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Abstract

We consider a natural basis of the Iwahori fixed vectors in the Whittaker
model of an unramified principal series representation of a split semisimple p-
adic group, indexed by the Weyl group. We show that the elements of this basis
may be computed from one another by applying Demazure-Lusztig operators.
The precise identities involve correction terms, which may be calculated by
a combinatorial algorithm that is identical to the computation of the fibers
of the Bott-Samelson resolution of a Schubert variety. The Demazure-Lusztig
operators satisfy the braid and quadratic relations satisfied by the ordinary
Hecke operators, and this leads to an action of the affine Hecke algebra on
functions on the maximal torus of the L-group. This action was previously
described by Lusztig using equivariant K-theory of the flag variety, leading to
the proof of the Deligne-Langlands conjecture by Kazhdan and Lusztig. In
the present paper, the action is applied to give a simple formula for the basis
vectors of the Iwahori Whittaker functions.

It is well known that there are relations between the representation theory of p-adic
groups and the topology of flag varieties. More precisely, let G be a split semisimple
group over a nonarchimedean local field F , and let Ĝ(C) be the (connected) Lang-
lands dual group. Then the representation theory of G(F ) is closely related to the
topology of the complex flag variety X of Ĝ(C). For example, the same affine Hecke
algebra appears as both contexts. On the one hand, Iwahori and Matsumoto [13], in
introducing this important ring, showed that it is a convolution ring of functions on
G(F ) acting on the Iwahori fixed vectors of any representation. On the other hand,
Lusztig [18] interpreted it as a ring of endomorphisms of the equivariant K-theory of
the flag variety of Ĝ(F ).

With this in mind, we study Whittaker functions for unramified principal se-
ries representations of G(F ). Our investigations were motivated by earlier work of
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Reeder [20] and we begin with a brief summary of his results. Further discussion of
this may be found in Section 1.

Let τ be an unramified character of the split maximal torus T (F ) where B = TN
is the standard Borel subgroup. Then we may form the principal series representation
M(τ) = IndGB(τ). A Whittaker model for M(τ) is an intertwining mapWτ : M(τ)→
IndGN(ψ) where ψ is in an open T -orbit of the space of characters of N ; such an
intertwiner is unique up to constant. An important problem is the characterization
of functions Wτ (φ) : G→ C for distinguished vectors φ ∈M(τ).

Let J be the Iwahori subgroup of G(F ). The space M(τ)J of J-fixed vectors
has dimension equal to the order of the Weyl group W of G. We will be primarily
concerned with two particular bases of M(τ)J . First, we have the “standard basis”
{Φτ

w | w ∈ W} whose elements are defined by

Φτ
w(buk) =

{
δ1/2τ(b) if u = w,
0 otherwise,

(b ∈ B(F ), u ∈ Wand k ∈ J) (1)

where δ is the modular character of B(F ). These functions are well-defined according
to the decomposition G =

∐
w∈W BwJ . Our formulas will be simpler if we use the

basis obtained by summing Φw’s according to the Bruhat order:

Φ̃τ
w =

∑
u>w

Φτ
u, (2)

so that if u,w ∈ W

Φ̃τ
w(buk) =

{
δ1/2τ(b) if u > w,
0 otherwise .

In particular Φ̃τ
1 is the standard spherical vector:

Φ̃τ
1(bk) = δ1/2τ(b) b ∈ B, k ∈ K.

In [20] Reeder investigated the functions Wτ (Φ̃
τ
w) evaluated on the maximal torus,

using methods of Casselman and Shalika. The key idea is that one can compute the
effect of intertwining operators on Iwahori fixed vectors before or after applying the
Whittaker functional.

Let Λ be the weight lattice of Ĝ, which is the group X∗(T̂ ) of rational characters
of the maximal torus T̂ of Ĝ that is dual to T . Thus Λ may be identified with the
group X∗(T ) of rational one parameter subgroups of T , isomorphic to T (F )/T (o),
where o is the ring of integers in F . If λ is a dominant weight of T̂ , let aλ ∈ T (F ) be
a representative of the corresponding coset in T (F )/T (o). Casselman [7] describes,
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in addition to the basis Φw of Iwahori fixed vectors, a more subtly defined basis
which we refer to as the Casselman basis {f τw}. Reeder gives a simple formula for
Wτ (f

τ
w)(aλ), but a similar closed formula for Wτ (Φ̃

τ
w)(aλ) is more difficult. However

he found a recursive algorithm for the change of basis between the Casselman basis
and the basis Φw. This algorithm, which we implemented in Sage, allowed us to
compute the Whittaker functions evaluated at any fixed aλ and these calculations
were an important tool in our investigation.

Furthermore, Reeder saw that the Wτ (Φ̃
τ
w)(aλ) should be related to the coherent

cohomology of line bundles over the flag varieties and their Schubert varieties, and
gave such interpretations for particular Weyl group elements—those corresponding
to the long element of a Levi subgroup of W .

We will exhibit connections between Iwahori Whittaker functions and the geom-
etry of Schubert varieties that hold for all Weyl group elements. Our starting point
is a recursive relation for the Whittaker function of Φ̃w in terms of Bruhat order
(Theorem 17). It is obtained by considering an operator on M(τ) which acts as an
idempotent in the isomorphism with the finite Hecke algebra. From this we prove
that the Iwahori Whittaker functions become Demazure characters when q−1 is spe-
cialized to 0, where q is the cardinality of the residue field. See Theorem 18 for a
precise statement.

Instead of the Whittaker model, one may consider the Iwahori fixed vectors in
the spherical model of the representation. This has been investigated by Ion [13],
who also finds that Demazure operators play a role, and (generalizing the Macdonald
formula for the spherical function) the functions on the p-adic group may be expressed
in terms of the nonsymmetric Macdonald polynomials.

We briefly recall the definition of Demazure characters and their relation to coho-
mology of Schubert varieties. Given w ∈ W , let Xw be the corresponding Schubert
cell in X = Ĝ(C)/B̂(C), where B̂ is the standard Borel subgroup. Thus Xw is the
closure of the open Schubert cell Yw, which is the image in X of B̂(C)wB̂(C). If λ
is a dominant weight of Ĝ, then λ determines a line bundle Lλ on X. The space
H0(Xw,Lλ) of sections is a module for the standard maximal torus T̂ (C) of Ĝ(C),
and the Demazure character formula computes its character.

To describe the Demazure character formula, let α1, · · · , αr be the simple roots of
Ĝ and let s1, · · · , sr be the corresponding simple reflections. The Demazure operators
are defined on the ring O(T̂ ) of rational functions on T̂ by

∂αif(z) = ∂if(z) =
f(z)− z−αif(siz)

1− z−αi
, (3)

for z ∈ T̂ (C). The operators ∂i are idempotent and satisfy si ◦ ∂i = ∂i. They also
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satisfy the braid relations for the Weyl group. This implies that if w = (sh1 , · · · , shd)
is a reduced word for w, so that w = sh1 · · · shd is a reduced decomposition of w
into a product of simple reflections then we may define ∂w := ∂h1 · · · ∂hd and this is
well-defined. In particular, if w0 is the long element and λ is a dominant weight,
then ∂w0z

λ is the character of the irreducible representation with highest weight λ.
The Demazure character formula asserts that for an arbitrary Weyl group element
w the trace of z ∈ T̂ (C) on H0(Xw,Lλ) is ∂wz

λ.
A key ingredient of the proof of the Demazure character formula is the Bott-

Samelson resolution of the (possibly singular) Schubert variety Xw. Depending on
the reduced word w we may construct the nonsingular Bott-Samelson variety Zw.
See Bott-Samelson [4], Demazure [11], Andersen [1] and Kumar [17]. There is then
a birational morphism Zw −→ Xw. Since the map is birational, the fiber over a
generic point is just is a single point. However even if Xw is nonsingular, this map
may have nontrivial fibers over some points. Pulling the line bundle back to Zw does
not change its space of sections, and over the Bott-Samelson variety, the cohomology
of Lλ may be computed inductively using the Leray spectral sequence, leading to the
Demazure character formula.

