
ODD KHOVANOV HOMOLOGY FOR HYPERPLANE ARRANGEMENTS
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Abstract. We define several homology theories for central hyperplane arrangements, cate-
gorifying well-known polynomial invariants including the characteristic polynomial, Poincare
polynomial, and Tutte polynomial. We consider basic algebraic properties of such chain
complexes, including long-exact sequences associated to deletion-restriction triples and dg-
algebra structures. We also consider signed hyperplane arrangements, and generalize the
Odd Khovanov homology of Ozsvath-Rassmussen-Szabo from link projections to signed
arrangements. We define hyperplane Reidemeister moves which generalize the usual Rei-
demeister moves from link projections to signed arrangements, and prove that the chain
homotopy type associated to a signed arrangement is invariant under hyperplane Reide-
meister moves.
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1. Introduction

Let k be a field, and let V be a vector space over k endowed with an inner product
〈−,−〉 : V ×V → k. A vector arrangement is a collection of vectors ν1, ..., νn in V . A vector
arrangement determines an arrangement of hyperplanes H = {V ;H1, ..., Hn} in V , withHi =
ν⊥
i = {v ∈ V : 〈v, νi〉 = 0}. We allow the degenerate case νi = 0, in which case Hi = V . For
S ⊂ [n] = {1, . . . , n}, set HS = ∩s∈SHs. Important features of the hyperplane arrangement
H are captured by polynomial invariants associated to the arrangement; here “polynomial
invariant” means a polynomial which depends only on the associated matroid, that is, only
on the linear dependencies between hyperplanes. An example is the characteristic polynomial
χ(H) of H,

χ(H) =
∑

S⊆[n]

(−1)|S|tdimHS ,

which generalizes the chromatic polynomial of a graph, [TO]. An important feature of the
characteristic polynomial is that it satisfies a deletion-restriction relation,

(1) χ(H) = χ(H−Hi)− χ(HHi),

where HHi is the restriction of H to a hyperplane Hi and H − Hi is the arrangement with
the hyperplane Hi deleted. (We refer to Section 2 for complete definitions of deletion and
restriction). Similar deletion-restriction relations hold for other polynomials associated to
hyperplane arrangements, including the Poincare polynomial and the two-variable Tutte
polynomial.

In this paper we categorify these invariants, upgrading them from polynomials to homol-
ogy theories. Our constructions are modeled on the Odd Khovanov homology of Ozsvath-
Rassmussen-Szabo [ORSz] which categorifies the Jones polynomial of links in the three-
sphere. In particular, the relation (1) becomes a long exact sequence in homology, as
expected by analogy with the Skein relation for the Jones polynomial and the resulting
long-exact sequence in (odd) Khovanov homology.

The first part of the paper considers homology theories for unsigned hyperplane arrange-
ments. These constructions are free from the restrictions imposed by isotopy invariance in
the theory of link homologies, and as a result there is a lot of freedom in the definition of
boundary maps between chain groups. For example, in considering categorifications of the
characteristic polynomial, we see that essentially the same chain groups can be made into a
chain complex using two very different choices of boundary maps. One choice of boundary
maps gives a chain complex Cd(H) which essentially generalizes to hyperplane arrangements
earlier work [HGR] on categorification of the chromatic polynomial of a graph. A second
choice of boundary map, however, gives a completely different complex C∂(H), which turns
out to be compatible with a multiplication defined at the chain level; thus this second choice
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assigns a differential graded algebra to each central hyperplane arrangement. Similar cate-
gorifications of the Poincare and Tutte polynomials are defined in the body of the paper. A
deletion-restriction triple (H,H−Hi,H

Hi) gives rise to a short exact sequence of chain com-
plexes in all of our homology theories, though the resulting long exact sequences of homology
behave quite differently for the two different choices of boundary map.

The second part of the paper considers signed hyperplane arrangements, that is, arrange-
ments with a sign assigned to each hyperplane. A planar projection of a link in the three-
sphere defines a signed hyperplane arrangement, and in Section 7 we generalize the Odd
Khovanov homology of [ORSz] from link projections to arbitrary signed central arrange-
ments. In low dimensional topology one considers link projections up to the equivalence
relations defined by Reidemeister moves. These moves, too, admit a generalization to the
combinatorial world of signed arrangements, and the main point of the second part of the
paper is to explain how much of the basic structure of Odd Khovanov homology, including
the Skein long-exact sequence and Reidemeister invariance, generalizes.

All of the chain complexes we use are essentially straightforward generalizations to hy-
perplane arrangements of existing constructions for links [Kh, ORSz]. Nevertheless, these
generalizations seem both sufficiently natural and sufficiently interesting as to warrant fur-
ther investigation. For example, the differential graded algebra structure on chain groups
associated to unsigned arrangements does not (as far as we are aware) occur at the chain
level in other polynomial categorifications. Moreover, hyperplane arrangements and their
signed analogs admit a duality, known as Gale duality, which greatly generalizes duality of
planar graphs. The dual of a non-planar graph thus makes sense as a hyperplane arrange-
ment. The considerations in Section 7 for signed hyperplane arrangements are perhaps the
most interesting in the paper, though an unfortunate feature of moving from arrangements
to signed arrangements is that the dg-algebra structure on chain groups is lost; in contrast,
the Gale duality statement for signed arrangements becomes cleaner, as there is an obvious
isomorphism between the chain complexes assigned to a signed arrangement and its Gale
dual.

Finally, we point out that it has been a question for some time to find, given an arrange-
ment H, a natural bigraded vector space whose graded dimension is the Tutte poylnomial
of H. In light of the categorifications of low dimensional topology, it is also reasonable to
modify this question and search instead for a chain complex whose graded Euler character-
istic is the Tutte polynomial. For graphs, one such complex was defined in [JHR]. Two of
the homology theories of the current paper give a solution for hyperplane arrangements. A
homology theory which categorifies the Tutte polynomial of a matroid has also recently been
investigated independently by A. Lowrance and M. Cohen.

1.1. Acknowledgements. The authors would like to thank the Institute for Advanced
Study, where most of this research was carried out, for their hospitality and support. A.L.
would also thank Nick Proudfoot for several interesting conversations. Z.D. would like to
thank Joel Kamnitzer for pointing out that A.L. might be someone good to talk to at the
IAS.
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2. Linear algebra of vector arrangements

Let V = {V ; ν1, ..., νn} be a vector arrangement in a vector space V over k, and define
H = {V ;H1, ..., Hn} to be the associated arrangement of hyperplanes in V . The arrangement
H is central, meaning that the intersection ∩iHi 6= ∅. Let

(2) W = {(w1, . . . , wn) ∈ kn |
∑

i

wiνi = 0}

denote the space of linear dependencies in V, that is, the orthogonal complement of V in kn.
The inner product on kn induces an inner product 〈−,−〉 on W , thus identifying W with
W ∗.

To a subset S ⊂ [n] there are three naturally associated vector spaces:

• HS = ∩i∈SHS,
• VS = span{νi}i∈S, and
• WS = {w = (w1, . . . , wn) ∈ W | wr = 0 for r /∈ S}.

For s ∈ S and r /∈ S, there are natural inclusions

(3) HS →֒ HS−s, VS →֒ VS∪r, WS →֒ WS∪r,

and orthogonal projection maps

(4) HS → HS∪r, VS → VS−s, WS → WS−s.

Remark 1. The spaces HS and VS are related by standard linear duality, in that VS is
the space of vectors orthogonal to HS (eqvivalently, the space of linear functionals which
vanish on it). The relationship between HS and WS is more subtle: the space of linear
dependenciesW comes equipped with n linear functionals, namely, the coordinate projections
ν∨
i : w = (w1, . . . , wn) 7→ wi. Via the identification W ∼= W ∗, ν∨

i can be thought of as the
orthogonal projection of the standard basis vector (0, ..., 1, ..., 0) onto W (where 1 appears in
the i-th coordinate). Thus V∨ = {W ; ν∨

1 , ..., ν
∨
n } is another vector arrangement, known as the

Gale dual of V. Let H∨ be the hyperplane arrangement associated to the vector arrangement
V∨; the defining hyperplanes of H∨ are H∨

i = ker(ν∨
i ). Then the space WS above is given

by WS = H∨
Sc = ∩i/∈SH

∨
i . Thus the spaces {HS}S⊂[n] and {WS}S⊂[n] are exchanged by Gale

duality. Note that if the vectors νi generate V , then the canonical inner products on V and
W are related by 〈νi, νj〉 = −〈ν∨

i , ν
∨
j 〉. This follows from the fact that νi + ν∨

i = xi for all i,
where the xi are the standard orthonormal basis vectors of kn.

The inclusions and projections (3) and (4) induce maps of exterior algebras. We will
denote all the maps which increase the size of the subset S by d’s, and all those which
decrease subset size by b’s (“b” is a backwards “d” ). Thus we have

(5) ∧•(HS)
dS,r
−−→ ∧•(HS∪r), ∧•(VS)

dS,r
→֒ ∧•(VS∪r), ∧•(WS)

dS,r
→֒ ∧•(WS∪r),

and

(6) ∧•(HS)
bS,s
→֒ ∧•(HS−s), ∧•(VS)

bS,s
−−→ ∧•(VS−s), ∧•(WS)

bS,s
−−→ ∧•(WS−s).

