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Abstract. We construct geometric categorical g actions on the derived category of coherent sheaves

on Nakajima quiver varieties. These actions categorify Nakajima’s construction of Kac-Moody algebra

representations on the K-theory of quiver varieties. We define an induced affine braid group action
on these derived categories.
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1. Introduction

1.1. Geometric categorification via quiver varieties. Quiver varieties were introduced in the
1990s by H. Nakajima, and since their inception they have become central objects relating represen-
tation theory and algebraic geometry. In [Nak98], for any symmetrizable Kac-Moody Lie algebra g,
Nakajima constructed the integrable highest weight representations using the top homology of quiver
varieties. This generalized work of V. Ginzburg for sln. Later in [Nak00], Nakajima constructed
representations of the quantum affine algebra on the equivariant K-theory of quiver varieties.

The goal of this paper is to lift Nakajima’s construction from an action of g on K-theory to an
enhanced action of g on the derived category of coherent sheaves. There is of course a natural candidate
for such a lift, since the correspondences used to define the action of g on cohomology can also play
the rôle of Fourier-Mukai kernels which induce functors on the derived categories. This provides an
example of an important philosophy, namely, geometrization lifts to categorification.

1.2. Categorical g actions. We now give a more detailed account of the contents in this paper.
Associated to a finite graph Γ with no loops or multiple edges we consider the associated simply-
laced Kac-Moody Lie algebra g and its quantized universal enveloping algebra Uq(g). A representation
M = ⊕λM(λ) of Uq(g) consists of a collection of weight spaces M(λ) and, for each vertex i of the
Dynkin diagram, linear maps

ei : M(λ)→M(λ+ αi) and fi : M(λ)→M(λ− αi)

satisfying the defining relations in Uq(g). Of these relations the most interesting are the commutator
relation on the weight space M(λ)

(1) eifi|M(λ) = fiei|M(λ) + [〈αi, λ〉]idM(λ),

and the Serre relation

(2) eiejei = e
(2)
i ej + eje

(2)
i

for vertices i and j connected by an edge in the Dynkin diagram. (In the above relations [〈αi, λ〉]
denotes the quantum integer, while e

(2)
i =

e2i
[2] .)

A näıve categorical action consists of replacing each vector space M(λ) by a category D(λ) and each
linear map by a functor,

Ei : D(λ)→ D(λ+ αi) and Fi : D(λ)→ D(λ− αi),
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such that the functors obey the defining relations in the quantized enveloping algebra up to isomor-
phism. For example, relation (1) becomes the categorified commutator relation

Ei ◦ Fi|D(λ) ' Fi ◦ Ei|D(λ) ⊕ idD(λ) ⊗H?(P〈αi,λ〉−1)

(where H?(·) denotes the symmetric cohomology as explained at the end of section 2.2) while the Serre
relation (2) becomes

Ei ◦ Ej ◦ Ei ' E
(2)
i ◦ Ej ⊕ Ej ◦ E(2)

i .

Here E
(2)
i is a new functor which satisfies EiEi ∼= E

(2)
i [1]⊕ E

(2)
i [−1] (this is the categorical analogue of

the relation e2
i = [2]e

(2)
i ).

In a strong categorical action, one specifies natural transformations between these functors which
implement these isomorphisms and also satisfy their own relations. Notions of strong categorical g
actions have been developed by Khovanov-Lauda [KL1, KL2, KL3] and Rouquier [R].

In this paper we use the notion of a geometric categorical g action, introduced in [CK2], which is
closely related to the notion of a strong categorical action but which is suited to our algebro-geometric
context. Such an action induces a näıve categorical action in the sense above.

In a geometric categorical g action we associate to each weight λ, a variety Y (λ), and to each
generator of Uq(g) a Fourier-Mukai kernel, denoted Ei,Fi. These Fourier-Mukai kernels define functors

Ei : D(λ)→ D(λ+ αi) and Fi : D(λ)→ D(λ− αi),

where D(λ) = DCoh(Y (λ)) is the derived category of coherent sheaves on Y (λ).

In addition, we require for each weight λ a flat deformation Ỹ (λ) → h′ of Y (λ), where h′ is the
span of the fundamental weights of g. These assignments are required to satisfy a list of properties, as
explained in section 2. The existence of the deformations Ỹ (λ) → h′ places a geometric categorical g
action one level higher on the categorical ladder than an ordinary representation of g, since the required
deformations impose a rather rigid structure on the natural transformations of functors Ei,Fi.

1.3. Geometric categorical g actions on quiver varieties. To construct geometric categorical g
actions, we follow Nakajima and take as our “weight space varieties” a collection of quiver varieties
{M(v, w)}v,where w stays fixed. The kernels Ei,Fi inducing Ei,Fi are the structure sheaves of Naka-
jima’s Hecke correspondences, tensored with appropriate line bundles. The deformations come from
varying the value of the moment map in the description of quiver varieties as holomorphic symplectic
quotients. After introducing the relevant geometry in section 3, we spend sections 4, 5, 6 proving
our main theorem, which is that these data satisfy the list of requirements needed for a geometric
categorical g action. Important parts of the proof rely on our earlier work, [CKL1], [CKL2], [CKL3]
which considered in detail the case g = sl2. The resulting representation of Uq(g) on the equivariant
K-theory of quiver varieties, which is shown to agree with Nakajima’s action in 3.3, is reducible, so in
section 8 we describe how to geometrically categorify irreducible U(g) modules.

An important idea of Chuang-Rouquier [CR] is that categorical g actions should lead to actions of
the associated braid group BΓ on the weight categories. This was proven for sl2 in [CR] and [CKL3]
and for arbitrary simply-laced g by the first two authors [CK2]. As a consequence of this result, we
obtain an action of the braid group BΓ on the derived category of quiver varieties. In section 7, we
extend this to an action of the affine braid group. As explained in section 7.4, this affine braid group
action is a step towards proving a conjecture of [BMO], concerning lifting the quantum monodromy to
the derived category. A few other interesting examples of braid group actions on derived categories of
quiver varieties are singled out in section 9.
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1.4. Categorical g actions in the Khovanov-Lauda-Rouquier sense. It is natural to ask whether
the geometric categorical g action on quiver varieties gives 2-representations of the 2-categories of
Khovanov-Lauda [KL1, KL2, KL3] and Rouquier [R] (this is what we called a strong categorical g
action above). In future work, we will answer this question in the affirmative in two different ways.

The first approach is more formal. By the main theorem in [CL], it suffices to define action of the
Khovanov-Lauda-Rouquier (KLR) algebras on compositions of Eis. For any geometric categorical g
action, the action of the KLR algebras will be constructed in [C2] by extending the argument in [CKL2]
which covered the sl2 case.

Alternatively, we have a geometric approach. In a recent paper Webster [W] (building on earlier
work by Vasserot-Varagnolo [VV] and Zheng [Z]) constructed 2-representations on certain quotients of
categories of perverse sheaves on Lusztig quiver stacks. The Nakajima quiver varieties we consider can
be thought of as cotangent bundles to the Lusztig quiver stacks. In forthcoming paper [CDK], the first
two authors and Christopher Dodd will relate these constructions by developing a filtered D-module
version of the Webster-Zheng construction. There will be a forgetful functor to Webster’s categories
and an associated graded functor to the coherent sheaves on Nakajima quiver varieties. This will give
a 2-representation compatible with the construction in this paper.

1.5. Acknowledgements. We would like to thank Roman Bezrukavnikov, Alexander Braverman,
Christopher Dodd, Hiraku Nakajima, and Raphael Rouquier for helpful discussions. S.C. was supported
by NSF Grant 0801939/0964439 and J.K. by NSERC. A.L. would also like to thank the Max Planck
Institute in Bonn for support during the 2008-2009 academic year.

2. Geometric categorical g actions

In this section we review the definition of Uq(g) and then recall the definition of a geometric cate-
gorical g action from [CK2].

2.1. The quantized enveloping algebras Uq(g). First we review the definition of a simply-laced
quantized enveloping algebra Uq(g). Fix a finite graph Γ = (I, E) without edge loops or multiple edges.
In addition, fix the following data.

(i) a free Z module X (the weight lattice),
(ii) for i ∈ I an element αi ∈ X (simple roots),

(iii) for i ∈ I an element Λi ∈ X (fundamental weight),
(iv) a symmetric non-degenerate bilinear form 〈·, ·〉 on X.

These data should satisfy:

(i) the set {αi}i∈I is linearly independent.
(ii) We have 〈αi, αi〉 = 2, while for i 6= j, 〈αi, αj〉 = 〈αj , αi〉 ∈ {0,−1}, the value depending on

whether or not i, j ∈ I are joined by an edge. The matrix C with Ci,j = 〈αi, αj〉 is known as
the Cartan matrix associated to Γ.

(iii) 〈Λi, αj〉 = δi,j for all i, j ∈ I.
(iv) dimX = |I|+ corank(C).

Let h = X ⊗Z C and let h′ = span(Λi) ⊂ h.
Let Uq(g) denote the quantized universal enveloping algebra of the Kac-Moody Lie algebra g. It is

defined as the C(q)-algebra generated by {ei, fi}i∈I and {qh}h∈h∗ with relations

• q0 = 1, and qh1+h2 = qh1qh2 for h1, h2 ∈ h∗.
• qheiq−h = q〈h,αi〉ei and qhfiq

−h = q−〈h,αi〉fi for i ∈ I and h ∈ h∗.

• [ei, fj ] = δi,j
qhi−q−hi
q−q−1 for i, j ∈ I.

• [ei, ej ] = [fi, fj ] = 0, if 〈αi, αj〉 = 0
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• eiejei = e
(2)
i ej+eje

(2)
i and fifjfi = f

(2)
i fj+fjf

(2)
i , if 〈αi, αj〉 = −1. Here e

(2)
i =

e2i
[2] , f

(2)
i =

f2
i

[2]

denote the divided powers.

The algebra Uq(g) has a triangular decomposition Uq(g) ' U+ ⊗ U0 ⊗ U− where U+ is generated
by e’s, U− by f ’s and U0 by h’s.

Lusztig’s modified enveloping algebra U̇q(g) is defined by replacing U0 with a direct sum of one
dimensional algebras

U̇q(g) = U+ ⊗
(⊕
λ∈X

Caλ
)
⊗ U−,

where the multiplication is defined as follows:

aλaµ = δλ,µaλ,

eiaλ = aλ+αiei, fiaλ = aλ−αifi,

(3) (fjei − eifj)aλ = δi,j [〈hi, λ〉]aλ.
In the last line above, [〈hi, λ〉] denotes the quantum integer (not a commutator). Since quantum
integers don’t play a large role in the rest of the paper, we hope this brief overuse of notation does not
cause too much trouble; in the rest of the paper, brackets [n] will denote a grading shift by n, not a
quantum integer. To simplify notation we will use the notation ei(λ) := eiaλ and fi(λ) := aλfi. So,
for instance, the third relation (3) above becomes

fj(λ)ei(λ)− ei(λ− αj)fj(λ− αj) = δi,j [〈hi, λ〉].

Remark 2.1. It is sometimes useful to think of U̇q(g) as a category. The objects are weights λ ∈ X
and the morphisms are

HomU̇q(g)(λ, µ) = aλU̇q(g)aµ

with composition given by multiplication. In this framework the idempotent aλ should be thought of
as projection to the object λ ∈ X, and a representation of U̇q(g) is the same thing as a representation
of Uq(g) with a weight space decomposition. Since all the representations considered in this paper
have weight space decompositions, it is sometimes convenient to think of them as representations of
U̇q(g) rather than Uq(g). From this point of view, it is natural that categorifications of U̇q(g) and its
representations will involve 2-categories.

2.2. Notation and Fourier-Mukai transforms. All our quiver varieties come equipped with a
natural C× action. If a variety Y carries a C× action we denote by OY {k} the structure sheaf of Y
with non-trivial C× action of weight k. More precisely, if f ∈ OY (U) is a local function then, viewed
as a section f ′ ∈ OY {k}(U), we have t · f ′ = t−k(t · f). If M is a C×-equivariant coherent sheaf then
we define M{k} :=M⊗OY {k}.

