F}^r = \mathcal{F} \otimes \cdots \otimes \mathcal{F}$ so that Cl^r acts naturally on \mathcal{F}^r . 2.3. The Heisenberg algebra The Heisenberg algebra \mathcal{H} is the infinite dimensional Lie algebra generated by $c, p(n), n \in \mathbb{Z}$, with commutation relations $[p(n), p(m)] = n\delta_{n+m,0}c,$ $\left[p(n),c\right] = 0.$ Let $\mathcal{B}(k)$ be the unique irreducible \mathcal{H} module which admits a vector v_0 such that $cv_0 = v_0$ $p(n)v_0 = 0, \quad \forall n < 0,$ $p(0)v_0 = kv_0$ and let $\mathcal{B} = \bigoplus_{k \in \mathbb{Z}} \mathcal{B}(k)$. Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

 \mathcal{B} is known as the bosonic Fock space, and this space has a nice realization in terms of sym-metric functions. Let $\mathcal{B}_{alg} = \mathbb{C}[q, q^{-1}, p_1, p_2, \ldots]$, where p_i are the power-sum symmetric functions, and let з з $\mathcal{B}_{alg}(k) = q^k \mathbb{C}[p_1, p_2, \ldots] = q^k$ Sym. Define the action of \mathcal{H} on the space on $\mathcal{B}_{alg}(k)$ by cf = f, $p(n)f = p_n f, \quad \forall n > 0,$ $p(n)f = \frac{\partial}{\partial p_n}f, \quad \forall n < 0,$ q q p(0)f = kf.Putting together the actions for different k, we have an action of \mathcal{H} on \mathcal{B}_{alg} . We define an inner product on \mathcal{B}_{alg} by declaring the elements $q^m s_{\lambda}$ to be an orthonormal basis. With this inner product, the operators p(n) and p(-n) are adjoints. There is also an r-colored version of the Heisenberg algebra, denoted by \mathcal{H}^r . This is the Lie algebra generated by c, $p_i(n), n \in \mathbb{Z}, i = 1, ..., r$ with commutation relations $[p_i(n), p_j(m)] = n\delta_{n+m,0}\delta_{i,j}c,$ $[p_i(n), c] = 0.$ If we take *r* copies of \mathcal{B}_{alg} and set $\mathcal{B}_{alg}^r = \mathcal{B}_{alg} \otimes \cdots \otimes \mathcal{B}_{alg}$, then we have a natural action of \mathcal{H}^r on \mathcal{B}_{alp}^r . We will refer to \mathcal{B}_{alg}^r as the *r*-colored bosonic Fock space. 3. The boson-fermion correspondence

We may associate a partition $\lambda = (\lambda_0 \ge \cdots \ge \lambda_k)$ to a semi-infinite monomial $i_0 \land i_1 \land \cdots$ of charge *m* by setting

$$\lambda_j = i_j - m + j.$$

The correspondence

 $i_0 \wedge i_1 \wedge \ldots \leftrightarrow \lambda$

allows us to define an isometric vector space isomorphism

$$p: \mathcal{F} \to \mathcal{B}_{alg},$$

$$\phi(i_0 \wedge i_1 \wedge \cdots) = q^m s_{\lambda}$$

⁴⁴ where $i_0 \wedge i_1 \wedge \cdots$ is a semi-infinite monomial of charge *m*.

We use this isomorphism to define an action of \mathcal{H} on \mathcal{F} , and an action of Cl on \mathcal{B}_{alg} . More explicitly, we define the operators h(k), e(k) as homogeneous components of the generating functions

ARTICLE IN PRESS

[m1+; v 1.121; Prn:14/06/2010; 10:32] P.7 (1-39)

A.M. Licata / Advances in Mathematics ••• (••••) •••–•••

ATD: 3554 /FLA

$$\exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} p(n)\right) = \sum_{k=1}^{\infty} h(k) z^k,$$

$$\exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} p(-n)\right) = \sum_{k=1}^{\infty} h(-k) z^{-k}$$

and their inverses

JTD:YATMA

$$\exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} p(n)\right) = \sum_{k=1}^{\infty} e(-k) z^{-k},$$
⁹
¹⁰
¹¹
¹¹

$$\left(\begin{array}{c} \sum_{n=1}^{\infty} n \end{array}\right) \xrightarrow{k=1} 11$$

$$\exp\left(-\sum_{n=1}^{\infty}\frac{z^n}{n}p(n)\right) = \sum_{k=1}^{\infty}e(k)z^k.$$

The operators h(k), e(k) are adjoint to the operators h(-k), e(-k), respectively. As operators on the space of symmetric functions, h(k), k > 0 is multiplication by the homogeneous 17

symmetric function h_k . Similarly, e(k), k > 0 is multiplication by the elementary symmetric

function e_k [13].

- We also define the shift operator
 - $q: \mathcal{B}_{alg}(k) \to \mathcal{B}_{alg}(k+1),$

$$q(f) = qf.$$

Note that q and q^{-1} are adjoint operators.

Proposition 1. (See [4].)

if $n \neq 0$, and

30 (a) As operators on \mathcal{B}_{alg} , the bosons can be written in terms of the fermions:

$$p(n) = \sum_{j \in \mathbb{Z}} \psi(j+n)\psi^*(j)$$
³²
³³

$$p(0) = \sum_{j>0} \psi(j)\psi^*(j) - \sum_{j\leqslant 0} \psi^*(j)\psi(j).$$

(b) As operators $\mathcal{B}(m) \to \mathcal{B}(m \pm 1)$, the fermions can be written in terms of the bosons and the shift operator:

$$\psi(k) = \sum_{n \in \mathbb{Z}} qh(n)e(n-m+k), \qquad 43$$

$$n\in\mathbb{Z}$$

$$\psi^*(k) = \sum_{n \in \mathbb{Z}} q^{-1} e(n) h(n+m+k).$$
46
47

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

q

LA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.8 (1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

There is an *r*-colored version of this correspondence, using the isomorphism $\mathcal{F}^r \simeq \mathcal{B}^r$, and *r* different shift operators q_0, \ldots, q_{r-1} . We define the operators $h_i(k)$ to be homogeneous components of the generating function

$$\exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} p_i(n)\right) = \sum_{k=1}^{\infty} h_i(k) z^k$$

and similarly for the operators $e_i(k)$. In terms of symmetric functions, the operator $h_i(k)$ is multiplication by the *i*th coordinate homogeneous symmetric function $1 \otimes \cdots \otimes h_k \otimes \cdots 1 \in$ Sym^{*r*}, and similarly for the $e_i(k)$.

Proposition 2.

(a) As operators on \mathcal{B}_{alg}^r , the bosons can be constructed from the fermions:

$$p_i(n) = \sum_{k \in \mathbb{Z}} \psi_i(k+n) \psi_i^*(k)$$

if $n \neq 0$, and

$$p_i(0) = \sum_{j>0} \psi_i(k) \psi_i^*(k) - \sum_{j \leqslant 0} \psi_i^*(k) \psi_i(k).$$

(b) As operators $\mathcal{B}_{alg}^r(\vec{m}) \to \mathcal{B}^r(\vec{m} \pm 1_i)$, the fermions can be constructed from the bosons and the shift operators:

$$\psi_i(k) = \sum_{n \in \mathbb{Z}} q_i h_i(n) e_i(n - m_i + k),$$

$$\psi_i^*(k) = \sum_{n \in \mathbb{Z}} q_i^{-1} e_i(n) h_i(n+m_i+k)$$

4. Quiver varieties

4.1. The moduli space $\mathfrak{M}(r, n)$ of framed torsion-free sheaves on \mathbb{P}^2

Let V be an n-dimensional vector space, let W be an r-dimensional vector space, and define spaces

$$\mathbb{M}(r,n) = \{ (A, B, i, j) \in \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(W, V) \oplus \operatorname{Hom}(V, W) \mid [A, B] + ij = 0, \text{ stability} \},\$$

$$\mathfrak{M}(r,n) = \mathbb{M}(r,n)/GL(n,\mathbb{C}).$$

Here "stability" means that we take only those quadruples (A, B, i, j) satisfying the following condition:

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

з

q

JID:YAIMA	AID: 3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.9 (1-39)
	A.M. Licaia / Advances in Mainematics ••• (••••) •••-••
If $i(W$	$V' \subset V' \subset V$ for some subset V' with $A(V') \subset V'$ and $B(V') \subset V'$, then $V' = V$.
The stabil	ity condition guarantees that $GL(n, \mathbb{C})$ acts freely on $\mathbb{M}(r, n)$ [15].
$\mathfrak{M}(r, n)$) is isomorphic to the moduli space of rank r torsion-free sheaves on \mathbb{P}^2 , framed at
the \mathbb{P}^1 at i	nfinity, with second Chern class equal to n (see [17, Chapter 3]).
10 The	\mathbf{v}_{n} is the second seco
4.2. Ine n	noduli space X_r^r of torsion-free sneaves on $\mathbb{C}^2/\mathbb{Z}_r$
F actoria	$\mathbf{r}_{i}^{\prime} = \mathbf{r}_{i}^{\prime} \mathbf{r}_{i}^{\prime} = \mathbf{r}_{i}^{\prime} \mathbf{r}_{i}^{\prime}$
For a p	ositive integer r, let $\mathbb{Z}_r \subset SL(2, \mathbb{C})$ be the cyclic subgroup of the diagonal matrices, let
$\mathcal{K}_i, l = 1,$	\dots , r be the inclucion representations of \mathbb{Z}_r , and let \mathcal{Q} be the two-dimensional \mathbb{Z}_r
	similar by the inclusion $\mathbb{Z}_r \hookrightarrow SL(2, \mathbb{C})$, we also allow $r = \infty$, in which case we set
$\mathbb{Z}_{\infty} = \mathbb{C}^{n}$, embedded in $SL(2, \mathbb{C})$ as the diagonal matrices. A pair of endomorphisms $A, B \in \mathbb{C}$
Hom(V, V)	(<i>i</i>) can be considered as a point $(A, B) \in \text{Hom}(Q \otimes V, V)$. Thus, an action of \mathbb{Z}_r on the
vector spa	ices v and w induces an action on Hom (v, w) , Hom (w, v) , and Hom $(Q \otimes v, v)$.
Define vai	neues
ТА	
1911($w, v) = \{(A, B, i, j) \in \operatorname{Hom}_{\mathbb{Z}_k}(Q \otimes V, V) \times \operatorname{Hom}_{\mathbb{Z}_k}(W, V) \times \operatorname{Hom}_{\mathbb{Z}_l}(V, W) \mid $
	$[A, B] + ij = 0$, stability},
	$\mathfrak{M}(\vec{w}, \vec{v}) = \mathbb{M}(\vec{w}, \vec{v}) / \prod GL(V_i).$
	i i
→	
Here $w =$	$(w_1, \ldots, w_r), v = (v_1, \ldots, v_r)$ are the dimension vectors of
	$W = \bigoplus W_i \otimes \mathcal{R}_i$
	i
and	
anu	
	$V \longrightarrow V \cap \mathcal{P}$
	$V = \bigcup_{i \in \mathcal{N}} V_i \otimes \mathcal{K}_i$
	i
into irredu	cible \mathbb{Z}_r -modules, and Hom _{\mathbb{Z}} (X_r, Y) denotes the \mathbb{Z}_r -invariant part of Hom (X_r, Y) .
The sp	aces $\mathfrak{M}(\vec{w}, \vec{v})$ will be called $\widehat{A_{n-1}}$ quiver varieties (or A_{n-1} quiver varieties in the case
$r = \infty$) I	n the special case that V is a power of the regular representation and W is the trivial
representa	tion so that $\vec{v} = (n, n, \dots, n)$ and $\vec{w} = (1, 0, \dots, 0)$ the quiver variety $\mathfrak{M}(\vec{v}, \vec{w})$ is
·	where $v = (n, n, \dots, n)$ and $w = (1, 0, \dots, 0)$, the quiver value y with $v = (1, 0, \dots, 0)$.
isomorphi	c to the Hilbert scheme of <i>n</i> points on the ALE space $X_r = \mathbb{C}^2/\mathbb{Z}_r$ [1/]. We will
denote thi	s quiver variety by $X_r^{(n)}$.
The $r =$	$=\infty$ case will be of particular importance to us, so for future use we record here the
following	lemma.
Lemma 1	Let $W = \mathbb{C}$ be the trivial \mathbb{C}^* -module, so that $w = (\dots, 0, 1, 0, \dots)$, and suppose
$\dim(V) =$	n. Then
(a) Then	on ampty Λ an animar variation $\mathfrak{M}(\vec{y}, \vec{y})$ are all isolated points
(a) The n	on-empty n_{∞} quiver varienes $\mathfrak{M}(w, v)$ are an isotated points.
of nar	x_i of an non-empty x_{∞} quiver variences $\{x_i(w, v)\}$ is in natural objection with the set
oj pur	uuono (n + nj.
Dianca cita i	this article in press as: A M Licata Framed torsion-free sheaves on \mathbb{CP}^2 Hilbert schemes and