However, the vectors from the original vector arrangement V can also be used to define
maps between exterior algebras by wedging and contracting. For s ∈ S, r /∈ S, we define:

(7) ∧•HS
wS,s

−−→ ∧•+1HS−s, ∧•VS
wS,r

−−→ ∧•+1VS∪r, ∧•WS
wS,r

−−→ ∧•+1WS∪r.
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(8) ∧•HS
cS,r
−−→ ∧•−1HS∪r, ∧•VS

cS,s
−−→ ∧•−1VS, ∧•WS

cS,s
−−→ ∧•−1WS−s.

The maps in (7) act by wedging on the left by νs, νr, and ν∨
r , respectively. In the first

of these, note that νs is considered as an element of HS−s by orthogonal projection from V .
Similarly, for the third map we consider ν∨

r as an element of WS∪r.
The maps in (8) act by contraction with the vectors νr, νs and ν∨

s respectively. To define
the first map, think of νr as an element of HS by projecting it there, and note that for
any element h ∈ ∧•HS the image (νr ⊥ h) lies in ∧•HS∪r, since νr is orthogonal to HS∪r.
Similarly, contraction with ν∨

s on ∧•WS has image in ∧•−1WS−s since ν∨
s is orthogonal to

WS−s. However, in the case of VS, νs is not necessarily orthogonal to VS−s, so the image does
not lie in ∧•−1VS−s. Note also that in case of HS and WS, the wedge and contraction maps
are linear duals to each other (via the identifications HS

∼= H∗
S and WS

∼= W ∗
S induced by

the inner product). This is not true for VS: the linear dual of wS,r is cS∪r,r composed with
an orthogonal projection onto VS−s. This difference will account for the extra dg-algebra
structure that can be introduced on chain complexes which are constructed from the spaces
HS and WS and the maps w and c, but that cannot (as far as we know) be introduced on
chain complexes constructed from the spaces VS.

Remark 2. All of the algebras we consider in this paper are naturally Z-graded, and they will
be considered as superalgebras for the Z2 grading induced from the Z grading. Tensor prod-
ucts are always taken in the category of superalgebras. Thus (a⊗1)(1⊗b) = (−1)deg a·deg b(1⊗
b)(a⊗ 1), and in this way there is an algebra isomorphism ∧•(V ⊕W ) ∼= ∧•V ⊗ ∧•W .

Remark 3. We have taken k to be a field for convenience, but indeed almost all constructions
in this paper may be carried out over the integers, or over an arbitrary commutative ring.
The one exception is in one part of Section 7, where we must work over a field (see Remark
6).

2.1. Deletion and Restriction. On the level of vector arrangements, a subarrangment of
V is an arrangement in the same ambient space consisting of a subset of the vectors in V.
For νi ∈ V, the deletion of νi is the operation which results in the subarrangement with
νi removed, denoted V − νi. Given νi ∈ V, the restriction Vνi is an arrangement in the
orthogonal complement ν⊥

i ⊆ V , consisting of the vectors {P (νj) : j 6= i}, where P is the
orthogonal projection to ν⊥

i .
The corresponding notions for hyperplane arrangements follow from the above. A subar-

rangement of H is an arrangement consisting of a subset of hyperplanes in H, in the same
ambient vectorspace. The arrangement obtained by deleting the hyperplane Hi from H is
denoted H−Hi.

Given a hyperplane Hi ∈ H, the restriction of H to Hi is the arrangement
HHi = {Hi;H1 ∩Hi, ..., Hi−1 ∩Hi, Hi+1 ∩Hi, ..., Hk ∩Hi}.

Deletion and restriction are Gale dual notions: (H − Hi)
∨ = (H∨)H

∨
i and (HHi)∨ =

H∨ −H∨
i , and similarly for vector arrangements.

3. Polynomials associated to Hyperplane arrangements

5



3.1. The Characteristic Polynomial. As before, for S ⊆ [n], let HS =
⋂

s∈S Hs. The
characteristic polynomial (see [TO]) of the central hyperplane arrangement H is defined as

(9) χ(H, q) =
∑

S⊆[n]

(−1)|S|(1 + q)dimHS .

This is a slightly non-standard normalization, and the definition in [TO] would be given by
the substitution t = 1 + q.

There is a closely related, though distinct, polynomial that also occurs as an Euler char-
acteristic in categorification:

(10) χ̄(H, q) =
∑

S⊆[n]

q|S|(1− q)dimHS

Informally we will refer to both of the above polynomials as characteristic polynomials.

3.2. The Poincare Polynomial. The Poincare polynomial of a hyperplane arrangement
π(H, t) contains the same information as the characteristic polynomial, as they are related
by a change of variables [TO]. A convenient state sum definition of the Poincare polynomial
(in a slightly unusual normalization) is

(11) π(H, q) =
∑

S⊆[n]

(−1)|S|(1 + q)dimVS

3.3. The Tutte Polynomial. The Tutte polynomial of H is usually defined as

T (H; x, y) =
∑

S⊆[n]

(x− 1)dimHS−dimH[n](y − 1)dimWS .

The version we will categorify is the analogue of that used for graphs in [HGR], given by the
state sum formula

(12) T̂ (H; x, y) =
∑

S⊆[n]

(−1)|S|(1 + x)dimHS(1 + y)dimWS .

The relationship between these two polynomials is T̂ (H; x, y) = (−1)k(−x−1)dimH[n]T (−x,−y).

3.4. Relations from deletion-restriction. All of the polynomials defined above satisfy
deletion-restriction formulas. If Hl ∈ H is a given hyperplane in the arrangement H, H−Hl

is the subarrangement produced by deleting Hl from H, and HHl is the restriction to Hl,
then

(13) χ(H, q) = χ(H−Hl, q)− χ(HHl, q), and χ̄(H, q) = χ(H−Hl, q) + qχ(HHl, q).

Similar relations hold for the Poincare and Tutte polynomials if Hl is non-degenerate, i.e.,
if νl 6= 0:

(14) π(H, q) = π(H−Hl)− (1 + q)π(HHl),

and

(15) T̂ (H; x, y) = T̂ (H−Hl; x, y)− T̂ (HHl; x, y).
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4. Categorifications for unsigned arrangements

In this section we will describe several homology theories which categorify the characteris-
tic, Poincare, and Tutte polynomials. The different constructions arise from the freedom to
choose between the HS, VS and WS spaces (and their tensor products) to build chain groups,
and between the natural inclusion/projection maps versus the wedge/contraction maps to
construct differentials. We develop categorifications of the two characteristic polynomials,
using the spaces HS, in this section. The homology theories categorifying the Poincare and
Tutte polynomials are very similar, and we will only state the results and highlight where
the proofs differ from those for the characteristic polynomials.

4.1. Hypercubes associated to a hyperplane arrangement. In the vein of [Kh] and
[HGR], we use the state sum formula (9) to construct a chain complex, the graded Euler
characteristic of which is the characteristic polynomial by design. The first step is to arrange
the terms of the formula on the vertices of a cube, in this case the vertices correspond to
subsets S ⊆ [n]. The space ∧•HS is placed at the vertex corresponding to S.

We illustrate the cube on the example of the braid arrangement in R3. This arrangement
consists of three hyperplanes defined by the equations vector arrangement ν1 = (1,−1, 0),
ν2 = (0, 1,−1), and ν3 = (−1, 0, 1). By placing the spaces ∧•HS at vertices, and connecting
them by an edge if the subsets S differ only by one element, we obtain the following 3-
dimensional cube:

∧•H2

∧•H3

∧•R3 ∧•(H1 ∩H2 ∩H3)

∧•H1 ∧•(H1 ∩H2)

∧•(H3 ∩H1)

∧•(H2 ∩H3)

Note that the vertices of the cube are organized into columns according to the size of the
subsets S.

In the next section we will discuss the maps associated to the cube edges which make up
the differentials; here we only define the chain groups, which are obtained by “flattening”
the cube along the “columns”. Thus we get chain groups

C i =
⊕

S⊆[n], |S|=i

∧•HS.

Thus the chain complex C is given by

(16) C =
⊕

S⊆[n]

CS, where CS = ∧•HS.

This vector space has a natural bi-grading given by deg∧jHS = (|S|, j). Note that the Euler
characteristic with respect to the first grading component is

χq(C) =
∑

S⊆[n]

(−1)|S|(1 + q)dimHS = χ(H, q).

Thus, if we impose differentials for which the homological degree of CS is |S|, as we will do in
our first construction, the graded Euler characteristic of the complex will be the characteristic
polynomial. In the second construction, discussed in Section 4.2.2, we will need to shift the
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grading, and the resulting graded Euler characteristic will yield the second characteristic
polynomial χ̄(H, q).

There are also natural cubes involving the spaces VS,

CP =
⊕

S⊆[n]

∧•VS,

leading to a categorification of the Poincare polynomial.
To categorify the Tutte polynomial, we will use the tensor product of the spaces HS and

WS.

CT =
⊕

S⊆[n]

∧•HS ⊗ ∧•WS.

This vector space is triply-graded, with deg∧iHS ⊗ ∧jWS = (|S|, i, j). As with the chain
groups used to categorify the characteristic polynomial, one choice of differential will be
homogeneous for this grading convention, while another choice will require us to make minor
adjustments to the definition of the gradings.

4.2. Boundary maps. The first class of categorifications uses differentials which arise from
the natural inclusion and orthogonal projection maps explained in Section 2. In fact these
inclusion and projection maps can be used to define chain complexes in even more general
settings; for example, instead of exterior algebras, we could use instead symmetric algebras,
or in principle any other exact functor from vector spaces to graded vector spaces. More-
over, these boundary maps are rather straightforward odd generalization from graphs to
hyperplane arrangements of the differentials defined in [HGR, JHR].