If X is a smooth variety equipped with a C× action we will denote by D(X), the bounded derived
category of C×-equivariant coherent sheaves on X. If P is an object in D(X) then we denote its
homology by H∗(P) (these are sheaves on X). Every operation in this paper, such as pushforward or
pullback or tensor, will be derived. If P is an object in D(X) then we use P∨ for the derived dual of
P.

Given an object P ∈ D(X × Y ) whose support is proper over both X and Y , we obtain a Fourier-
Mukai transform (functor)

ΦP : D(X)→ D(Y ), (·) 7→ p2∗(p
∗
1(·)⊗ P).

One says that P is the kernel which induces ΦP .
The right and left adjoints ΦRP and ΦLP are induced by

PR := P∨ ⊗ p∗2ωX [dim(X)] and PL := P∨ ⊗ p∗1ωY [dim(Y )]
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respectively where P∨ denotes the derived dual of P (see also [CK1] section 3.1).
Suppose P ∈ D(X × Y ) and Q ∈ D(Y × Z) are kernels. Then

ΦQ ◦ ΦP ∼= ΦQ∗P : D(X)→ D(Z)

where

Q ∗ P = p13∗(p
∗
12P ⊗ p∗23Q)

is the convolution product of P and Q. The operation ∗ is associative. Moreover by [H] remark 5.11,
we have (Q ∗ P)R ∼= PR ∗ QR and (Q ∗ P)L ∼= PL ∗ QL.

A final piece of notation that we will use is H?(Pn) for the symmetric bigraded cohomology of Pn.
In other words

H?(Pn) = C[−n]{n} ⊕ C[−n+ 2]{n− 2} ⊕ · · ·C[n]{−n}.

2.3. Geometric categorical g actions. We now recall the definition of a geometric categorical g
action from [CK2].

A geometric categorical g action consists of the following data.

(i) A collection of connected smooth complex varieties Y (λ) for λ ∈ X carrying actions of C×.
(ii) Kernels

E(r)
i (λ) ∈ D(Y (λ)× Y (λ+ rαi)) and F (r)

i (λ) ∈ D(Y (λ+ rαi)× Y (λ))

We will usually write just E(r)
i and F (r)

i to simplify notation whenever possible.

(iii) For each λ, a C×-equivariant flat family Ỹ (λ) → h′, where the fibre over 0 ∈ h′ is identified
with Y (λ) and where C× acts on h′ by scaling with weight 2.

Denote by Ỹi(λ) → span(Λi) ⊂ h′ the restriction of Ỹ (λ) to span(Λi) (this is a one parameter
deformation of Y (λ)).

On this data we impose the following conditions.

(i) Each Hom space between two objects in D(Y (λ)) is finite dimensional. In particular, this
implies that End(OY (λ)) = C · I.

(ii) All E(r)
i s and F (r)

i s are sheaves (i.e. complexes supported in cohomological degree zero).

(iii) E(r)
i (λ) and F (r)

i (λ) are left and right adjoints of each other up to a specified shift. More
precisely

(a) E(r)
i (λ)R = F (r)

i (λ)[r(〈λ, αi〉+ r)]{−r(〈λ, αi〉+ r)}
(b) E(r)

i (λ)L = F (r)
i (λ)[−r(〈λ, αi〉+ r)]{r(〈λ, αi〉+ r)}.

(iv) For each i ∈ I,

H∗(Ei ∗ E(r)
i ) ∼= E(r+1)

i ⊗k H
?(Pr).

(v) If 〈λ, αi〉 ≤ 0 then

Fi(λ) ∗ Ei(λ) ∼= Ei(λ− αi) ∗ Fi(λ− αi)⊕ P

where H∗(P) ∼= O∆ ⊗k H
?(P−〈λ,αi〉−1).

Similarly, if 〈λ, αi〉 ≥ 0 then

Ei(λ− αi) ∗ Fi(λ− αi) ∼= Fi(λ) ∗ Ei(λ)⊕ P ′

where H∗(P ′) ∼= O∆ ⊗k H
?(P〈λ,αi〉−1).

(vi) We have

H∗(i23∗Ei ∗ i12∗Ei) ∼= E(2)
i [−1]{1} ⊕ E(2)

i [2]{−3}
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where i12 and i23 are the closed immersions

i12 : Y (λ)× Y (λ+ αi)→ Y (λ)× Ỹi(λ+ αi)

i23 : Y (λ+ αi)× Y (λ+ 2αi)→ Ỹi(λ+ αi)× Y (λ+ 2αi).

(vii) If 〈λ, αi〉 ≤ 0 and k ≥ 1 then the image of supp(E(r)(λ− rαi)) under the projection to Y (λ) is
not contained in the image of supp(E(r+k)(λ− (r + k)αi)) also under the projection to Y (λ).
Similarly, if 〈λ, αi〉 ≥ 0 and k ≥ 1 then the image of supp(E(r)(λ)) in Y (λ) is not contained in
the image of supp(E(r+k)(λ)).

(viii) If i 6= j ∈ I are joined by an edge in Γ then

Ei ∗ Ej ∗ Ei ∼= E(2)
i ∗ Ej ⊕ Ej ∗ E(2)

i

while if they are not joined then Ei ∗ Ej ∼= Ej ∗ Ei.
(ix) If i 6= j ∈ I then Fj ∗ Ei ∼= Ei ∗ Fj .
(x) For i ∈ I the sheaf Ei deforms over α⊥i to some

Ẽi ∈ D(Ỹ (λ)|α⊥i ×α⊥i Ỹ (λ+ αi)|α⊥i ).

(xi) Suppose i 6= j ∈ I are joined by an edge. By Lemma 6.10, there exists a unique (up to scalar)
non-zero map Tij : Ei ∗ Ej [−1]{1} → Ej ∗ Ei, and we denote the cone of this map by

Eij := Cone

(
Ei ∗ Ej [−1]{1} Tij−−→ Ej ∗ Ei

)
∈ D(Y (λ)× Y (λ+ αi + αj)).

We then require that Eij deforms over B := (αi + αj)
⊥ ⊂ h′ to some

Ẽij ∈ D(Ỹ (λ)|B ×B Ỹ (λ+ αi + αj)|B).

Remark 2.2. Conditions (i), (ii), (iii), (vii) are technical conditions. Conditions (iv), (v), (viii), (ix)
are categorical versions of the relations in the usual presentation of the Kac-Moody Lie algebra g. Note
that we only impose (iv) and (v) at the level of cohomology of complexes; thus they are much easier
to check in examples than analogous conditions at the level of isomorphisms of complexes which one
could consider imposing. Conditions (vi), (x) and (xi) relate to the deformation and one does not need
to impose them for the Fs too.

The conditions (i) - (vii) say that the varieties {Y (λ+ nαi)}n∈Z, together with the functors Ei and

Fi and deformations Ỹi(λ + nαi) generate a geometric categorical sl2 action. Relations (viii) - (xi)
then describe how these various sl2 actions are related. See [CK2] for more discussion about these

conditions, especially regarding the role of the deformations Ỹ .

Remark 2.3. One can compare the geometric definition above to the notion of a 2-representation of g
in the sense of Rouquier [R], which in turn is very similar to the notion of an action of Khovanov-Lauda’s
2-category [KL3]. In these definitions, there are functors Ei,Fi as well as some natural transformations
between these functors. The additional data of our deformations can be compared to the additional
deformation of these natural transformations. In the case of g = sl2, this has been made precise in
[CKL2], which says that a geometric categorical sl2 action induces a 2-representation of Rouquier’s
2-category.

We say that a geometric categorical g-action is integrable if for every weight λ and i ∈ I we have
Y (λ+ nαi) = ∅ for n� 0 or n� 0. From here on we assume all actions are integrable.

We recall the following result from [CK2], which is actually an easy consequence of the main results
of [CKL2].

Theorem 2.4. If {Y (λ)} is a geometric categorical g-action, then the Fourier-Mukai transforms E
(r)
i

and F
(r)
i give a naive categorical g action. In particular,
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(i) Ei ◦ E(r)
i
∼= E

(r)
i ◦ Ei ∼= E

(r+1)
i ⊗C H

?(Pr), and similarly with E replaced by F,

(ii) Fi ◦ Ei ∼= Ei ◦ Fi ⊕ idY (λ) ⊗C H
?(P−〈λ,αi〉−1) if 〈λ, αi〉 ≤ 0 and similarly if 〈λ, αi〉 ≥ 0,

(iii) Ei ◦ Ej ◦ Ei ∼= E
(2)
i ◦ Ej ⊕ Ej ◦ E(2)

i if 〈αi, αj〉 = −1, and Ei ◦ Ej ∼= Ej ◦ Ei if 〈αi, αj〉 = 0,
(iv) Fj ◦ Ei ∼= Ei ◦ Fj if i 6= j.

Hence the endomorphisms of the Grothendieck group
⊕

λK
C×(Y (λ)) induced by Ei and Fi define a

representation of Uq(g).

The main result of [CK2] is that a geometric categorical g action gives rise to a braid group action.
More precisely, in [CKL3], we constructed (following Chuang-Rouquier [CR]) explicit autoequivalences
Ti : D(Y (λ))→ D(Y (siλ)) for each i ∈ I, and in [CK2] we proved that these equivalences satisfy the
braid relations.

Theorem 2.5. If {Y (λ)} is a geometric categorical g-action, then there is an action of the braid group
BΓ on ⊕λD(Y (λ)) compatible with the action of the Weyl group on the set of weights. On the level of
the Grothendieck groups, this action descends to the action of Lusztig’s quantum Weyl group.

Remark 2.6. By an action of the braid group we mean a map from BΓ into the group of autoequiv-
alences of tλD(Y (λ)). In the literature this is usually called a weak action.

3. Categorical g actions on quiver varieties

In this section we define the quiver varieties, their deformations and the Hecke correspondences. We
then state our main result (3.2) which states that this data yields a categorical g action.

3.1. Quiver varieties. We fix as in section 2 a finite graph Γ = (I, E). Let H be the set of pairs
consisting of an edge together with an orientation on that edge. For h ∈ H, we write in(h) (resp.
out(h)) for the incoming (outgoing) vertex of h. There is a canonical two-to-one projection f : H → E
that forgets the orientation. Fix an orientation Ω on Γ; by definition, Ω is a section of f . For each
orientation Ω, there is also an opposite orientation Ω, and for h ∈ Ω, we write h ∈ Ω for the same edge
with the reversed orientation.

We recall the definition of Nakajima quiver varieties of simply-laced type, referring the reader to
[Nak98] for further details. Let V = ⊕i∈IVi be an I-graded C-vector space. The dimension dim(V ) of
V is a vector

v = (vi)i∈I ∈ NI , vi = dim(Vi).

Given two I-graded vector spaces V, V ′, define vector spaces

L(V, V ′) =
⊕
i∈I

Hom(Vi, V
′
i ) and E(V, V ′) =

⊕
h∈H

Hom(Vout(h), V
′
in(h))

Let V and W be I-graded vector spaces with dim(V ) = v, dim(W ) = w. From now on we will fix
w but allow v to vary. We define λ := Λw −αv where Λw =

∑
wiΛi and αv =

∑
viαi. Since w is fixed

λ and v are always related as above so they will be used interchangeably. We define

M(λ) := E(V, V )⊕ L(W,V )⊕ L(V,W ).

An element of M(λ) will be denoted (Bh) where h ∈ H, Bh ∈ Hom(Vout(h), Vin(h)), or h = p(i),
Bp(i) : Vi →Wi, or h = q(i), Bq(i) : Wi → Vi.