ΛΕ

representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

JID:YAIMA 10	ARTICLE IN PRESS AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.10 (1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-••
Proof. A	proof of this can be found in [17], or [6]. \Box
	[n]
Note th	at if $r = 1$, both $X_r^{[n]}$ and $\mathfrak{M}(1, n)$ are isomorphic to the Hilbert scheme $\mathbb{C}^{2^{[n]}}$ of n
points on (Č ² .
5 Torus	actions on aniver varieties
5. 101us (icuons on quiver varieties
5.1. Torus	exactions on $\mathfrak{M}(r, n)$
$\mathbf{L} \leftarrow T'$	$(\mathbb{C}^*)^T \subset CL(n,\mathbb{C})$ he the maximul terms of diagonal metrics
Let \vec{I}	$= (\mathbb{C}^{n})^{r} \subset GL(r, \mathbb{C})$ be the maximal torus of diagonal matrices. diag(a_{1}, \dots, a_{n}) $\in T'$ and for $\vec{l} = (l_{1}, \dots, l_{n}) \in \mathbb{Z}^{l}$ lat h_{n} diag(d_{1}, \dots, d_{n}) We
Let $u =$	= diag $(a_1, \ldots, a_r) \in T$, and for $t = (t_1, \ldots, t_r) \in \mathbb{Z}$ let $b_{\overline{l}} = diag(t^1, \ldots, t^r)$. We betting of an $(r, l, 1)$ dimensional torus $T = \mathbb{C}^* \times T'$ on $\mathfrak{M}(r, n)$ via
denne an a	certoin of an $\chi + 1$ -dimensional folds $T = \mathbb{C} \times T$ on $\mathfrak{M}(r, n)$ via
	$(x \rightarrow (A \mathbf{n} + y) - (x \mathbf{n} - \mathbf{n} + \mathbf{n} - \mathbf{n} + \mathbf{n} - \mathbf{n} + \mathbf{n} $
	$(t, a)(A, B, i, j) = (tA, t \ B, ia \ b_{\vec{l}}, b_{\vec{l}}a_{\vec{l}}).$
	· · · · · · · · · · · · · · · · · · ·
We denote	the space $\mathfrak{M}(r, n)$ with the above T-action, which depends on the vector $l \in \mathbb{Z}^{r}$, by
$M_{\vec{l}}(r,n)$.	The following lemmas address the structure of the fixed point components of $\mathfrak{M}(r, n)$
under the	action of the $(r + 1)$ -dimensional torus T and the r -dimensional torus T .
Lommo ?	The fixed point components $\mathfrak{M}_{-}(r, n)T'$ are products of Hilbert schemes:
Lemma 2	The fixed point components $\mathfrak{M}_1(r,n)$ are products of Hilbert schemes.
	T' T $2[n_1]$ $2[n_2]$
$\mathfrak{M}_{\vec{l}}($	$(r,n)^T = \prod \mathfrak{M}_{l_1}(1,n_1) \times \cdots \times \mathfrak{M}_{l_r}(1,n_r) \simeq \prod \mathbb{C}^{2^{\lfloor r+1}} \times \cdots \times \mathbb{C}^{2^{\lfloor r+1}}.$
	$\sum n_i = n$ $\sum_i n_i = n$
Proof. A	proof of this lemma can be found in [20]. \Box
The	000(1) $l = 77$ 1.1
I ne spa	Let $\mathfrak{M}_{I}(1, n), I \in \mathbb{Z}$ which occur in the above products are all $I = \mathbb{C}^{n}$ -equivariantly
isomorphi	c to the Hilbert scheme $\mathbb{C}^{2^{n+1}}$, but we will think of spaces corresponding to different
l as different	ent moduli spaces. More precisely, for $l \in \mathbb{Z}$, let L_l denote the line bundle $\mathbb{C}^2 \times_{\mathbb{C}^*} \mathbb{C}$,
where \mathbb{C}^*	acts on \cup via $t \mapsto t^*$. We think of $\mathfrak{W}_l(1,n)$ as the moduli space of rank 1 framed
torsion-fre	e subsneaves $\mathcal{L} \subset L_l$ with $c_2(\mathcal{L}) = n$. The map
	$\bigotimes L_l:\mathfrak{M}_k(1,n)\to\mathfrak{M}_{k+l}(1,n)$
is a \mathbb{C}^* -eq	uivariant isomorphism.
In orde	r to study the fixed points of $\mathfrak{M}_{\overline{l}}(r, n)$ under the action of the larger torus T, we first
consider the	he case $r = 1$:

Lemma 3. Let \vec{w}_l be the vector which is 1 in the *l*th spot and 0 elsewhere. Then the *T*-fixed point set $\mathfrak{M}_l(1,n)^T$ consists of isolated points, which are naturally identified with the set of A_∞ quiver varieties:

 $\mathfrak{M}_l(1,n)^T = \coprod_{\sum v_l=n} \mathfrak{M}(\vec{w}_l,\vec{v}).$

JID:YAIMA	AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.11 (1-39)
	A.M. Licata / Advances in Mathematics ••• (••••) •••-••• 11
Proof A	proof of this lemma can be found in either [17] or [22] \Box
11001.11	
This in	plies that for all $k \in \mathbb{Z}$, the collection of A_{∞} quiver varieties $\prod_{\sum v_{i} = n} \mathfrak{M}(\vec{w}_{k}, \vec{v})$ can
be natural	y identified with the set of partitions $\{\lambda \vdash n\}$ of charge k.
Putting	these lemmas together, we can identify the T-fixed points $\mathfrak{M}(r, n)^T$:
Lemma 4 r-tuples og	The T fixed points $\mathfrak{M}_{\overline{l}}(r,n)^T$ are isolated and naturally identified with the set of A_{∞} quiver varieties,
	$\mathfrak{M}_{\tau}(r,n)^T = \prod \mathfrak{M}(\vec{n}_1,\vec{n}_2) \times \ldots \times \mathfrak{M}(\vec{n}_2,\vec{n}_2)$
	$\omega_{l}(r,n) = \prod_{\substack{(\vec{v}_{l}, \vec{v}_{l}) \mid \sum v_{l} \neq -n}} \omega_{l}(\omega_{l_{1}}, v_{1}) \wedge \cdots \wedge \omega_{l}(\omega_{l_{r}}, v_{r}),$
	$(v_1, \dots, v_r) \mid _ v_{i,j} - n$
or, equival	ently, with the set of all r-tuples of partitions $(\lambda_1, \ldots, \lambda_r)$ whose total size is n.
D	
Proof. 11	is follows immediately from the previous lemmas.
The im	portant point to note is that for each $\vec{l} \in \mathbb{Z}^r$ and each $n > 0$ we have a space \mathfrak{M} - (r, n)
equipped y	with an action of the torus T and the fixed point components of this action have been
identified	as r-tuples of A_{∞} quiver varieties.
5.2. Torus	actions on $X_r^{[n]}$
	,
There i	s a natural embedding [7,9]
	$X_r \hookrightarrow (\mathbb{C}^{2[r]})^{\mathbb{Z}_r}$
	$X_{F} \neq (\bigcirc)$,
whomo the	\mathbb{Z} action on $\mathbb{C}^{1^{[n]}}$ is induced from the action of \mathbb{Z} on \mathbb{C}^2 . This \mathbb{Z} action commutes
where the	\mathbb{Z}_r action on $\mathbb{C}^{2[n]}$, as a result, both X_r and all of the Hilbert schemes $X_r^{[n]}$ in basis \mathbb{C}^*
actions. In	action on \mathbb{C}^{-1} ; as a result, both X_r and all of the Hilbert schemes X_r . Inherit \mathbb{C}^{-1} order to distinguish the situation when \mathbb{C}^* acts on $\mathbb{X}^{[n]}$ from torus actions on $\mathfrak{M}(r, n)$.
we will de	note the torus which acts on $X^{[n]}$ by T^{\vee}
For eac	$\vec{h} \ \vec{l} \in H^2_{\infty}(X_r, \mathbb{Z}) \simeq \mathbb{Z}^r$, we have a line bundle Lz whose first equivariant Chern class
is \vec{l} Given	$\vec{I} \in \mathbb{Z}^r$ we define $X^{[n]}$ to be the moduli space of rank 1 torsion free subsheaves of I .
The idea c	$t \in \mathbb{Z}_{2}$, we define $A_{T_{i}}^{T}$ to be the fibural space of fails 1 torsion-free subsidered of L_{i}^{T} .
once also	annears in [21] We have isomorphisms
	appears in [21], the nucle isomorphisms
	$\bigvee I \to Y \begin{bmatrix} n \end{bmatrix} \to Y \begin{bmatrix} n \end{bmatrix}$
	$\bigotimes L_{\vec{k}} : X_{\vec{l}} \xrightarrow{\sim} X_{\vec{l}+\vec{k}}.$
Lemma 5	. The fixed points $(X_{r_l}^{[n]})^{T^*}$ are isolated, and in natural bijection with r-tuples of A_∞
quiver va	ieties with $\dim(V) = n$, or, equivalently, with the set of all r-tuples of partitions
$(\lambda_1,\ldots,\lambda$.) whose total size is n.
	T^{\vee}
Proof. Th	e set X_r^i consists of r isolated points, corresponding to the r hook partitions $(k, 1^{n-\kappa})$
of $(\mathbb{C}^{2l^{r_j}})^2$	$[-1] \vdash r$ under the [7.9] embedding. The fixed points $r_1 = r_2$ are thus naturally

 54 /FLA
 [m1+; v 1.121; Prn:14/06/2010; 10:32] P.12 (1-39)

 A.M. Licata / Advances in Mathematics ••• (••••)

ordered. There is an open cover (constructed explicitly, for example, in [21]) of X_r by r open sets U_1, \ldots, U_r , such that x_i is the origin of $U_i \simeq \mathbb{C}^2$, and the action of T^{\vee} on U_i in local coordinates is of the form $t(u, v) = (t^r u, t^{-r} v)$. Since any point $y \in (X_{r_{\vec{l}}}^{[n]})^{T^{\vee}}$ is supported on $X_r^{T^{\vee}}$, we have

$$y \simeq y_1 \oplus \cdots \oplus y_r$$

where $y_i \in (U_i^{[n_i]})$ and $\sum_i n_i = n$. \Box

Alternatively, another proof of this lemma can also be found in [12]. This implies the following corollary, which motivates our parallel treatment of the quiver varieties $X_{r_{i}}^{[n]}$ and $\mathfrak{M}_{\bar{i}}(r, n)$.

Corollary 1. For any $n \ge 0$ and any $\vec{l} \in \mathbb{Z}^r$, there is a canonical identification of fixed point sets

$$(X_{r_{\vec{l}}}^{[n]})^{T^{\vee}} \leftrightarrow \mathfrak{M}_{\vec{l}}(r,n)^{T}.$$

Proof. Both sets are in canonical bijection with the set of *r*-tuples of partitions of total size *n*, and with the set of all *r*-tuples of A_{∞} quiver varieties with dim(V) = n. \Box

5.3. Weight spaces at $\vec{\lambda} \in \mathfrak{M}_{\vec{l}}(r, n)^T$

Let e_{α} , $\alpha = 1, ..., r$ denote the one-dimensional *T* character

$$e_{\alpha}:(t,e_1,\ldots,e_r)\mapsto e_{\alpha}.$$

Similarly, we regard *t* as a *T* character. Let $\vec{\lambda} = (\lambda_1, \dots, \lambda_r)$ be a *T*-fixed point of $\mathfrak{M}_{\vec{l}}(r, n)$. The tangent space $\mathcal{U}_{\vec{\lambda}}$ to $\mathfrak{M}_{\vec{l}}(r, n)$ at $\vec{\lambda}$ is a *T*-module.

Proposition 3. The weight space decomposition of the T-module $U_{\overline{\lambda}}$ is given by

$$\mathcal{U}_{\vec{\lambda}} = \sum_{lpha, eta = 1}^{r} N_{\vec{\lambda}}^{lpha, eta}$$

where

$$N_{\vec{\lambda}}^{\alpha,\beta} = e_{\beta} e_{\alpha}^{-1} t^{l_{\beta}-l_{\alpha}} \times \bigg(\sum_{s \in \lambda_{\alpha}} t^{-h_{\beta,\alpha}(s)} + \sum_{s \in \lambda_{\beta}} t^{h_{\alpha,\beta}(s)} \bigg),$$

and $h_{\alpha,\beta}(s)$ is the relative hook length of s, relative to the partitions $\lambda_{\alpha}, \lambda_{\beta}$.

Proof. This computation can be found in [20]. \Box

Since the fixed point components $\mathfrak{M}_{\bar{l}}(r,n)^{T'}$ are products of Hilbert schemes, the tangent space $\mathcal{U}'_{\bar{\lambda}}$ to the subvariety $\mathfrak{M}_{\bar{l}}(r,n)^{T'}$ at $\bar{\lambda}$ can be inferred from the r = 1 special case of the above formula:

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

q

	ARTICLE IN PRESS
JID:YAIMA	AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.13 (1-3)
	A.M. Licata / Advances in Mathematics ••• (••••) ••••••
Propositio	n 4. The weight space decomposition of the T-module $\mathcal{U}'_{\overline{\lambda}}$ is given by
	r
	$\mathcal{U}'_{\vec{\tau}} = \sum N^{\alpha}_{\vec{\tau}}$
	$\lambda \qquad \simeq 1 \qquad \lambda \qquad \alpha = 1$
where	
	$\sum_{n=1}^{\infty} -h(c) \sum_{n=1}^{\infty} h(c)$
	$N_{\vec{\lambda}}^{\alpha} = \sum_{n} t^{-n_{\alpha}(s)} + \sum_{n} t^{n_{\alpha}(s)},$
	$s \in \lambda_{\alpha}$ $s \in \lambda_{\alpha}$
and $h_{\alpha}(s)$	$=h_{\alpha,\alpha}(s)$ is the ordinary hook length of s in the partition λ_{α} .
Proof. Fo	llows from taking $r = 1$ in the last proposition on each of the partitions $\lambda_1, \ldots, \lambda_n$
separately.	
Nata th	at 1// mining out any other than the terms of the form 1/
Note th	at $\alpha_{\vec{\lambda}}$ picks out exactly the terms $\alpha = \beta$ from $\alpha_{\vec{\lambda}}$.
Corollary	2. The weight space decomposition of the normal bundle $N_{\overline{2}}$ to $\mathfrak{M}_{\overline{7}}(r, n)^{T'}$ in $\mathfrak{M}_{\overline{7}}(r, n)$
at $\vec{\lambda}$ is give	en by
-	
	$N_{ec\lambda} = \sum N_{ec\lambda}^{lpha,eta}.$
	lpha eq eta
Proof. Th	is follows immediately from the previous two propositions. \Box
54 Weigh	at spaces at $\vec{\lambda} \in (X_{n}^{[n]})^{T^{\vee}}$
5.1. 110181	
Let $\vec{\lambda}$ be	e a T^{\vee} -fixed point in $X_r^{[n]}$. The tangent space $\mathcal{U}_{\vec{x}}^{\vee}$ to $X_r^{[n]}$ at $\vec{\lambda}$ is a T^{\vee} module, and the
weight spa	ce decomposition is given by the following proposition.
Propositio	on 5 The weight space decomposition of the T^{\vee} module \mathcal{U}^{\vee} is given by
ropositio	The weight space decomposition of the 1 module O_{λ} is given by
	$r \gamma = \sum_{r} r \gamma \gamma$
	$\mathcal{U}_{\vec{\lambda}}^{\vee} = \sum_{\alpha=1}^{N} (N^{\vee})_{\vec{\lambda}}$
	u-1
where	
	$(N^{\vee})_{\tau}^{\alpha} = \sum t^{-rh_{\alpha}(s)} + \sum t^{rh_{\alpha}(s)}$
	$(1, \gamma)_{\lambda} \sum_{s \in \lambda_{\alpha}} (1, \gamma)_{s \in \lambda_{\alpha}} (1, \gamma$
and $h_{-}(s)$	$=h_{\rm exc}(s)$ is the ordinary hook length of s in the partition $\lambda_{\rm exc}$
$(\alpha, \alpha, \alpha$	$-n_{\alpha,\alpha}(s)$ is incommunity nook tengin of s in the partition n_{α} .
Proof. We	write the T^{\vee} action at $x_{\alpha} \in X_r^{T^{\vee}}$ in terms of local coordinates – if u, v are loc
coordinate	s of the \mathbb{C}^2 chart who's origin is the fixed point $x_{\alpha} \in X^{T^{\vee}}$, then the action is

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

ATD: 3554 /FLA JTD: YATMA

[m1+; v 1.121; Prn:14/06/2010; 10:32] P.14(1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

$t(u, v) = (t^r u, t^{-r} v).$

Thus, the weight space decomposition is just the same as in the bundle \mathcal{U}' of the previous section, with t replaced by t^r .