In contrast, the boundary maps defined in Section 4.2.2 use the wedge maps as differentials.
These maps use in a fundamental way the structure in the exterior algebra, and the resulting
chain complexes have a dg-algebra structure and simpler theorems for deletion/restriction.

4.2.1. Boundary maps arising from natural inclusion or orthogonal projection. We describe
the construction for the characteristic polynomial in detail. Recall that for each edge of the
cube corresponding to a subset S ⊆ [n] and an element r /∈ S there are maps induced by the
orthogonal projections

dS,r : ∧
•HS → ∧•HS∪r.

These are of degree (1, 0) with respect to the natural bi-grading defined in Section 4.1.
To define differentials, we want to take the direct sums of the maps. However, as in

Khovanov homology, we first need to introduce signs to make the (a priori commutative)
cube anti-commutative, this is needed for the square of the differential to be zero. To achieve
this, we set

εS,r =

{
−1 if |{s ∈ S, s < r}| = odd

1 otherwise.

The differentials are the sums with appropriate signs of the edge maps dS,r going from the
algebras in column i to the ones in column (i+ 1):

di =
⊕

|S|=i, r /∈S

εS,rdS,r.

Let us illustrate this on the braid arrangement example:
8



∧•(H1 ∩H2)

∧•(H2 ∩H3)

d

d d

d

−d

d −d ∧•(H1 ∩H2 ∩H3)

∧•(H1 ∩H2 ∩H3)
⊕

∧•(Hi ∩Hj)

−d

⊕d... ⊕±d... ⊕±d...

d∅,1

∧•(H3 ∩H1)d −d
d

∧•H1

∧•H2

∧•H3

⊕
∧•Hi

∧•R3

∧•R3

Definition 1. We denote the resulting chain complex by C•
d(H, k), and the homology by

H•
d(H, k), and call it (odd) characteristic homology.

Proposition 4.1. The homology H•
d(H, k) has graded Euler characteristic equal to the char-

acteristic polynomial:
χq(H

•
d(H, k)) = χ(H, q).

Proof. The graded Euler characteristic of the chain complex is the characteristic polynomial
by design, as noted in Section 4.1. As the chain groups are finite dimensional and the
differential is degree zero with respect to the second grading, the graded Euler characteristic
of the homology is the same. �

Note that the sign assignment for the differentials made use of the ordering of the hy-
perplanes. The following lemma states that the end result is, up to isomorphism, order-
independent.

Lemma 4.2. For any permutation σ ∈ Sn and arrangement H = {V ;H1, ..., Hn}, let
Hσ := {V ;Hσ(1), ..., Hσ(n)} denote the permuted arrangement. Then

H•
d(Hσ) ∼= H•

d(H).

Proof. Since Sn is generated by transpositions, it is enough to prove the theorem for
σ = (i, i+ 1), i ∈ {1, ..., n− 1}.

We prove that the chain complexes C(H) and C(Hσ) are isomorphic. Acting by σ does
not change the chain groups, it just permutes the direct summands of a fixed chain group.
However, some of the signs for the differentials differ in C(H) and C(Hσ). Specifically, ǫS,r
changes if and only if r = i and (i+ 1) ∈ S or r = i+ 1 and i ∈ S.

An isomorphism of the chain complexes Φ : C(H) → C(Hσ) is given by letting Φ be
multiplication by (−1) on the components ∧•HS where {i, i + 1} ⊆ S, and letting Φ act
by the identity on all other summands. It is simple combinatorics to check that this map
commutes with the differentials, hence it gives rise to a chain isomorphism. �

Example 1. One could in principle construct a chain complex from the spaces HS directly,
rather than first taking the exterior algebra. The resulting complex is less interesting, how-
ever, as this simple example will illustrate. Consider the hyperplane arrangement in R3

consisting of two planes defined by vectors ν1 = (1,−1, 0) and ν2 = (0, 1,−1). The cube in
this case is a square. The proposed “simple” complex,

H1 ∩H2
d1

H1

H2

d4

−d3

d2
R3

9



is acyclic. However, by taking exterior algebras before flattening the cube, we get non-zero
homology in homological degree 0, linearly spanned by the two elements {x1x2x3, x1x3 −
x1x2 − x2x3}.

Note that the graded Euler characteristic of this is in fact q3 + q2, in agreement with the
characteristic polynomial. �

We can assign differentials to the VS spaces the same way: the complex CP
d =

⊕
S⊆[n]∧

•VS

with the natural bi-grading and differentials

d =
⊕

S⊆[n];r /∈S

εS,rdS,r

gives rise to homology groups HP•
d (H).

Similarly, consider CT
d :=

⊕
S⊆[n]∧

•HS⊗∧•WS with the triple grading deg∧iHS⊗∧jWS =

(|S|, i, j) and differentials

d =
⊕

S⊆[n];r /∈S

εS,rdS,r ⊗ dS,r,

and call the resulting homology HT•
d (H).

The proof of the theorems regarding the characteristic polynomial can be repeated word
by word to prove the following:

Proposition 4.3. The cohomologies HP•
d (H) and HT•

d (H) categorify the Poincare polyno-
mial and the Tutte polynomial, respectively:

χq(H
P•
d (H)) = π(H, q), and χq(H

T•
d (H)) = T̂ (H, x, y).

Furthermore, permuting the vectors in the vector arrangement induces isomorphisms of the
chain groups.

4.2.2. Wedge maps. We now define a second type of differentials using the same underlying
chain groups but shifting the grading. This construction has several advantages over the
previous one, most notably these chain complexes admit a differential graded algebra struc-
ture, so the cohomologies are themselves algebras. Moreover, the long exact sequences for
deletion and restriction (described in Section 5.1) are simpler than those for the homology
theories defined in the previous section.

The differentials of this section only work for the characteristic and Tutte complexes –
that is, the complexes which use the spaces HS and WS – not for the Poincare complex
(which uses VS).

For the characteristic homology, the differential ∂ : C → C is defined using the wedge maps
wS,s : ∧

•HS → ∧•+1HS−s explained in Section 2, Equation (7). We set

∂ :=
⊕

S⊆[n], s∈S

wS,s.

From now on we will denote the maps wS,s by the name ∂S,s as well. To distinguish between
the chain complexes with different differentials when needed, we will write Cd and C∂.

Note that the hypercube with vertices ∧•HS and edge maps ∂S,s is anticommutative by
definition, hence ∂2 = 0.
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Observe that deg ∂ = (−1, 1) with respect to the natural bigrading of the previous section.
Thus in this section we will redefine the bigrading by setting deg∧iHS = (|S| + i, i). With
respect to this grading deg ∂ = (0, 1).

Let H•
∂ denote the resulting homology. (Note that the two gradings switched roles: now

the second degree is the homological degree.) In this construction we never used that the
hyperplanes were ordered, so H•

∂ is order-independent for free. Note also that there were no
sign choices required in the definition of the differential on the complex.

Lemma 4.4. The graded Euler characteristic of H•
∂ is

χq(H
•
∂)(H) = χ̄(H, q),

where χ̄ is the version of the characteristic polynomial defined in (10).

Proof. Immediate from the definition. �

As for the Tutte polynomial, there are several possible differentials to chose from. One con-
dition which is convenient to impose is that the cube should be anti-commutative naturally,
without the order-dependent sign assignments. One such differential is as follows.

We define the differentials on CT by

(17) ∂T =
⊕

S⊆[n],s∈S

∂T
S,s, where ∂T

S,s = wS,s ⊗ bS,s.

With respect to the natural grading, deg ∂T = (−1, 1, 0). We set the new grading convention
to be deg∧iHS ⊗ ∧jWS = (|S| + i, i, j). In this grading deg ∂T = (0, 1, 0). We denote the
homology by HT•

∂ .

Proposition 4.5. The graded Euler characteristic of HT•
∂ is

χq(H
T•
∂ (H)) = (−x)kT̂ (H;−

1

x
,−2− xy).

�

4.3. Differential graded algebra structure. One advantage of the wedge differentials of
the previous subsection is that the resulting homology groups admit a compatible multipli-
cation.

For the characteristic homology, this multiplication is defined at the chain level as a map

m : CS ⊗ CT → CS∪T .

We set m to be 0 when S ∩ T 6= ∅; for S ∩ T = ∅ and h ∈ CS, h
′ ∈ CT , we set

m(h⊗ h′) = h ∧ h′.

Here the wedging takes place inside ∧•(HS∪T ), which is well-defined after first using orthog-
onal projection to send both h and h′ into ∧•(HS∪T ). If h and h′ are homogeneous elements
of respective bi-degrees (|S|+ i, i) and (|T |+ j, j), then

degm(h⊗ h′) = deg(h ∧ h′) = (|S|+ |T |+ i+ j, i+ j),

so the multiplication respects both gradings.

Proposition 4.6. (C, ∂,m) is a differential graded algebra, and hence H•
∂(H) is a graded

algebra.
11



Proof. We need to show that the multiplication is compatible with the differential:

∂(m(h ⊗ h′) = m((∂h)⊗ h′) + (−1)jm(h⊗ (∂h′)),

where j = deg2(h) is the second degree of h (i.e., its exterior algebra degree). A short
computation shows that both sides are equal to

∑
r∈S∪T νr ∧ h ∧ h′ ∈

⊕
r∈S∪T CS∪T−r. �

For the Tutte chain groups, we define the multiplication on CT
∂ (H) in a similar way:

mT : (∧i1HS ⊗ ∧j1WS)⊗ (∧i2HT ⊗ ∧j2WT ) → (∧i1+i2HS∪T ⊗ ∧j1+j2WS∪T ),

(18) mT ((h1 ⊗ w1)⊗ (h2 ⊗ w2)) = (h1 ∧ h2)⊗ (w1 ∧ w2) if S ∩ T = ∅,

and set the multiplication to be zero when S ∩ T 6= ∅.