The group P =
∏
i∈I GL(Vi) acts naturally on M(λ). The moment map µ : M(λ)→ ⊕i∈Igl(Vi) for

this action is given by

µ(B) =
∑

h1,h2∈H

ε(h2)Bh2
Bh1

+
∑
i∈I

Bq(i)Bp(i)

where ε : H → {1,−1} is defined by ε(h) = 1 if h ∈ Ω and ε(h) = −1 if h ∈ Ω.
There are two natural quotients of the level set µ−1(0) by the group P :



COHERENT SHEAVES ON QUIVER VARIETIES AND CATEGORIFICATION 9

(i) Let O(µ−1(0)) denote the coordinate ring of the algebraic variety µ−1(0). Then we have the
quotient

M0(λ) = µ−1(0)//P = Spec(O(µ−1(0))P ).

(ii) Define a character χ : P −→ C∗ by χ(g) =
∏
i det(g

−1
i ) for g = (gi)i∈I . Then we have the

quotient

M(λ) = Proj

∞⊕
m=0

{
f ∈ O

(
µ−1(0)

)
| f(gB) = χ(g)mf(B) for all g ∈ P

}
.

This second quotient is what we refer to as a quiver variety.

The quiver variety M(λ) has an alternative description using a stability condition.

Definition 1. A point B ∈ µ−1(0) is said to be stable if the following condition holds: if a collection
S = ⊕i∈ISi of subspaces of V = ⊕i∈IVi is Bh-invariant for each h ∈ H and Si ⊂ ker(Bp(i)) for each
i ∈ I, then S = 0.

We denote by µ−1(0)s the set of stable points. There is an isomorphism [Nak98]

M(λ) ' µ−1(0)s/P.

Moreover, the projection µ−1(0)s → M(λ) is a principal P bundle. The variety M(λ) is smooth of
dimension

dimM(λ) = 2〈αv,Λw〉 − 〈αv, αv〉 = 〈αv, λ〉+ 〈αv,Λw〉.
For i ∈ I, there is a tautological vector bundle

µ−1(0)s ×P Vi →M(λ)

associated to the principal P -bundle µ−1(0)→M(λ). We denote this vector bundle also by Vi; its fibre
over a point (B, V ) ∈ M(λ) is the vector space Vi used in the definition of the quiver variety. On a
product M(λ) ×M(λ′) of two quiver varieties, we will often consider the pullbacks of these bundles
from each factor, and denote them Vi := π∗1Vi and V ′i = π∗2Vi.

3.2. Deformations of quiver varieties. Recall the moment map

µ : M(λ)→
⊕
i∈I

gl(Vi).

Each Lie algebra gl(Vi) has a one-dimensional centre consisting of multiples of the identity matrix. We
define an isomorphism

Z = Z(
⊕
i∈I

gl(Vi)) = CI ∼= h′

using the basis for h′ consisting of the fundamental weights. Definition 1 for stability also makes sense
for points B ∈ µ−1(ζ) for ζ ∈ Z, see for example Proposition 3.5 in [Nak94]. For any subset X ⊂ Z,
we denote by µ−1(X)s the set of stable points.

We define a deformation of M(λ) by

N(λ) := µ−1(h′)s/P.

Lemma 3.1. µ : N(λ)→ h′ is a flat deformation of M(λ).

Proof. The key here is that all the fibres of µ have the same dimension. This follows from [Nak94, Eq.
2.6, Thm. 2.8] since our stability condition is ξR = (1, . . . , 1) and hence the corresponding parameter
ξ ∈ R3 ⊗RI is generic for any moment map condition.

On the other hand, the central fibre M(λ) is smooth so at least in a Zariski open neighbourhood of
M(λ) the total space N(λ) is Cohen-Macaulay. Thus, in a neighbourhood of M(λ) the map µ is flat
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— here we use that a map π : Y → X where X is smooth and Y Cohen-Macaulay is flat if and only if
all the fibres have the same dimension.

Finally, since there is a µ-equivariant C× action on N(λ) which contracts the base h′ to a point µ
must be flat everywhere over h′. �

3.3. C×-actions. We define a C×-action on M(λ) following Nakajima [Nak00] (note that this is dif-
ferent than the C×-action from [Nak98]). We define the C×-action on M(λ) by t · (Bh) = (tBh). This
induces a C∗ action on M(λ). For each h ∈ H, Bh defines naturally an equivariant map of vector
bundles Vout(h) → Vin(h){1}.

3.4. The Hecke correspondences. Fix a weight Λw. If another weight λ is given by λ = Λw − αv,
then we say that λ has associated dimension vector v. If λ has associated dimension vector v, then the
dimension vector associated to λ + rαi is v − rei. With this in mind, we recall the definition of the
generalized Hecke correspondences

B
(r)
i (λ) ⊂M(λ)×M(λ+ rαi)

For simplicity, we will write Bi(λ) for B
(1)
i (λ).

The Hecke correspondence B
(r)
i (λ) ⊂M(λ)×M(λ+ rαi) is the variety

B
(r)
i (λ) = {(B, V, S) | (B, V ) ∈ M(λ), S ⊂ V as below }/P

(i) (B, V ) ∈ µ−1(0)s,
(ii) S is Bh-invariant for h ∈ H and contains the image of Bq(i), and dim(S) = v − rei.

Forgetting S gives a map π1 : B
(r)
i (λ) → M(λ) while forgetting V and restricting B to S gives

π2 : B
(r)
i (λ)→M(λ+rαi). By [Nak00], this realizes B

(r)
i (λ) inside M(λ)×M(λ+rαi) as a smooth half-

dimensional subvariety, which is Lagrangian when M(λ) and M(λ+ rαi) are considered as symplectic
manifolds (this Lagrangian property uses the fact that there are no loops at any vertex of the graph).

Sometimes we will abuse notation and also write B
(r)
i (λ) for the same variety viewed as a subvariety

of M(λ+ rαi)×M(λ) after switching the factors.

3.5. The geometric categorical g action. We are now in a position to define the geometric categor-
ical g action on the derived categories of coherent sheaves on the quiver varieties. Recall that Nakajima
constructed an action of g on ⊕λH∗(M(λ)) in [Nak94, Nak98]. In his construction, H∗(M(λ)) is the
weight space of weight λ. Hence, in our geometric categorical action, we will set Y (λ) := M(λ) and

Ỹ (λ) := N(λ).
We define

E(r)
i (λ) := O

B
(r)
i (λ)

⊗ det(Vi)
r det(V ′i )r

⊗
in(h)=i

det(Vout(h))
−r{−rvi} ∈ D(M(λ)×M(λ+ rαi))

and

F (r)
i (λ) := O

B
(r)
i (λ)

⊗ det(V ′i /Vi)
〈λ,αi〉+r{r(vi − r)} ∈ D(Y (λ+ rαi)× Y (λ)).

We denote by E
(r)
i (λ) and F

(r)
i (λ) the functors induced by E(r)

i (λ) and F (r)
i (λ).

3.6. Main results. The main result of this paper is the following.

Theorem 3.2. The varieties Y (λ) := M(λ) along with kernels E(r)
i (λ),F (r)

i (λ) and deformations

Ỹ (λ) := N(λ)→ h′ define a geometric categorical g action.

By Theorem 2.4 this induces an action of Uq(g) on the Grothendieck groups
⊕

λK
C×(M(λ)).
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Proposition 3.3. The representation of Uq(g) on
⊕

λK
C×(M(λ)) coming from Theorem 3.2 agrees

(up to conjugation) with the one constructed by Nakajima in [Nak00].

Proof. Nakajima’s definition of ei and fi uses the same variety Bi(λ) as us but with line bundles

(Vi/V
′
i )−vi detVi

⊗
in(h)=i

det(Vout(h))
−1{−〈λ, αi〉 − vi − 1} and (V ′i /Vi)

〈λ,αi〉+vi detVi{〈λ, αi〉+ vi}

respectively. These are not quite the same as our line bundles.
On the other hand, consider the automorphisms of D(M(λ)) obtained by tensoring with the line

bundle ⊗l det(Vl)
vl shifted by {−b 〈λ,λ〉2 c+ 2

∑
l vl}. Conjugating Nakajima’s definition of fi with this

line bundle gives

(V ′i /Vi)
〈λ,αi〉+vi{〈λ, αi〉+ vi} detVi

⊗
l

det(Vl)
vl
⊗
l

det(V ′l )−v
′
l{s}

∼= (V ′i /Vi)
〈λ,αi〉 det(V ′i )vi−v

′
i det(Vi)

−vi+vi+1
⊗
l 6=i

det(Vl)
vl det(V ′l )−v

′
l{〈λ, αi〉+ vi + s}

∼= (V ′i /Vi)
〈λ,αi〉 det(V ′i )−1 det(Vi) ∼= (V ′i /Vi)

〈λ,αi〉−1{〈λ, αi〉+ vi + s}

where

s = −b〈λ, λ〉
2
c+ 2

∑
l

vl + b〈λ− αi, λ− αi〉
2

c − 2
∑
l

v′l = −〈λ, αi〉 − 1.

This is the same as the line bundle we use to define Fi. Here we used that v′i = vi + 1 and that for
l 6= i we have Vl ∼= V ′l when restricted to our correspondence Bi(λ).

In the same way, it is an easy exercise to see that conjugating Nakajima’s line bundle for ei also
recovers the line bundle used to define our functor Ei. �

Combining Theorem 3.2 with Theorem 2.5, we immediately obtain an action of the braid group Bg

on ⊕λD(M(λ)) compatible with the action of the Weyl group on the set of weights. In section 7 we
extend this to an affine braid group action (Theorem 7.3).

The next three sections are devoted to proving Theorem 3.2.

4. The basic relations

In this section, we will check the elementary conditions (i) – (iii) in the definition of a geometric
categorical g action.

4.1. Finite-dimensional Hom spaces. We start with condition (i).

Proposition 4.1. For any two objects, A1,A2 of D(M(λ)), Hom(A1,A2) is a finite dimensional
C-vector space.

Proof. It suffices to show that Hi(M(λ),A) is finite dimensional for any A ∈ D(M(λ)). Consider
the proper map M(λ) → M0(λ). Pushing forward we reduce to showing that Hi(M0(λ),A) is finite
dimensional for any A ∈ D(M0(λ)).

The variety M0(λ) is affine, so we can assume without loss of generality both that A is a sheaf
and that i = 0. Since M0(λ) is affine, there exists a surjective map O⊕nM0(λ) → A. So it suffices to

show H0(OM0(λ)) is finite dimensional. Now the C× action on M0(λ) contracts everything to a point.

Thus H0(OM0(λ)) ∼= C in the category of C×-equivariant coherent sheaves. The result follows since we
always work in this category. �

Condition (ii) is immediate.
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4.2. Adjunctions. In order to check condition (iii), we begin by describing the canonical bundle of

B
(r)
i (λ). We begin with the canonical bundle of M(λ) itself.

Lemma 4.2. The canonical bundle of M(λ) is ωM(λ)
∼= OM(λ){−2〈αv,Λw〉+ 〈αv, αv〉}.

Proof. Since M(λ) is symplectic, its canonical bundle has a non-vanishing section s, given by the
top wedge power of the symplectic form. The symplectic form has weight 2 for the C× action, so
this section s has weight 2( 1

2dimM(λ)) = dimM(λ). From section 3.1, we know that dimM(λ) =
2〈αv,Λw〉 − 〈αv, αv〉. �

Lemma 4.3. The canonical bundle ω
B

(r)
i (λ)

is given by

det(Vi/V
′
i )〈λ,αi〉 det(Vi)

2r
⊗

in(h)=i

det(Vout(h))
−r{−r〈λ, αi〉 − 2r2 − 2〈Λw, αv′〉+ 〈αv′ , αv′〉}.

Proof. Nakajima [Nak98, section 5] shows that B
(1)
i (λ) is a regular section of a vector bundle T on

M(λ) ×M(λ + αi). It is not clear how to produce such a vector bundle for B
(r)
i (λ). So instead we

will introduce two intermediate subvarieties A1, A2 and three vector bundles T1, T2, T3 with sections
s1, s2, s3. We will define these objects such that they satisfy the following properties. T1 is a vector
bundle on M(λ)×M(λ+ rαi) and the zero set of s1 is A1. T2 is a vector bundle on A1 and the zero

set of s2 is A2, T3 is a vector bundle on A2, and the zero set of s3 is equal to B
(r)
i (λ). Under these

conditions, it is immediate that the canonical bundle of B
(r)
i (λ) is given by

(4) ω
B

(r)
i (λ)

= j∗(det(T1) det(T2) det(T3)ωM(λ)×M(λ+rαi))

where j denotes the inclusion of B
(r)
i (λ) in M(λ)×M(λ+ rαi).