On the other hand, returning to Whittaker functions over a nonarchimedean local
field F , z ∈ T̂ (C) parametrizes an unramified character τ = τz of T (F ), which may
be parabolically induced to G(F ). The set {Wτ Φ̃

τ
w} indexed by elements w of the

Weyl group gives a natural basis of the space of Iwahori fixed vectors in the Whittaker
model. If λ is a dominant weight of T̂ , then λ parametrizes a coset in T (F )/T (o),
where o is the ring of integers in F . Let aλ ∈ T (F ) be a representative. Then

Wτ Φ̃
τ
w(aλ) = δ1/2(aλ)Pλ,w(z, q−1)

where δ is the modular character of B(F ), and Pλ,w is a rational function in z – that
is, a finite linear combination of weights – whose coefficients are polynomials in q−1.
The factor δ1/2(aλ) is a constant, independent of z, and removing it is harmless. For
example, multiplying by δ1/2(aλ) commutes with the Demazure operators.

We will use Bott-Samelson varieties to exhibit a further connection between rep-
resentations and geometry—a certain dictionary between Whittaker functions and
Schubert varieties. Our philosophy is that in the geometric picture, the various vari-
eties that appear, including Schubert and Bott-Samelson varieties, can be associated
with polynomials depending on the spectral parameter z, a dominant weight λ and
a parameter v. Thus given a variety V with an action of the Borel subgroup of Ĝ,
together with an equivariant map V → X, one may hope to construct an invariant
V (z, λ, v) which is a polynomial in v. We will not give a systematic theory of such
invariants, but we will make such an association for the particular varieties that come
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up in our study of Whittaker functions.
In order to make this dictionary more apparent, let us use the notation

Xw(z, λ, v) := P−w0λ,ww0(z
−1, v), (4)

where v is an indeterminate and w0 is the long Weyl group element. Note that if
λ is a dominant weight, then so is −w0λ. The construction of Xw was by way of
Whittaker functions, but we are now thinking of it as an invariant associated to the
Schubert variety Xw. We will also use the notation Y w where we set

Xw =
∑
u6w

Y u, and so Y w =
∑
u6w

(−1)l(w)−l(u)Xu.

Thus Y w may be obtained from Whittaker functions using WτΦ
τ
w instead of Wτ Φ̃

τ
w.

We will see that if we replace v by 0 then Xw becomes a Demazure character;
that is,

Xw(z, λ, 0) = ∂wz
λ. (5)

Since the Demazure character is the coherent cohomology of a line bundle on Xw, this
is the first evidence of a connection between Whittaker functions and the geometry
of the Schubert varieties.

In order to describe a deeper connection, it is necessary to understand the com-
plete polynomial Pλ,w, not just its constant term, in relation to Schubert varieties.
Corresponding to the Bott-Samelson variety Zw, define

Zw(z, λ, v) = Dh1 · · ·Dhdz
λ (6)

where
Di = (1− vz−αi)∂i. (7)

The Bott-Samelson variety may be built up from a point by successive fiberings by
P1, and we think of the the application of the operators Di as an algebraic analog of
this process.

Our thesis is that the relationship between Xw, which is essentially the Whittaker
function, and Zw is identical to the relationship between the Schubert varieties Xw

and the Bott-Samelson varieties Zw. The Y w then correspond to the open Schubert
varieties Yw.

To explain further, we may write

Xw = Zw − v × “correction terms”.
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The correction terms are linear combinations of Zu for a few particular reduced
words u of u 6 w in the Bruhat order. The determination of the correction terms is
a combinatorial matter, and the point is that the combinatorics are identical between
the Whittaker (Xw and Zw) and the Schubert (Xw and Zw) relationships.

In order to explain the relationship most simply, it is useful to introduce partial
Bott-Samelson varieties Zs,w, where s = sα is a simple reflection and w is a Weyl
group element such that sw > w. This is a fiber bundle over P1 in which the fibers
are Xw. Furthermore, it is equipped with a birational morphism Zs,w → Xsw. In
keeping with the algebraic analogy described above, we define

Zs,w = DiXw, where α = αi.

Just as in (6), the operator Di should be thought of as an algebraic analog of the P1.
We find that

Xsw = Zs,w − v × “correction terms”.

Here the correction terms have the following combinatorial description. Let H(w, s)
be the set of u ∈ W such that both u, su ≤ w in the Bruhat order. If u ∈ H(w, s)
and t 6 u then t ∈ H(w, s). The set H(w, s) may be empty or it may have a few
maximal elements u1, · · · , uk. If it is empty, then Xsw = Zs,w, while if H(w, s) has
a unique maximal element u1, then

Xsw = Zs,w − vXu1 .

If H(w, s) has two maximal elements u1 and u2, and {x 6 u1, u2} has a unique
maximal element u3, then

Xsw = Zs,w − vXu1 − vXu2 + vXu3 . (8)

This latter case occurs, for example, in Type A3 when s = s1 and w = s2s1s3s2,
with u1 = s1s2s1, u2 = s1s3s2 and u3 = s1s2. This illustrates the combinatorial
description of the Whittaker functions in terms of the operators Di.

Now let us consider an analogous geometric problem leading to the same com-
binatorial decomposition as in (8). We recall that there is a birational morphism
µ : Zs,w −→ Xsw. The fiber over every point x ∈ Xsw is either a point or a P1. Let
us determine the subvariety E of Xsw where the fiber is P1. The combinatorics of this
question are again controlled by the same set H(w, s). Indeed, E is just the union
of the Xu as u runs through the maximal elements of H(w, s). For computational
purposes, however, it may be useful to describe E by recording the overlapping of its
irreducible components. Thus in the case where H(w, s) has two maximal elements
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u1 and u2, and {x 6 u1, u2} has a unique maximal element u3, E has two irreducible
components Xu1 and Xu2 , whose intersection is Xu3 . So we write formally

E = Xu1 +Xu2 −Xu3 . (9)

The three Weyl group elements that appear with nonzero coefficient are the same in
(8) and (9), and we will prove that this is always true.

The notation (9) is intended to be suggestive, but we can make it precise as
follows. If S is a subset of X we will write symbolically

S =
∑
w∈W

c(w)Xw, c(w) ∈ Z, (10)

to mean that if y ∈ X then∑
w ∈W
y ∈ Xw

c(w) =

{
1 if y ∈ S
0 otherwise.

We may now state a theorem connecting the correction terms in the expansions of
the Whittaker functions and the fibers of the maps Zs,w −→ Xsw.

Theorem 1. Let s be a simple reflection, and let w ∈ W such that sw > w. Then
there exist integer coefficients cs,w(u) = c(u) defined for u ∈ W such that

Xsw = Zs,w − v
∑
u

c(u)Xu.

Moreover, there is a corresponding geometric identity

S =
∑
u∈W

c(u)Xu

where S is the subset of Xsw such that the fiber of the map Zs,w −→ Xsw over y ∈ Xsw

is a point if y 6∈ S, or P1 if y ∈ S. The coefficient c(u) is zero unless both u, su < w.

In the special case v = 0, this immediately implies the specialization to Demazure
characters in (5). When v = 1 they also have a simple specialization. Let ρ be the
Weyl vector for Ĝ(C), that is, half the sum of the positive roots.