Proposition 4.7. The multiplication mT is compatible with all three gradings and makes CT

into a triply-graded dg-algebra. As a result, HT•
∂ is a triply-graded algebra.

Proof. What needs to be verified is that for

h1 ⊗ w1 ∈ ∧i1HS ⊗ ∧j1WS and h2 ⊗ w2 ∈ ∧i2HS ⊗ ∧j2WS,

mT (∂T (h1⊗w1)⊗(h2⊗w2))+(−1)i1mT ((h1⊗w1)⊗∂T (h2⊗w2)) = ∂T (m(h1⊗w1⊗h2⊗w2)).

This is a straightforward calculation. �

5. Properties

5.1. Relations from deletion and restriction. The following theorem is a categorifica-
tion of the deletion-restriction formula (13):

Theorem 5.1. There is a short exact sequence of chain complexes of the form

0 → C i−1,j
d (HHl)

ι
→ C i,j

d (H)
π
→ C i,j

d (H−Hl) → 0.

This induces long exact sequence for H•
d :

(19) 0 → ... → H i−1
d (HHl) → H i

d(H) → H i
d(H−Hl) → H i

d(H
Hl) → ...

Proof. The proof is along the same lines as the proofs of the corresponding theorems in
[HGR] and [JHR], and we recall the basic points here.

We want to define chain maps ι and π satisfying

(20) 0 →
⊕

S⊆[n]−l

∧•(HS ∩Hl)
ι
→

⊕

T⊆[n]

∧•HT
π
→

⊕

U⊆[n]−l

∧•HU → 0.

Note that ⊕

T⊆[n]

∧•HT =
⊕

S⊆[n]−l

∧•HS∪l ⊕
⊕

U⊆[n]−l

∧•HU ,

and HS ∩ Hl = HS∪l. The essential idea is to set ι to be the natural inclusion and π the
natural projection map with respect to this decomposition. However, this is only correct up
to sign: π commutes with the differential d, but the signs εS,r cause a commutativity issue
with ι. In order to fix this, we replace the inclusion ι by the map ι′ by setting ι′ =

⊕
S⊆[n]−l ι

′
S,

where ι′S is the natural inclusion of the component if the number of elements {s ∈ S, s > l}
is even, and multiplication by (−1) on the component if this number is odd. �
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For the second choice of differentials, the short exact sequence of chain complexes induces
a split long exact sequence, compatible with the dg-algebra structure. For a dg-algebra A, let
Ă denote the dg-algebra isomorphic to A as a chain complex, but with trivial multiplication
(that is, with all products equal to 0).

Theorem 5.2. There is a split short exact sequence of bi-graded dg-algebras

0 → C̆∂(H
Hl)[1]

ι
→ C∂(H)

π
→ C∂(H−Hl) → 0.

Thus we have an isomorphism of bigraded algebras

(21) H•
∂(H) ∼= H̆•

∂(H
Hl)[1]⋊H•

∂(H−Hl),

Remark 4. In the above theorem, [1] denotes a shift by (1, 0) in the bigrading. In the
semidirect product above, the action of H∂(H−Hl) on H∂(H

Hl) is induced from the action
at the chain level given by choosing a representative cycle h ∈ ∧•HS ⊂ C(H−Hl), projecting
h to HS ∩Hl, and letting h act by multiplication on H•

∂(H
Hl).

Proof of Theorem 5.2. It is easy to check that Equation (20) with the natural inclusion and
projection maps is indeed a short exact sequence of chain complexes (not of dg-algebras) for
(C, ∂). This implies that there is a long exact sequence (of vector spaces) for the homology
H•

∂ . A straightforward check verifies that the transition maps γj : Hj
∂(H−Hl) → Hj+1

∂ (HHl)
coming from the snake lemma satisfy γj = 0 for all j. Hence, the long exact sequence for
homology splits into a direct sum of short exact sequences for each homology degree, which,
together take the form of

0 → H•
∂(H

Hl)
ι
→ H•

∂(H)
π
→ H•

∂(H−Hl) → 0.

Note that in the short exact sequence of chain complexes, π is a map of dg-algebras,
but ι isn’t, at least not with respect to the previously defined algebra structure on C(HHl).
However, if the graded vector space C(HHl) is considered as a dg-algebra with trivial mul-
tiplication, then ι is a map of dg-algebras. Hence, we get a short exact sequence of graded
algebras for homology if we replace H•

∂(H
Hl) by H̆•

∂(H
Hl)[1].

Furthermore, this short exact sequence is split by a map i : H•
∂(H−Hl) → H•

∂(H), which
is induced by the natural inclusion i : C(H−Hl) → C(H), a map of dg-algebras. It is simple
to check that the action defined by this splitting is as described in the statement of the
theorem. �

The proofs above relied crucially on the fact that for a subset S ⊆ [n] − l, the space at
hypercube vertex S in the chain complex of HHl (denote this by HHl

S ) is HS ∩ Hl. This
vector space can be identified with HS∪l, which participates in the chain complex of H at
vertex S ∪ l. Thus we can include the hypercube of chain groups corresponding to HHl as a
face of the bigger hypercube corresponding to H.

Before we state the deletion-restriction theorems for the Poincare and Tutte cohomologies,
let us determine what the analogous hypercube relationships are for the W and V spaces.

For S ⊆ [n] − l, let WHl

S denote the “WS-space” of the vector arrangement associated to

HHl. That is, WHl

S is the space of linear dependencies between {P (νs) : s ∈ S}, where P
stands for the orthogonal projection onto Hl. Note that ws1P (νs1) + ... + wspP (νsp) = 0 if
and only if ws1νs1 + ... + wspνsp = wlνl. So the map φ sending the vector w with non-zero

coordinates ws1, ..., wsp to w+(0, ..., 0,−wl, 0, ..., 0) is a canonical isomorphism WHl

S
∼= WS∪l.

13



For the VS spaces, the analogous statement is somewhat different, since dim∧•VS =
2dim∧•V Hl

S . There is a natural inclusion ι1 : ∧•V Hl

S →֒ ∧•VS as vector spaces. Recall that

V Hl

S is spanned by {P (νs) : s ∈ S}. Define ι1(P (νs)) = νl∧νs. It is a simple exercise to check
that ι1 is well-defined, injective, and that deg ι1 = (1, 1). Let ν⊥S

l = {v ∈ VS∪l : 〈v, νl〉 = 0}
be the orthogonal complement of νl in VS∪l. Let pS : VS∪l → ν⊥S

l be the orthogonal projec-
tion, and define ι2(νs|Hl

) = pS(νs), extended multiplicatively to the exterior algebra. It is

easy to see that ι2 is well-defined and injective. Hence ι1 ⊕ ι2 : ∧•V Hl

S ⊕ ∧•V Hl

S → ∧•VS is
an isomorphism.

Theorem 5.3. When νl 6= 0, there is a short exact sequence of chain complexes

0 → CP
d (H

Hl){1}[1]⊕ CP
d (H

Hl)[1]
ι1⊕ι2−→ CP

d (H)
π
→ CP

d (H−Hl) → 0,

where [1] stands for shifting the first degree, and {1} denotes shifting the second (exterior
algebra) degree. This induces long exact sequence for HP•

d of the form
(22)

0 → ... → HT,i−1
d (HHl){1} ⊕HT,i−1

d (HHl) → HT,i
d (H) → HT,i

d (H−Hl) → HT,i
d (HHl) → ...,

where HT,i−1
d (HHl){1} denotes a shift of the second (exterior algebra) degree up by 1.

Proof. Identical to the proof of Theorem 5.1, but using ι1 ⊕ ι2 in place of ι. Again, π
commutes with dS,r, but on account of the sign assignments εS,r, ι1⊕ ι2 needs to be adjusted
in the same way as in the proof of Theorem 5.1. �

Theorem 5.4. When νl 6= 0, there is a short exact sequence of chain complexes

0 → CT
d (H

Hl)[1]
ι
→ CT

d (H)
π
→ CT

d (H−Hl) → 0,

where [1] denotes a shift of the first degree; inducing a long exact sequence for HT•
d of the

form

(23) 0 → ... → HT,i−1
d (HHl) → HT,i

d (H) → HT,i
d (H−Hl) → HT,i

d (HHl) → ...

Proof. The proof of Theorem 5.1 applies verbatim. �

Theorem 5.5. There is a split short exact sequence (semidirect product) of (tri-graded)
dg-algebras

0 → C̆T
∂ (H

Hl)[1]
ι
→ CT

∂ (H)
π
→ CT

∂ (H−Hl) → 0,

where [1] denotes a degree shift by (1, 0, 0) in the trigrading. Thus there is an isomorphism
of algebras

(24) HT•
∂ (H) = H̆T•

∂ (HHl)[1]⋊HT•
∂ (H−Hl).

Here, as before, HT•(H − Hl) acts on HT•(HHl) in the natural way inherited from the
chain level: a representative h⊗w ∈ ∧•HS ⊗∧•WS ⊂ CT (H−Hl), thought of as an element
of C(HHl) via orthogonal projections, acts by multiplication (wedging).