We define the first subvariety A1 by the condition that all the maps in M(λ) and M(λ + rαi) not
incident with vertex i ∈ I are equal. The second subvariety A2 is the locus where the extra condition
that V ′i ⊂ Vi holds, viewed inside the direct sum of all the neighbouring vertices.

To carve out the first subvariety we consider the sequence of vector bundles

Li(V
′, V ){−1} σ−→

⊕
out(h) 6=i,in(h)6=i

Hom(V ′out(h), Vin(h))
⊕
j 6=i

Hom(W ′j , Vj)
⊕
j 6=i

Hom(V ′j ,Wj)
τ−→ Li(V

′, V ){1}

where Li(V
′, V ) = ⊕j 6=i Hom(V ′j , Vj) and where Wj = W ′j is a trivial vector bundle whose fibre is the

vector space Wj . (We write W ′j rather than just Wj to emphasize that this is related to a point on the
second quiver variety M(λ+ rαi).)

This is similar to Nakajima’s sequence (equation (3.11) of [Nak98]) used to carve out the diagonal,
except all terms involving the ith vertex have been ommitted. The maps are the same as those used
by Nakajima. Using the same argument as in Nakajima’s work, we see that σ is injective, that τ is
surjective and that T1 := ker(τ)/im(σ) is a vector bundle. We define a section s1 of T1 by [(Ch)] where
Ch = 0 if h ∈ H and Cq(j) = Bq(j), Cp(j) = B′p(j). The zero locus of this section is our first subvariety

A1, i.e. the locus where Vj = V ′j for j 6= i.
On the subvariety A1, we have the inclusion of vector bundles

Hom(V ′i , Vi)→
⊕

out(h)=i

Hom(V ′i , Vin(h)){1}
⊕

Hom(V ′i ,Wi){1}

coming from viewing Vi as a sub-bundle of ⊕hVin(h) ⊕Wi using the maps Bh and Bp(i). We let T2 be
the cokernel of this inclusion of vector bundles. The bundle T2 has a section, defined using [(B′h, B

′
q(i))].

The zero set of the section is the locus where V ′i ⊂ Vi.
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Finally, on this second subvariety we have the complex of vector bundles⊕
in(h)=i

Hom(Vout(h), Vi)⊕Hom(Wi, Vi)→ Hom(V ′i , Vi){1} ⊕Hom(Vi, Vi/V
′
i ){1} → Hom(V ′i , Vi/V

′
i ){1}

which is exact in the second and third positions. Let T3 be the kernel of the first map in this complex.

We define a section of T3 as (Bh −B′h). This section vanishes precisely along B
(r)
i (λ).

So now we are in a position to apply (4). First note that by Lemma 4.2,

ωM(λ)×M(λ+rαi)
∼= OM(λ)×M(λ+rαi){−2〈αv,Λw〉+ 〈αv, αv〉 − 2〈αv′ ,Λw〉+ 〈αv′ , αv′〉}.

Ignoring the equivariant structure for the moment, we find that det(T1) is trivial, while

det(T2) = det(V ′i )−Ni+vi
∏

out(h)=i

det(Vin(h))
v′i det(Vi)

−v′i

and

det(T3) = det(Vi)
Ni−v′i

∏
in(h)=i

det(Vout(h))
−vi det(V ′i )vi

Now we combine everything together using (4). Using that v′i = vi − r, we deduce that ignoring C×
structure,

ω
B

(r)
i (λ)

= det(Vi/V
′
i )〈λ,αi〉 det(Vi)

2r
⊗

in(h)=i

det(Vout(h))
−r.

where Ni :=
∑
in(h)=i vout(h) +wi denotes the sum of the dimensions of the neighbours of the vertex i.

Notice that 〈λ, αi〉 = Ni − 2vi.
We still need to take into account the equivariant structure. Examining our vector bundles, we see

that det(T1) contributes ∑
in(h) 6=i,out(h) 6=i

vin(h)vout(h) +
∑
j 6=i

wjvj +
∑
j 6=i

wjv
′
j −

∑
j 6=i

2v2
j

whereas det(T2) contributes ∑
out(h)=i

v′ivin(h) + v′iwi

and det(T3) contributes∑
in(h)=i

vivout(h) + wivi − 2viv
′
i − 2(vi − v′i)vi + 2(vi − v′i)v′i.

Combining all this according to (4), and keeping in mind that r = vi − v′i, we deduce that the
equivariant shift on ω

B
(r)
i (λ)

is

{2〈Λw, αv〉 − 〈αv, αv〉+ r〈αv − Λw, αi〉 − 2r2 − 2〈Λw, αv〉+ 〈αv, αv〉 − 2〈Λw, αv′〉+ 〈αv′ , αv′〉}
= {−r〈λ, αi〉 − 2r2 − 2〈Λw, αv′〉+ 〈αv′ , αv′〉}.

�

Now, we are in a position to check condition (iii).

Lemma 4.4. The left and right adjoints of the Es and Fs are related by

(i) E(r)
i (λ)R = F (r)

i (λ)[r(〈λ, αi〉+ r)]{−r(〈λ, αi〉+ r)}
(ii) E(r)

i (λ)L = F (r)
i (λ)[−r(〈λ, αi〉+ r)]{r(〈λ, αi〉+ r)}.
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Proof. We give the proof for (i), as (ii) is similar. We have:

E(r)
i (λ)R = E(r)

i

∨
⊗ ωM(λ)[dimM(λ)]

= ω
B

(r)
i (λ)

ω∨M(λ)×M(λ+rαi)
[−codimB

(r)
i (λ)]

det(Vi)
−r det(V ′i )−r

⊗
in(h)=i

det(Vout(h))
r{rvi} ⊗ ωM(λ)[dimM(λ)]

= O
B

(r)
i (λ)

⊗ det(V ′i /Vi)
〈λ,αi〉+r{−r〈λ, αi〉 − 2r2 + rvi}[dimB

(r)
i (λ)− dimM(λ+ rαi)]

= F (r)
i (λ)[r(〈λ, αi〉+ r)]{−r(〈λ, αi〉+ r)}

where in the second last step, we use Lemmas 4.2 and 4.3. To compute the homological shift in the
last step we used that

dimB
(r)
i (λ)− dimM(λ+ rαi) =

1

2
(dimM(λ)− dimM(λ+ rαi))

=
1

2
(2〈αv,Λw〉 − 〈αv, αv〉 − 2〈αv − rαi,Λw〉+ 〈αv − rαi, αv − rαi〉)

= r〈αi,Λw〉 − r〈αi, αv〉+ r2 = r(〈λ, αi〉+ r).

�

5. The sl2 relations

In this section, we will check the conditions (iv) - (vii) of a geometric categorical g action. We call
these the sl2 relations, because these conditions complete the check that, for each i, our varieties and
functors define geometric categorical sl2 action.

The proof that we give for the sl2 relations will be based on the corresponding result for quiver
varieties in the special case g = sl2. When g = sl2, these quiver varieties are cotangent bundles to
Grassmannians. In [CKL1] and [CKL2], we established a geometric categorical sl2 action on cotangent
bundles to Grassmmanians. We will reduce from arbitrary quiver varieties to sl2 quiver varieties using
Nakajima’s “modifications of quiver varieties” ([Nak00, section 11]).

5.1. Modifications of quiver varieties. Recall the moment map

µ : M(λ)→ g = Lie(
∏
k∈I

GL(Vk)) = ⊕k∈I Hom(Vk, Vk).

Let µi be the projection of this moment map to Hom(Vi, Vi). Explicitly, we have

µi(B) =
∑

in(h)=i

ε(h)BhBh +Bq(i)Bp(i).

Let

M̃i(λ) = {(B) ∈ µ−1
i (0) | Bp(i)

⊕
out(h)=i

Bh is injective }/GL(Vi).

The variety M̃i(λ) is naturally isomorphic to a product of an sl2 quiver variety and an affine space.

More precisely, fix an isomorphism CNi ∼= Wi ⊕
⊕

out(h)=i Vin(h). Then, given a point B ∈ M̃i(λ), let

Bout(i) = Bp(i)
⊕

out(h)=iBh. The image imBout(i) is a vi-dimensional subspace of CNi . We also define

Bin(i) = Bq(i)
⊕

in(h)=iBh, thus obtaining an endomorphism Bout(i)Bin(i) of CNi . Thus, to a point in
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M̃i(λ), we have assigned a point (imBout(i), Bout(i)Bin(i)) in T ?G(vi, Ni), the cotangent bundle to the

Grassmannian of vi dimensional subspaces of CNi . In addition, let

M′i(λ) =
⊕

in(h) 6=i,out(h) 6=i

Hom(Vout(h), Vin(h))
⊕
j 6=i

Hom(Wj , Vj)
⊕
j 6=i

Hom(Vj ,Wj)

denote the affine space consisting of those linear maps not involving the vertex i.
The construction above gives us an isomorphism

(5) M̃i(λ) ∼= T ?G(vi, Ni)×M′i(λ)

This isomorphism is C×-equivariant, where C× acts with weight 2 on the fibres of T ?G(vi, Ni) and
with weight 1 on M′i(λ).

In addition to M̃i(λ), we will also need to consider the variety

M̂i(λ) := µ−1(0)s/GL(Vi).

Note that M̂i(λ) is a locally closed subvariety of M̃i(λ), since we impose the closed condition
µ = 0 together with the open condition of stability. We will denote this locally closed embedding

by jλ : M̂i(λ) ↪→ M̃i(λ). Also, directly from the definitions, we see that M̂i(λ) is a principal Pi :=∏
l 6=i GL(Vl)-bundle over M(λ). The picture to keep in mind when considering all of these varieties is

(6) M(λ) M̂i(λ)
πioo //

��

M̃◦i (λ) //

��

M̃i(λ)

0 // ⊕l 6=igl(Vi),

where M̃◦i (λ) := µ−1
i (0)s/GL(Vi) is the open subscheme of M̃i(λ) defined by the stability condition.

The modified quiver varieties M̃i(λ) and M̂i(λ) have natural flat deformations

µi : Ñi(λ)→ A1 and µi : N̂i(λ)→ A1

given by replacing µ−1
i (0) by µ−1

i (Z) in the definition, exactly as in section 3.2. As above, N̂i(λ) is a

locally closed subvariety of Ñi(λ), and N̂i(λ) is a principal Pi bundle over Ni(λ) := N(λ)|span(Λi).
Now we will define analogous modifications of Hecke correspondences. Between the modified quiver

varieties M̃i we define the modified Hecke correspondence

B̃
(r)
i (λ) := B(r)(〈λ, αi〉)×∆M′i

⊂ M̃i(λ)× M̃i(λ+ rαi)

where
B(r)(〈λ, αi〉) ⊂M(〈λ, αi〉)×M(〈λ+ rαi, αi〉) = T ?G(vi, Ni)× T ?G(vi − r,Ni)

is the Hecke correspondence for the sl2 quiver varieties and ∆M′i
⊂ M′i ×M′i is the diagonal.

Next, between the modified quiver varieties M̂i we define

B̂
(r)
i (λ) := B̃

(r)
i (λ) ∩ (M̂i(λ)× M̃(λ+ rαi)).

Since B̃
(r)
i (λ) = B(r)(〈λ, αi〉) × ∆M′i

, once µ = 0 and stability is imposed on the M̃i(λ) factor, they

are automatically imposed on the M̃(λ+ rαi) factor. Hence,

B̂
(r)
i (λ) ⊂ M̂i(λ)× M̂i(λ+ rαi).

The following is immediate from the definitions.