Theorem 2. Given a dominant weight λ, for any w ∈ W :

Xw(z, λ, 1) =
∑
u6w

(−1)l(u)zu(ρ+λ)−ρ. (11)
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As alluded to earlier, the operators Di have an interpretation in terms of Hecke
algebras. The Hecke algebra Hv associated with the Weyl group W has generators
Ti, one for each Weyl group element si. They satisfy the same braid relations as the
si, together with the quadratic relations T 2

i = (v − 1)Ti + v. We will show that the
operators Di − 1 satisfy these relations. Therefore we obtain a representation of Hv

on C[v, v−1]⊗O(T̂ ) in which Ti acts as the operator Di − 1. The operators Di − 1
are essentially the same as the Demazure-Lusztig operators which first appeared in
Lusztig [18], equation (8.1). See equation (36) below.

Once this representation of Hv is constructed, the functions Xw or Y w have the
following explicit description. Denote the effect of φ ∈ Hv on f ∈ C[v, v−1] ⊗O(T̂ )
by φ · f .

Theorem 3. Let λ be a dominant weight. Then

Y w(λ) = Tw · zλ, Xw(λ) =
∑
u6w

Tu · zλ.

This shows that the action of the Hecke algebra by Demazure-Lusztig operators gives
a tidy formula for a basis of the Iwahori fixed Whittaker functions.

An equivalent formulation more directly in terms of Whittaker functions is given
in Theorem 14. The relation between Wτ and Tw appearing in the statement of
Theorem 3 is more elaborate and we supply a second proof based on machinery
developed in Section 5. This machinery is also used to obtain the extension of the
action to the affine Hecke algebra, a point we discuss next.

The affine Iwahori Hecke algebra, denoted H̃v, is generated by Hv together an
abelian subgroup ζΛ isomorphic with the weight lattice Λ of T̂ . We will show in
Theorem 28 that the above representation ofHv may be extended to a representation
of H̃v in which ζΛ acts by translation: if λ ∈ Λ then ζλ ∈ ζΛ is an element that acts on
functions of C[v, v−1]⊗O(T̂ ) by multiplication by z−λ. The resulting representation
of H̃v was previously considered by Lusztig [18]. Indeed C[v, v−1]⊗O(T̂ ) is isomorphic
to the complexified equivariant K-group C ⊗Z KM(X) of the flag variety X, where
M = Ĝ × GL1, and Lusztig constructions an action of the Hecke algebra (over Z)
on KM(X). The same representation also appeared in Cherednik [9] in the context
of double affine Hecke algebras. In our context, it appears naturally in the theory
of Whittaker functions. This representation is irreducible, and may be described
as follows. The element z−ρ of C[v, v−1] ⊗ O(T̂ ), where ρ is the Weyl vector (half
the sum of the positive roots) for Ĝ, is annihilated by the Di, so Hv acts on the
one-dimensional span of this vector by the sign character that sends Ti to −1. The
representation of H̃v on O(T̂ ) is the irreducible representation induced by this one-
dimensional representation of Hv.
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Let H̃ be the specialization of H̃v to a complex algebra obtained by putting
v = q−1. It was shown by Iwahori and Matsumoto [13] that H̃ is the convolution
ring of compactly supported J-biinvariant functions on G(F ). It therefore acts on
the finite-dimensional vector space space M(τ)J of Iwahori invariants by convolution
on the right. This action depends on τ , and the isomorphism class of M(τ) is
determined by the isomorphism class of this representation of H̃. If z ∈ T̂ (C) is in
general position then M(τz) is irreducible, and in this case, the isomorphism class of
M(τz) and M(τz′) are the same if and only if z, z′ ∈ T̂ (C) are in the same W -orbit.

On the other hand, we have seen that there is a representation of H̃ on C[q, q−1]⊗
O(T̂ ) which is constructed in this paper using the theory of Whittaker functions,
and which was constructed earlier by Lusztig in connection with equivariant K-
theory. This representation was applied by Lusztig in [18] and in Kazhdan and
Lusztig [15, 16] to construct all representations having an Iwahori fixed vector. To
see that one may construct at least the principal series representations, fix z0 ∈ T̂ (C).
Consider the ideal Jz0 of functions in O(T̂ ) that vanish on the W -orbit of z0. It is
clear from the definitions that this ideal is closed under the operators Di, as well as
ζΛ, and so there is an induced action of H̃ on O(T̂ )/Jz0 . By Lemma 7 of Bernstein
and Rumelhart [2] every irreducible constitutent of this representation is the space
of Iwahori fixed vectors in an irreducible representation of G(F ).

We thank Gautam Chinta, Paul Gunnells and Anne Schilling for their interest
in the project and helpful conversations during the writing of this paper. This work
was supported by NSF grants DMS-0652817, DMS-0844185, and DMS-1001079.

1 Preliminaries

Let G be a split semisimple Chevalley group. By this we mean an affine algebraic
group scheme over Z, whose Lie algebra gZ has a fixed Chevalley basis defined over
Z corresponding to a root system ∆. The elements of the Chevalley basis are the
nilpotent elementsXα where α runs through all roots and the corootsHα = [Xα, X−α]
where α runs through the simple positive roots. The structure constants of the
Chevalley basis are all integers (cf. [10]). If α is a root, let xα : Ga −→ G be the
one parameter subgroup tangent to Xα. Let T be the split maximal torus whose
Lie algebra is spanned by the Hα, and let N (resp. N−) be the unipotent subgroup
whose Lie algebra is spanned by the Xα (resp. X−α) as α runs through the positive
roots. Then B = TN is the standard Borel subgroup of G.

Let F be a nonarchimedean local field and o its ring of integers, p the maximal
ideal of o, and let q = |o/p|. We will denote the residue field Fq. The group
G(F ) has K = G(o) as a maximal compact subgroup. The group X∗(T ) of rational

9



cocharacters is isomorphic to T (F )/T (o), where the one-parameter subgroup ϕ ∈
X∗(T ) corresponds to the coset ϕ($)T (o) with $ a prime element.

If w is an element of the Weyl group W , we will choose a fixed representative of
w in G(o), and by abuse of notation we will denote this element also as w. Nothing
will depend on this choice in any essential way. We will denote by w0 the long Weyl
group element.

A character τ of T (F ) is called unramified if it is trivial on T (o). We will let W
act on the right on unramified characters τ , so that

(τw)(t) = τ(wtw−1), w ∈ W, t ∈ T (F ).

Since τ is unramified, this does not depend on the choice of representative w of the
Weyl group element.

Let Ĝ be the connected Langlands dual group. It is an algebraic group over C
whose root data are dual to G. Thus if ∆ is the root system of G with respect to
T , we will denote by α −→ α∨ the bijection of ∆ with system ∆∨ of coroots, and
∆∨ may be regarded as the root system of Ĝ. If T̂ is a maximal torus of Ĝ then the
group X∗(T ) of rational one-parameter subgroups of T is identified with the group
X∗(T̂ ) of rational characters. Thus we have a homomorphism

T (F ) −→ T (F )/T (o) ∼= X∗(T ) ∼= X∗(T̂ ). (12)

If z ∈ T̂ (C) and λ ∈ X∗(T̂ ) we will denote by zλ the application of the character
λ to z. Also if t ∈ T (F ) we may apply the homomorphism (12) to t and apply the
resulting rational character of T̂ to z; we will denote the result by τz(t). Thus τz
is an unramified character of T and z 7−→ τz is an isomorphism of T̂ (C) with the
group of unramified characters of T (F ).

If λ ∈ X∗(T̂ ), we will denote by aλ a representative of the coset in T (F )/T (o)
corresponding to λ by the isomorphism in (12).

Let τ = τz be such an unramified character. Let M(τ) be the space of the
representation of G(F ) induced from τ . This is the space of locally constant functions
f : G(F ) −→ C that satisfy

f(bg) = (δ1/2τ)(b)f(g), b ∈ B(F ),

where δ : B(F ) −→ R× is the modular character. The standard intertwining integral
Aw : M(τ) −→M(τw) is

AτwΦ(g) =

∫
N(F )∩w−1N−(F )w

Φ(wng) dn.
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The integral is convergent for τ = τz with |α∨(z)| < 1 when α ∈ ∆+. It makes sense
for other z by meromorphic continuation in a suitable sense.