6. Equivariant cohomology of quiver varieties

Let \mathfrak{M} be a quiver variety of complex dimension 2m, and suppose that $T = (\mathbb{C}^*)^k$ acts on \mathfrak{M} with isolated fixed points. Let B_T be the classifying space of T, and let E_T be the universal bundle. T acts freely on the space E_T , and hence freely on the product $\mathfrak{M} \times E_T$. The equivariant cohomology of \mathfrak{M} is defined to be the ordinary cohomology of the quotient space $\mathfrak{M} \times_T E_T$.

$$H^*_T(\mathfrak{M}) = H^*(\mathfrak{M} \times_T E_T).$$

We will always use complex coefficients for the equivariant cohomology of M. $H_T^*(\mathfrak{M})$ is a module over $R = H_T^*(pt)$. Let \mathcal{R} denote the field of fractions of R, and let $\mathcal{H}_T^*(\mathfrak{M}) = H_T^*(\mathfrak{M}) \otimes_R$ \mathcal{R} be the localized equivariant cohomology of \mathfrak{M} .

All of the usual cohomological constructions carry over to the equivariant setting. In partic-ular, if V is a T-equivariant vector bundle on \mathfrak{M} , we have equivariant Chern classes $c_k(V) \in$ $H_{T^k}^{2k}(\mathfrak{M})$. If V is an n-dimensional vector bundle, the top equivariant Chern class $c_n(V)$ is called the equivariant Euler class of V, and is denoted by e(V).

We endow $\mathcal{H}^*_{\mathcal{T}}(\mathfrak{M})$ with an inner product given by

$$\langle , \rangle : \mathcal{H}^*_T(\mathfrak{M}) \times \mathcal{H}^*_T(\mathfrak{M}) \to \mathcal{R},$$

$$\langle x, y \rangle = (-1)^m p_*(i_*)^{-1}(x \cup y)$$

where *i* is the inclusion

 $i:\mathfrak{M}^T \hookrightarrow \mathfrak{M}$

and p is the unique map from \mathfrak{M}^T to a point

$$p:\mathfrak{M}^T\to\{pt\}.$$

For a T-stable smooth subvariety $Y \subset \mathfrak{M}$, the normal bundle N_Y to Y in \mathfrak{M} is a T-equivariant vector bundle. If a one-parameter subgroup $\mathbb{C}^* \hookrightarrow T$ acts trivially on Y, then this subgroup induces a splitting

$$N_Y = N_Y^+ \oplus N_Y^0 \oplus N_Y^-$$

where

$$N_Y^+ = \bigoplus N_Y(n)$$

is the positive weight space of \mathbb{C}^* ,

> Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

$$N_Y^- = \bigoplus_{n < 0} N_Y(n)$$

q

is the negative weight space of
$$\mathbb{C}^*$$
, and N_Y^0 is the zero weight space.

If $\tilde{T} \subset T$ is the subgroup of T which acts trivially on Y, then by choosing a generic oneparameter subgroup $\mathbb{C}^* \hookrightarrow \tilde{T}$ to define our splitting, we can guarantee that $N_V^0 = 0$, so that the \mathbb{C}^* -fixed points of *Y* are isolated.

We can choose a splitting such that the equivariant Euler classes of the bundles N_V^+ , $N_V^$ satisfy

$$e(N_Y^+) = (-1)^k e(N_Y^-),$$

where $k = \frac{1}{2} \operatorname{codim}_{\mathbb{C}}(Y)$. We will describe this splitting for our quiver varieties $\mathfrak{M}_{\tilde{l}}(r, n)$ and $X_{r\vec{i}}^{[n]}$ in the next subsection.

6.1. Equivariant Euler classes for $\mathfrak{M}_{\vec{l}}(r,n)$ and $X_{r_{\vec{l}}}^{[n]}$

Example 1. Let

JTD:YATMA

 $Y = \mathfrak{M}_{\overline{l}}(r,n)^{T'} = \prod \mathbb{C}^{2^{[n_1]}} \times \cdots \times \mathbb{C}^{2^{[n_r]}}.$

$$\sum \overline{n_i} = n$$

Then the Normal bundle \mathcal{U}' to Y splits as a direct sum

$$\mathcal{L}' = igoplus_{lpha
eq eta} N_{lpha,eta}.$$

We choose the one-parameter subgroup given by $(1, 1) \times (1, t, t^2, \dots, t^{r-1}) \in T$ so that

$$\ell'^+ = \bigoplus N^{lpha, eta},$$
 29

$$\mathcal{U}'^{-} = \bigoplus N^{\alpha,\beta}.$$

$$\alpha > \beta$$
 33

Then, looking at the character for the tangent bundle, we see that

$$e(\mathcal{U}'^+) = (-1)^{(r-1)n} e(\mathcal{U}'^-).$$

Example 2. On the other hand, if we let

$$Y = \mathfrak{M}_{\vec{l}}(r,n)^T,$$

then the fixed points are isolated, and the normal bundle at $\vec{\lambda}$ is the full tangent bundle \mathcal{U} . We choose the one-parameter subgroup $(t^r, t^{-r}) \times (1, t, t^2, \dots, t^{r-1}) \in T$, which also has isolated fixed points. Then,

$$e(\mathcal{U}^+) = (-1)^{rn} e(\mathcal{U}^-).$$

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

[m1+: v 1.121: Prn:14/06/2010: 10:32] P.16(1-39)

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

 $Y = \left(X_{r_{\vec{i}}}^{[n]}\right)^{T^{\vee}}.$

Since T^{\vee} is already one-dimensional, there is no need to choose a one-parameter subgroup- the

 $e(\mathcal{U}^{\vee +}) = (-1)^n e(\mathcal{U}^{\vee -}).$

- q

tangent bundle splits naturally, and

6.2. Localization and the transport map η

We return now to the general case of a smooth, T-stable subvariety $Y \subset \mathfrak{M}$. Let $i_Y : Y \to \mathfrak{M}$ be the inclusion. For $x \in H^*_T(Y)$, define $\eta(x)$ by

$$\eta(x) = i_{Y*}(x) \cup e(N^{-})^{-1} = \sum_{j} i_{Y_{j*}}(x) \cup e(N_{j}^{-})^{-1}$$

where $\{Y_i\}$ are the connected components of Y.

By the localization theorem, the map η is injective, and a priori the image of η lies in the localized equivariant cohomology of \mathfrak{M} . However, the argument of [14], Section 6 shows the following:

Lemma 6. If
$$x \in H^*_T(Y)$$
 then $\eta(x) \in H^*_T(\mathfrak{M})$

Proof. Repeat the argument of [14] Section 6.

Thus, $\eta: H^*_T(Y) \to H^*_T(\mathfrak{M})$ is a well-defined injective map on (non-localized) equivariant cohomology. The image of η is a subspace of the equivariant cohomology of \mathfrak{M} which is central to all of our constructions, so for the rest of the paper we will denote $\eta(H^0_T(\mathfrak{M}^T))$ by

$$H_T^{mid}(\mathfrak{M}) := \eta \big(H_T^0(\mathfrak{M}^T) \big).$$

Proposition 6. The dimension of $H_T^{mid}(\mathfrak{M})$ is equal to the Euler characteristic $\chi(\mathfrak{M})$.

Proof. The dimension of $H_T^{mid}(\mathfrak{M})$ is clearly equal to the number of fixed points $\#\{\mathfrak{M}^T\}$. This number is equal to the dimension of the total ordinary cohomology $H^*(\mathfrak{M})$, since \mathfrak{M} has a Bialinicki-Birula decomposition with one complex cell for each fixed point. Thus M has no odd dimensional homology, and

$$\dim(H_T^{mid}(\mathfrak{M})) = \dim(H^*(\mathfrak{M})) = \chi(\mathfrak{M}). \quad \Box$$

Lemma 7. Let $Y \subset \mathfrak{M}$ be a *T*-stable smooth subvariety, and let

 $\eta: H^*_T(\mathfrak{M}^T) \to H^*_T(\mathfrak{M}),$

 $\eta': H_T^*(Y^T) \to H_T^*(Y),$

$$\eta'': H^*_T(Y) \to H^*_T(\mathfrak{M}) \tag{47}$$

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 . Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

з

q

JID:YAIMA	AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.17 (1-39)
	A.M. Licata / Advances in Mathematics ••• (••••) •••-••• 17
he the com	anon dina transport many Than
be the corr	esponding transport maps. Then
	$n''(H_{\pi}^{mid}(Y)) \subset H_{\pi}^{mid}(\mathfrak{M})$
Proof. Let	$y \in Y^T$, and let N, N' be the tangent bundles to \mathfrak{M} at y and to Y at y, respectively.
Then $N =$	$N' \oplus N''$, where N'' is the normal bundle to Y in \mathfrak{M} at y. It follows that
	$\eta = \eta'' \eta'.$ \Box
Propositio	n 7. The restriction of \langle , \rangle to $H_T^{mid}(\mathfrak{M})$ is non-degenerate and \mathbb{C} valued.
Proof. By	the localization theorem, the classes $\eta(1_{\lambda})$ for points $\lambda \in \mathfrak{M}^T$ form a basis of So we compute
T (\mathcal{M}).	
($\eta(1_{\lambda}), \eta(1_{\mu}) = (-1)^m p_*(i_*)^{-1} (\eta(1_{\lambda}) \cup \eta(1_{\mu}))$
	$= (-1)^m p_{\pi}(i_{\pi})^{-1} (i_{\pi}, (1_{\pi}) \cup i_{\mu}, (1_{\mu}) \cup e(N_{\pi}^{-})^{-} \cup e(N_{\pi}^{-})^{-})$
	$(1) p_*(0, 1) (0, \chi_*(0, \lambda) \circ 0, \mu_*(0, \mu) \circ 0, (1, \chi)) = 0 (1, \mu)$
	$= \delta_{\lambda,\mu} (-1)^m e(N_{\lambda})^{-2} e(T_{\lambda}) = \delta_{\lambda,\mu}.$
Thus the c	lasses $n(1_{\lambda})$ form an orthonormal basis and the bilinear form restricted to $H^{mid}(\mathfrak{M})$
is C-valued	I and non-degenerate. \Box
We will	denote the restriction of () to $H^{mid}(\mathfrak{M})$ by () as well
vie wiii	
Corollary	3.
	wind an wind an
	$\eta: H_T^{max}(Y) \to H_T^{max}(\mathfrak{M})$
is an isome	try
is an isome	
Proof. Let	
	$\eta_1: H^0_T(Y^T) \to H^{mua}_T(Y),$
	$\eta_2: H^0_T(Y^T) \to H^{mid}_T(\mathfrak{M}).$
Then, by th	e computation in the above lemma, η_1 and η_2 are isometries. But $\eta_2 = \eta \eta_1$, and η_1 is
surjective.	Thus η is an isometry. \Box
62 1	ination of connection denses
0.3. <i>Local</i>	zanon of correspondences
Let \mathfrak{M}_1	\mathfrak{M}_2 be quiver varieties with a T-action, and let $Y_1 \subset \mathfrak{M}_1, Y_2 \subset \mathfrak{M}_2$ be T-stable
smooth sul	powrieties. Let $Z \subset Y_1 \times Y_2$ be a T-stable correspondence, so that the fundamental
	efines a linear map
class [Z] d	-
class [Z] d	
class [Z] d	$[Z]: H_T^*(Y_1) \to H_T^*(Y_2),$

	ARTICLE IN PRESS
JID:YAIMA AID:355	4 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.18(1-39)
18	A.M. Licata / Advances in Mathematics ••• (••••) ••••••
II	
Here q_1, q_2 are the	s projections from $Y_1 \times Y_2$ to Y_1, Y_2 respectively. we extend η to a map on Y_1 setting
correspondences of	ysetting
	$n([7]) = (i_1 \times i_2) ([7]) + (a(N^+)^{-1} \otimes a(N^-)^{-1})$
	$\eta([Z]) = (i_1 \times i_2)_*([Z]) \cup (e(N_1)) \otimes e(N_2))$
so that $n([Z])$ define	nes a linear map
	$\eta([Z]): H^*_{\mathcal{T}}(\mathfrak{M}_1) \to H^*_{\mathcal{T}}(\mathfrak{M}_2),$
	$r([7])(h) = r(r^{*}(h) + r([7]))$
	$\eta([Z])(b) = p_{2*}(p_1(b) \cup \eta([Z])).$
Here p_1 , p_2 are the	e projections from $\mathfrak{M}_1 \times \mathfrak{M}_2$ to $\mathfrak{M}_1, \mathfrak{M}_2$, respectively.
<u>r</u> 1) <u>r</u> 2	
Theorem 1.	
	$\eta([Z])(\eta(x)) = \eta([Z](x)).$
Proof. Let	
	$p_j: \mathfrak{M}_1 \times \mathfrak{M}_2 \to \mathfrak{M}_j j = 1, 2$
and	
und	
	$q_i: Y_1 \times Y_2 \to Y_i i = 1, 2$
	IJ I I J J J
be the projection n	haps, and let
	$i_j: Y_j \to \mathfrak{M}_j j = 1, 2$
be the inclusion. T	hen
	$(*(-1)) \mapsto ((\pi))$
$\eta([Z])(\eta(x))$	$= p_{2*}(p_1(\eta(x)) \cup \eta([Z]))$
:	$= p_{2*} \left(p_1^* \left(i_{1*}(x) \cup e \left(N_1^- \right)^{-1} \right) \cup (i_1 \times i_2)_* \left([Z] \right) \cup e \left(N_1^+ \right)^{-1} \cup e \left(N_2^- \right)^{-1} \right) \right)$
	$= n \cdot (n^*(i, (x)) + (i, x, i)) ([7]) + o(N_1)^{-1} + o(N^{-1})^{-1})$
	$= p_{2*}(p_1(l_{1*}(x)) \cup (l_1 \times l_2)_*([Z]) \cup e(N_1) \cup \bigcup e(N_2))$
	$= p_{2*}(i_1 \times i_2)_* \left((i_1 \times i_2)^* p_1^* (i_{1*}(x)) \cup [Z] \cup e(N_1)^{-1} \cup e(N_2^-)^{-1} \right)$
	$=i_{2+}a_{2+}(a_{+}^{*}i_{+}^{*}(i_{1+}(x))\cup [Z]\cup e(N_{1})^{-1}\cup e(N_{-})^{-1})$
	$-i_{2*}q_{2*}(q_1, q_1, q_1, q_1, q_1, q_1, q_1, q_1, $
:	$= i_{2*}q_{2*}(q_1^*(x) \cup e(N_1) \cup [Z] \cup e(N_1)^{-1} \cup e(N_2^{-})^{-1})$
	$=i_{2*}a_{2*}(a_1^*(x)\cup[Z])\cup e(N_2^{-})^{-1}$
	$([\mathbf{T}](\mathbf{x})) = -$
:	$=\eta([Z](x)).$