Lemma 5.1. The map M̂i(λ)× M̂i(λ+ rαi)→M(λ)×M(λ+ rαi) restricts to a principal Pi bundle

B̂
(r)
i (λ)→ B

(r)
i (λ).
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5.2. Modifications of Hecke operators. We will now define

Ẽ(r)
i (λ), F̃ (r)

i (λ) and Ê(r)
i (λ), F̂ (r)

i (λ)

using the appropriate line bundles on the Hecke correspondences B̃
(r)
i (λ) and B̂

(r)
i (λ).

To begin, recall from [CKL2], that we defined Hecke operators E(r),F (r) for T ?G(vi, Ni) by

E(r) := OB(r)(〈λ,αi〉) det(CNi/V ′)−r det(V )r{r(vi − r)} ∈ D(T ?G(vi, Ni)⊗ T ?G(vi − r,Ni))

F (r) := OB(r)(〈λ,αi〉) det(V ′/V )Ni−2vi+r{r(Ni − vi)} ∈ D(T ?G(vi − r,Ni)⊗ T ?G(vi, Ni))

where V denotes the tautological vector bundle.

Remark 5.2. Actually, there is a small mistake in [CKL2] at this point. The kernels in [CKL2] were
obtained from kernels in [CKL1]. However, under the isomorphism in Lemma 3.2 of [CKL2], we have
L2
∼= CN{2} and L1

∼= V {2}, and we overlooked these shifts when defining the kernels. So, actually
the shift on E(r) in [CKL2] should have been {r(vi− r)−2r(Ni−2vi+ r)} and the shift on F (r) should
have been {r(Ni − vi) + 2r(Ni − 2vi + r)}. But actually, the “incorrect” shifts used in [CKL2] work
perfectly well, since the extra terms above are equal to r〈2λ + rα, α〉 and it is easy to see that these
extra terms propogate harmlessly in all the Serre relations. So there is no harm is using the shifts from
[CKL2].

Under the isomorphism (5), the tautological vector V on T ?G(vi, Ni) corresponds to imBout(i).
The map Bout(i) gives an isomorphism of vector bundles from Vi to imBout(i){1}. Hence under the
isomorphism (5), V is isomorphic to Vi{−1}. Motivated by this, we define

Ẽ(r)
i (λ) = O

B̃
(r)
i (λ)

det(V ′i )r det(Vi)
r
⊗

in(h)=i

detV −rout(h){−rvi}

F̃ (r)
i (λ) = O

B̃
(r)
i (λ)

det(V ′i /Vi)
Ni−2vi+r{r(vi − r)}

Thus under the isomorphism (5), Ẽ(r)
i (λ), F̃ (r)

i (λ) correspond to E(r) �O∆ and F (r) �O∆.

In [CKL2], we showed that the E(r),F (r) define a geometric categorical sl2 action. Hence we imme-
diately deduce the following result.

Proposition 5.3. The varieties M̃i(λ), the deformations Ñi(λ), and the kernels

Ẽ(r)
i (λ) ∈ D(M̃i(λ)× M̃i(λ+ rαi)) and F̃ (r)

i (λ) ∈ D(M̃i(λ+ rαi)× M̃i(λ))

define a geometric categorical sl2 action. In particular,

(i) H∗(Ẽi ∗ Ẽ(r)
i ) ∼= Ẽ(r+1)

i ⊗C H
?(Pr).

(ii) If 〈λ, αi〉 ≤ 0 then

F̃i(λ) ∗ Ẽi(λ) ∼= Ẽi(λ− αi) ∗ F̃i(λ− αi)⊕ P

where H∗(P) ∼= O∆ ⊗C H
?(P−〈λ,αi〉−1).

Similarly, if 〈λ, αi〉 ≥ 0 then

Ẽi(λ− αi) ∗ F̃i(λ− αi) ∼= F̃i(λ) ∗ Ẽi(λ)⊕ P ′

where H∗(P ′) ∼= O∆ ⊗C H
?(P〈λ,αi〉−1).

(iii) H∗(i23∗Ẽi ∗ i12∗Ẽi) ∼= Ẽ(2)
i [−1]⊕ Ẽ(2)

i [2] where i12 and i23 are the closed immersions

i12 : M̃i(λ)× M̃i(λ+ αi)→ M̃i(λ)× Ñi(λ+ αi)

i23 : M̃i(λ+ αi)× M̃i(λ+ 2αi)→ Ñi(λ+ αi)× M̃i(λ+ 2αi).
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We now define the second kind of Hecke modifications Ê(r)
i , F̂ (r)

i as follows:

Ê(r)
i (λ) := O

B
(r)
i (λ)

⊗ det(Vi)
r det(V ′i )r

⊗
in(h)=i

det(Vout(h))
−r{−rvi}(7)

F̂ (r)
i (λ) := O

B
(r)
i (λ)

⊗ det(V ′i /Vi)
〈λ,αi〉−r{rvi − r}(8)

Since the varieties M̂i and N̂i are principal Pi-bundles over M and N, respectively, there is an

equivalence between the category of Pi-equivariant coherent sheaves on M̂i, resp. N̂i and the category

of coherent sheaves on M, resp. N. Moreover, Êi, F̂i and Ei,Fi correspond under this equivalence.

Hence it suffices to prove the sl2 relations (iv), (v), (vi) for Êi, F̂i.
To prove these relations for Êi, F̂i we will use Proposition 5.3, which establishes these relations

for Ẽi, F̃i. To pass from the relations for the Ẽi, F̃i to those for Êi, F̂i, we will use the formalism of
compatible kernels developed below.

5.3. Formalism of compatible kernels. Let Xi, X̃i be varieties and let jXi : Xi ↪→ X̃i be locally

closed embeddings. Two objects P ∈ D(X1 ×X2) and P̃ ∈ D(X̃1 × X̃2) are said to be compatible if

(id× jX2
)∗(P) ∼= (jX1

× id)∗(P̃) in D(X1 × X̃2).

Remark 5.4. If j is an open embedding, the pushforward j∗(A) of an object A in the bounded derived
category can be unbounded above and may fail to be coherent. Note however that if P ∈ D(X1 ×X2)

and P̃ ∈ D(X̃1 × X̃2) are compatible, then (id × jX2
)∗(P) does in fact lie in the bounded derived

category of coherent sheaves.

As an example, note that O∆Xi
is compatible with O∆X̃i

. This follows because the inclusion of ∆Xi

in Xi × X̃i is a closed embedding, so (id × jXi)∗O∆Xi
is just the structure sheaf of ∆Xi ⊂ Xi × X̃i,

which, in turn, equals the restriction of O∆X̃i
to Xi × X̃i.

Let JXi := (id × jXi)∗O∆Xi
∈ D(Xi × X̃i). It is useful to express the notion of compatibility in

terms of convolution with the sheaves JXi .

Lemma 5.5. P and P̃ are compatible if and only if JX2
∗ P ∼= P̃ ∗ JX1

∈ D(X1 × X̃2).

Proof. We have (id× jX2
)∗(P) ∼= JX2

∗ P and (jX1
× id)∗(P̃) ∼= P̃ ∗ JX1

in D(X1 × X̃2). �

In general, compatible pairs are closed under convolution, as we see from the following Lemma.

Lemma 5.6. Assume that P1 ∈ D(X1 × X2), P̃1 ∈ D(X̃1 × X̃2) are compatible and so are P2 ∈
D(X2 ×X3), P̃2 ∈ D(X̃2 × X̃3). Then P2 ∗ P1 is compatible with P̃2 ∗ P̃1.

Proof. We have JX3
∗ P2 ∗ P1

∼= P̃2 ∗ JX2
∗ P1

∼= P̃2 ∗ P̃1 ∗ JX1
where we use the compatibility of P2

and P̃2 and then the compatibility of P1 and P̃1. �

Suppose that P, P̃ are a compatible pair. Our general strategy below will be to deduce information
about P from information about P̃. This is possible because of the following lemma.

Lemma 5.7. Let j : X ↪→ X̃ be a locally closed embedding and P,P ′ ∈ D(X). If Hk(j∗P) ∼= Hk(j∗P ′)
then Hk(P) ∼= Hk(P ′).

Proof. If j is a closed embedding then j∗ : Coh(X) → Coh(X̃) is exact. Hence j∗Hk(P) ∼= Hk(j∗P).
This means that j∗Hk(P) ∼= j∗Hk(P ′). But L0j∗j∗ = id so we get Hk(P) ∼= Hk(P ′).

Since any locally closed embedding is the composition of a closed embedding and an open embedding,
it remains that prove the result when j is an open embedding. In this case j∗ : QCoh(X̃)→ QCoh(X)
is exact, and j∗j∗ = id.

Since j∗ is exact we get j∗Hk(j∗P) ∼= Hk(j∗j∗P) and likewise j∗Hk(j∗P ′) ∼= Hk(j∗j
∗P ′). The result

now follows since j∗j∗ = id. �
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5.4. Compatibility of kernels. The following result from Nakajima [Nak00, Lemma 11.2.3] will be
important for us.

Lemma 5.8. The intersections

B̃
(r)
i (λ) ∩ (M̂i(λ)× M̃i(λ+ rαi)) and B̃

(r)
i (λ) ∩ (M̃i(λ)× M̂i(λ+ rαi))

inside M̃i(λ)× M̃i(λ+ rαi) are transverse.

From this Lemma, we can apply the machinery from section 5.3, with X1 = M̂i(λ), X̃1 = M̃i(λ)

and X2 = M̂i(λ+ rαi), X̃2 = M̃i(λ+ rαi).

Corollary 5.9. The kernels Ê(r)
i (λ) and Ẽ(r)

i (λ) (resp F̂ (r)
i (λ) and F̃ (r)

i (λ)) are compatible.

Proof. Recall that B̂
(r)
i (λ) is defined as the intersection B̃

(r)
i (λ) ∩ (M̂i(λ) × M̃i(λ + rαi)). Moreover

from the above lemma, this intersection is transverse. Hence we see that

(jλ × id)∗O
B̃

(r)
i (λ)

∼= ι∗OB̂
(r)
i (λ)

∈ D(M̂i(λ)× M̃i(λ+ rαi))

where jλ : M̂i(λ) ↪→ M̃i(λ) and ι is the closed immersion of B̂
(r)
i (λ) into M̂i(λ)× M̃i(λ+ rαi). Now

ι∗OB̂
(r)
i (λ)

∼= (id× jλ+rαi)∗OB̂
(r)
i (λ)

where we think of O
B̂

(r)
i (λ)

as an object in D(M̂i(λ)× M̂i(λ+ rαi)). Thus

(jλ × id)∗O
B̃

(r)
i (λ)

∼= (id× jλ+rαi)∗OB̂
(r)
i (λ)

.

Tensoring by line bundles we obtain the compatibility of Ê(r)
i (λ) and Ẽ(r)

i (λ).

The compatibility of F̂ (r)
i and F̃ (r)

i is deduced similarly.
�

5.5. Proof of relation (iv). We are now in a position to prove relation (iv).

Lemma 5.10. H∗(Êi(λ+ rαi) ∗ Ê(r)
i (λ)) ∼= Ê(r+1)

i (λ)⊗H?(Pr)

Proof. By Lemma 5.6, we see that Êi(λ + rαi) ∗ Ê(r)
i (λ) and Ẽi(λ + rαi) ∗ Ẽ(r)

i (λ) are compatible.
Moreover, from Proposition 5.3, we know that

H∗(Ẽi(λ+ rαi) ∗ Ẽi(r)(λ)) ∼= Ẽ(r+1)
i (λ)⊗C H

?(Pr)

Hence

H∗((id× jλ+(r+1)αi)∗(Êi(λ+ rαi) ∗ Ê(r)
i (λ))) ∼= H∗((jλ × id)∗(Ẽi(λ+ rαi) ∗ Ẽ(r)

i (λ)))

∼= H∗((jλ × id)∗Ẽ(r+1)
i (λ)⊗C H

?(Pr))
∼= H∗((id× jλ+(r+1)αi)∗Ê

(r+1)
i (λ)⊗C H

?(Pr)).