In order to convert between this notation (which is the same as Reeder [20])
and that of Casselman [7], bear in mind that Aτw is Casselman’s Tw−1 . Due to this
difference, the Weyl group action on characters is a right action: w : τ −→ τw.

Let J be the Iwahori subgroup of G(F ). It is the inverse image of B(Fq) under
the natural map K −→ G(Fq). The dimension of the space M(τ)J of J-fixed vectors

is |W |. Let {Φτ
w} and {Φ̃τ

w} be the bases of M(τ)J defined by (1) and (2). The basis
element Φτ

w is denoted φw by Casselman [7].

Lemma 4. If n ∈ N(F ) and w0n ∈ Bw0J then n ∈ N(o).

Proof. Using the Iwahori factorization J = N−(p)T (o)N(o) we may write w0n =
bw0γn1 with b ∈ B(F ), γ ∈ N−(p)T (o) and n1 ∈ N(o). Since w0γw

−1
0 ∈ B(F ), this

implies that nn−1
1 ∈ N(F ) ∩ w−1

0 B(F )w0, so n = n1 ∈ N(o).

Lemma 5. Let λ ∈ X∗(T̂ ). Then WτΦ
τ
w(aλ) = 0 if λ is not dominant.

Proof. See Casselman and Shalika [8] Lemma 5.1. (The proof there obviously applies
to all Iwahori-fixed Whittaker functions since J contains N(o).)

Proposition 6. Given an unramified character τ of T (F ) we have Φτ
w0

= Φ̃τ
w0

and

WτΦ
τ
w0

(aλ) =

{
δ1/2(aλ)z

w0λ if λ is dominant,
0 otherwise.

Proof. The fact that Φ̃w0 = Φw0 is clear since w0 is maximal in W . For the last
assertion by Lemma 5 we may assume that λ is dominant. Denoting a = aλ,

WτΦ
τ
w0

(a) =

∫
N(F )

Φτ
w0

(w0na)ψ(n) dn.

We make the variable change n −→ ana−1 whose Jacobian is δ(a), and the integral
becomes

δ(a)

∫
N(F )

Φτ
w0

(w0an)ψ(ana−1) dn =

δ(a) · δ1/2τ(w0aw
−1
0 )

∫
N(F )

Φτ
w0

(w0n)ψ(ana−1) dn.

Since δ1/2(w0aw
−1
0 ) = δ−1/2(a),

δ(a) · δ1/2τ(w0aw
−1
0 ) = δ1/2(a)(τw0)(a) = δ1/2(a)zw0λ.

By Lemma 4, Φτ
w0

(w0n) = 1 if n ∈ N(o) and 0 otherwise. Since λ is dominant,
ψ(ana−1) = 1 when n ∈ N(o), and the statement follows.
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Let τ = τz and define

Cα(τ) =
1− q−1zα

1− zα
. (13)

Proposition 7. We have

WτwAτw =
∏

α ∈ ∆+

w−1α ∈ ∆−

1− q−1z−α

1− zα
Wτ . (14)

Proof. This is Casselman and Shalika [8], Proposition 4.3.

In (3) we defined the Demazure operator ∂i = ∂αi corresponding to a simple
reflection αi. We will also make use of alternative version defined by

∂′αif(z) = ∂′if(z) =
f(z)− zαif(siz)

1− zαi
=
f(siz)− z−αif(z)

1− z−αi
.

Again we may define ∂′w = ∂′i1 · · · ∂
′
ik

if w = si1 · · · sik is a reduced decomposition.
If w = w0 and µ is dominant, then ∂′w0

(zw0µ) is the character of the irreducible
representation of highest weight µ.

2 Whittaker functions

In this section we will prove that the Iwahori Whittaker functions W (Φw) are poly-
nomials in q−1 whose constant terms are Demazure characters.

Proposition 8. Let s = sα with α a simple root. Then

AsΦτs
w + Cα(τ)Φτ

w =

{
Φτ
w + Φτ

sw if sw < w,
q−1(Φτ

w + Φτ
sw) if sw > w.

(15)

Proof. The identities

AsΦτ
w =

{
(Cα(τ)− q−1)Φτs

w + Φτs
sw if sw < w,

(Cα(τ)− 1)Φτs
w + Φτs

sw if sw > w,

are Casselman [7], Theorem 3.4. These imply that

AsΦτ
w − (Cα(τ)− q−1 − 1)Φτs

w =

{
Φτs
w + Φτs

sw if sw < w,
q−1(Φτs

w + Φτs
sw) if sw > w.

(16)

Replacing τ by τs, noting that Cα(τs) = C−α(τ) and using

Cα(τ) + C−α(τ) = 1 + q−1.

we obtain (15).
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Proposition 9. Let α be a simple root, and s = sα the corresponding reflection.
Then

Wτ (AsΦτs
w + Cα(τ)Φτ

w) = (1− q−1zα)∂′αWτΦ
τ
w. (17)

Proof. By (14), we have

WτsAτs =
1− q−1z−α

1− zα
Wτ ,

which we rewrite as

WτAτss =
1− q−1zα

1− z−α
Wτs.

Now the left-hand side in (17) equals

1− q−1zα

1− z−α
WτsΦ

τs
w +

1− q−1zα

1− zα
WτΦ

τ
w = (1− q−1zα)

1

1− zα
(WτΦ

τ
w − zαWτsΦ

τs).

By the definition of the Demazure operator we have

1

1− zα
(WτΦ

τ
w − zαWτsΦ

τs) = ∂′αWτΦ
τ
w,

and we are done.

Define operators on the ring O(T̂ ) of functions on T̂ (C) as follows. Let si be a
simple reflection corresponding to the simple root α = αi. Define

D′i = D′α = (1− q−1zα)∂′α, T′i = T′α = D′i − 1. (18)

Proposition 10. Suppose that s = sα is a simple reflection and sw < w. Then

WτΦ
τ
sw = T′αWτΦ

τ
w.

Proof. This follows immediately from Propositions 9 and 8.

The operator T′i is closely related to the Demazure-Lusztig operator. We will
return to this point in Section 5. At the moment, we make use of the Whittaker
function to give a short proof that they satisfy the braid relation. Let D be the ring
of expressions of the form

∑
w∈W fw · w where fw ∈ O(T̂ ), and the multiplication is

defined by (f1 · w1)(f2 · w2) = f1
w1f2 · w1w2. The Di are naturally elements of this

ring. The ring D acts on O(T̂ ) in the obvious way.

Lemma 11. Suppose that D ∈ D and that D annihilates zw0λ for every dominant
weight λ. Then D = 0.

13



Proof. Define the support of f ∈ O(T̂ ) to be the finite set of weights with nonzero
coefficients in f . Let D =

∑
w∈W fw · w. We may choose the dominant weight λ so

that the functions fwz
ww0λ have disjoint support. Then Dzw0λ = 0 implies that each

fw = 0 and so D = 0.

Proposition 12. Let s = si and sj be simple reflections. Then the operators T′i and
T′j satisfy the same braid relations as si and sj. That is, if k is the order of sisj then

T′iT
′
jT
′
i · · · = T′jT

′
iT
′
j · · · , (19)

where k is the number of factors on both sides of this equation.

Proof. By Lemma 11 it is enough to show that these both have the same effect on
zw0λ where λ is a dominant weight. By Proposition 6, zw0λ = cWτΦw0(aλ) where the
constant c = (δ1/2τ)(aλ) is independent of z and hence commutes with operators in
D. Applying either side of (19) toWτΦw0(aλ) givesWτΦww0(aλ) where w is the long
element of the rank two Weyl group 〈si, sj〉. Indeed, Proposition 10 is applicable
taking (s, w) = (si, w0), (s, w) = (sj, siw0), etc. until we reach ww0 since at each
stage s is a descent of w.