 $\eta([Z]): H_T^{mid}(\mathfrak{M}_1) \to H_T^{mid}(\mathfrak{M}_2).$

Proof. If $x \in H_T^{mid}(Y_1)$, then $\eta(x) \in H_T^{mid}(\mathfrak{M}_1)$. By assumption $[Z](x) \in H_T^{mid}(Y_2)$, so that

The above theorem and corollary will allow us to compute the (anti-)commutation relations

of an operator $[X_r]$ and its adjoint $[X_r]^*$ on $\bigoplus_{n \ \vec{l}} H_T^{mid}(\mathfrak{M}_{\vec{l}}(r,n))$ by computing relations of the

transported operators $\eta^{-1}([X_r]), \eta^{-1}([X_r]^*)$ on $\bigoplus_{n \ \vec{l}} H^*_T(Y(n))$ for suitably chosen T-stable

JTD:YATMA

 $\mathfrak{M}_{\vec{l}}(r,n)^{T'} \hookrightarrow \mathfrak{M}_{\vec{l}}(r,n),$

$$\mathfrak{M}_{\overline{l}}(r,n)^T \hookrightarrow \mathfrak{M}_{\overline{l}}(r,n),$$
¹⁶
¹⁷
¹⁷

$$\left(X_{r_{\vec{l}}}^{[n]}\right)^{T^{\vee}} \hookrightarrow X_{r_{\vec{l}}}^{[n]}$$

subvarieties $Y(n) \subset \mathfrak{M}_{\vec{i}}(r, n)$.

In particular, the inclusions

 $\eta': H_T^{mid}\big(\mathfrak{M}_{\overline{l}}(r,n)^{T'}\big) \to H_T^{mid}\big(\mathfrak{M}_{\overline{l}}(r,n)\big),$

$$\eta: H_T^{mid}\big(\mathfrak{M}_{\overline{l}}(r,n)^T\big) \to H_T^{mid}\big(\mathfrak{M}_{\overline{l}}(r,n)\big),$$
²⁴

which will be used to check that the Heisenberg and Clifford operators defined in the subsequent chapters satisfy the defining relations of the Heisenberg and Clifford algebras.

7. Geometric construction of the Clifford operators

7.1. The spaces \mathcal{B}^r and $\mathcal{B}^{r\vee}$

We begin by defining the fundamental spaces

$$\mathcal{B}^{r} = \bigoplus_{n,\vec{l}} H_{T}^{mid} \big(\mathfrak{M}_{\vec{l}}(r,n)\big)$$

and

$$\mathcal{B}^{r\vee} = \bigoplus_{n \ \vec{l}} H^{mid}_{T^{\vee}} \big(X^{[n]}_{r_{\vec{l}}} \big).$$

 \mathcal{B}^r and $\mathcal{B}^{r\vee}$ will be the underlying vector spaces of our representations of Heisenberg, Clifford, and affine Lie algebras.

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

Corollary 4. If $[Z]: H_T^{mid}(Y_1) \to H_T^{mid}(Y_2)$ then

 $\eta([Z](x)) \in H_T^{mid}(\mathfrak{M}_2)$. The claim now follows from the above theorem. \Box

JID:YAIMA	AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.20(1-39)
20	A.M. Licata / Advances in Mathematics ••• (••••) ••••••
5.0 (1) (2)	
7.2. Cliffo	rd operators on \mathcal{B} for $r = 1$
Ton sim	p light on p p \forall p p p \forall p p p
FOT SIII	plicity, we begin with the case $r = 1$; note that in this case $B = B^2$. Moreover, when supdramals of giving data (A, B, i, j) always have $i = 0$ and $[17]$.
r = 1, the	quadruple of quiver data (A, B, i, j) always have $j = 0$, see [1/].
For $x =$	$(A, B, i) \in \mathbb{M}(1_l, v), y = (A', B', i') \in \mathbb{M}(1_l, u), \text{ we write}$
	$x \twoheadrightarrow y$
if there exi	sts $S \subset V$ an A, B-stable subspace of dimension $\vec{v} - \vec{u}$ such that
	$(A_{V/S}, B_{V/S}, i_{V/S}) = (A', B', i').$
Here M(1)	(\vec{v}) is the affine space used to define the A_{∞} quiver variety $M(1, \vec{v})$, and A_{VIS} . By its
are the end	lomorphisms of the quotient space V/S induced from A and B.
For a Z	-graded vector space V of dimension \vec{v} and homogeneous maps $A, B \in \text{Hom}(V, V)$
let $A(V)$ a	nd $B(V)$ denote the images of the linear maps A and B. Let $a(\vec{v})$ and $b(\vec{v})$ denote the
dimension	vectors of the vector spaces $A(V)$ $B(V)$ respectively
If $r =$	$(A \ B \ i) \in \mathbb{M}(1 \ \vec{v})$ note that $A(x) := (A_A(v) \ B_A(v) \ Ai)$ defines a point it
$\mathbb{M}(1 + 1 a)$	$(\vec{n}, \vec{D}, t) \in \operatorname{Ma}(\vec{n}, t)$, note that $M(t) := (M_A(t), D_A(t))$ defines a point in (\vec{v})
Similar	$[v, B(r)] := (A_{B(t)}, B_{B(t)}, B_{i})$ defines a point in $\mathbb{M}(1_{i-1}, b(\vec{u}))$
Civene	$I_{\mathcal{I}}$, $D(X) := (I_{\mathcal{B}}(V), D_{\mathcal{B}}(V), D_{\mathcal{I}})$ defines a point in $\operatorname{Va}(I_{l-1}, U(V))$.
Given a	pair of integers $k > l$ let k be the vector
	$k^{l}(i) = \begin{cases} 1, & l < l < k, \end{cases}$
	0, otherwise.
Define	$\alpha(k)_{l,\vec{v}} \subset \mathbb{M}(1_l,\vec{v}) \times \mathbb{M}(1_{l+1},\vec{v}+k^l)$ as follows:
	$\alpha(k)_{l\vec{v}} = \{(x, y) \mid y \twoheadrightarrow A(x)\}.$
Modding of	but by the $GL(V_k)$ actions in both factors, $\alpha(k)_{l,\vec{v}}$ defines a correspondence, which we
denote by	$\alpha(k)_{l,\vec{v}}$
2	()1,0
	$\alpha(l)$, $\vec{\tau} \subset \mathfrak{M}(1, \vec{v}) \times \mathfrak{M}(1, \vec{v} \pm \vec{l}^{l})$
	$\alpha(\kappa)_{l,v} \subset \mathfrak{M}(1_l, v) \times \mathfrak{M}(1_{l+1}, v+\kappa).$
Let $\mathcal{R}(h)$	- denote the adjoint correspondence obtained by swapping the factors $\mathfrak{M}(1, \vec{x})$ and
Let $p(k)_{l,i}$, denote the adjoint correspondence obtained by swapping the factors $\mathcal{D}(1_l, v)$ and $\frac{1}{2}$
$\mathfrak{M}(1_{l+1}, v)$	+K).
Similar	iy, if $\kappa \equiv i$, let κ_l be the vector
	$k_l(i) = \begin{cases} 1, & k-1 < i < l, \end{cases}$
	0, otherwise.
Define $\beta(k$	$(t_{l,\vec{v}} \subset \mathbb{M}(1_l,\vec{v}) \times \mathbb{M}(1_{l-1},\vec{v}+\vec{k}_l)$ as follows:
	$\beta(k)_{i} = \{(x, y) \mid y \rightarrow B(x)\}$
	$P(n)_{l,v} = [(n, y) \mid y \forall D(n)].$

Modding out by the $GL(V_k)$ actions in both factors, $\beta(k)_{l,\vec{v}}$ defines a correspondence $\beta(k)_{l,\vec{v}} \subset \mathfrak{M}(1_l, \vec{v}) \times \mathfrak{M}(1_{l-1}, \vec{v} + \vec{k}_l).$ Let $\alpha(k)_{l,\vec{v}}$ denote the adjoint correspondence obtained by swapping the factors $\mathfrak{M}(1_l,\vec{v})$ and $\mathfrak{M}(1_{l-1}, \vec{v} + \vec{k}_l).$ For $k, l \in \mathbb{Z}, \vec{v} = (v_m)_{m \in \mathbb{Z}}$, let $n(k,l,\vec{v}) = \begin{cases} v_k, & k > l, \\ v_k + l - k, & k \leq l. \end{cases}$ q Define operators $\psi(k), \psi^*(k), k \in \mathbb{Z}$ by $\psi(k) = \bigoplus_{l \in \mathbb{Z}, \vec{v}} (-1)^{n(k,l,\vec{v})} \big[\alpha(k)_{l,\vec{v}} \big],$ $\psi^*(k) = \bigoplus_{l \in \mathbb{Z}, \vec{v}} (-1)^{n(k,l,\vec{v})} \big[\beta(k)_{l,\vec{v}} \big],$ and these operators act on the cohomology of all of the A_{∞} quiver varieties. Since the fixed points $\prod_{n,l} (\mathbb{C}_l^{2[n]})^{\mathbb{C}^*}$ are canonically identified with the A_{∞} quiver varieties, we may define operators $\eta(\psi_i(k)), \eta(\psi_i^*(k)) : \mathcal{B} \to \mathcal{B},$ by using the map $\eta: \bigoplus_{n,l} H^{mid}_{\mathbb{C}^*} \left(\left(\mathbb{C}_l^{2^{[n]}} \right)^{\mathbb{C}^*} \right) \to \bigoplus_{n,l} H^{mid}_{\mathbb{C}^*} \left(\mathbb{C}_l^{2^{[n]}} \right) = \mathcal{B},$ extended naturally to a map on correspondences, as described in Section 6.3. Note that, by con-struction, the operators $\eta(\psi_i(k))$ and $\eta(\psi_i^*(k))$ are adjoint to one another with respect to the inner product on \mathcal{B} . 7.3. Clifford operators on \mathcal{B}^r for r > 1On r-component products of A_{∞} quiver varieties we have r different correspondences $\alpha_i(k)_{l,\vec{v}}, \beta_i(k)_{l,\vec{v}}, \quad i = 1, \dots, r$

modifying only the r different factors of the product. Denote by $\psi_i(k), \psi_i^*(k), i = 1, ..., r$ the resulting operators, which act on the homology of the *i*th factor of the product. Since the fixed points $\prod_{n,\vec{l}} \mathfrak{M}_{\vec{l}}(r,n)^T$ are naturally *r*-component products of A_{∞} quiver varieties, we can define operators

q

$$\eta_r(\psi_i(k)), \eta_r(\psi_i^*(k)): \mathcal{B}^r \to \mathcal{B}^r,$$

	ARTICLE IN PRESS		
	JID:YAIMA AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.22(1-39)		
	22 A.M. Licata / Advances in Mathematics ••• (••••) •••-•••		
1	where		1
3	$n : \bigoplus H^{mid}(\mathfrak{M}_{-}(r, n)^T) \longrightarrow \bigoplus H^{mid}(\mathfrak{M}_{-}(r, n)) - \mathcal{B}^r$		3
4	$M_T : \bigoplus_{r \in I} M_T (\mathfrak{M}_l(r, n)) \to \bigoplus_{r \in I} M_T (\mathfrak{M}_l(r, n)) = \mathcal{D}$		4
5	n,t n,t		5
6	is extended to a map on correspondences as in Section 6.3. Note that, by construction, the op-		6
7	erators $\eta_r(\psi_i(k))$ and $\eta_r(\psi_i^*(k))$ are adjoint to one another with respect to the geometric inner		7
8	product on \mathcal{B}^r .		8
9 10 <mark>0</mark> 3	7.4 Clifford an angious on $\mathcal{P}^{\Gamma \vee}$ for $n > 1$	03	9
11	7.4. Cujjora operators on B^{-1} jor $r > 1$		1
12	Since the T^{\vee} fixed points of $X_{r=1}^{[n]}$ are also naturally given by r-component products of A_{∞}		12
13	quiver varieties, we can also define operators		1:
14			14
15Q4	$\eta_r^{ee}ig(\psi_i(k)ig), \eta_r^{ee}ig(\psi_i^{*}(k)ig): \mathcal{B}^{ree} o \mathcal{B}^{ree}$	Q4	1
16			10
17	using the map		18
19Q5	γ (\mathbf{n}) T^{\vee} T^{\vee} T^{\vee}	Q5	19
20	$\eta_r^{\vee}:\bigoplus H_{T^{\vee}}^{mu}((X_{r_{\vec{l}}}^{m_1})^{r_{\vec{l}}}) \to H_{T^{\vee}}^{mu}(X_{r_{\vec{l}}}^{m_1}) = \mathcal{B}^{r^{\vee}}.$		20
21	n, \vec{l}		2
22	Note that the operators $n^{\vee}(y_k, (k))$ and $n^{\vee}(y_k, (k))$ are adjoint with respect to the geometric inner		22
23	Prote that the operators $\eta_r(\varphi_l(\kappa))$ and $\eta_r(\varphi_l(\kappa))$ are adjoint with respect to the geometric inner product on $\mathcal{B}^{r\vee}$.	~~	23
2400		Qb	24
26	8. Geometric construction of Heisenberg operators		26
27			27
28	8.1. Heisenberg operators on B for $r = 1$		28
29	We begin first which the case $r = 1$; in this case the construction of Heisenberg operators is		29
30	due independently to Nakajima [17] and Groinowski [8]. Define		30
31			3
33	$Z^o \subset \prod \mathbb{C}^{2^{[n]}} \times \mathbb{C}^{2^{[k]}} \times \mathbb{C}^{2^{[n+k]}}$		33
34	$-\prod_{n,k}$		34
35			35
36	to be the variety of triples (A, B, C) such that A and B have disjoint support, and there exists an		36
37	exact sequence		37
38	$0 \to A \to C \to B \to 0$		38
40	0 / A / C / B / 0.		4
41	Let $Z = \overline{Z^o}$. The fundamental classes [Z] of the components of Z define a multiplication		4
42			42
43	$[Z]:\mathcal{B}\otimes\mathcal{B} ightarrow\mathcal{B}$		43
44			44
45	which makes \mathcal{B} into a commutative algebra. Define a \mathbb{C}^* action on \mathbb{C}^2 by		45
46 47	$t \diamond (x, y) = (tx, y).$		46 47
		l	

ATD:3554 /FLA [m1+: v 1.121: Prn:14/06/2010: 10:32] P.23(1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

JTD:YATMA

This induces a \mathbb{C}^* action (also denoted by \diamond) on the Hilbert scheme $\mathbb{C}^{2^{[n]}}$, and this action commutes with symplectic action of \mathbb{C}^* used when taking equivariant cohomology. The fixed point components with respect to the \diamond action (which are not in general isolated) are naturally enumerated by partitions $\lambda \vdash n$ [17], and we denote the fixed point component corresponding to λ by C_{λ} .