So applying Lemma 5.7, we deduce the desired result. �

5.6. Proof of relation (v). To deduce relation (v), we will first show the compatibility of certain

morphisms. Recall that Êi ∗ F̂i are Pi-equivariant sheaves, hence Pi acts on the Hom space Hom(Êi ∗
F̂i, F̂i ∗ Êi).

Lemma 5.11. The spaces Extl(Êi ∗ F̂i, F̂i ∗ Êi)Pi and Extl(Ẽi ∗ F̃i, F̃i ∗ Ẽi) vanish if l < 0 and are
isomorphic to C if l = 0.
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Proof. We prove the first statement, as the proof of the second is similar.
By applying the adjunction relations Lemma 4.4 we have

Extl(Êi ∗ F̂i(λ− αi), F̂i(λ) ∗ Êi)Pi ∼= Extl(Êi(λ) ∗ Êi[〈λ, αi〉+ 1], Êi ∗ Êi[〈λ− αi, αi〉+ 1])Pi

∼= Extl(Êi ∗ Êi, Êi ∗ Êi[−2])Pi

By Lemma 5.10, we have that H∗(Êi ∗ Êi) ∼= Ê(2)
i ⊗CH

?(P1). Since there are no negative Exts from Ê(2)
i

to itself, the spectral sequence for computing Extl(Êi ∗ Êi, Êi ∗ Êi[−2])Pi collapses and we deduce that

Extl(Êi ∗ Êi, Êi ∗ Êi[−2])Pi ∼= Hom(Ê(2)
i , Ê(2)

i )Pi

if l = 0 and zero if l < 0. Now Hom(Ê(2)
i , Ê(2)

i )Pi ∼= Hom(E(2)
i , E(2)

i ) ∼= H0(O
B

(2)
i

) ∼= C. The last

isomorphism follows for the same reason H0(OM) ∼= C, namely the C× action retracts B
(2)
i onto a

proper subvariety. �

Let

ĉ ∈ Hom(Êi ∗ F̂i, F̂i ∗ Êi)Pi and c̃ ∈ Hom(Ẽi ∗ F̃i, F̃i ∗ Ẽi)
denote the unique (up to scalar) non-zero elements.

Remark 5.12. Note that on M̂i we work Pi equivariantly. On M̃i we do not use the Pi action,
but we still have the C× action, which is always around and which forces all Hom spaces to be finite

dimensional. When we have products M̂i × M̃i, we consider the first factor M̂i to have the usual Pi
action and the second factor M̃i to have a trivial Pi action.

By Lemma 5.6, (id× jλ)∗(Êi ∗ F̂i) ∼= (jλ × id)∗(Ẽi ∗ F̃i) and (id× jλ)∗(F̂i ∗ Êi) ∼= (jλ × id)∗(F̃i ∗ Ẽi).

Lemma 5.13. (id × jλ)∗(ĉ) and (jλ × id)∗(c̃) are equal (up to a non-zero multiple) under the above
isomorphisms.

Proof. We will show that Hom((id× jλ)∗(Êi ∗ F̂i), (id× jλ)∗(F̂i ∗ Êi))Pi = C and that (id× jλ)∗(ĉ) and
(jλ × id)∗(c̃) are non-zero.

Recall (6) where jλ is described as the composition M̂i(λ)
ι1−→ M̃◦i (λ)

ι2−→ M̃i(λ). Since ι2 is an open
embedding ι∗2ι2∗ = id. Hence

Hom((id× jλ)∗(Êi ∗ F̂i), (id× jλ)∗(F̂i ∗ Êi))Pi ∼= Hom((id× ι1)∗(id× ι1)∗Êi ∗ F̂i, F̂i ∗ Êi)Pi

∼= Hom((id× ι1)∗(id× ι1)∗Êi, F̂i ∗ Êi ∗ (F̂i)L)Pi

Now ι1 : M̂i(λ) ↪→ M̃◦i (λ) is the inclusion of a fibre. Thus, keeping in mind Êi is a sheaf,

Hk((id× ι1)∗(id× ι1)∗Êi) = Ê⊕aki

for some ak ∈ Z≥0 where a0 = 1 and ak = 0 for k > 0. Thus by Lemma 5.11 we get that

Hom((id× ι1)∗(id× ι1)∗Êi, F̂i ∗ Êi ∗ (F̂i)L)Pi ∼=
⊕
k≤0

Hom(Ê⊕aki [−k], F̂i ∗ Êi ∗ (F̂i)L)Pi

∼=
⊕
k≤0

Extk(Ê⊕aki ∗ F̂i, F̂i ∗ Êi)Pi

∼= Hom(Êi ∗ F̂i, F̂i ∗ Êi)Pi ∼= C.

It remains to show that (id× jλ)∗(ĉ) and (jλ × id)∗(c̃) are non-zero. The map (id× jλ)∗ĉ is adjoint
to the composition map

(id× jλ)∗(id× jλ)∗Êi ∼= (id× ι1)∗(id× ι1)∗Êi
f1−→ Êi

f2−→ F̂i ∗ Êi ∗ (F̂i)L
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where f2 is the adjoint to ĉ (and hence non-zero). Now, by the above,

Extl((id× jλ)∗(id× jλ)∗Êi, F̂i ∗ Êi ∗ (F̂i)L)Pi = 0

if l < 0. Since f1 is the identity on H0 this means f2 ◦ f1 6= 0 since f2 6= 0. Thus (id× jλ)∗(ĉ) 6= 0.
To show (jλ × id)∗(c̃) 6= 0, consider the exact triangle

Ẽi ∗ F̃i
c̃−→ F̃i ∗ Ẽi → Cone(c̃).

By Proposition 5.3 we have Cone(c̃) ∼= P where P is supported on the diagonal. Applying (jλ × id)∗

we get the exact triangle

(jλ × id)∗(Ẽi ∗ F̃i)
(jλ×id)∗(c̃)−−−−−−−→ (jλ × id)∗(F̃i ∗ Ẽi)→ (jλ × id)∗P.

Now (jλ×id)∗P is still supported on the diagonal whereas the other two terms are not. Thus (jλ×id)∗(c̃)
cannot be zero. �

Now we are in position to establish condition (v).

Theorem 5.14. If 〈λ, αi〉 ≤ 0 there exists a distinguished triangle

Êi(λ− αi) ∗ F̂i(λ− αi)→ F̂i(λ) ∗ Êi(λ)→ P

where H∗(P) ∼= O∆ ⊗C H
?(P−〈λ,αi〉−1) (and similarly if 〈λ, αi〉 ≥ 0).

Proof. Consider the exact triangle

(9) Êi ∗ F̂i
ĉ−→ F̂i ∗ Êi → Cone(ĉ).

Since (id × jλ)∗(ĉ) = (jλ × id)∗(c̃) (up to a non-zero multiple), we see that (id × jλ)∗Cone(ĉ) ∼=
(jλ × id)∗Cone(c̃).

From Proposition 5.3 we see that H∗(Cone(c̃)) ∼= O∆ ⊗C H
?(P−〈λ,αi〉−1). Hence

H∗((id× jλ)∗Cone(ĉ)) ∼= (jλ × id)∗(O∆ ⊗C H
?(P−〈λ,αi〉−1)) ∼= (id× jλ)∗(O∆ ⊗C H

?(P−〈λ,αi〉−1))

and thus by Lemma 5.7, H∗(Cone(ĉ)) ∼= O∆ ⊗C H
?(P−〈λ,αi〉−1). �

Proposition 5.15. The distinguished triangle of Theorem 5.14 splits. Thus condition (v) holds.

Proof. By adjunction, Ext1(O∆ ⊗C H
?(P−〈λ,αi〉−1), Êi ∗ F̂i) = 0, and thus the triangle splits. �

5.7. Proof of relation (vi). Now we will prove relation (vi), which is the deformed version of relation
(iv).

Lemma 5.16. Suppose P ∈ D(X1 ×X2) and P̃ ∈ D(X̃1 × X̃2) are compatible. Let ι : X2 ↪→ Y2 and

ι̃ : X̃2 ↪→ Ỹ2 be closed immersions such that jY2
◦ ι = ι̃ ◦ jX2

: X2 → Ỹ2, with jY2
: Y2 → Ỹ2 a locally

closed immersion. Then

(id× ι)∗P ∈ D(X1 × Y2) and (id× ι̃)∗P̃ ∈ D(X̃1 × Ỹ2)

are compatible. Similarly,

(ι× id)∗P ∈ D(Y1 ×X2) and (ι̃× id)∗P̃ ∈ D(Ỹ1 × X̃2)

are compatible.
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Proof. We have

(id× jY2
)∗(id× ι)∗P ∼= (id× ι̃)∗(id× jX2

)∗P
∼= (id× ι̃)∗(jX1 × id)∗P̃
∼= (jX1

× id)∗(id× ι̃)∗P̃

where the second isomorphism follows since P and P̃ are compatible and the third isomorphism is
a consequence of the following fibre square where X̃1 × X̃2 and X1 × Ỹ2 intersect transversely inside
X̃1 × Ỹ2.

X1 × X̃2 jX1
×id

//

id×ι̃
��

X̃1 × X̃2

id×ι̃
��

X1 × Ỹ2

jX1
×id

// X̃1 × Ỹ2

This proves the first assertion. The second assertion follows similarly, using ι : X1 ↪→ Y1 and
ι̃ : X̃1 ↪→ Ỹ1. �

Abusing notation slightly we denote by ĩ : M̃i(λ) ↪→ Ñi(λ) and î : M̂i(λ) ↪→ N̂i(λ) the natural
inclusions for any weight λ.

Corollary 5.17. The objects

(id× î)∗Êi ∈ D(M̂i(λ)× N̂i(λ+ αi)) and (id× ĩ)∗Ẽi ∈ D(M̃i(λ)× Ñi(λ+ αi))

are compatible, as are the objects

(̂i× id)∗Êi ∈ D(N̂i(λ)× M̃i(λ+ αi)) and (̃i× id)∗Ẽi ∈ D(Ñi(λ)× M̃i(λ+ αi)).

Proof. This is a direct consequence of Lemma 5.16 and the fact that Êi and Ẽi are compatible (Corollary
5.9). �

Lemma 5.18. H∗(i23∗Êi ∗ i12∗Êi) ∼= Ê(2)
i [−1]⊕ Ê(2)

i [2] where i12 and i23 are the closed immersions

i12 : M̂i(λ)× M̂i(λ+ αi)→ M̂i(λ)× N̂i(λ+ αi)

i23 : M̂i(λ+ αi)× M̂i(λ+ 2αi)→ N̂i(λ+ αi)× M̂i(λ+ 2αi).

Proof. Using Corollary 5.17, this follows from the analogous result for Ẽi as in the proof of Lemma
5.10. �

Finally, we note that condition (vii) follows easily in this case by inspection.

6. The rank 2 relations

In this section we will prove relations (viii) - (xi). These involve rank 2 subalgebras of g so we refer
to them as rank 2 relations.

The following Lemma, though not strictly necessary, will help shorten several arguments below.

Lemma 6.1. Suppose Y1, Y2, Y3 are holomorphic symplectic varieties and L12 ⊂ Y1 × Y2 and L23 ⊂
Y2 × Y3 are smooth Lagrangian subvarieties. If the projection map π13 : π−1

12 (L12) ∩ π−1
23 (L23) →

Y1× Y3 from the scheme theoretic intersection is an isomorphism onto its image, then the intersection
π−1

12 (L12) ∩ π−1
23 (L23) ⊂ Y1 × Y2 × Y3 is transverse.
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Proof. Let (p1, p2, p3) ∈ π−1
12 (L12) ∩ π−1

23 (L23). We need to check that the intersection

π−1
12 (T(p1,p2)L12) ∩ π−1

23 (T(p2,p3)L23)

of tangent spaces is transverse. This is equivalent to showing that the dimension of this intersection is
dim(Y1 × Y2 × Y3)− dimL12 − dimL23.