Proposition 13. The operators satisfy the quadratic relations

(D′i)
2 = (1 + q−1)D′i, (T′i)

2 = (q−1 − 1)T′i + q−1. (20)

Proof. The two relations are equivalent. We prove the first. Writing α = αi,

D2
i = (1− q−1zα)∂′i(1− q−1zα)∂′i = (1− q−1zα)(∂′i)

2 − (1− q−1zα)q−1∂′iz
α∂′i

and the quadratic relation in the form D2
i = (v + 1)Di follows from the properties

(∂′i)
2 = ∂′i and ∂′iz

α∂′i = −∂′i of the usual Demazure operator.

If v is either an element of C or a field containing it, letHv be the complex algebra
generated by Ti subject to the quadratic relations T 2

i = (v − 1)Ti + v together with
the braid relations. We see from Propositions 13 and 12 that there is a representation
of Hq−1 on the Whittaker model WτM(τ)J in which Ti acts by T′i.

Given any w ∈ W we may construct an element T′w of D as follows. Let w =
si1 · · · sik be any reduced decomposition of w into a product of simple reflections.
Then T′w = T′i1 · · ·T

′
ik

. This is well-defined by Proposition 12.
Iwahori and Matsumoto [13] showed that the convolution ring of J-bi-invariant

functions supported in G(o) is isomorphic to Hq and that algebra acts by right
convolution on WM(τ)J . The rings Hq and Hq−1 are isomorphic, and one might
wonder whether the action of Hq−1 we have just defined is the same. It is not, since
the isomorphism class of the convolution action depends on τ , while the isomorphism
class of the representation that we have just defined does not.
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Theorem 14. Let w ∈ W and let λ be a dominant weight. Then

WτΦ
τ
ww0

(aλ) = δ1/2(aλ)T
′
wz

w0λ. (21)

Proof. If w = 1, this follows from Proposition 6. The general case follows by repeated
applications of Proposition 10.

In passing from the functions WτΦ
τ
w to Wτ Φ̃

τ
w, the combinatorics of the Bruhat

order begins to play a role.

Proposition 15. Let s be a simple reflection and w1, w2 ∈ W .
(i) Assume that sw1 < w1 and sw2 < w2. Then w1 6 w2 if and only if sw1 6 w2

if and only if sw1 6 sw2.
(ii) Assume that sw1 > w1 and sw2 > w2. Then w1 > w2 if and only if sw1 > w2

if and only if sw1 > sw2.

Proof. Part (i) is a well-known property of Coxeter groups, called property Z(s, w1, w2)
by Deodhar [12]. Note that w 7−→ ww0 is an order reversing bijection of W . Applying
this gives (ii).

Suppose that s = sα is a descent of w ∈ W : sw < w. Then we will define

H ′(w, s) = {u ∈ W |u, su > w}.

Proposition 16. The set H ′(w, s) is cofinal in W in the sense that if u ∈ H ′(w, s)
and t > u then t ∈ H ′(w, s).

Proof. We have t > u with both u, su > w. We wish to show that t ∈ H ′(w, s).
We may assume without loss of generality that su > u. For if not, then su < u so
t > su. Thus interchanging u and su if necessary, we may assume that su > u. Also
without loss of generality, t > st since otherwise both t, st are > u > w as required.
Now taking w1 = su and w2 = t in Proposition 15 (i), we see that both t, st > u and
so t ∈ H ′(w, s).

Define an integer-valued function c′w,s on W by

c′w,s(u) =
∑

t ∈ H′(w, s)
t 6 u

(−1)l(t)−l(u).
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Theorem 17. Let α be a simple root, and let s = sα denote the corresponding
reflection. Assume that sw < w. Then

Wτ Φ̃
τ
sw = (1− q−1zα)∂′αWτ Φ̃

τ
w − q−1

∑
u∈H′(w,s)

WτΦ
τ
u. (22)

Equivalently,

Wτ Φ̃
τ
sw = (1− q−1zα)∂′αWτ Φ̃

τ
w − q−1

∑
u∈H′(w,s)

c′w,s(u)Wτ Φ̃
τ
u. (23)

Proof. By Proposition 9

(1− q−1zα)∂′αWτ Φ̃
τ
w =

∑
x>w

Wτ (AsΦτs
x + Cα(τ)Φτ

x).

We split the sum into two parts according as sx < x or sx > x and use Proposition 8.
We have ∑

x > w
sx < x

Wτ (AsΦτs
x + Cα(τ)Φτ

x) =
∑
x > w
sx < x

(WτΦ
τ
x +WτΦ

τ
sx).

By Proposition 15 (i) with w1 = w and w2 = x, we see that⋃
x > w
sx < x

{x, sx} = {u ∈ W |u > sw}.

Therefore this contribution equals Wτ Φ̃
τ
sw. On the other hand, let us consider the

contributions from sx > x. By Proposition 8 these contribute

q−1
∑
x > w
sx > x

(WτΦ
τ
x +WτΦ

τ
sx) = q−1

∑
u∈H′(w,s)

WτΦ
τ
u.

This proves (22). By Möbius inversion (Verma [22], Deodhar [12]) we may write

Φτ
u =

∑
t6u

(−1)l(t)−l(u)Φ̃τ
t ,

and substituting this gives (23).
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The function c′w,s has a tendency to take on only a few nonzero values. It vanishes
off H ′(w, s). This sparseness means there are usually only a few terms on the right-
hand side in (23). For example, in A3, if we consider the pairs w, s where s is a left
descent of w, we find sixteen such pairs where c′w,s is always zero. Thus for these
pairs the identity (23) takes the form

Wτs(Φ̃
τs
sw) = (1− q−1z−α)∂′αWτ (Φ̃

τs
w ).

There are seventeen pairs (w, s) such that c′w,s(u) 6= 0 for only one particular u. Then

Wτs(Φ̃
τs
sw) = (1− q−1z−α)∂′αWτ (Φ̃

τs
w )− q−1Wτs(Φ̃

τs
u ).

Finally, there are three cases where

Wτs(Φ̃
τs
w ) = (1− q−1z−α)∂′αWτ (Φ̃

τs
w )− q−1Wτs(Φ̃

τs
u )− q−1Wτs(Φ̃

τs
t ) + q−1Wτs(Φ̃

τs
x ).

These are:
w s u t x
s2 s2 s1s2 s3s2 s1s3s2

s3s1 s1 s2s3s1 s3s2s1 s2s3s2s1

s3s1 s3 s2s3s1 s1s2s3 s2s1s2s3

The ring O(T̂ ) of regular functions on T̂ is the complex group algebra over the
weight lattice Λ of T̂ . Let v be an indeterminate, and let R = C[v] ⊗ O(T̂ ). If
P ∈ R we will denote by P (z, q−1) the image of P under the specialization map
R −→ O(T̂ ) that sends v to q−1.

Theorem 18. Let λ be dominant. There exists an element Pλ,w of R such that

WΦ̃τ
w(aλ) = δ1/2(aλ)Pλ,w(z, q−1).

We have
Pλ,w(z, 0) = ∂′wz

w0λ.

It should be emphasized that Pλ,w is independent of q and of the field F .

Proof. This may be proved by induction on l(ww0). If w = w0 then by Proposition 6
we have Pλ,w0(z, q

−1) = zw0λ, so the assertion is true. In general, we may apply (23)
to deduce both statements for sw when it is known for Weyl group elements > w.
Indeed, by induction every term on the right-hand side is in R, so Pλ,sw ∈ R, and
specializing q−1 −→ 0 produces simply ∂′iPλ,w = ∂′i∂

′
wz

w0λ = ∂′swz
w0λ.
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3 Fibers of Partial Bott-Samelson Varieties

Let G be a complex reductive group, and let B be a Borel subgroup. In the appli-
cation to Whittaker functions, G will be the group formerly denoted Ĝ(C), but we
suppress the hat in this section.