For n > 0, define classes $p(n), e(n), h(n) \in H^{mid}_{\mathbb{C}^*}(\mathbb{C}^{2^{[n]}})$ by

e()

$$p(n) = \left[\overline{\left\{ z \in \mathbb{C}^{2^{[n]}} \mid \lim_{t \to 0} t \diamond z \in C_{(n)} \right\}} \right],$$
⁸
⁹
¹⁰

$$n) = \left[\overline{\left\{ z \in \mathbb{C}^{2^{[n]}} \mid \lim_{t \to 0} t \diamond z \in C_{(1^n)} \right\}} \right],$$

q

 $h(n) = \left[\overline{\left\{ z \in \mathbb{C}^{2^{[n]}} \mid \lim_{t \to 0} t \diamond z \text{ exists} \right\}} \right].$

The class p(n) has an alternative description as the fundamental class of the subvariety

$$P(n) \subset \mathbb{C}^{2[n]}$$

of schemes supported at a single point somewhere on the x-axis of \mathbb{C}^2 .

Multiplications by the above classes give operators

$$p(n), e(n), h(n) : \mathcal{B} \to \mathcal{B}.$$

For n < 0, define p(n), h(n), e(n) as the adjoints to p(-n), h(-n), e(-n), respectively, with respect to the geometric inner product on \mathcal{B} . The operators p(n) will be our Heisenberg operators, while the operators e(n), h(n) will be important for our geometric interpretation of the boson-fermion correspondence.

8.2. Heisenberg operators on \mathcal{B}^r for r > 1

Recall the action of $T' = (\mathbb{C}^*)^r$ on $\mathfrak{M}_{\overline{t}}(r, n)$, and that the T'-fixed point components of $\mathfrak{M}_{\overline{i}}(r, n)$ are products of Hilbert schemes:

$$\mathfrak{M}_{\overline{l}}(r,n)^{T'} = \coprod_{\sum n_i = n} \mathbb{C}^{2^{[n_1]}} \times \cdots \times \mathbb{C}^{2^{[n_r]}}.$$

We can define operators

$$\eta'_r(p(n)), \eta'_r(e(n)), \eta'_r(h(n)) : \mathcal{B}^r \to \mathcal{B}'$$

using the map

extended naturally to correspondences, as in Section 6.3.

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

[m1+; v 1.121; Prn:14/06/2010; 10:32] P.24(1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

8.3. Heisenberg operators on $\mathcal{B}^{r\vee}$ for r > 1

Define

З

 $Z^{o} \subset \coprod_{n,k} X_{r}^{[n]} \times X_{r}^{[k]} \times X_{r}^{[n+k]}$

to be the variety of triples (A, B, C) such that A and B have disjoint support, and there exists an exact sequence

 $0 \rightarrow A \rightarrow C \rightarrow B \rightarrow 0.$

Let $Z = \overline{Z^o}$. The fundamental classes [Z] of the components of Z define a multiplication

$$[Z]: \mathcal{B}^{r^{\vee}} \otimes \mathcal{B}^{r^{\vee}} \to \mathcal{B}^{r^{\vee}}$$

which makes $\mathcal{B}^{r\vee}$ into a commutative algebra, just as in the case r = 1. For a closed, T^{\vee} -invariant curve $\Sigma \subset X_r$, we define the closed subvariety

$$P_{\Sigma}(n) \subset X_r^{[n]}$$

to be the set of all length n subschemes of X_r which are supported at a single point of Σ . Multiplication by the fundamental class $[P(\Sigma)] \in H_{T^{\vee}}^{mid}(X_r^{[n]})$ gives an operator

 $p_{\Sigma}(n): \mathcal{B}^{r^{\vee}} \to \mathcal{B}^{r^{\vee}}.$

Since the fundamental classes of T^{\vee} -invariant curves Σ span the vector space $H^2_{T^{\vee}}(X_r)$, we may extend by linearity and define an operator $p_{\alpha}(n)$ for any $\alpha \in H^2_{T^{\vee}}(X_r)$. In particular, if η_r denotes the map

 $\eta_r^{\vee}: H^0_{T^{\vee}}(X_r^{T^{\vee}}) \to H^2_{T^{\vee}}(X_r),$

then each fixed point x_i , i = 1, ..., r gives rise to an operator $p(\eta_r^{\vee}(x_i))$. We will abuse notation slightly to preserve the symmetry with the construction of Section 8.2, and denote these operators by $\eta_r^{\vee}(p_i(n))$.

In order to define the operators $\eta_r^{\vee}(h_i(n))$ and $\eta_r^{\vee}(e_i(n))$, we will use the following lemma.

Lemma 8. Let r = 1, so that $X_r = \mathbb{C}^2$, and suppose n > 0. Then the classes h(n) and e(n) are polynomials in the $\{p(k)\}_{k\in\mathbb{Z}}$.

Proof. This statement is proven in the last chapter of [17].

In other words, there are polynomials H_n , E_n such that

$$h(n) = H_n(\dots, p(-2), p(-1), \dots, p(k), \dots),$$

$$e(n) = E_n(\ldots, p(-2), p(-1), \ldots, p(k), \ldots),$$

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 . Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

q

ARTICLE IN PRESS

LA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.25 (1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-••• 25

so, for $\alpha \in H^2_{\tau \vee}(X_r)$, we define $h_{\alpha}(n)$ and $e_{\alpha}(n)$ by replacing p(k) with $p_{\alpha}(k)$ in these expres-sions: $h_{\alpha}(n) = H_{n}(\dots, p_{\alpha}(-2), p_{\alpha}(-1), \dots, p_{\alpha}(k), \dots).$ $e_{\alpha}(n) = E_n(\dots, p_{\alpha}(-2), p_{\alpha}(-1), \dots, p_{\alpha}(k), \dots).$ In particular, we have operators corresponding to the fixed point classes $\eta_r^{\vee}(x_i) \in H^2_{T^{\vee}}(X_r)$, and we denote these operators by $\eta_r^{\vee}(h_i(n))$ and $\eta_r^{\vee}(e_i(n))$. Finally, for n < 0, define $\eta_r^{\vee}(p_i(n)), \qquad \eta_r^{\vee}(h_i(n)), \qquad \eta_r^{\vee}(e_i(n))$ as adjoints of $\eta_r^{\vee}(p_i(-n)), \qquad \eta_r^{\vee}(h_i(-n)), \qquad \eta_r^{\vee}(e_i(-n))$ with respect to the inner product on $\mathcal{B}^{r\vee}$. 9. The proof of the relations 9.1. The Clifford algebra For simplicity in the statement of the main proposition, we will drop the η , η^{\vee} notation of the previous sections in the statement of the main proposition. Thus, what follows, the operators $\psi_i(k), \psi_i^*(k)$ can be interpreted as either the operators $\eta_r(\psi_i(k)), \eta_r(\psi_i^*(k))$ of Section 7.3 or as the operators $\eta_r^{\vee}(\psi_i(k)), \eta_r^{\vee}(\psi_i^*(k))$ of Section 7.4. Let $v_0 = 1 \in H^0_T(\mathfrak{M}(r, 0)) = H^0_T(pt)$, respectively $v_0 = H^0_{T\vee}(X^{[0]}_r) = H^0_{T\vee}(pt)$. **Proposition 8.** The operators $\psi_i(k)$, $\psi_i^*(k)$ satisfy the following anti-commutation relations: $\psi_i(k)\nu_0 = 0, \quad \forall k \le 0, \ i = 0, \dots, r-1,$ $\psi_i^*(k)v_0 = 0, \quad k > 0, \ i = 0, \dots, r-1,$ $\{\psi_i(k), \psi_i(l)\} = \{\psi_i^*(k), \psi_i^*(l)\} = 0, \qquad \{\psi_i(k), \psi_i^*(l)\} = \delta_{ij}\delta_{kl}.$ **Proof.** We will prove the proposition for the operators of the first construction, Section 7.3. The proof for the operators of Section 7.4 is identical. Let $\mathcal{F}^r = \bigoplus_{n \ \vec{l}} H^0_T \big(\mathfrak{M}_{\vec{l}}(r, n)^T \big).$ We will consider the operators $\eta^{-1}(\psi_i(k)), \eta^{-1}(\psi_i^*(k)): \mathcal{F}^r \to \mathcal{F}^r$ Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

ATD:3554 /FLA JTD:YATMA

[m1+: v 1.121: Prn:14/06/2010: 10:32] P.26(1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

and prove that they have the above commutation relations. For convenience, we will drop the notation η^{-1} , and denote our transported operators by $\psi_i(k)$, $\psi_i^*(k)$ as well. In addition, since $\psi_i(k), \psi_i^*(k)$ and $\psi_i(k), \psi_i^*(k)$ for $i \neq j$ act on different coordinates in the product of A_∞ quiver З varieties, the only interesting case is the case i = j; thus we may consider the case r = 1, and drop the subscripts *i*, *j*.

In order to prove this proposition for r = 1, it will be convenient to identify the vector space \mathcal{F} with the semi-infinite wedge space. Given an A_{∞} quiver variety $\mathfrak{M}(l_l, \vec{v})$, we define subsets $C^{+}_{\vec{v}\,l}, C^{-}_{\vec{v}\,l}, C_{\vec{v},l} \subset \mathbb{Z}$ by

$C^{+}_{-} = \{$	$k > l \mid v_k$	$\neq v_{k-1}$	}.
$\nabla_{\vec{n}} = 0$	$\kappa \geq \iota \mid U_K$	7 - 0K - 1],

$$C_{\vec{v},l}^{-} = \{k \leq l \mid v_k = v_{k-1}\},$$

 $C_{\vec{v},l} = C_{\vec{v},l}^+ \cup C_{\vec{v},l}^-.$

Arranging the elements of $C_{\vec{v},l}$ in descending order, $C_{\vec{v},l} = \{i_0, i_1, \ldots\}$ we get a semi-infinite wedge

$$C_{\vec{v},l} \mapsto i_0 \wedge i_1 \wedge i_2 \wedge \cdots$$

We define the charge of a semi-infinite wedge $i_0 \wedge i_1 \wedge i_2 \wedge \cdots$ to be the integer m such that $i_n = m - n$ for n sufficiently large; in this way the quiver variety $\mathfrak{M}(1_l, \vec{v})$ corresponds to a semi-infinite wedge of charge l. Let F_l denote the \mathbb{C} -span of the semi-infinite wedges of charge l. We define a vector space isomorphism

by mapping $1 \in H^0_{\mathbb{C}^*}(\mathfrak{M}(1_l, \vec{v}))$ to the semi-infinite wedge corresponding to $\mathfrak{M}(1_l, \vec{v})$. The fol-lowing lemma, which is easy to check, relates to coordinate entries v_k of \vec{v} to the integers appearing in the corresponding semi-infinite monomial.

Lemma 9. If $\mathfrak{M}(1_l, \vec{v})$ corresponds to the wedge $i_0 \wedge i_1 \wedge i_2 \wedge \cdots$ then the number of elements in the set $\{i_0, i_1, i_2, \ldots\}$ which are greater than k is

$$v_k, \quad if \, k > l,$$

$$v_k + l - k$$
, if $k \leq l$.

The anti-commutation relations of the operators $\psi(k)$, $\psi^*(k)$ will follow immediately from the following proposition.

Proposition 9.

ψ*(k

$$\psi(k)(i_0 \wedge i_1 \wedge \dots) = \begin{cases} (-1)^s i_0 \wedge \dots \wedge i_{s-1} \wedge k \wedge i_s \dots, & i_{s-1} > k > i_s, \\ 0, & k = i_s \text{ for some } s, \end{cases}$$

 $k = i_s$ for some s,

$$(i_0 \wedge i_1 \wedge \dots) = \begin{cases} (-1)^s i_0 \wedge \dots \wedge i_{s-1} \wedge i_{s+1} \dots, & k = i_s, \\ 0, & k \neq i_s \text{ for all } s. \end{cases}$$

 $k \neq i_s$ for all s.