Notice that

(π−1
12 (T(p1,p2)L12) ∩ π−1

23 (T(p2,p3)L23))⊥ = (π−1
12 T(p1,p2)L12)⊥ + (π−1

23 T(p2,p3)L23)⊥

= (T(p1,p2)L12 ⊕ 0) + (0⊕ T(p2,p3)L23).

So it suffices to show that

dim((T(p1,p2)L12 ⊕ 0) + (0⊕ T(p2,p3)L23)) = dimL12 + dimL23

or equivalently that (T(p1,p2)L12 ⊕ 0) ∩ (0⊕ T(p2,p3)L23) = 0. This follows directly from the immersion
hypothesis. �

6.1. Proof of (ix).

Theorem 6.2. If i 6= j, then Fj ∗ Ei ∼= Ei ∗ Fj.

Proof. This proof is straight-forward since all intersections are of the expected dimension and the
pushforward π13 is an isomorphism onto its image.

To compute Fj ∗ Ei(λ) we first need to identify π−1
12 (Bi) ∩ π−1

23 (Bj). To do this define the variety

B̂ji(λ) of all triples (B, V, S) with (B, V ) ∈ µ−1(0)s ⊂ M(λ− αj) and S ⊂ V satisfying the following:

• dim(S) = dim(V )− ei − ej ,
• S is B-stable
• im(Bq(k)) ⊂ Sk for all k ∈ I
• the induced maps Bh : Vj → Vi/Si and Bh : Vi → Vj/Sj are zero

where h is the oriented edge from i to j in the doubled quiver and h the edge from j to i. Let

Bji(λ) = B̂ji(λ)/GL(V ). Notice that this action is free since GL(V ) already acts freely on µ−1(0)s.

Now consider the closed embedding f : Bji(λ)→M(λ)×M(λ+ αi)×M(λ+ αi − αj) given by

(i) (B, V ) := (B|V ′ , V ′) where V ′k = Vk if k 6= j and Wj = Sj
(ii) (B′, V ′) := (B|S , S)
(iii) (B′′, V ′′) := (B|V ′′ , V ′′) where V ′′k := Vk if k 6= i and V ′′i = Si

This way we can think of Bji(λ) as a subvariety of this triple product. Now π13∗ : Bji(λ)→M(λ)×
M(λ + αi − αj) is an isomorphism onto its image since (B′, V ′) can be recovered from (B, V ) and S.

Thus we have a sequence of isomorphisms Bji(λ)
∼−→ f(Bji(λ))

∼−→ π13 ◦ f(Bji(λ)).

Since Bi and Bj are Lagrangian subvarieties, Lemma 6.1 implies that the intersection π−1
12 (Bi) ∩

π−1
23 (Bj) is of the expected dimension. It follows that

Oπ−1
12 (Bi(λ)) ⊗Oπ−1

23 (Bj(λ+αi−αj))
∼= OBji(λ)

and hence OBj(λ+αi−αj) ∗ OBi(λ)
∼= OBji(λ). Keeping track of the line bundles of Ei and Fj we get:

Fj ∗ Ei(λ) ∼= OBji(λ) ⊗ det(Vi) det(V ′i ) det(V ′j /Vj)
〈λ+αi,αj〉−3

⊗
in(h)=i

det(Vout(h))
−1{−vi + vj − 2}.

An analogous computation shows that Ei ∗ Fj(λ − αj) is also equal to the above. This is not so
surprising since i and j play symmetric roles in the definition of Bji(λ). This proves condition (ix). �
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6.2. Proof of (viii).

Proposition 6.3. If i 6= j are not connected by an edge, then Ei ∗ Ej ∼= Ej ∗ Ei.

This follows directly as in the proof of the last theorem. More difficult is the Serre relation.

Theorem 6.4. Ei ∗ Ej ∗ Ei ∼= E(2)
i ∗ Ej ⊕ Ej ∗ E(2)

i , when i 6= j are joined by an edge.

Proof. By Lemma 6.11, we have the following canonical maps

Ej ∗ E(2)
i

α1−→ Ei ∗ Ej ∗ Ei
α2−→ Ej ∗ E(2)

i and E(2)
i ∗ Ej

β1−→ Ei ∗ Ej ∗ Ei
β2−→ E(2)

i ∗ Ej .

If we can show these compositions are non-zero then they must be the identity (up to a multiple) since

End(Ej ∗ E(2)
i ) ∼= C ∼= End(E(2)

i ∗ Ej) by Lemma 6.10. Thus we get1

Ei ∗ Ej ∗ Ei ∼= E(2)
i ∗ Ej ⊕ Ej ∗ E(2)

i ⊕R

for some R. Since, by Lemma 6.11, End(Ei ∗ Ej ∗ Ei) ∼= C⊕2, it follows R = 0 and we are done.
We now proceed to show that α2 ◦ α1 6= 0 (we can similarly show that β2 ◦ β1 6= 0). We will ignore

the {·} shifts in order to simplify notation (they are not relevant for checking the above fact).

First we identify Ej ∗ E(2)
i as follows. We define B̂ji(2)(λ) to be the variety parametrizing all triples

(B, V, S) with (B, V ) ∈ µ−1(0)s ⊂ M(λ) and S ⊂ V satisfying the following:

• dim(S) = dim(V )− 2ei − ej ,
• S is B-stable
• im(Bq(k)) ⊂ Sk for all k ∈ I
• the induced map Bh : Vj → Vi/Si is zero.

Let Bji(2)(λ) = B̂ji(2)(λ)/GL(V ) be the quotient by the free action of GL(V ). We have a closed
embedding f : Bji(2)(λ)→M(λ)×M(λ+ 2αi)×M(λ+ 2αi + αj) given by

(i) (B, V ) := (B, V )
(ii) (B′, V ′) := (B|V ′ , V ′) where V ′k := Vk if k 6= i and V ′i = Si
(iii) (B′′, V ′′) := (B|S , S).

π13 : Bji(2)(λ) → M(λ) ×M(λ + 2αi + αj) is an isomorphism onto its image since (B′, V ′) can be

recovered from (B, V ) and (B, V ) and S. Thus we get a sequence of isomorphisms Bji(2)(λ)
∼−→

f(Bji(2)(λ))
∼−→ (π13 ◦ f)(Bji(2)(λ)).

Since B
(2)
i and Bj are Lagrangian subvarieties, it follows by Lemma 6.1 that the intersection

π−1
12 (B

(2)
i ) ∩ π−1

23 (Bj) is of the expected dimension. Thus

O
π−1
12 (B

(2)
i (λ))

⊗Oπ−1
23 (Bj(λ+2αi))

∼= OB
ji(2)

(λ)

and hence OBj(λ+2αi) ∗ OB
(2)
i (λ)

∼= OB
ji(2)

(λ).

Keeping track of the line bundles of E(2)
i and Ej :

Lemma 6.5. We have

Ej ∗ E(2)
i (λ) ∼= OB

ji(2)
(λ) ⊗ Lji(2) ⊂M(λ)×M(λ+ 2αi + αj)

where

Lji(2) = det(Vi)
2 det(V ′i )2 det(Vj) det(V ′j )

⊗
h:in(h)=i

det(Vout(h))
−2

⊗
h:in(h)=j

det(V ′out(h))
−1.

1Here we are using the Krull-Schmidt property of our categories. For more details, see [CK2], section 4.1.
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Next we need to compute Ei ∗Ej ∗Ei. As a first step, we calculate Ej ∗Ei which is almost identical to

the computation of Ej ∗ E(2)
i above. Define B̂ji to be the variety parametrizing triples (B, V, S) with

(B, V ) ∈ µ−1(0)s ⊂ M(λ) and S ⊂ V satisfying the following:

• dim(S) = dim(V )− ei − ej ,
• S is B-stable,
• im(Bq(k)) ⊂ Sk for all k ∈ I
• the induced map Bh : Vj → Vi/Si is zero.

Let Bji = B̂ji/GL(V ). As before, the inclusion of Bij is equal to π−1
12 (Bi) ∩ π−1

23 (Bj). Moreover the
restriction of π13 to Bij is an isomorphism. Keeping track of line bundles:

Lemma 6.6. We have Ej ∗ Ei ∼= OBji ⊗ Lji where

Lji = det(Vi) det(V ′i ) det(Vj) det(V ′j )
⊗

in(h)=i

det(Vout(h))
−1

⊗
in(h)=j

det(V ′out(h))
−1.

Now we can compute Ei ∗Ej ∗Ei. Define B̂iji to be the variety parametrizing quadruples (B, V, S, S′)
with (B, V ) ∈ µ−1(0)s ⊂ M(λ) and S, S′ ⊂ V satisfying the following:

• S′ ⊂ S are B-stable subspaces with dim(S) = dim(V )−ei−ej and dim(S′) = dim(V )−2ei−ej
• im(Bq(k)) ⊂ Sk for all k ∈ I
• the induced map Bh : Vj → Vi/Si is zero
• the induced map Bh : Si → Vj/S

′
j is zero

Let Biji = B̂iji/GL(V ). As in all the other cases above,

Biji = π−1
12 (Bji) ∩ π−1

23 (Bi) ⊂M(λ)×M(λ+ αi + αj)×M(λ+ 2αi + αj).

However, the map π13 restricted to Biji is not an isomorphism.
Let C1 ⊂ Biji denote the subvariety where the induced map Bh : Vi → Vj/S

′
j is zero and let

C2 ⊂ Biji denote the subvariety where Bh : Vj → Si/S
′
i is zero.

Lemma 6.7. The variety Biji is equal to the union of C1 and C2.

Proof. Suppose that (B,S, S′) is such that the induced map Bh : Vi → Vj/S
′
j is non-zero, so that

(B,S, S′) is not in C1. Since dim(Vj) = dim(S′j) + 1, it follows that

im(Bh) + S′j = Vj .

By the moment map condition, BhBh : Vi → S′i, thus Bh(imBh) ⊂ S′i. Also, Bh(S′j) ⊂ S′i, since S′ is
B-stable. Therefore, Bh(Vj) ⊂ S′i and (B,S, S′) ∈ C2. �

Keeping track of line bundles, we have the following.

Lemma 6.8. We have

Ei ∗ Ej ∗ Ei ∼= π13∗(OBiji ⊗ Liji)
where Liji is

det(Vi) det(V ′i )2 det(V ′′i ) det(Vj) det(V ′j )
⊗

h:in(h)=i

det(Vout(h))
−1 det(V ′out(h))

−1
⊗

h:in(h)=j

det(V ′out(h))
−1

or equivalently

det(Vi) det(V ′i ) det(V ′′i )2 det(Vj)
2

⊗
h:in(h)=i

det(Vout(h))
−2

⊗
h:in(h)=j

det(V ′′out(h))
−1.
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Recall that our goal is to understand the map α1 : E(2)
i ∗ Ej → Ei ∗ Ej ∗ Ei. Recall that α1 spans the

Hom space in which it lives. By adjunction, the adjoint of α1, denoted a, spans the Hom space

π∗13(OB
ji(2)
⊗ Lji(2))→ OBiji

⊗ Liji.

Cancelling out line bundles on both sides we obtain a map (also denoted a)

(10) a : π∗13(OB
ji(2)

)⊗ det(Vi) det(V ′i )−1 det(Vj)
−1 det(V ′′j )→ OBiji

.

which spans the hom space in which it lives.
Now let D := C1 ∩C2. Inside C1, D is a divisor cut out by a section of Hom(Vj/V

′′
j , Vi/V

′
i ), namely

the section induced by Bh. Thus the natural map OC1
(−D)→ OC1∪C2

induces a non-zero map

s : OC1
⊗ det(Vj) det(V ′′j )−1 det(Vi)

−1 det(V ′i )→ OBiji
.

Finally, C1 ⊂ π−1
13 Bji(2) so precomposing this map with the natural map π∗13OB

ji(2)
→ OC1

we get a

map (also denoted s)

s : π∗13(OB
ji(2)

)⊗ det(Vj) det(V ′′j )−1 det(Vi)
−1 det(V ′i )→ OBiji

.