Proof. Same as the proof of Theorem 5.2. �
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5.2. Factorization property. For two vector arrangements V = {V k; ν1, ..., νn} and V ′ =
{V ′l; ν ′

1, ..., ν
′
m}, the product arrangement is defined to be the vector arrangement

V × V ′ = {V × V ′; ν1 × 0, ..., νm × 0, 0× ν ′
1, ..., 0× ν ′

m}.

For the associated hyperplane arrangementsH = {V k;H1, ..., Hn} andH′ = {V ′l;H ′
1, ..., H

′
m},

the product arrangement is the hyperplane arrangement given by

H×H′ = {V × V ′; H1 × V ′, ..., Hn × V ′, V ×H ′
1, ..., V ×H ′

m}.

Theorem 5.6. The characteristic homology of the product arrangement is the tensor product
of the characteristic homologies of the factors:

H•
d(H×H′) ∼= H•

d(H)⊗H•
d(H

′), H•
∂(H×H′) ∼= H•

∂(H)⊗H•
∂(H

′).

Proof. The product arrangement has n + m hyperplanes, and subsets of [n + m] are in
one-to-one correspondence with pairs of subsets S ⊆ [n] and T ⊆ [m]. Note that

⋂

s∈S

Hs × V ′ = HS × V ′, and (HS × V ′) ∩ (V ×HT ) = HS ×HT ,

so the components of the chain complex for the product arrangement are products of those
for H and H′. In other words, the component in the product arrangement corresponding to
the pair of subsets S, T is HS,T = HS ×HT . Then

C(H×H′) =
⊕

S∈[n], T∈[m]

∧•HS,T
∼=

⊕

S∈[n], T∈[m]

∧•HS ⊗ ∧•HT = C(H)⊗ C(H′),

as bi-graded vector spaces, with both grading conventions.
Regarding the differentials, for h ∈ ∧jHS and h′ ∈ ∧j′HT , we need to check that

dH×H′(h ∧ h′) = dH(h) ∧ h′ + (−1)|S|h ∧ dH′(h′),

and that
∂H×H′(h ∧ h′) = ∂H(h) ∧ h′ + (−1)jh ∧ ∂H′(h′).

This is verified by a direct computation in both cases.
It remains to show that the algebra structure on H•

∂(H×H′) is the (super) tensor product
of the algebra structures on the factors: for a, b ∈ C(H) and a′, b′ ∈ C(H′) we want that

mH×H′(a⊗ a′, b⊗ b′) = (−1)deg2 adeg2 bm(a, b)⊗m(a′, b′),

where deg2 denotes the second (exterior algebra) degree. This is straightforward from the
definition of multiplication. �

The essential ingredient of the proof above was that HS,T = HS×HT . It is straightforward
from the definitions that this holds true for the VS,T and WS,T spaces associated to the
product arrangement as well: VS,T = VS × VT and WS,T = WS ×WT . Hence the proof can
be repeated without change to produce similar “Kunneth Theorems” for the Poincare and
Tutte cohomologies.

Proposition 5.7. For the Poincare and Tutte cohomologies of the product arrangement, we
have

HP•(H×H′) ∼= HP•(H)⊗HP•(H′),

HT•
d (H×H′) ∼= HT•

d (H)⊗HT•
d (H′),

15



HT•
∂ (H×H′) ∼= HT•

∂ (H)⊗HT•
∂ (H′),

where the first two are isomorphisms of bi- and tri-graded vector spaces, and the last is an
isomorphism of tri-graded algebras. �

5.3. Gale duality and Tutte homology. It is a well-known fact that Gale duality switches
the variables of the Tutte polynomial. In other words, if H∨ is the Gale dual arrangement to
H, then T̂ (H∨, x, y) = T̂ (H, y, x). This is a direct consequence of Remark 1. In this section
we consider the relationship between the Tutte homology of an arrangement and its Gale
dual.

Recall that for Tutte homology we had some freedom in choosing the differentials; in fact
our defintion of boundary maps for the Tutte complex CT =

⊕
S⊆[n]∧

•HS ⊗ ∧•WS was one
of four equally natural choices:

∂1=
⊕

S⊆[n],s∈S

wSs
⊗ bS,s, ∂2=

⊕

S⊆[n],s∈S

bSs
⊗ cS,s, ∂3=

⊕

S⊆[n],r /∈S

dSr
⊗ wS,r, ∂4=

⊕

S⊆[n],r /∈S

cSr
⊗ dS,r.

(We used the map ∂1 in our earlier definitions). With respect to the natural triple grading,
these maps are of the following degrees:

deg ∂1 = (−1, 1, 0), deg ∂2 = (−1, 0,−1), deg ∂3 = (1, 0, 1), and deg ∂4 = (1,−1, 0).

To construct four chain complexes, we set deg∧iHS ⊗ ∧jWS to be

(|S|+ i, i, j), (|S| − j, i, j), (|S| − j, i, j), and (|S|+ i, i, j),

respectively. In these conventions, the differentials are of degrees

(0, 1, 0), (0, 0,−1), (0, 0, 1), and (0,−1, 0).

Of these differentials, ∂1 and ∂4 are linear duals of each other, as are ∂2 and ∂3. On the
other hand, ∂1 is related to ∂3 by Gale duality, and similarly ∂2 is Gale dual to ∂4. Let us
demonstrate what we mean by this on ∂1 and ∂3.

As explained in Remark 1, if H∨ is the Gale dual arrangement to H, then H∨
S = WSc and

W∨
S = HSc , where Sc is the complement of the set S in [n].
So we have an isomorphism (as vector spaces) ϕ : CT (H) → CT (H∨), where ϕ sends the

component ∧•HS ⊗∧•WS isomorphically (by switching the tensor factors) to ∧•WS ⊗∧•HS.
The latter is the component of CT (H∨) corresponding to the subset Sc ⊆ [n].

The isomorphism φ intertwines the differential ∂1 on CT (H) with the differential ∂3 on
CT (H∨), i.e. for x ∈ ∧•HS ⊗ ∧•WS, ϕ(∂1(x)) = ∂3(ϕ(x)). So ϕ is an isomorphism of chain
complexes CT

∂1
(H) → CT

∂3
(H∨), except for the fact that it does not respect the grading: it

sends the component of degree (|S|+ i, i, j) in CT
∂1
(H) to the component of degree (n− (|S|+

i), j, i) in CT
∂3
(H∨).

There is a dg-algebra structure on all four chain complexes. For CT
∂1

this was defined in

Section 4.3. For CT
∂2

the same definition of multiplication works. For CT
∂3

and CT
∂4

multi-
plication is defined in the following way. For subsets S and T of [n], multiplication is a
map

m : (∧•HS ⊗ ∧•WS)⊗ (∧•HT ⊗ ∧•WT ) → ∧•HS∩T ⊗ ∧•WS∩T .

If S ∪ T 6= [n] then m is defined to be 0, otherwise m is “wedging”: m(h ⊗ w ⊗ h′ ⊗ w′) =
(h ∧ h′)⊗ (w ∧w′), where we use the natural inclusions to interpret h and h′ as elements of

16



∧•HS∩T , and orthogonal projections to interpret w and w′ as elements of ∧•WS∩T . We leave
it to the reader to check that m is compatible with the differentials ∂3 and ∂4.

As (S ∪T )c = Sc∩T c, and S ∩T = ∅ if and only if Sc∪T c = [n], ϕ is not only compatible
with the differentials but also an algebra homomorphism (by an easy verification). Hence ϕ
descends to an algebra isomorphism on the homology.

When we consider signed arrangements in Section 7, we will see that the Gale duality
statements for Tutte homology become even cleaner, though there will no longer be a dg-
algebra structure on chain groups.

6. Examples

6.1. Graphical Arrangements. Important examples of central hyperplane arrangements
are known as graphical arrangements, associated to a finite graph. We compute a few
examples of homology groups H•

d(H) and H•
∂ associated to such arrangements in this section.

The homology theories H•
d and HT,•

d , when restricted to graphical arrangements, may be seen
as an odd versions of the graph homologies considered in [HGR] and [JHR], respecitvely. In
contrast, the restrictions of the homology theories H•

∂(H) and HT
∂ to graphs seem quite

different from ones considered by those authors.
To a finite graph directed G with vertex set V (G) = {v1, ..., vk} and ordered edge set E(G),

we associate a vector arrangement V(G) = {kk; {νe}e∈E(G)}, consisting of |E(G)| vectors, as
follows. If an edge e ∈ E(G) starts at vertex vi and ends at vj, the corresponding vector in
the arrangement V(G) is νe = xi − xj . Let us denote the hyperplane arrangement arising
from V(G) by H(G). For graphs with no loop edges, the arrangement H(G) characterizes the
graph up to isomorphism, thus in a sense hyperplane arrangements generalize graphs. The
hyperplane arrangements that arise from graphs via this construction are called graphical
arrangements, and the characteristic polynomial of hyperplane arrangements specializes to
the chromatic polynomial of graphs when restricted to graphical arrangements.

It is sometimes convenient to consider the hyperplane arrangement associated to a graph
as living in a slightly smaller ambient vector space. Note that the line given by the equation
x1 = ... = xk is always included the intersection H[n] of all the hyperplanes in H(G). So
we may consider a graphical vector or hyperplane arrangement modulo this subspace. We
denote these arrangements by V̄(G) and H̄(G); the hyperplane arrangement then consists
of |E(G)| hyperplanes living in kk−1. One advantage of view the hyperplane arrangement
associated to a graph as living in this smaller space is that planar graph duality corresponds
to Gale duality: for a connected planar graph G and G∗ its planar dual, H̄(G∗) = H̄(G)∨.
Similarly, for any graph G the Tutte polynomial of this associated arrangement equals the
Tutte polynomial of the graph: T (H̄(G); x, y) = T (G; x, y).