Let X = G/B be the flag variety. If w is an element of the Weyl group W , let
X◦w be the image of BwB in X. The closure

Xw =
⋃
u6w

X◦u

is the closed Schubert cell.
Choose a reduced decomposition w = (sh1 , · · · , shk) of w = sh1 · · · shk into a

product of simple reflections. To define the Bott-Samelson variety Zw, let Pi be the
parabolic subgroup generated by B and si. The group Bk acts on Ph1 × · · ·×Phk on
the right by

(p1, · · · , pk)(b1, · · · , bk) = (p1b1, b
−1
1 p2b2, · · · , br−1prbr). (24)

Then Zw is the quotient variety. The multiplication map Ph1 × · · · × Phk −→ G
induces a rational map Zw −→ Xw that is a birational equivalence. Although Xw

may be singular Zw is always smooth, so this gives a resolution of the singularities
of Xw.

If s is an ascent of w with respect to the Bruhat order then we have a partial
Schubert variety Zs,w which is the quotient (P ×Xw)/B where if s = si then P = Pi
and B acts on the right by (p, x) · b = (pb−1, bx). It is birationally equivalent to Xsw.

We are interested in the map µ : Zs,w −→ Xsw from the partial Bott-Samelson
variety to the Schubert variety. The fiber over an open Schubert cell Yu (with u 6 sw)
is either a single point or a P1, and we will find a combinatorial criterion for these
cases.

Let T be a maximal torus of G contained in B. Since the fibers of µ are constant
on Schubert cells Yt ⊂ Xsw with t ∈ W , it suffices to study the fiber µ−1(yt), where
yt ∈ Y T

t is the unique T -fixed point in the Schubert cell Yt. Since the fiber µ−1(yt) is
either a single point or has dimension 1, it is determined by its Euler characteristic
χ(µ−1(yt)), and this is what we will compute.

Lemma 19. Let Y be a projective complex algebraic variety with a T action whose
fixed point set Y T consists of isolated points. Then χ(Y ) = #Y T .
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Proof. Choosing a regular element λ of Hom(C×, T ), it follows that Y has a C×
action with the same fixed point set, that is, Y C× = Y T . This C× action defines a
Bialynicki-Birula cellular decomposition of Y , with cells {Ux}x∈Y C× defined by

Ux = {z ∈ Y | lim
ε→0

ε · z = x},

one cell for each x. See Bialynicki-Birula, Carrell and McGovern [3]. Since the cells
are all of even real dimension, the Euler characteristic of Y is simply the number of
cells - that is, the number of fixed points.

Proposition 20. The fiber of µ over Yu is P1 if and only if both u, su 6 w, and is
a point otherwise.

Proof. In view of Lemma 19, in order to compute χ(µ−1(yt)), we need to compute
the number of fixed points in the set µ−1(yt)

T . This is straightforward since the fixed
point set ZT

s,w equals {(u, t) | u ∈ 〈s〉 , t ≤ w} and the map µT : ZT
s,w −→ XT

sw is
multiplication (u, t) 7→ ut. Discussions of these facts may be found in many places,
usually for “standard” Bott-Samelson varieties rather than these partial ones. See,
for example Brion [5].

Now, from these two facts, we compute (µT )−1(yt) for t 6 w. In general, we have

(µT )−1(yt) = {(u, x) |u ∈ 〈s〉, x 6 w and ux = t}.

Since 〈s〉 has order two, there are at most two points in (µT )−1(yt). One of them is
the point y(1,t), which is the image of the affine point (1, t) in P1. The other possibility
is the y(s,st); but this point is only a point of ZT

s,w if st 6 w. Thus we conclude that
(µT )−1(yt) is in bijection with the elements z such that t and st are less than or equal
to w.

The map µ is an isomorphism over the big cell Ysw. Thus it remains to study the
fibers over the cells Yu with u 6 w.

It now suffices to to show that the fiber over u is a P1 if and only if both u, su 6 w,
and is a point otherwise. Thus we must show that the Euler characteristic of µ−1(yu)
is equal to 2 if and only if both u, su 6 w, and is equal to one otherwise. By
Lemma 19, we must show that the cardinality of (µT )−1(yu) is equal to 2 if and only
if both u, su 6 w, and is equal to 1 otherwise. But, as explained above, (µT )−1(yu)
is the one element set y(1,u) unless both u, su 6 w, in which case (µT )−1(yu) is the 2
element set {y(1,u), y(s,su)}.

Let us reformulate this proposition using the notation (10) from the introduction.
Assuming that sw > w, define

H(w, s) = {u ∈ W |u, su 6 w}.
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As in Proposition 16 the set H(w, s) has the property that if u ∈ H(w, s) and t 6 u
then t ∈ H(w, s). Define

cw,s(u) =
∑

t ∈ H(w, s)
t > u

(−1)l(t)−l(u).

Proposition 21. Let s be a left ascent of w. Then

{y ∈ Xsw |µ−1(y) is nontrivial} =
∑

u∈H(w,s)

cw,s(u)Xu.

Proof. Let y ∈ X. Let t ∈ W such that y ∈ Yt. Then∑
u ∈ H(w, s)
y ∈ Xu

cw,s(u) =
∑

u ∈ H(w, s)
t 6 u

cw,s(u).

It follows from Möbius inversion (Verma [22] or Deodhar [12]) that given y ∈ X
that this is 1 if t ∈ H(w, s) and 0 otherwise. Thus the statement follows from
Proposition 20.

4 Proof of Theorems 1 and 2

To prove Theorem 1 we may specialize v = q−1 with q the cardinality of the residue
field. Let θ : T̂ (C) −→ T̂ (C) be the map that sends z 7−→ z−1. Then

∂i = θ∂′iθ (25)

Let λ be a dominant weight of Ĝ(C). Then −w0λ is also a dominant weight, and (4)
may be written

Xw(λ) = δ(a−w0λ)
−1/2θWτ Φ̃

τ
ww0

(a−w0λ), (26)

where τ = τz. Similarly

Y w(λ) = δ(a−w0λ)
−1/2θWτΦ

τ
ww0

(a−w0λ). (27)

We have u ∈ H(s, w) if and only if uw0 ∈ H ′(s, ww0). Note that sww0 < ww0 so
that H ′(s, ww0) is defined, and it is also easy to see that cw,s(u) = c′ww0,s

(uw0).
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Proposition 22. Let λ be a dominant weight. Then

X1(λ) = Y 1(λ) = zλ. (28)

Assume that s = sα is a simple reflection and that sw > w. Then

Xsw(λ) = (1− q−1z−α)∂αXw(λ)− q−1
∑

u ∈ H(w, s)

cw,s(u)Xu(λ). (29)

Proof. Equation (28) follows from Proposition 6. To prove (29) we begin with (23),
with w replaced by ww0. Applying θ and using (25) we obtain

θWτ Φ̃
τ
sww0

= (1− q−1z−α)∂αθWτ Φ̃
τ
ww0
− q−1

∑
uw0∈H′(ww0,s)

c′ww0,s
(uw0)θWτ Φ̃

τ
u.

Now evaluating this at a−w0λ and multiplying by the constant δ(a−w0λ)
−1/2 (which

depends on λ but not z) we obtain (29).

Combining Propositions 21 and 22 gives Theorem 1.
To prove Theorem 2, we will take q = 1. Then the operators Di simplify to

Dif(z) = f(z)− z−αif(siz).

These operators do not satisfy the braid relation. We show that if we define X̂w(z)
to be the right-hand side of (11), and if s = si with l(sw) > l(w), then

X̂sw = DiX̂w −
∑

u∈H(w,s)

c(u)X̂u, (30)

where c(u) is as in Theorem 1. The dominant weight λ will be fixed and we suppress

it from the notation. By comparison with Theorem 1, Xw (with q = 1) and X̂w

both satisfy the same recursion, and agree when w = 1; therefore by induction on
the Bruhat order, they are equal.