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

$$\mathcal{F}_{l} = \bigoplus_{\vec{v}} H^{0}_{\mathbb{C}^{*}} \big(\mathfrak{M}(1_{l}, \vec{v}) \big) \to F_{l}$$

q

JTD:YATMA ATD: 3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.27 (1-39) A.M. Licata / Advances in Mathematics ••• (••••) •••-••• **Proof.** Fix $l \in \mathbb{Z}$. It suffices to show that the proposition holds for the operators $\psi(k), k > l$ and $\psi^*(k), k \leq l.$ We begin with the operators $\psi(k)$, k > l. Suppose $\mathfrak{M}(1_l, \vec{v})$ is non-empty and $\mathfrak{M}(1_l, \vec{v}) \leftrightarrow (i_0 \wedge i_1 \wedge \cdots \wedge i_n \wedge \cdots)$. Then $\mathfrak{M}(1_{l+l}, \vec{v} + \vec{k}^l)$ is non-empty if and only if $k \notin \{i_0, i_1, i_2...\}$. If $\mathfrak{M}(1_{l+1}, \vec{v} + \vec{k}^l)$ is non-empty, then the projections

$p_1: \alpha(k) \to \mathfrak{M}(1_l, \vec{v}),$	
$p_2: \alpha(k) \to \mathfrak{M}(1_{l+1}, \vec{v} + \vec{k}^l)$	

induce identity maps on cohomology, since the varieties involved are all points. It follows that

$$[\alpha(k)](i_0 \wedge i_1 \wedge \cdots \wedge i_n \wedge \cdots) = i_0 \wedge i_1 \wedge \cdots \wedge i_s \wedge k \wedge i_{s+1} \wedge \cdots$$

$$= (-1)^{s+1}k \wedge i_0 \wedge i_1 \wedge \cdots \wedge i_n \wedge \cdots,$$

where $i_s > k \ge i_{s+1}$. Therefore

$$\psi(k)(i_0 \wedge i_1 \wedge \cdots \wedge i_n \wedge \cdots) = (-1)^{\nu_k} [\alpha(k)](i_0 \wedge i_1 \wedge \cdots \wedge i_n \wedge \cdots).$$

-

But by the previous lemma v_k is the number of elements in the set $\{i_0, i_1, \ldots\}$ which are greater than k, i.e. $v_k = s$, where $i_{s-1} > k > i_s$.

q

$$\implies \psi(k)(i_0 \wedge i_1 \wedge \cdots) = \begin{cases} (-1)^s i_0 \wedge \cdots \wedge i_{s-1} \wedge k \wedge i_s \cdots, & i_{s-1} > k > i_s, \\ 0, & k = i_s \text{ for some } s. \end{cases}$$

Now suppose that $k \leq l$. We will consider the operators $\psi^*(k)$. We have that $\mathfrak{M}(1_{l+1}, \vec{v} + \vec{k}_l)$ is non-empty if and only if $k \in \{i_0, i_1, i_2, ...\}$. As in the case $\psi(k), k > l$, we have

$$\psi^*(k)(i_0 \wedge i_1 \wedge \dots \wedge i_n \wedge \dots) = (-1)^{v_k + l - k} [\beta(k)](i_0 \wedge i_1 \wedge \dots \wedge i_n \wedge \dots)$$

$$=\sum_{i\in\mathbb{Z}}\delta_{i_j,k}(-1)^{v_k+l-k}i_0\wedge i_1\wedge\cdots\wedge\widehat{i_j}\wedge\cdots.$$

But $v_k + l - k$ is the number of elements in $\{i_0, i_1, i_2, \ldots\}$ which are greater than k

$$\implies \psi^*(k)(i_0 \wedge i_1 \wedge \dots \wedge i_n \wedge \dots) = \sum_{j \in \mathbb{Z}} \delta_{i_j,k} (-1)^j i_0 \wedge i_1 \wedge \dots \wedge \widehat{i_j} \wedge \dots$$

$$= \begin{cases} (-1)^{s} i_{0} \wedge \dots \wedge i_{s-1} \wedge i_{s+1} \dots, & k = i_{s}, \\ 0, & k \neq i_{s} \text{ for all } s. \end{cases} \qquad \Box \begin{array}{c} 41 \\ 42 \\ 43 \end{cases}$$

This completes the proof of the proposition.

As an immediate corollary, we get the following theorems.

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on CP2, Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

q

ARTICLE IN PRESS
JID:YAIMA AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.28(1-39)
28 A.M. Licata / Advances in Mathematics ••• (••••) •••-•••
Theorem 2. The operators $\eta_r(\psi_i(k)), \eta_r(\psi_i^*(k))$ on the space
$ror \qquad $
$\mathcal{B}' = \bigoplus_{r} H_T^{mu}(\mathfrak{M}_{\overline{l}}(r,n))$
ĺ,n
give a geometric realization of an irreducible module for the Clifford algebra Cl ^r .
Theorem 3. The operators $\eta_r^{\vee}(\psi_i(k)), \eta_r^{\vee}(\psi_i^*(k))$ on the space
$\mathcal{B}^{\vee r} = \bigoplus H_{T^{\vee}}^{mid} \left(X_{r_{\vec{l}}}^{[n]} \right)$
\vec{l}, n
give a geometric realization of an irreducible module for the Clifford algebra C^{μ}
give a geometric realization of an irreducible module for the Cufford argebra Ci .
9.2. The Heisenberg algebra
Proposition 10. The operators $\eta'(p_i(n)), n \in \mathbb{Z}, i = 0,, r - 1$ satisfy
$\eta (p_i(n))\nu_0 = 0, n < 0,$
$\left[\eta'\left(p_{i}(n)\right),\eta'\left(p_{j}(m)\right)\right]=n\delta_{i,j}\delta_{n+m,0}Id.$
Desse Dessell the isomeomy line
F1001. Recan the isomorphism
$n': \bigoplus H_{\pi}^{mid}(\mathfrak{M}_{\tau}(r, n)^{T'}) \to \bigoplus H_{\pi}^{mid}(\mathfrak{M}_{\tau}(r, n))$
$\eta : \bigcup_{n} \prod_{r} (\omega_{r}(r,n)) \to \bigcup_{n} \prod_{r} (\omega_{r}(r,n)).$
We will consider the operators $p_i(n) := \eta'^{-1}(\eta(p_i(n)))$, and show that they satisfy the same
relations. Since $p_i(n)$ and $p_j(m)$ act on different factors of $\mathfrak{M}_{\overline{l}}(r,n)^T$, the only interesting cas
Is $i = j$, thus we may consider the case $r = 1$. $\sum_{i=1}^{n} \sum_{j=1}^{n} (2^{2[n]}) \sum_{i=1}^{n} \sum_{j=1}^{n} (2^{2[n]}) \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$
For a partition $\lambda \in (\mathbb{C}^2)^{\circ}$, we have a class $[\lambda] = \eta(1_{\lambda}) \in H^{-}_{\mathbb{C}^{*}}(\mathbb{C}^2)$. The classes $\{[\lambda]\}_{\lambda \vdash 1}$
form an orthonormal basis of $H_{\mathbb{C}^*}^{max}(\mathbb{C}^{2^{n-1}})$, so we can construct an isometric vector space iso
morphism
$\phi: \operatorname{Sym} \to \bigoplus H^{mid}(\mathbb{C}^{2^{[n]}})$
$\varphi: \operatorname{Sym} \to \bigcup_n \Pi_{\mathbb{C}^*} (\mathbb{C}^*),$
$\phi(s_1) = [\lambda]$
$\phi(\alpha V) = [v_1]$
by sending the Schur function s_{λ} to the class [λ]. Then we have the following two lemmas.
Lemma 10. The map ϕ is an isomorphism of algebras.
Proof This is proved in [24] \Box
Lemma 11. The monomial symmetric functions are realized geometrically by the varieties L_{λ} :

$$\phi(m_{\lambda}) = [L_{\lambda}].$$

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

	ARTICLE IN PRESS	
	JID:YAIMA AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.29(1-39)	
	A.M. Licata / Advances in Mathematics ••• (••••) •••-••• 29	
1	Proof. This is proved in [24]. \Box	1
2	•	2
3	In particular, the operator $p(n)$, $n > 0$ is the image under ϕ of multiplication by the power-	3
4	sum symmetric function p_n . Since ϕ is an isometry, the adjoint operator $p(-n)$ corresponds to	4
5	the differential operator $\partial/\partial p_n$. The proposition then follows from	5
6		6
7	$\partial/\partial p_n(1) = 0$	7
8		8
9	and	9
10		10
10	$[p_n, \partial/\partial p_m] = n\delta_{n,m}Id.$	10
12		12
14	Thus we have the following theorem:	14
15		15
16	Theorem 4. For any $\vec{l} \in \mathbb{Z}^r$, the operators $\eta'(p_i(n))$ on the space	16
17		17
18	$\mathcal{B}^r_{\tau} = \bigoplus H^{mid}_{T}(\mathfrak{M}_{\tau}(r,n))$	18
19	\prod_{n} \prod_{n} \prod_{n} \prod_{n} \prod_{n} \prod_{n}	19
20		20
21	give a geometric realization of an irreducible module for the Heisenberg algebra \mathcal{H}' .	21
22		22
23Q7	Moreover, the same proof works on the space \mathcal{B}^* (see also [17] and [21]) giving us the q	7 23
24	companion theorem:	24
25	Theorem 5. For any $\vec{l} \in \mathbb{Z}^{\ell}$, the expectation $n^{\vee}(n(u))$ on the space	25
26	Theorem 5. For any $i \in \mathbb{Z}$, the operators $\eta^{-}(p_i(n))$ on the space	26
28	$m \lor l$ $(x [n])$	21
29	$\mathcal{B}^{\dagger}_{\vec{l}} = \bigoplus H_{T^{\vee}}^{mu}(X_{r_{\vec{l}}})$	29
30	n	30
31	give a geometric realization of an irreducible module for the Heisenberg algebra \mathcal{H}^r .	31
32		32
33	Of course, the construction of Heisenberg algebra actions on ordinary cohomology analog of	33
34 <mark>Q</mark> 8	the space $\mathcal{B}^{\vee r}$ is due to Nakajima [17] and Grojnowski [8]. The modification of this Heisen-	8 34
35	berg action to equivariant cohomology in the case of the Hilbert scheme $\mathbb{C}^{2^{[n]}}$ $(r = 1)$ is due	35
36	to Vasserot [24], while the straightforward modification to equivariant cohomology on $X_r^{[n]}$ also	36
37	appears in Qin and Wang [21]. The main new point for us is that these same representations can	37
38	be realized using moduli spaces $\mathfrak{M}(r, n)$ of higher rank torsion-free sheaves.	38
39		39
40	9.3. Level one representations of $\widehat{gl(r)}$	40
41		41
43	Let $gl(r)$ denote the Lie algebra of $r \times r$ matrices. Let $h_i = e_{ii}$ be the diagonal matrix units.	43
44	The Cartan subalgebra of diagonal matrices will be denoted by \mathfrak{h} . We denote the weight lattice	44
45	of $gl(r)$ by P. Let $gl(r)$ denote the corresponding affine Lie algebra	45
46		46
47	$\widetilde{gl(r)} = gl(r) \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c \oplus \mathbb{C}d,$	47
	Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and	
	representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005	

		ARTICLE IN PRESS
JID:YAIMA	AID:3554 /FLA	[m1+; v 1.121; Prn:14/06/2010; 10:32] P.30(1-39)
30	A.M.	Licata / Advances in Mathematics ••• (••••) ••••••

where c is a basis for the one-dimensional central extension and d is the degree operator. Let $\widehat{P} = P \oplus \mathbb{Z}c \oplus \mathbb{Z}d$ be the weight lattice of $\widehat{gl(r)}$, and let

$$\widehat{P}^{++} = \{a_{-1}d + a_0h_0 + \dots + a_{r-1}h_{r-1} \mid a_{-1} \ge a_0 \ge \dots \ge a_{r-1}\}$$

denote the set of dominant weights. For $\lambda \in \widehat{P}^{++}$, denote by $V(\lambda)$ the irreducible $\widehat{gl(r)}$ module with highest weight λ . The integer $m = \langle \lambda, c \rangle$ is called the *level* of the representation $V(\lambda)$.

One constructs highest weight representations of gl(r) [5,23,10] from the fermionic or bosonic Fock spaces constructed above by using vertex operators to extend the action of the Clifford or Heisenberg algebra to an action of the entire affine Lie algebra. In order to construct the level one representations of $\widehat{gl(r)}$ inside the fermionic Fock space \mathcal{F}^r , we introduce the normal ordering

$$\begin{cases} \psi_i(k)\psi_i^*(l), & \text{if } j > 0, \end{cases}$$

$$:\psi_{i}(k)\psi_{j}^{*}(l):=\begin{cases} \psi_{i}(k)\psi_{j}^{*}(l), & \text{if } j > 0, \\ -\psi_{j}^{*}(l)\psi_{i}(k), & \text{if } j \leq 0. \end{cases}$$

з

We can then define an action of $\widehat{gl(r)}$ on \mathcal{F}^r by setting

 e_i

$$_{j}\otimes t^{k}\mapsto \sum_{n\in\mathbb{Z}}:\psi_{i}(n+k)\psi_{j}^{*}(n):.$$

In particular, the r-dimensional Heisenberg algebra (called the "homogeneous Heisenberg sub-algebra")

з

 $\mathcal{H}^{r} = \mathfrak{h} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$

acts on \mathcal{F}^r as in the boson-fermion correspondence above

J

$$h_i \otimes t^k \mapsto \sum_{n \in \mathbb{Z}} : \psi_i(n+k)\psi_i^*(n):.$$

The spaces

$$\mathcal{F}^{r}(m) = \sum_{m_0 + \dots + m_{r-1} = m} \mathcal{F}(m_0) \otimes \dots \otimes \mathcal{F}(m_{r-1})$$

are all irreducible level one representations of $\hat{gl}(r)$, and all of the irreducible level one represen-tations of $\widehat{gl(r)}$ are realized as $\mathcal{F}^r(m)$ for some m. The representation corresponding to m = 0 is known as the *basic* representation.

Alternatively, one can start from the tensor product of the irreducible Heisenberg algebra representation Sym^r and the lattice group algebra $\mathbb{C}[\mathbb{Z}^r]$, and construct the bosonic Fock space

$$\mathcal{B}_{alg}^r = \operatorname{Sym}^r \otimes \mathbb{C}[\mathbb{Z}^r].$$

The operators given by the action of the Heisenberg algebra and translation in the lattice can be put together using vertex operators to define an action of $\widehat{gl(r)}$ on the space \mathcal{B}_{alg}^r , which

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 . Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

 AID:3554 /FLA
 [m1+; v 1.121; Prn:14/06/2010; 10:32] P.31 (1-39)

 A.M. Licata / Advances in Mathematics ••• (••••) •••-•••
 31

decomposes into irreducible level one representations; this construction is known as the Frenkel and Kac construction [5]. The isomorphism between the constructions of $\widehat{gl(r)}$ on \mathcal{F}^r and on \mathcal{B}^r

essentially follows from the boson-fermion correspondence, and is discussed in [4].