Lemma 6.1. For the empty arrangement Hk
0 of no hyperplanes in V = kk,

H0
d(H

k
0)

∼= ∧•kk, and H i
d(H

k
0) = 0 for i 6= 0.

On the other hand,

H•
∂(H

k
0) = ∧•kk

as bi-graded algebras.

Proof. This is straightforward from the definitions. �
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The following statement is the analogue of the computation for trees done in [HGR].
The proof is essentially the same, so we only provide a sketch. In the statement below,
hyperplanes {Hi, . . . , Hn} are said to be linearly independent if their associated normal
vectors {ν1, ..., νn} are linearly independent.

Proposition 6.2. For a hyperplane arrangement with a maximal number of linearly inde-
pendent hyperplanes Hn = {kn;H1, ..., Hn}, H

0
d(H) = k{n}, and all other homology groups

are zero.

Proof. We use induction. The case of n = 0 is trivial. Note that

HHn

n = Hn−1 and Hn −Hn = Hn−1 ×H1
0,

so

H i
d(Hn −Hn) = H i

d(Hn−1)⊗ ∧•k = H i
d(Hn−1)⊕H i

d(Hn−1){1}.

For each i ≥ 0 we have

... → H i
d(Hn) → H i

d(Hn−1)⊕H i
d(Hn−1){1}

γ
→ H i

d(Hn−1) → ...

where γ is the transition map arising from the snake lemma. Working through the snake
lemma one can see that for h ∈ H i

d(Hn−1), γ(h, 0) = h. Hence γ is surjective and the long
exact sequence falls apart to split short exact sequences, implying the result. �

For H∂ a somewhat different statement is true:

Lemma 6.3. The graded dimension of H i
∂(Hn) is

q dimH i
∂(Hn) =

(
n

i

)
(1 + q)n−i.

Proof. By Theorem 5.2 we have

H i
∂(Hn) = H i

∂(Hn−1)[1] +H i(Hn−1 ×H1
0) = H i

∂(Hn−1)[1]⊕H i
∂(Hn−1)⊕H i−1

∂ (Hn−1),

From this the statement follows by induction on n. �

Note that from these results one can compute the characteristic homology of all hyperplane
arrangements with no dependencies amongst the hyperplanes, as these are products of some
Hn with an empty arrangement.

Proposition 6.4. If the arrangement H contains a degenerate hyperplane H (i.e., H = V ),
then H•

d(H) = 0.

Proof. The proof is the same as that of the corresponding theorem for loop edges in [HGR].
If H is degenerate, then HH = H−H , and for each i the transition map γ : H i

d(H−H) →
H i

d(H
H) is an isomorphism, which implies that then H•

d(H) = 0. �

In contrast, H•
∂ is not necessarily zero for arrangements that contain degenerate hyper-

planes.
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7. Signed hyperplane arrangements and Odd Khovanov homology

In this section we consider signed arrangements, that is, vector arrangements together
with a sign associated to each vector. Just as graphs may be seen as a subset of vector ar-
rangements (the graphical hyperplane arrangements), signed vector arrangements generalize
signed graphs. The checkerboard coloring of a planar projection of a link in the three-sphere
produces a signed graph, so in a sense signed hyperplane arrangements may be seen as a
combinatorial generalization of such projections. Moveover, from the point of view of low
dimensional topology, it is natural to consider planar link projections up to the equivalence
relation generated by Reidemeister moves. This equivalence relation generalizes naturally
from signed graphs to signed hyperplane arrangements, and via this generalization Reide-
meister invariance questions may be posed for polynomials or chain complexes associated to
signed arrangements.

In this section, we will define a version of Tutte homology for signed signed hyperplane ar-
rangements, and prove hyperplane Reidemeister invariance for these homology groups. When
restricted from signed hyperplane arrangements to planar link projections, this Tutte homol-
ogy agrees with the reduced version of the odd Khovanov homology of Ozsvath-Rasmussen-
Szabo [ORSz].

7.1. Signed arrangements. A signed vector arrangement is a vector arrangement V =
{V ; ν1, ..., νn} together with an assignment of a sign (+ or −) to each vector νi. The hyper-
plane arrangement associated to a signed hyperplane arrangement is referred to as a signed
hyperplane arrangement, since the sign associated to each vector can be thought of as a sign
attached to the associated hyperplane. Since all constructions in this section will be carried
out for signed arrangements, we use the same notation as we did for unsigned arrangements
in previous sections; thus in the notation V = {V ; ν1, ..., νn}, it is understood that each νi is
really a vector together with a sign. Similarly, we denote by H = {V ;H1, ..., Hn} the signed
hyperplane arrangement associated to V.

Let V = {V ; ν1, ..., νn} be a signed vector arrangement. The sign assignment partitions
the set [n] into subsets [n] = [n]+ ⊔ [n]−, where [n]+ is the set of vectors assigned + and
and [n]− is the set vectors assigned −. For a subset S ⊆ [n] we write S+ = S ∩ [n]+ and
S− = S ∩ [n]−.

Deletion and restriction of signed arrangements is defined just as for ordinary arrange-
ments. We extend Gale duality from arrangements to signed arrangements as follows. If
V = {V ; ν1, ..., νn} is a signed arrangement, the Gale dual V∨ = {W ; ν∨

1 , ..., ν
∨
n } is, as an un-

signed arrangement, just the Gale dual of the unsigned arrangement V. The sign assignment
of V∨ is given by declaring that the sign associated to ν∨

i is the opposite of the sign assigned
to νi.

7.2. Signed arrangements from planar link projections. Let D be a planar projection
of an oriented link in the three-sphere. To D we associate a signed hyperplane arrangement
in a two-step process, as follows. We refer to the hyperplane arrangements constructed from
planar link projections in this way as link hyperplane arrangements.
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There is a well known way to associate a planar graph to an (oriented) link
diagram D. Suppose D is connected as a planar graph. Choose a checkerboard
coloring of D, put vertices in each shaded region, and draw an edge for each
croossing, as illustrated in the picture on the right for a trefoil knot. The graphs
corresponding to the two opposite checkerboard colorings are planar duals to each other.

When the graph D is not connected, the association of vertices is done component by
component. Thus, ifD is the disjoint union of two link diagrams, and we take the unbounded
region to be shaded for both components, then this region will give rise to two vertices.
Similarly, for planar graphs that are not connected we understand planar graph duality
component-wise. In this way the double dual of a planar graph is the graph itself, and the
planar graph associated to the opposite checkerboard coloring is the planar dual.

Of course, such a procedure does not distinguish between under and over crossings. In
order to keep track of the under/over information, we associate to each crossing of a shaded
oriented link diagram D a sign, as shown:

+ − +−

Thus, given any link diagram, we can encode it as a signed graph, i.e. a graph with signs
assigned to the edges. Note that switching the checkerboard shading of the diagram switches
the shaded signs of all crossings.

Now, the procedure from Section ?? — which was used there to associate an unsigned
arrangement to an unsigned graph — extends in the obvious way to an assignment of signed
arrangements to signed graph.

There are two slight ambiguities in the definition of a link hyperplane arrangement: firstly,
the assignment of a hyperplane arrangement to a graph required an ordering of the edges. It
is easy to see that different choices of edge ordering give rise to canonically isomorphic chain
complexes in what follows. Secondly, we had to choose a checkerboard coloring of the link
projection. For a fixed link projection, the signed arrangements corresponding to the two
checkerboard colorings are Gale dual to each other. Thus, to obtain a link invariant from
link hyperplane arrangements, it is natural to consider constructions which are invariant
under Gale duality.

7.3. Hyperplane Reidemeister moves. Planar projections of isotopic links may be ob-
tained from one another by a sequence of Reidemeister moves. For a detailed discussion and
restatement of these moves in the language of signed graphs, we refer the reader to [BR] and
references therein. We generalize these moves from signed graphs to signed arrangements as
follows. (Note that each relation comes with a Gale dual pair):

• R1: If νl = 0, then V ↔ V − νl.
• R1∨: If ν∨

l = 0 (i.e., νl is independent of V − νl), then V ↔ Vνl.
• R2: If νl = ανm, for some non-zero α ∈ k and l 6= m are of opposite signs, then
V ↔ V − {νl, νm}.

• R2∨: If ν∨
l = αν∨

m, α ∈ k, for some l 6= m of opposite signs, then V ↔ Vνl,νm.
• R3: Suppose there are three distinct vectors νl, νm and νp in V with l, m ∈ [n]+
and p ∈ [n]−, and a linear dependence ν∨

l = αmν
∨
m + αpν

∨
p with non-zero coefficients

αm, αp. Then V ↔ V ′, where V ′ is the arrangement obtained from Vνl by adding an
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extra vector ν ′
l = αmνm + αpνp. The signs in V ′ are the same as those in V except

that the sign of l changes from positive to negative, i.e., [n]′− = [n]− ∪ l.
• R3∨: The same statement as R3, but with opposite sign assignments.

It is straightforward to verify the following proposition (for example, it follows from the
description of graph Reidemeister moves in [BR]).

Proposition 7.1. The hyperplane Reidemeister moves preserve the class of link hyperplane
arrangements. When restricted to link hyperplane arrangements, the hyperplane Reidemeis-
ter moves agree with the usual link projection Reidemeister moves.