Let Ŷ w = zw(ρ+λ)−ρ. The identity (30) is equivalent by Möbius inversion to

DiX̂w −
∑

u∈H(w,s)

Ŷ u, (31)

Since z−αz−sρ = z−sρ, we have

DiŶ u = Ŷ u − Ŷ su.
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Therefore
DiX̂w =

∑
u6w

(−1)l(u)Ŷ u +
∑
su6w

(−1)l(u)Ŷ u, (32)

where in the second term we have replaced u by su.
By Proposition 15 (ii), we have u 6 sw if and only min(u, su) 6 w where the

notation min(u, su) makes sense since u and su are always comparable in the Bruhat
order. So

{u|u 6 sw} = {u|u 6 w} ∪ {u|su 6 w}

and we may write

X̂sw =
∑
u6w

(−1)l(u)Ŷ u +
∑
su6w

(−1)l(u)Ŷ u −
∑

u,su6w

(−1)l(u)Ŷ u

where we have subtracted the terms that are double counted in the first two sums.
Now using (32) we obtain (31).

5 Hecke algebras

The space of Iwahori fixed vectors M(τ)J for a fixed unramified character τ is isomor-
phic to the finite-dimensional Hecke algebraH of compactly supported J-bi-invariant
functions on G(F ) which have support inside of G(o). We recall the isomorphism,
following Bump and Nakasuji [6], who in turn follow Rogawski [21].

In this isomorphism, f ∈M(τ)J corresponds to the element %τ (f) ∈ H where

%τ (f)(g) =

{
f(g−1) if g ∈ G(o),
0 otherwise.

Both M(τ)J and H are left H-modules, where the action of H on M(τ) is

φ · f(g) =

∫
G(o)

φ(x)f(gx) dx.

Then %τ is a homomorphism of left H-modules.
The Hecke algebra H has the following description by generators and relations,

due to Iwahori and Matsumoto [13]. If tw is the characteristic function of the double
coset JwJ then H is generated by the ti = tsi where si is a simple reflection. The
generators satisfy the quadratic relation

t2i = (q − 1)ti + q,
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together with the braid relations. Thus ti = tsi . The braid relations and the
quadratic relations give a presentation of H which is valid even if q is not a prime.

Let v be an indeterminate. Let Hv be the abstract algebra over C[v, v−1] gener-
ated by T1, · · · , Tr subject to the braid relations together with the condition that

T 2
i = (v − 1)Ti + v.

There is an antihomomorphism σ : Hv → H defined by σ(v) = q−1 and σ(Tw) = t−1
w .

In particular
σ(Ti + 1) = q−1(ti + 1). (33)

The operators Ti = Di−1 are closely related to the Demazure-Lusztig operators that
were introduced in Lusztig [18] equation (8.1). These are the operators defined by

Li(zλ) = Li,v(zλ) =
zλ − zsiλ

zαi − 1
− vz

λ − zα+siλ

zαi − 1
.

Lusztig shows that these satisfy the same relations as the Ti in the (finite) Hecke
algebra, and we will also prove this in the equivalent form of Proposition 23 below.
The precise relationship between our operators and Lusztig’s is as follows. Lusztig’s
operators Li satisfy the quadratic relation

L2
i = (v − 1)Li + v. (34)

Replacing v by v−1 and multiplying by −v let L′i = −vLi,v−1 . We have

L′izλ =
−vzλ − zαi+siλ + vzsiλ + zλ

zαi − 1
. (35)

It follows from (34) that the L′i satisfy the same braid and quadratic relations as the
Li and hence there is a representation of Hv in which Ti −→ L′i. We recall that if λ
is a weight, then ζλ is the operation on O(T̂ ) defined by multiplication by z−λ. It
follows easily from (35) that

ζ−ρ(Di − 1)ζρ = L′i. (36)

Thus the following proposition is equivalent to the result of [18]. Our proof is differ-
ent, since we use Whittaker functions to prove the braid relations.

Proposition 23. (Lusztig [18]) The operators Ti = Di − 1 satisfy the braid
relations and the quadratic relations of Hv. Thus Ti 7−→ Ti is a representation
of Hv.
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Proof. The corresponding facts for T′i, which is defined by (18), are Proposition 13
for the quadratic relation and Proposition 12 for the braid relation. Since Ti = θT′iθ,
the result follows.

We have now defined an action of Hv on C[v, v−1] ⊗ O(T̂ ), so Theorem 3 now
has meaning. In order to prove it we will have define certain maps ξλ : Hv →
C[v, v−1] ⊗ O(T̂ ) and that is our next goal. These maps ξλ also turn out to be the

key to extend the action to the affine Hecke algebra H̃v.

Lemma 24. Let s = sα be a simple reflection, and let Aτss : H −→ H be the
homomorphism of left H-modules that makes the following diagram commutative:

M(τs)
Aτss−−−→ M(τ)y%τs y%τ

H Aτss−−−→ H

Then Aτss is right multiplication by

1

q
ti +

(
1− 1

q

)
z−α

1− z−α
, (37)

where τ = τz.

Proof. We recall that %τ is a homomorphism of left H-modules. The composition
%τ ◦ Aτss ◦ %−1

τs is thus a homomorphism of left H-modules H −→ H and since H is
a ring it must consist of right multiplication by some element. The scalar may be
evaluated by applying %τ ◦ Aτss ◦ %τs to the unit element of H, which corresponds
under %−1 to Φτs

1 . By Casselman [7], Theorem 3.4 we have

AτsΦτ
1 =

1

q
Φτs
s +

(
1− 1

q

)
zα

1− zα
Φτs

1

so

Aτss %−1
τs (1) = AτsΦτs

1 =
1

q
Φτ
s +

(
1− 1

q

)
z−α

1− z−α
Φτ

1.

Applying ρτ gives
1

q
ti +

(
1− 1

q

)
z−α

1− z−α
.
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Let us fix a dominant weight λ for T̂ . Then we will define a map ξ′λ : H −→ O(T̂ ),
where O(T̂ ) is the ring of rational functions on T̂ , which is the group algebra of the
weight lattice Λ of T̂ . We regard a rational function on T̂ as a function on the
complex points, and to specify ξλ(φ) for φ ∈ H, it is enough to specify its value
ξλ(φ)(z) for z ∈ T̂ (C). Let τ = τz and Φ = %−1

τ (φ) ∈M(τ). Define ξ′λ(φ) by

ξ′λ(φ)(z) = δ−1/2(aλ)WτΦ(aλ).

Proposition 25. The following diagram is commutative for any dominant weight λ
of T̂ . Let s = si be a simple reflection, and let α = αi be the corresponding simple
root.

H
ξ′λ−−−→ O(T̂ )y×q−1(1+ti)

y(1−q−1zα)∂′α

H
ξ′λ−−−→ O(T̂ )

(38)

where the left vertical arrow is right multiplication by q−1(1 + ti). Moreover

ξ′λ(tw−1) = δ−1/2(aλ)WτΦ
τ
w(aλ). (39)

Proof. Let us consider both ways of traversing the commutative diagram (38) as
applied to tw−1 ∈ H. Then with τ = τz we have %−1

τ tw−1 = Φτ
w and so we obtain

(39). Furthermore by Proposition 9

δ1/2(aλ)(1− q−1zα)∂′αξ
′
λ(tw−1) =Wτ (Aτss Φτs

w + Cα(τ)Φτ
w)(aλ).

By Lemma 24,

Aτss Φτs
w = Aτss %−1

τs tw−1 = %−1
τ

(
tw−1

(
1

q
ti + (1− q−1)

z−α

1− z−α

))
.