Passing from representations of the Heisenberg algebra \mathcal{H}^r or Clifford algebra Cl^r to a representation of the affine Lie algebra $\widehat{gl(r)}$, we can use our geometric constructions identify the basic representation of $\widehat{gl(r)}$. Let $Q \simeq \mathbb{Z}^{r-1} \subset \mathbb{Z}^r$ be the balanced sublattice whose entries sum to 0. Then our construction of Heisenberg and Clifford modules immediately implies the following theorem.

Theorem 6. The basic representation of $\widehat{gl(r)}$ can be realized geometrically on the vector space

 $\bigoplus_{\vec{l}\in Q,n} H_T^{mid}\big(\mathfrak{M}_{\vec{l}}(r,n)\big),$

as well as on the vector space

JTD:YATMA

 $\bigoplus_{\vec{l}\in Q,n} H_{T^{\vee}}^{mid} \big(X_{r_{\vec{l}}}^{[n]} \big)$

Proof. This construction can be accomplished using the Heisenberg operators $\eta'_r(p_i(n))$ and $\eta^{\vee}_r(p_i(n))$ as in the Frenkel–Kac construction [5], or using the Clifford operators $\eta_r(\psi_i(k))$, $\eta_r(\psi_i^*(k))$ and $\eta^{\vee}_r(\psi_i(k))$, $\eta^{\vee}_r(\psi_i^*(k))$, as in [2] and [11]. \Box

In [17,16,8], the basic representation of the affine Lie algebra $\widehat{sl(r)}$ is constructed on the ordinary cohomology of moduli spaces of rank one torsion-free sheaves on X_r . Our construction on $\mathcal{B}^{r\vee}$ extends this construction to an action of $\widehat{gl(r)}$ on equivariant cohomology. The $\widehat{gl(r)}$ action on \mathcal{B}^r , however, is quite different from the action on $\mathcal{B}^{r\vee}$, in that the appearance of the rank *r* Lie algebra gl(r) is related to the rank of the sheaves in $\mathfrak{M}(r, n)$, whereas in [17,16,8], the Lie algebra is related to the geometry of the underlying surface X_r .

10. Geometric interpretation of the boson-fermion correspondence

10.1. The boson-fermion correspondence

We have constructed fermionic operators $\eta(\psi_i(k)), \eta(\psi_i^*(k))$ and bosonic operators $\eta(p_i(n))$ on the space

$$\mathcal{B}^{r} = \bigoplus_{n \ \vec{l}} H_{T}^{mid} \big(\mathfrak{M}_{\vec{l}}(r,n)\big),$$

as well as fermionic operators $\eta^{\vee}(\psi_i(k)), \eta^{\vee}(\psi_i^*(k))$ and bosonic operators $\eta^{\vee}(p_i(n))$ on the common space

$$\mathcal{B}^{r\vee} = \bigoplus_{n,\vec{l}} H^{mid}_{T^{\vee}} (X^{[n]}_{r\vec{l}}).$$

ATD: 3554 /FLA JTD: YATMA

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

In both cases, we can relate the bosonic operators to the fermionic operators, giving a geometric realization of the boson-fermion correspondence. The result in this section should be compared з to the main result of [22], which considers the case r = 1 and uses localization to relate the action of the bosonic operators p(n) on \mathcal{B} with an action of $sl(\infty)$ on \mathcal{B} . We remark that the $sl(\infty)$ action considered in [22] can be constructed from the Clifford algebra action we constructed in the previous chapter. In order to state the result concisely, we drop the η_r and η_r^{\vee} from the notation, so that $p_i(n)$ denotes either $\eta_r(p_i(n))$ or $\eta_r^{\vee}(p_i(n))$.

In order to state our geometric boson-fermion correspondence, we need to define r other operators q_i , i = 1, ..., r which acts as our translation operator in the lattice \mathbb{Z}^r . Recall that

$$H^2_{\mathbb{C}^*}ig(\mathfrak{M}(r,1)^{T'},\mathbb{Z}ig)\simeq \mathbb{Z}^r,$$

$$H_{\alpha r}^{2}(X_{r},\mathbb{Z}) \sim \mathbb{Z}^{r}$$
12
12
13

q

and that for all $\vec{l} \in \mathbb{Z}^r$ there are line bundles $L_{\vec{l}}, L_{\vec{l}}^{\vee}$ on $\mathfrak{M}(r, 1)^{T'}, X_r$ respectively with equivariant Chern class equal to \vec{l} . In particular, for coordinate vectors $1_i = (0, \dots, 1, \dots, 0)$ we have line bundles L_i, L_i^{\vee} . Define operators, both denoted by Q_i , by tensoring with these line bundles:

$$Q_i = \bigotimes L_i^{\vee} : \mathcal{B}^{r^{\vee}} \to \mathcal{B}^{r^{\vee}},$$

$$Q_i = \eta' \left(\bigotimes L_i \right) : \mathcal{B}^r \to \mathcal{B}^r.$$

These operators are geometric versions of the shift operators q_i needed in the boson-fermion correspondence.

Theorem 7.

(a) As operators on \mathcal{B}^r or $\mathcal{B}^{r\vee}$, the bosons can be written in terms of the fermions:

$$p_i(n) = \sum_{k \in \mathbb{Z}} \psi_i(k) \psi_i^*(k+n)$$

if $n \neq 0$, and

$$p_i(0) = \sum_{i>0} \psi_i(k) \psi_i^*(k) - \sum_{i\leq 0} \psi_i^*(k) \psi_i(k).$$

(b) For fixed $\vec{m} \in \mathbb{Z}^r$, as operators $\mathcal{B}^r(\vec{m}) \to \mathcal{B}^r(\vec{m} \pm 1_i)$ or $\mathcal{B}^{r\vee}(\vec{m}) \to \mathcal{B}^{r\vee}(\vec{m} \pm 1_i)$, the fermions can be written in terms of the bosons and the shift operators:

$$\psi_i(k) = \sum_{n \in \mathbb{Z}} Q_i h_i(n) e_i(n - m_i + k),$$

$$\psi_i^*(k) = \sum_{n \in \mathbb{Z}} Q_i^{-1} e_i(n) h_i(n+m_i+k).$$

	ARTICLE IN PRESS		
	JID:YAIMA AID:3554 /FLA [m1+; v 1.121; Prn:14/06/2010; 10:32] P.33(1-39)		
	A.M. Licata / Advances in Mathematics ••• (••••) •••-••• 33		
1	Proof. Recall the algebraic version of the <i>r</i> -colored bosonic Fock space	1	
2		2	
3	$\mathcal{B}^r_{alg} = \mathcal{B}_{alg} \otimes \cdots \otimes \mathcal{B}_{alg},$	3	
4	U C	4	
5	where	5	
6		6	
7	$\mathcal{B}_{alg} = \mathbb{C}[q, q^{-1}, p_1, p_2, \ldots].$	7	
8		8	
9 10	We denote the vector $q_0^{l_0} s_{\lambda_0} \otimes \cdots \otimes q^{l_{r-1}} s_{\lambda_{r-1}} \in \mathcal{B}_{alg}^r$ by $q^{\vec{l}} s_{\vec{\lambda}}$. The vectors $\{q^{\vec{l}} s_{\vec{\lambda}}\}_{\lambda \vec{l}}$ form an	9 10	
11	orthonormal basis of \mathcal{B}_{alg}^r .	11	
12	The maps	12	
13		13	
14	$\phi:\mathcal{B}^r_{als}\to \mathcal{B}^r$	14	
15		15	
16	and	16	
17		17	
18	$\phi^ee:\mathcal{B}^r_{alg} o\mathcal{B}^{ree}$	18	
19		19	
20	given by	20	
21		21	
22	$\phi(q^{\vec{l}}s_{\vec{1}}) = \eta([\vec{\lambda}]_{\vec{l}}) \in H_T^{mid}(M_{\vec{l}}(r,n))$	22	
23	$(\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x}) + (\mathbf{x}, \mathbf{x}) + (\mathbf{x}, \mathbf{x})$	23	
24	and	24	
25		25	
26	$\phi^{\vee}(q^{l}s_{\vec{\imath}}) = \eta^{\vee}([\vec{\lambda}]_{\vec{l}}) \in H^{mid}_{T^{\vee}}(X^{[n]}_{r\vec{\imath}})$	26	
27		27	
28	are isometric algebra isomorphisms. This implies that the operators $h_i(n)$, $e_i(n)$ correspond un-	28	
29	der ϕ to multiplication by the homogeneous symmetric functions $(h_i)_n$ and the elementary	29	
30	symmetric functions $(e_i)_n$ for $n > 0$ and to their adjoints for $n < 0$. Of course, since ϕ is an	30	
31	isometry and an algebra isomorphism, it is also an isomorphism of Heisenberg modules.	31	
32	Similarly, our Clifford algebra action was constructed so that ϕ is also an isomorphism of		
33 34	Clifford modules. The theorem now follows from the algebraic formulation of the boson-fermion	33	
34 35	correspondence. 🗆	34	
36		35	
37	10.2. Geometric realization of level k representations	37	

The decomposition of $\coprod_{n,\vec{l}} M_{\vec{l}}(r,n)$ into connected components induces a natural grading on the vector space

$$\mathcal{B}^{r} = \bigoplus_{n,\vec{l}} H_{T}^{mid} (M_{\vec{l}}(r,n)).$$

For any matrix unit $e_{i,j} \in gl(r)$, the operator $e_{i,j} \otimes t^m \in \widehat{gl(r)}$ is homogeneous with respect to this grading in the sense that if $x \in \mathcal{B}^r$ is supported in one summand, then $e_{i,j} \otimes t^m(x)$ will be a class supported in one summand of \mathcal{B}^r .

з

q

The inclusion $\mathbb{Z}_k \hookrightarrow \mathbb{C}^* \times 1 \subset T$ induces an action of \mathbb{Z}_k on the spaces $M_{\overline{l}}(r, n)$ such that the connected components of the fixed point set $\coprod_{n,\overline{l}} M_{\overline{l}}(r, n)^{\mathbb{Z}_k}$ are $\widehat{A_{k-1}}$ quiver varieties.

Since the *T*-fixed points of $\coprod_{n,\vec{l}} M_{\vec{l}}(r,n)$ are the same as the *T*-fixed points of $\coprod_{n,\vec{l}} M_{\vec{l}}(r,n)^{\mathbb{Z}_k}$, there is a natural vector space isomorphism

$$\mathcal{B}^{r} = \bigoplus_{n \ \vec{l}} H_{T}^{mid} \big(M_{\vec{l}}(r,n) \big) \simeq \bigoplus_{n \ \vec{l}} H_{T}^{mid} \big(M_{\vec{l}}(r,n)^{\mathbb{Z}_{k}} \big),$$

and the decomposition of $\coprod_{n,\vec{l}} M_{\vec{l}}(r,n)^{\mathbb{Z}_k}$ into connected components induces another (more refined) grading of \mathcal{B}^r . In general, elements of the form $e_{i,j} \otimes t^m$ are not homogeneous with respect to this new grading, but elements of the form $e_{i,j} \otimes t^{km}$ are homogeneous with respect to it. Thus, the operators in the subalgebra $\widehat{gl(r)}_k = gl(r) \otimes \mathbb{C}[t^k, t^{-k}] \oplus \mathbb{C}c$ can be constructed naturally as equivariant cohomology classes inside the products of $\widehat{A_{k-1}}$ quiver varieties. We hope to study this geometric realization of both the subalgebra $\widehat{gl(r)}_k$ and of Nakajima's commuting level r action of $\widehat{sl(k)}$ in future work. We expect these commuting operators to give a geometric realization of the level-rank duality first discovered in [3].

11. Comparing the geometry of $\mathfrak{M}(r, n)$ and $X_r^{[n]}$

Since the same representation can be geometrically constructed using two different geometries, we may ask for geometric relationships between the underlying moduli spaces. In the present case, we seek a relationship between

U(r) instantons on $\mathbb{C}^2/\mathbb{Z}_k$

and

U(k) instantons on $\mathbb{C}^2/\mathbb{Z}_r$.

In the rest of this section we address this question for k = 1 by considering the associated semismall resolutions.