7.4. The Jones polynomial of a signed arrangement. Given a signed arrangement
V = {V ; ν1, ..., νn}, we define the (unnormalized) Jones polynomial of V to be

J(V) =
∑

S⊆[n]

(−1)|S|+n−q|S|+n+−2n−(q + q−1)
dimHS+∪Sc

−
+dimWS+∪Sc

− ,

where n+ and n− denote the number of positive and negative signed vectors in V, respectively.
We refer to the polynomial above as the Jones polynomial of the hyperplane arrangement,

since on a link hyperplane arrangement it agrees with the Jones polynomial of the associated
link.

Proposition 7.2. The Jones polynomial of a hyperplane arrangement is a hyperplane Rei-
demeister invariant.

Since this proposition follows by taking Euler characteristics in Theorem 7.10, we won’t
give an independent proof of it here.

7.5. Odd Khovanov homology for signed arrangements. To a signed vector arrange-
ment V we associate a bigraded chain complex T (V) as follows.

The cube of chain groups associates to a subset S ⊆ [n] the bi-graded vector space

TS = ∧•(HS+∪Sc
−
⊕WS+∪Sc

−
) ∼= ∧•HS+∪Sc

−
⊗ ∧•WS+∪Sc

−
.

Here Sc
− denotes the complement of S− in [n]−. Let us denote S̃ = S+ ∪ Sc

−. Note that if

s ∈ [n]+ then s ∈ S̃ if and only if s ∈ S, while if r ∈ [n]− then r ∈ S̃ iff r /∈ S.
We define the bi-grading on this complex (as in [ORSz]) by setting

deg∧iHS̃ ⊗ ∧jWS̃ = (|S| − n−, |S|+ dimHS̃ + dimWS̃ − 2(i+ j) + n+ − 2n−).

These global shifts will be needed for reidemeister invariance. We will refer to the first
grading as the homological grading and the second as the q-grading.

For r /∈ S the map δS,r : TS → TS∪r is defined as

(25) δS,r =





dS̃,r ⊗ dS̃,r if r ∈ [n]+ and νr /∈ VS̃ (Type 1)

dS̃,r ⊗ wS̃,r if r ∈ [n]+ and νr ∈ VS̃ (Type 2)

bS̃,r ⊗ bS̃,r if r ∈ [n]− and νr ∈ VS̃−r (Type 3)

wS̃,r ⊗ bS̃,r if r ∈ [n]− and νr /∈ VS̃−r (Type 4).

Here dS̃,r, wS̃,r, bS̃,r are the the same maps from Section 2 that have been used in the con-
struction of the chain groups associated to unsigned hyperplane arrangements.
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The differential of the chain complex is defined as δ =
⊕

S∈[n],r /∈S ǫS,rδS,r for some appro-
priate choices of scalars ǫS,r specified below. Note that with respect to the bi-grading defined
above, deg δ = (1, 0).

Lemma 7.3. In the cube of chain groups TS and edge maps δS,r, every square face commutes
up to a scalar, i.e. for any r, t /∈ S,

δS∪r,t ◦ δS,r = αS,r,tδS∪t,r ◦ δS,t,

for some scalars αS,r,t ∈ k.

Proof. The proof amounts to checking several cases depending on which type of differential
each side of the square belongs to. The first major case is when r, t ∈ [n]+. This breaks
down into four sub-cases, as follows:

• If νr ∈ VS̃ and νt ∈ VS̃, then all four edge maps of the square are of Type 2, so the
square is anti-commutative.

• If νr /∈ VS̃∪t and νt /∈ VS̃∪r, then all edge maps are of Type 1, and the square
commutes.

• If νr ∈ VS̃ and νt /∈ VS̃∪r, then both r-edges are of Type 2, while both t-edges are of
Type 1, so the square commutes.

• The most interesting case is when νr /∈ VS̃ but νr ∈ VS̃∪t, which implies that νt /∈ VS̃

but νt ∈ VS̃∪r. In this case there are two edges of Type 1 and two of Type 2, namely
δS,r = d⊗ d, δS,t = d⊗ d, δS∪t,r = d⊗ w, and δS∪r,t = d⊗ w.
Take x⊗ y ∈ TS = HS̃ ⊗WS̃. The two sides of the equality we need to check are:

δS∪r,t ◦ δS,r(x⊗ y) = x⊗ ν∨
t ∧ y ∈ HS̃∪r∪t ⊗WS̃∪r∪t,

and
δS∪t,r ◦ δS,t(x⊗ y) = x⊗ ν∨

r ∧ y ∈ HS̃∪r∪t ⊗WS̃∪r∪t.

Recall that both ν∨
r and ν∨

t are interpreted in WS̃∪r∪t via orthogonal projections, and
due to the condition that νr /∈ VS̃ but νr ∈ VS̃∪t, it follows that their projections onto
WS̃∪r∪t only differ by a scalar αS,r,t.

The second big case to consider is when r ∈ [n]+ and t ∈ [n]−. This breaks into five
sub-cases, four of which are trivial (the square either commutes or anti-commutes).

• The one interesting subcase is when νr /∈ VS̃−t but νr ∈ VS̃, which implies that
νt /∈ VS̃−t but νt ∈ VS̃−t∪r. Again, consider x⊗ y ∈ TS = HS̃ ⊗WS̃. The two sides of
the eauality turn out to be

δS∪r,t ◦ δS,r(x⊗ y) = x⊗ ν∨
r ∧ y ∈ HS̃∪r∪t ⊗WS̃∪r−t,

and
δS∪t,r ◦ δS,t(x⊗ y) = νt ∧ x⊗ y ∈ HS̃∪r∪t ⊗WS̃∪r−t.

The condition νr /∈ VS̃−t, νr ∈ VS̃ implies that when projected orthogonally onto
HS̃∪r∪t andWS̃∪r−t, respectively, both νt and ν∨

r map to zero, so the square commutes.

The third major case, when r, t ∈ [n]−, is similar to the first, so we leave it to the reader
to check. �

Lemma 7.4. There is a non-zero scalar assignment ǫS,r ∈ k× to each edge to make the
above cube anti-commutative, and hence the flattened cube is a chain complex. Furthermore,
choosing a different scalar assignment does not change the homology of the complex.
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Proof. The proof is the same homological argument as the proof of the corresponding state-
ments (Lemmas 1.2 and 2.2) in [ORSz], so we only give a brief outline here. Consider the
cube T (V) as a cell complex, and define a 2-cochain c ∈ C2(T (V), k×) by associating to each
face the negative of the scalar which obstructs the commutativity of the square, described
in Lemma 7.3 and its proof. (When the two compositions are both zero, associate −1.) It
is easy to check that c is a cocycle. Since the cube is contractible, c must be a coboundary,
and this provides the desired scalar assignment.

The uniqueness part of the lemma follows from the fact that the product of two such edge
assignments is a 1-cocycle. So it is the coboundary of some zero-cochain γ : T (V) → k×,
which associates non-zero scalars γ(S) to each vertex TS of the hypercube. The isomorphism
of the chain complexes is the map which is given by multiplication with γS on TS. �

We have defined a bi-graded chain complex T (V). We will denote the resulting homology
groups by H i

Kh(V), which, for each i, is a graded k-vector space.

Proposition 7.5. The cohomology H i
Kh(V) categorifies the Jones polynomial of hyperplane

arrangements.

Proof. Straigtforward from the definition of the grading and the chain groups. �

Remark 5. Recall that when associating a signed vector arrangement to a link projection
L, we first chose a checkerboard shading, used this to construct a signed planar graph G(L),
then chose an arbitrary ordering and of the edges and oriented them arbitrarily, and used
this data to construct the vector arrangement V(L). However, these choices do not effect
the cohomology H•

Kh(V(L)). Chosing the opposite checkerboard shading would have led to
the planar dual G(L)∗ of the graph G(L), and ultimately to the Gale dual arrangement
V(L)∨. In the next section we will show that H•

Kh is Gale-duality invariant. Choosing a
different ordering of the edges amounts to permuting the vectors in V(L), while changing
the orientation of an edge multiplies the corresponding vector of V(L) by −1. The following
proposition states that H•

Kh is also invariant under these operations, hence it is well-defined
as an invariant of planar link projections.

Proposition 7.6. The cohomology H i
Kh(V) is invariant under permuting the vectors of V,

and under multiplying a vector νi in V by −1.

Proof. Let σ(V) be the permuted vector arrangement, and ni(V) denote the arrangement
where νi is replaced by −νi. Note that σ(V) has the same chain groups as V, permuted,
but due to the changed order the scalar assignment ǫ may be different. Consider the map
φ : T (V) → T (σ(V)) which sends each chain group TS isomorphically to the corresponding
Tσ(S) in T (σ(V)). This commutes with the differentials up to scalars, hence defines a 1-cocycle
c1 of the hypercube, just like in the proof of Lemma 7.4. Since the cube is contractible, c1
is the boundary of some 0-cochain c0 : {S ⊆ [n]} → k. This c0 is the adjustment needed for
φ to be a chain isomorphism.

The case of ni(V) is similar: now the chain goups are exactly the same, and some differ-
entials may get multiplied by −1. The same homological argument works. �

Remark 6. In the proof of Lemmas 7.3 and 7.4 above, we have worked over a field k. In order
to work over Z, or another commutative ring, one must check that all the scalar obstructions
to the commutativity of the hypercube are units. For signed graphical arrangements — and
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in particular for planar link projections — it is straightforward to check that these scalar
obstructions are always ±1. Thus in the graphical case, we may take k = Z. Then the proofs
of Lemmas 7.3 and 7.4, as well as the rest of the proofs in this section, go through without
change.