We have (
1− 1

q

)
z−α

1− z−α
+ Cα(τ) =

1

q
.

Therefore
Aτss Φτs

w + Cα(τ)Φτ
w = %−1

τ

(
tw−1q−1(ti + 1)

)
.

Applying Wτ and evaluating at aλ, we see that

(1− q−1zα)∂′αξ
′
λ(tw−1) = ξ′λ(tw−1q−1(ti + 1)),

which is the required commutativity.
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If λ is dominant, we will define ξλ as follows. By Theorem 2, if φ ∈ Hv then
θξ′−w0λ

(σφ) is a polynomial in q−1, so there exists an element ξλ(φ) of C[v, v−1]⊗O(T̂ )

that corresponds to it. Thus ξλ : Hv −→ C[v, v−1]⊗O(T̂ ) is the map such that

ev ◦ ξλ = θ ◦ ξ′−w0λ
◦ σ .

where ev : C[v, v−1]⊗O(T̂ )→ O(T̂ ) is the evaluation map that sends v to q−1.

Proposition 26. Let λ be a weight, and let α = αi be a simple root The following
diagram is commutative:

Hv
ξλ−−−→ C[v, v−1]⊗O(T̂ )y(1+Ti)×·

yDi

Hv
ξλ−−−→ C[v, v−1]⊗O(T̂ )

(40)

where the left vertical arrow is left multiplication by 1 + Ti. Moreover

ξλ(T
−1
(ww0)−1) = Y w(λ). (41)

Proof. We observe that (41) follows from the definitions of ξλ and Y w(λ) and (39).
As for (40), consider the diagram

Hv
σ−−−−−−−−→ H

ξ′−w0λ−−−→ O(T̂ )
θ−−−−−−−→ O(T̂ )

(1+Ti)×
y q−1(1+ti)

y y(1−q−1zα)∂′α

y(1−q−1z−α)∂α

Hv
σ−−−−−−−−→ H

ξ′−w0λ−−−→ O(T̂ )
θ−−−−−−−→ O(T̂ )

The commutativity of the left square follows from (33). The commutativity of the
middle square is (38). The commutativity of the right square is the fact that θ∂αθ =
∂′α. The composition on the top is ev ◦ ξλ and the statement follows.

The (extended) affine algebra H̃v is generated by Hv and another commutative
subalgebra ζΛ isomorphic to the weight lattice Λ. If λ ∈ Λ let ζλ be the corresponding
element of ζΛ. To complete the presentation of H̃ we have the relation

Tiζ
λ − ζsiλTi = ζλTi − Tiζsiλ =

(
v − 1

1− ζ−αi

)
(ζλ − ζsiλ). (42)
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Lemma 27. Let λ run through the dominant weights, and for each λ let w run
through a set of coset representatives for W/Wλ where Wλ is the stabilizer of λ.
Then Y w(λ) runs through a basis of the C(v)-vector space C(v)⊗O(T̂ ). Moreover

C[v, v−1]⊗O(T̂ ) =
⊕

λ dominant

ξλ(Hv). (43)

Proof. Every weight may be written as wλ with λ dominant. Here λ is uniquely
determined, and if there is more than one choice for w we take the one of smallest
length. We make a partial order on the weights by w1λ1 4 w2λ2 with either λ1 < λ2

in the usual partial order on weights, or λ1 = λ2 and w1 6 w2 in the Bruhat order.
Then Y w(λ) = zwλ plus terms that are lower in the partial order, so these are a
basis. The direct sum decomposition follows from (41).

Theorem 28. There is a right action of H̃v on C[v, v−1] ⊗ O(T̂ ) such that ξλ is a
homomorphism of right Hv-modules. In this action

ζλ · zµ = zµ−λ, (1 + Ti) · zµ = Di(z
µ) =

(
1− vz−αi
1− z−αi

)
(zµ − zsiµ−αi). (44)

This action of H̃v appeared previously in Lusztig [18]. The interpretation here in
terms of Whittaker functions appears to be new.

Proof. We make use of (43). Each summand may be given a right Hv-module struc-
ture such that ξλ is a right Hv-module homomorphism. Thus C[v, v−1] ⊗ O(T̂ )
becomes an Hv-module. By the commutativity of (40)

(1 + Ti) · ξλ(φ) = ξλ((1 + Ti)φ) = Diξλ(φ),

which gives the second identity in (44). As for the first, we make this a definition
and then must check compatibility with the relation (42) in the equivalent form

(Ti + 1)ζλ − ζsiλ(Ti + 1) =

(
v − ζ−αi
1− ζ−αi

)
(ζλ − ζsiλ). (45)

We will write s = si and α = αi. Applying the left-hand side of (45) to zµ gives(
1− vz−α

1− z−α

)
(zµ−λ − z−α+sµ−sλ)−

(
1− vz−α

1− z−α

)
(zµ−sλ − z−α+sµ−sλ)

This equals (
1− vz−α

1− z−α

)
(zµ−λ − zµ−sλ) = zµ

(
v − zα

1− zα

)
(z−λ − z−sλ).

which equals the right-hand side of (45) using the action ζλ·zµ = zµ−λ, as desired.
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The maps ξλ have two applications in this paper. The first is that they allow
one to extend the action of Hv to all of H̃v as in the previous theorem. The second
application is Theorem 3.

Proof of Theorem 3. Since l(w0) = l(w) + l(w0w
−1) we have T(ww0)−1Tw = Tw−1

0
or

T−1
(ww0)−1 = TwT

−1

w−1
0

. Using (41) and the fact that ξλ is Hv-equivariant,

Y w(λ) = ξλ(T
−1
(ww0)−1) = Tw · ξλ(T−1

w−1
0

).

But using Proposition 22 and (41) again, ξλ(T
−1
w0

) = Y 1(λ) = zλ.

6 Complements

It is easy to see that ∂iz
−ρ = 0 for each Demazure operator ∂i. As a consequence,

Diz
−ρ = 0 and so in the action of Theorem 28 we have

Ti · z−ρ = −z−ρ.

Hence this vector spans a one-dimensional Hv-invariant subspace affording the sign
representation of Hv.

Theorem 29. The H̃v-module C[v, v−1]⊗O(T̂ ) is isomorphic to the representation
of H̃v induced from the sign representation of Hv.

Proof. The module C[v, v−1]⊗O(T̂ ) is generated by this vector z−ρ since each coset
of Hv has as a coset representation ζλ for a unique weight λ, which maps z−ρ to a
basis vector z−λ−ρ. The statement is thus clear.

Finally, let us define certain elements Cw(λ) that resemble the Xw(λ) but may
in some sense be more natural. We begin by recalling the Kazhdan-Lusztig basis
C ′w for the (finite) Hecke algebra Hv. It is uniquely characterized by the following

properties. First, Cw
′

= C ′w, where x 7−→ x̄ is the Kazhdan-Lusztig involution that
sends q → q−1 and Tw → T−1

w−1 ; and second, vl(w)/2C ′w =
∑

u6w Pu,w(v)Tu, where
Pu,w(v) ∈ Z[v] of degree 6 1

2
(l(w)− l(u)− 1) for y < w and Pw,w = 1. The Pu,w are

the Kazhdan-Lusztig polynomials. (Note that P is used differently in other parts of
our paper.) Let Cw(λ) = vl(w)/2C ′w · zλ, where the action is that of Theorem 28.

Proposition 30. Let λ be a dominant weight and w ∈ W . We have Xw(λ) = Cw(λ)
if and only if the Schubert variety Xw is rationally smooth in the sense of Kazhdan
and Lusztig [14].
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Proof. Each Kazhdan-Lusztig Pu,w with u 6 w is a polynomial in v with constant
term equal to 1, so Xw(λ) = Cw(λ) if and only if Pu,w = 1 for all u 6 w. By
Theorem A2 of [14], this is true if and only if Xw is rationally smooth.
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