11.1. The resolution $\pi^{\vee}: X_r^{[n]} \to S^n(\mathbb{C}^2/\mathbb{Z}_r)$

Let $S^n(\mathbb{C}^2/\mathbb{Z}_r)$ denote the *n*th symmetric product of the singular variety $\mathbb{C}^2/\mathbb{Z}_r$. $S^n(\mathbb{C}^2/\mathbb{Z}_r)$ is naturally stratified

$$S^{n}(\mathbb{C}^{2}/\mathbb{Z}_{r}) = \coprod_{0 \leqslant k \leqslant n} \sum_{\lambda \vdash n-k} S^{n-k}_{\lambda}(\mathbb{C}^{2}/\mathbb{Z}_{r}),$$

where $S_{\lambda}^{n-k}(\mathbb{C}^2/\mathbb{Z}_r)$ is the subspace of the symmetric product where the singular point (the origin) occurs with multiplicity *k*, and the rest of the configuration is of partition type λ . The Hilbert–Chow morphism

$$X_r^{[n]} \to S^n(X_r)$$

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

q

[m1+; v 1.121; Prn:14/06/2010; 10:32] P.35(1-39)

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

 $X_r \to \mathbb{C}^2 / \mathbb{Z}_r$

 $\pi^{\vee}: X_r^{[n]} \to S^n(\mathbb{C}^2/\mathbb{Z}_r)$

q

and the resolution

- together give a resolution
- q

which is semismall with respect to the above stratification, [Na-ICM]. For a point $y \in Q_{Q}$ $S_{\lambda}^{n-k}(\mathbb{C}^2/\mathbb{Z}_r)$, denote the fiber $(\pi^{\vee})^{-1}(y)$ by $F_{k}^{\vee\lambda}$. Then the decomposition theorem gives a graded vector space isomorphism

$$H^*(X_r^{[n]}) = \bigoplus_{k,\lambda} IH^*(\overline{S_{\lambda}^{n-k}(\mathbb{C}^2/\mathbb{Z}_r)}) \otimes H^{top}(F^{\vee \lambda}_k).$$

¹⁷ 11.2. The resolution
$$\pi : \mathfrak{M}(r, n) \to \mathfrak{M}_0(r, n)$$

Let $\mathfrak{M}_0(r, n)$ denote the Uhlenbeck compactification of the moduli space of framed *locally*-free sheaves $\mathfrak{M}^{reg}(r, n)$ [17, Chapter 3]. $\mathfrak{M}_0(r, n)$ has a stratification

 $\mathfrak{M}_0(r,n) = \coprod_{0 \leqslant k \leqslant n} \mathfrak{M}_{\lambda \vdash n-k}^k \mathfrak{M}_{\lambda}^k$

where

 $\mathfrak{M}_{1}^{k} = \mathfrak{M}^{reg}(r, k) \times S_{1}^{n-k}(\mathbb{C}^{2}),$

and $\mathfrak{M}^{reg}(r, k)$ is the moduli space of framed locally-free sheaves on \mathbb{P}^2 with second Chern class $c_2 = k$. By a result of Baranovsky [1], the resolution

 $\pi:\mathfrak{M}(r,n)\to\mathfrak{M}_0(r,n),$

$$\mathcal{E} \mapsto (\mathcal{E}^{\vee \vee}, \operatorname{supp}(\mathcal{E}^{\vee \vee}/\mathcal{E}))$$
 35

is semismall with respect to the above stratification. For $x \in \mathfrak{M}^{k}_{\lambda}$, let $\pi^{-1}(x) = F^{\lambda}_{n-k}$ denote the fiber of π over x. The decomposition theorem gives a graded vector space isomorphism

$$H^*\big(\mathfrak{M}(r,n)\big) = \bigoplus_{k,\lambda} IH^*\big(\overline{\mathfrak{M}_{\lambda}^k}\big) \otimes H^{top}\big(F_{n-k}^{\lambda}\big).$$

11.3. Numerical symplectic duality for $\mathfrak{M}(r, n)$ and $X_r^{[n]}$

We may now state the main result of this section. Recall that F_{n-k}^{λ} denotes the fiber of π over a point $x \in \mathfrak{M}_{\lambda}^{k}$, while $F_{k}^{\vee \lambda}$ denotes the fiber of π^{\vee} over a point $y \in S_{\lambda}^{n-k}(\mathbb{C}^{2}/\mathbb{Z}_{r})$.

Please cite this article in press as: A.M. Licata, Framed torsion-free sheaves on \mathbb{CP}^2 , Hilbert schemes, and representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

$$\begin{aligned} & \text{Int:} \mathbf{y} \ \mathbf{1}.121; \ \mathbf{Pri:} \mathbf{1}.422; \ \mathbf{Pri:} \mathbf{1}.422; \ \mathbf{Pri:} \mathbf{1}.423; \ \mathbf{Pri:} \mathbf{1}.435 \\ & \text{A.M. Lextur} / Advances in Mathematics $\mathbf{u} \in (\mathbf{u}, \mathbf{v}) \in \mathbf{u} + \mathbf{u} \\ & \text{A.M. Lextur} / Advances in Mathematics $\mathbf{u} \in (\mathbf{u}, \mathbf{v}) = \mathbf{u} + \mathbf{u} \\ & \mathbf{u} = \mathbf{1} \\ & \mathbf{u} = \mathbf{1}$$$$

ARTICI E IN DRECC

representations of infinite dimensional Lie algebras, Adv. Math. (2010), doi:10.1016/j.aim.2010.06.005

ITD.VATMA ATD. 2	FE4 (FIA = [m1], m1 + m1 + 101, Fmm + 14/06/0010, 10, 20] = 27(1.2)
JID:YAIMA AID:3	554 /FLA [m1+; V 1.121; PTn:14/06/2010; 10:32] P.37 (1-3)
	A.M. Licaid / Advances in Mainematics ••• (••••) ••••••
Dress f This falls	the start from a the array of Cittache and [17] which commutes the array
Proof. This follo	we directly from a theorem of Gottsche, see [1/], which computes the genera
ing function of gi	raded Poincare polynomials for the Hilbert scheme. \Box
Let $F^{\vee}(n) = x$	τ^{\vee} (0) denote the central fiber of the resolution
	$\pi^{\vee}:X_r^{[n]} o S^n(\mathbb{C}^2/\mathbb{Z}_r).$
Corollary 5. For	all $n \ge 0$,
	$\dim(H^{top}(F^{\vee}(n))) = \dim(IH^*(\mathfrak{M}_0(r,n))).$
Proof. It follows	from Propositions 11 and 12 that
	\cap
	$\sum_{n=1}^{\infty}$
	$\sum \dim \left(IH^* \left(\mathfrak{M}_0(r,n) \right) \right) q^n = \prod \frac{1}{(1-a^m)^{r-1}}$
	n=0 $m=1$ $(1-q)$
1:1 1 d D	
which, by the Pro	position 13, implies that
	$\sum_{n=1}^{\infty} \dim(H^{mid}(X^{[n]}))a^n - \sum_{n=1}^{\infty} \dim(H^*(\mathfrak{M}_0(r, n)))a^n$
	$\sum_{n=0}^{n} \operatorname{dim}(H^{n}(X_{r}))q = \sum_{n=0}^{n} \operatorname{dim}(H^{n}(X_{r}(Y, n)))q ,$
	<i>n</i> =0
i.e.	
	$\dim(H^{mid}(X_{\varepsilon}^{[n]})) = \dim(IH^*(\mathfrak{M}_0(r, n))).$
Since $F^{\vee}(n)$ is a	deformation retract of $X^{[n]}$ and
Since 1 (<i>n</i>) is a	deformation reduct of Xy and
	$\dim(F^{\vee}(n)) = \frac{1}{2}\dim(X_r^{[n]}),$
it follows that	
	$H^{top}(F^{\vee}(n))\simeq H^{mid}(X^{[n]}),$
which proves the	corollary.
1	
We can now p	rove Theorem 8.
1	
Proof. We first s	how that
	$\dim(IH^*(\overline{S^{n-k}(\mathbb{C}^2/\mathbb{Z}_r)})) = \dim(H^{top}(F^{\lambda_{-1}})) \sim \mathbb{C}$
	$\dim(\Pi (0_{\lambda} (0_{\lambda} (0_{j} \square r))) - \dim(\Pi (1_{n-k})) - 0.$
\mathbf{L} at $\mathbf{S}\lambda$ (\mathbb{C}^2/\mathbb{Z})	$\mathbb{C}\mathbb{V}_1(\mathbb{C}^2/\mathbb{Z})$ $\mathbb{C}\mathbb{V}_1(\mathbb{C}^2/\mathbb{Z})$ where $\mathbb{C}_1(\mathbb{V}_1)\mathbb{V}_2$ $\mathbb{C}\mathbb{V}_2 \to \mathbb{C}$

	$\kappa: S^{\lambda}(\mathbb{C}^2/\mathbb{Z}_r) \to \overline{S_{\cdot}^{n-k}(\mathbb{C}^2/\mathbb{Z}_r)}.$
	$(-,-,) = \lambda_{\lambda} (-,-,),$
	$\kappa(C_1,\ldots,C_n)=\sum jC_j$
	j
is finite	and birational [17], and respects the natural stratifications on both varieties. Thus,
	$+(\overline{n},k(z),z)$ $+(z)(z)$
	$IH^*(S^{n-\kappa}_{\lambda}(\mathbb{C}^2/\mathbb{Z}_r)) \simeq IH^*(S^{\kappa}(\mathbb{C}^2/\mathbb{Z}_r)) \simeq \mathbb{C}.$
~ .	
On the c	other hand, F_{n-k}^{k} is irreducible, [1], so
	$H^{top}(F^{\star}_{n-k})\simeq \mathbb{C}$
11	
as well,	proving the first half of Theorem 8.
NOW	we will snow that
	$1: (\mu r * (\overline{ook})) = 1: (\mu top (r \lambda^{\vee}))$
	$\dim(H^{r}(\mathfrak{M}_{\lambda}^{n})) = \dim(H^{rr}(F_{k}^{n})).$
Once an	ain there is a finite hirational morphism respecting the induced stratifications [1]
Once ug	ani, mere is a nince of attorial morphism respecting the induced straumentons [1]
	$m \cdot \mathfrak{m} (m k) \times \mathfrak{s}^{\lambda}(\mathfrak{s}^2) \to \overline{\mathfrak{m} k}$
	$k: \mathfrak{M}_0(r,k) \times S (\mathbb{C}) \to \mathfrak{M}_{\lambda},$
so that	
so that	
	$\dim(IH^*(\overline{\mathfrak{M}^k})) = \dim(IH^*(\mathfrak{M}_0(r,k))).$
	$\operatorname{dim}(\operatorname{dim}(\mathbb{C},\mathbb{C})) = \operatorname{dim}(\operatorname{dim}(\mathbb{C},\mathbb{C}))$
On t	he other hand, $F_{\nu}^{\vee\lambda}$, the fiber over $x \in S_{\nu}^{n-k}(\mathbb{C}^2/\mathbb{Z}_r)$, is isomorphic to $F^{\vee}(k) \times O$
where () is irreducible, and $F^{\vee}(k)$ is the central fiber of the resolution
~	
	$\pi^{\vee}: X_r^{[k]} \to S^k(\mathbb{C}^2/\mathbb{Z}_r).$
Since Q	is irreducible,
	$\dim(H^{top}(F_k^{\vee\lambda})) = \dim(H^{top}(F^{\vee}(k))).$
Thus, th	e second half of Theorem 8 follows from the equality
	$\dim \left(IH^* \big(\mathfrak{M}_0(r,k) \big) \right) = \dim \left(H^{top} \big(F^{\vee}(k) \big) \right)$
. ~	
of Corol	lary 5.
A al	uladomanta
ACKNOW	neagments
The	author is grateful to I. Frenkel for his guidance, generosity and encouragement during
	aution is grateful to it i renker for his guidance, generosity and encouragement during

[m1+; v 1.121; Prn:14/06/2010; 10:32] P.39(1-39)

A.M. Licata / Advances in Mathematics ••• (••••) •••-•••

References

2			2
3	[1]	Vladimir Baranovsky, Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differential Geom. 55 (2)	3
4		(2000) 193–227.	4
5	[2]	I.B. Frenkel, Spinor representations of affine Lie algebras, Proc. Natl. Acad. Sci. USA 77 (11) (1980) 6303–6306,	5
6	[2]	part I. I. D. Frankel Democratic and of the Lie share. He he madels from and Kataway de Veix two constitues	6
7	[3]	in: Lie Algebras and Palated Topics, New Brunswick, NL 1081, in: Lecture Notes in Math. vol. 033. Springer	7
, Ω		Rerlin 1982 nn 71–110	, 8
0	[4]	I.B. Frenkel, Representations of Kac–Moody algebras and dual resonance models, in: Applications of Group Theory	0
9	[.]	in Physics and Mathematical Physics, Chicago, 1982, in: Lectures in Appl. Math., vol. 21, Amer. Math. Soc.,	9
10		Providence, RI, 1985, pp. 325–353.	10
11	[5]	I.B. Frenkel, V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1)	11
12		(1980/81) 23–66.	12
13	[6]	Igor B. Frenkel, Alistair Savage, Bases of representations of type A affine Lie algebras via quiver varieties and	13
14	[7]	statistical mechanics, Int. Math. Res. Not. IMRN 28 (2003) 1521–1547.	14
15	[/]	V. Ginzburg, M. Kapranov, Hilbert schemes and Nakajima's quiver varieties, unpublished preprint.	15
16	[0]	(1996) 275_201	16
17	[9]	Yukari Ito, Iku Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (7)	17
18	[2]	(1996) 135–138.	18
19	[10]	V.G. Kac, D.A. Kazhdan, J. Lepowsky, R.L. Wilson, Realization of the basic representations of the Euclidean Lie	19
20		algebras, Adv. Math. 42 (1) (1981) 83-112.	20
20	[11]	Victor G. Kac, Dale H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups,	20
21		Proc. Natl. Acad. Sci. USA 78 (6) (1981) 3308–3312, part 1.	21
22	[12]	A. Kuznetsov, Quiver varieties and Hilbert schemes, alg-geom/0111092.	22
23	[13]	LG. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford Math. Monogr., The Claren- don Prace/Oxford University Prace, New York, 1005. With contributions by A. Zalovinsky, Oxford Solance Public	23
24		cations	24
25	[14]	Hiraku Nakajima. Jack polynomials and Hilbert schemes of points on surfaces, alg-geom/9610021.	25
26	[15]	Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J. 76 (2)	26
27		(1994) 365–416.	27
28	[16]	Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (3) (1998) 515-560.	28
29	[17]	Hiraku Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, Univ. Lecture Ser., vol. 18, Amer. Math. Soc.,	29
30	54.03	Providence, RI, 1999.	30
31	[18]	Hiraku Nakajima, Moduli of sheaves on blown-up surfaces, in: Proceedings of the Workshop "Algebraic Geometry and Integrable Systems Balated to String Theory" in: DIMS Kelyagradus Baseden, vol. 1222, 2001, pp. 20, 22	31
32	[10]	and integrable Systems Related to Siming Theory, in: RIMS Rokyuloku Bessalsu, vol. 1252, 2001, pp. 29–55.	32
33	[17]	CRM Proc Lecture Notes vol 38 Amer Math Soc. Providence RI 2004 pp 31–101	33
24	[20]	Hiraku Nakajima, Kōta Yoshioka, Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent.	24
05		Math. 162 (2) (2005) 313–355.	04
35	[21]	Z. Qin, W. Wang, Hilbert schemes of points on the minimal resolution and soliton equations, math.QA/0404540.	35
36	[22]	Alistair Savage, A geometric boson-fermion correspondence, math.RT/0508438.	36
37	[23]	Graeme Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys. 80 (3) (1981)	37
38	[0.4]	301-342.	38
39	[24]	Enc vasseroi, sur l'anneau de conomologie du schema de Hilbert de C^- , C. K. Acad. Sci. Paris Ser. I Main. 552 (1) (2001) 7, 12	39
40		(2001) 7-12.	40
41			41
42			42
43			43
44			44
45			45
46			46
47			47