7.6. Gale duality, Deletion-Restriction, and Kunneth Theorem. The following propo-
sition is almost immediate from the definitions.

Proposition 7.7. If V and V∨ are Gale dual signed arrangements, then there is an isomor-
phism of chain complexes

T (V) ∼= T (V∨).

Proof. For brevity, let us denote TS(V) by just TS, and TS(V
∨) by T∨

S∨ . S∨ is different from

S in that the positive and negative signs are exchanged, hence S̃∨ = S̃c. Observe that

T∨
S∨

∼= ∧•H∨
S̃∨

⊗ ∧ •W∨
S̃∨

∼= ∧•W
S̃∨

c ⊗ ∧•H
S̃∨

c ∼= ∧•WS̃ ⊗HS̃

σ
∼= TS.

We claim that σ, which is the isomorphism of chain groups given by the switching of tensor
factors, is actually an isomorphism of chain complexes.

Suppose r /∈ S and r ∈ [n]+. Then r ∈ [n]∨− and νr /∈ VS̃ if and only if ν∨
r ∈ V

S̃∨−r
. So

the Gale dual of a Type 1 differential is a Type 3 differential, and similarly the Gale dual
of a Type 2 differential is a Type 4 differential. Thus, using the same scalar assignments
in the complexes T (V) and T (V∨), it follows that σ commutes with the differentials and
that σ is an isomorphism of chain complexes. (If we used different scalar assignments in the
differentials for T (V) and T (V∨), we would have to modify σ accordingly in order to get a
genuine chain map.) �

Now suppose that we are given a deletion restriction triple {V,Vνl,V − νl}. The following
theorem is proven the same way as Theorem 5.4, the only difference is having to keep track
of the sign of l which determines the direction of the maps.

Theorem 7.8. There is long exact sequence of homology groups, depending on the sign of
l. If l ∈ [n]+, then

(26) ... → H i−1
Kh (V

νl) → H i
Kh(V) → H i

Kh(V − νl)
γ+
−→ H i

Kh(V
νl) → ...,

where

(27) γ+(x⊗ y) =

{
x⊗ y if l /∈ VS̃

x⊗ (ν∨
l ∧ y) if l ∈ VS̃.

If l ∈ [n]−, then

(28) ... → H i−1
Kh (V − νl) → H i

Kh(V) → H i
Kh(V

νl)
γ−
−→ H i

Kh(V − νl) → ...,

where

(29) γ−(x⊗ y) =

{
(νl ∧ x)⊗ y if l /∈ VS̃

x⊗ y if l ∈ VS̃.

�

The proof of Theorem 5.6 also applies without any adjustment, so HKh satisfies a Kunneth
Theorem:
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Proposition 7.9. For two signed vector arrangements V and V ′ and the product arrangement
V × V ′, there is an isomorphism

H•
Kh(V × V ′) ∼= H•

Kh(V)⊗H•
Kh(V

′).

�

7.7. Reidemeister Invariance.

Theorem 7.10. If V and V ′ are signed arrangements which differ by a Reidemeister move,
then Kh(V) and Kh(V ′) are chain homotopic.

Proof. Since the Reidemeister moves come in Gale dual pairs, and Proposition 7.7 says that
HKh is Gale duality–invariant, it is enough to show Reidemeister invariance for one member
of each Gale dual pair. Like [ORSz], we essentially follow the method and exposition of [BN],
Section 3.5.

For Reidemeister 1, we will prove R1∨ in the case where νl is positive. The negative case
is very similar. The chain complex T (V) can be written as a direct sum of two faces of the
cube, one for sets which contain l, and one for those which do not:

T (V) =
⊕

l /∈S

TS ⊕
⊕

l /∈S

TS∪l.

If l /∈ S, then νl /∈ VS̃: this is implied by the assumption that ν∨ = 0. Hence HS̃
∼= kνl⊕HS̃∪l.

This means that

TS = ∧•HS̃ ⊗ ∧•WS̃
∼= (∧•HS̃∪l ⊗ ∧•WS̃)⊕ (νl ∧ (∧•HS̃∪l

)⊗ ∧•WS̃).

The differential δS,l is of Type 1, hence it is the identity on the first component, meaning
that

T ′ =
⊕

l /∈S

∧•HS̃∪l ⊗ ∧•WS̃

δS,l
−→

⊕
TS∪l

is an acyclic subcomplex, so the homology of T (V) doesn’t change if we factor out by T ′.
After the factorization what remains is

⊕
l /∈S νl ∧ (∧•HS̃∪l

) ⊗ ∧•WS̃, which is isomorphic
to T (Vνl), as the degree shift gets canceled out by the global shift in the definition of the
grading.
⊕

TS∪m
//

⊕
TS∪l∪m

⊕
l,m/∈S TS

w⊗b
//

OO

⊕
TS∪l

d⊗d

OO

For proving R2∨, suppose that l ∈ [n]− and m ∈ [n]+.
We write the cube T (V) as a direct sum of four faces, ac-
cording to the incidence of l and m in S, as shown on the
left. In the bottom right corner, ν∨

l = αν∨
m implies that

νl−ανm ∈ H
S̃∪l

. (Note that S̃ ∪ l includes neither l norm.) So

H
S̃∪l

∼= k(νl − ανm) ⊕ H̄
S̃∪l

, where H̄
S̃∪l

denotes the orthogonal complement of (νl − ανm)
in H

S̃∪l
. Thus

T
S̃∪l

∼= (∧•H̄
S̃∪l

⊗W
S̃∪l

)⊕ ((νl − ανm) ∧ (∧•H̄
S̃∪l

)⊗W
S̃∪l

).

The differential δS∪l,m is of Type 1, an isomorphism when restricted to the first component,
hence there is an acyclic subcomplex

T ′ =
⊕

H̄
S̃∪l

⊗W
S̃∪l

δS∪l,m

−→
⊕

TS∪l∪m.

25



⊕
TS∪m

// 0

⊕
l,m/∈S TS //

OO

⊕
(νl−ανm)∧(∧

•H̄
S̃∪l

)⊗W
S̃∪l

OO

Factoring out by T ′, we get the complex
on the right. Note that the lower horizon-
tal differential is now an isomorphism, so it
can be inverted and composed with the dif-
ferential going up to produce a map τ from
the lower right corner to the upper left corner. Now consider the subcomplex T ′′ given by
all elements α in the upper left corner, and pairs

(β, τ(β)) ∈
⊕(

(νl − ανm) ∧ (∧•H̄
S̃∪l

)⊗W
S̃∪l

)
⊕

⊕
TS∪m.

This complex is acyclic due to the lower horizontal differential being an isomorphism.
Factoring out by T ′′, all that is left is the top left corner, namely T ′′′ =

⊕
TS∪m. This is

isomorphic to T (Vνl,νm), taking the global degree shift into account.
To prove R3∨ we will consider the complexes for both V and V ′ and reduce each one until

we get isomorphic complexes. Both T (V) and T (V ′) can be written as three dimensional
cubes according to the incidence of l, m and p in S. We will first deal with the top faces of
these cubes, which include the sets S for which l ∈ S.

In the case of T (V), we play the same game as in the proof of R2∨ above, using that if
l ∈ S, m ∈ S and p /∈ S, then (αmνm + αpνp − νl) ∈ HS̃. Using the same steps as in the R2
proof, we can reduce T (V) to the complex T ′′′(V) =

⊕
l /∈S TS ⊕

⊕
l,p∈S,m/∈S TS.

As for T (V ′) =
⊕

S T
′
S = H ′

S̃
⊗ W ′

S̃
, do the same but now using the fact that when

l, p ∈ S,m /∈ S we have (αmν
∨
m + αpν

∨
p − ν∨

l ) ∈ WS̃. Again by the same process, we can
reduce T (V ′) to T ′′′(V ′) =

⊕
l /∈S T

′
S ⊕

⊕
l,m∈S,p/∈S T

′
S.

There is an isomorphism Φ : T ′′′(V) → T ′′′(V ′), defined as follows: if l /∈ S, then
Φ : HS̃ ⊗WS̃ → H ′

S̃
⊗W ′

S̃
is the restriction to Hl, which in these cases is an isomorphism,

as the reader can verify. It is also simple to check that if l, p ∈ S,m /∈ S, then TS
∼= T ′

S−p∪m.
Define the “top level” of Φ to be this isomorphism. �

Corollary 7.11. Let V be a link hyperplane arrangement corresponding to a planar pro-
jection of a link L in the three-sphere. Then Kh(V) is a link invariant, isomorphic to the
reduced Odd Khovanov homology of L.

Proof. The fact thatKh(V) is a link invariant follows immediately from Theorem 7.10. What
is not completely obvious is that the resulting homology theory is the reduced Odd Khovanov
homology of [ORSz]. In fact, the boundary maps we use differ slightly from those of [ORSz];
one can check, for example, that in the case of the Hopf link, the O-R-Sz boundary maps
are not invariant under Gale duality. However, in [B], Bloom gives an alternative (slightly
more symmetric) definition of a chain complex associated to a link projection, and he proves
that the resulting homology is Odd Khovanov homology. It is a straightforward, if slightly
tedious, combinatorial exercise (which we leave to the reader) to check that our boundary
maps for a link hyperplane arrangement agree with Bloom’s. �
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