Note that s lives in the same Hom space as a above (10). Since s is non-zero, it equals a up to a
non-zero multiple.

It follows that

α1 : OB
ji(2)
⊗ Lji(2) → π13∗(OBiji

⊗ Liji)
is non-zero on a dense open subset of Bji(2) . Similarly, one shows that

α2 : π13∗(OBiji
⊗ Liji)→ OB

ji(2)
⊗ Lji(2)

is non-zero on an dense open subset of Bji(2) . It follows that α2 ◦ α1 6= 0 and we are done.
�

Remark 6.9. One can actually prove the Serre relation in Theorem 6.4 directly, as in [CK2]. More
precisely, one can show that C1 and C2 are the irreducible components of Biji and that they are
smooth. One then shows that

π13∗(OBiji
⊗ Liji) ∼= Ej ∗ E(2)

i ⊕ E(2)
i ∗ Ej

by using the standard exact sequence

0→ OC1(−D)⊕OC2(−D)→ OBiji → OD → 0.

In other words, tensoring by Liji and applying π13∗ one shows that OC1
(−D)⊗Liji and OC2

(−D)⊗Liji
map to Ej ∗E(2)

i and E(2)
i ∗Ej , and that OD⊗Liji maps to zero (note that D → π13(D) is a P1 fibration

so one just checks that Liji restricts to OP1(−1) on the fibres). However, we used the above approach
in order to avoid repeating this longer computation.

Lemma 6.10. If i, j ∈ I are joined by an edge then

Extk(E(b)
i ∗ E

(a)
j , E(a)

j ∗ E(b)
i ) ∼=

{
0 if k < ab
C if k = ab

(11)

while

Extk(E(b)
i ∗ E

(a)
j , E(b)

i ∗ E
(a)
j ) ∼=

{
0 if k < 0
C · id if k = 0

(12)

for any a, b ≥ 0. The same results hold if we replace all Es by Fs.

Proof. This is Lemma 4.5 of [CK2]. Notice that its proof never uses condition (viii). �
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Lemma 6.11. If i, j ∈ I are joined by an edge then

Hom(E(2)
i ∗ Ej , Ei ∗ Ej ∗ Ei) ∼= C ∼= Hom(Ei ∗ Ej ∗ Ei, E(2)

i ∗ Ej)

Hom(Ej ∗ E(2)
i , Ei ∗ Ej ∗ Ei) ∼= C ∼= Hom(Ei ∗ Ej ∗ Ei, Ej ∗ E(2)

i )

and End(Ei ∗ Ej ∗ Ei) ∼= C⊕2.

Proof. We prove that Hom(E(2)
i ∗ Ej , Ei ∗ Ej ∗ Ei) ∼= C while the other identities follow similarly. To

simplify notation we ignore the {·} grading. We have

Hom(E(2)
i ∗ Ej , Ei ∗ Ej ∗ Ei(λ))

∼= Hom(E(2)
i ∗ Ej ∗ Fi(λ)[〈λ, αi〉+ 1], Ei ∗ Ej(λ+ αi))

∼= Hom(E(2)
i ∗ Fi(λ+ αj) ∗ Ej , Ei ∗ Ej(λ+ αi)[−〈λ, αi〉 − 1])

∼= Hom(Fi ∗ E(2)
i ∗ Ej(λ+ αi)⊕ Ei ∗ Ej ⊗C H

?(P〈λ+αj ,αi〉+2), Ei ∗ Ej [−〈λ, αi〉 − 1])

∼= Hom(E(2)
i ∗ Ej , Ei[−〈λ+ 2αi + αj , αi〉 − 1] ∗ Ei ∗ Ej [−〈λ, αi〉 − 1])⊕

Hom(Ei ∗ Ej , Ei ∗ Ej ⊗C H
?(P〈λ,αi〉+1)[−〈λ, αi〉 − 1])

where we assume 〈λ, αi〉 ≥ −2 in order to simplify E(2)
i ∗ Fi in the fourth line (we use Corollary 4.4

from [CK2]).
Now the first term in the last line is isomorphic to

Hom(E(2)
i ∗ Ej , E(2)

i ∗ Ej ⊗C H
?(P1)[−2〈λ, αi〉 − 5])

which is zero if 〈λ, αi〉 > −2 and C if 〈λ, αi〉 = −2 by Lemma 6.10. Meantime, the second summand is
C unless 〈λ, αi〉 = −2 in which case it vanishes altogether. Thus their direct sum is always isomorphic
to C if 〈λ, αi〉 ≥ −2.

The case 〈λ, αi〉 < −2 is similar. �

6.3. Proof of (x) and (xi). In this section we show that Eij deforms over (αi + αj)
⊥. To do this we

identify Eij as a sheaf- the structure sheaf of a variety tensored by a line bundle- and write down an
explicit deformation of this sheaf. The proof that Ei deforms (condition (x)) is strictly easier since Ei
is already identified as a sheaf.

In the previous subsection we showed that Ej ∗ Ei ∼= OBji ⊗ Lji where

Lji = det(Vi) det(V ′i ) det(Vj) det(V ′j )
⊗

in(h)=i

det(Vout(h))
−1

⊗
in(h)=j

det(V ′out(h))
−1{−vi − vj}.

Similarly, one can show that Ei ∗ Ej ∼= OBij
⊗Lij where Bij is defined the same way as Bji except

one imposes the condition that Bh : Vi → Vj/Sj is zero instead of Bh : Vj → Vi/Si being zero and

Lij = det(Vi) det(V ′i ) det(Vj) det(V ′j )
⊗

in(h)=j

det(Vout(h))
−1

⊗
in(h)=i

det(V ′out(h))
−1{−vi − vj}.

Notice that

(13) Lij ∼= Lji ⊗ det(Vi) det(V ′i )−1 det(Vj)
−1 det(V ′j ).

Relaxing the conditions on Bh and Bh we can define B{i,j}(λ) as follows. Let B̂{i,j}(λ) be the

variety of triples (B, V, S) where (B, V ) ∈ µ−1(0)s ⊂ M(λ) and S ⊂ V satisfying the following:

• dim(S) = dim(V )− ei − ej
• S is B-stable
• im(Bq(k)) ⊂ Sk for all k ∈ I.
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Let B{i,j}(λ) := B̂{i,j}/GL(V ).

Lemma 6.12. B{i,j}(λ) ∼= Bij(λ) ∪Bji(λ) ⊂M(λ)×M(λ+ αi + αj).

Proof. Consider a point (B, V, S) ∈ B{i,j}. The subspace S is B-stable so the moment map condition
implies that the induced maps

BhBh : Vj/Sj → Vj/Sj and BhBh : Vi/Si → Vi/Si

are zero. Both Vi/Si and Vj/Sj are one-dimensional, so at least one of the induced maps

Bh : Vi/Si → Vj/Sj or Bh : Vj/Sj → Vi/Si

is zero. Thus the point (B, V, S) is in either Bij or Bji. �

The varieties Bij and Bji have the same dimension and the intersection Dij := Bij ∩Bji is one
dimension smaller. In fact, Dij ⊂ Bij is cut out by a section of Hom(Vi/V

′
i , Vj/V

′
j {1}) induced by Bh.

Thus the standard exact sequence

0→ OBij
(−Dij)→ OB{i,j} → OBji

→ 0.

leads to the exact triangle

OBji
[−1]→ OBij

⊗ det(Vi) det(V ′i )−1 det(Vj)
−1 det(V ′j ){−1} → OB{i,j}

since OBij
(−Dij) ∼= OBij

⊗ (Vi/V
′
i )⊗ (Vj/V

′
j )−1{−1}.

Now tensor this triangle with the line bundle Lji{1} and use (13) to obtain

(14) Ej ∗ Ei[−1]{1} → Ei ∗ Ej → OB{i,j} ⊗ Lji{1}.
Moreover, the first map in this triangle is non-zero since OB{i,j} ⊗ Lij is simple, and therefore, by

Lemma 6.10, must equal Tji up to non-zero multiple. It follows that

Eji ∼= Cone (Ej ∗ Ei[−1]→ Ei ∗ Ej) ∼= OB{i,j} ⊗ Lji{1}.

Now we will write down a deformation of B{i,j}. Define Ĉ{i,j} to be the variety of triples (B, V, S)

with (B, V ) ∈ µ−1((αi + αj)
⊥)s and S ⊂ V satisfying the following:

• dim(S) = dim(V )− ei − ej
• S is B-stable,
• im(Bq(k)) ⊂ Sk for all k ∈ I.

Let C{i,j} = Ĉ{i,j}/GL(V ). The difference between C{i,j} and B{i,j} is that instead of demanding

that (B, V ) ∈ µ−1(0)s we demand that (B, V ) ∈ µ−1((αi + αj)
⊥)s.

Lemma 6.13. C{i,j} → (αi + αj)
⊥ is a flat deformation of B{i,j}.

Proof. Let Co{i,j} ⊂ C{i,j} denote the open subset consisting of the fibres Cb := Cb{i,j} over b 6= 0 ∈
(αi + αj)

⊥ where b does not lie on any root hyperplane. Our aim is to show that the closure of Co{i,j}
contains B{i,j} and that the dimension of the general fibre is at least dimB{i,j}. This is sufficient to
conclude that the closure of Co{i,j} is a flat deformation of B{i,j}. The fact that this closure is actually

C{i,j} is not hard to see using an argument along the same lines.

We first show that the dimension of Cb is at least that of B{i,j}. Since B{i,j} is a Lagrangian inside
the product of M(λ)×M(λ+ αi + αj) a straightforward calculation shows that

dimB{i,j} = dimM(λ)− wi − wj + vi + vj − 1−
∑

in(h)=i,out(h)6=j

vout(h) −
∑

in(h)=j,out(h)6=i

vout(h).

Looking at Cb we can assume it has generic moment map conditions at each vertex except for vertices
i and j where the conditions are given by some nonzero t and −t respectively. We first note that
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forgetting Sj from Cb does not lose any information. This is because the Sj can be recovered as the
image of ⊕

in(h)=j,out(h)6=i

Bh ⊕Bh0 |Si ⊕Bq(j) :
⊕

in(h)=j,out(h)6=i

Vout(h) ⊕ Si ⊕Wj → Vj

where h0 ∈ H denotes the arrow from vertex i to j. Here we use the moment map condition at vertex
j and that t 6= 0 to conclude that this map surjects onto Sj ⊂ Vj . Thus we get an injective map

π : Cb →M(λ)×G(vi − 1, vi)

where G(vi − 1, vi) parametrizes the possible choices of Si ⊂ Vi. Thus it suffices to show that the
codimension of the image of π is at most

(15) wi + wj − vj +
∑

in(h)=i,out(h)6=j

vout(h) +
∑

in(h)=j,out(h) 6=i

vout(h).

Now the image of π is carved out by the conditions that all the neighbours of Vi (except for Vj)
maps to Si and all the neighbours of Vj (except for Vi) map to Si after composing with Bh0

: Vj → Vi.
We consider the natural map of vector bundles

Vj
f−→Wi ⊕Wj

⊕
in(h)=i,out(h)6=j

Vout(h)

⊕
in(h)=j,out(h)6=i

Vout(h)
g−→ Vi/Si.

The maps f and g are given by

(Bp(i)Bh0
)⊕Bp(j)

⊕
in(h)=i,out(h)6=j

(BhBh0
)

⊕
in(h)=j,out(h)6=i

Bh

and

Bq(i) ⊕ (BhBq(j))
⊕

in(h)=i,out(h) 6=j

ε(h)Bh
⊕

in(h)=j,out(h) 6=i

ε(h)(Bh0
Bh).

The stability condition says that Vi embeds into ⊕lWl by using all possible maps. This in turns implies
that f is injective. Moreover, by construction, g vanishes precisely over the image π(Cb). Finally, a
careful calculation using the moment map conditions shows that the composition g ◦ f is zero (this is
where we use that the moment map conditions are given by t and −t at i and j).

Thus we get a map coker(f) → Vi/Si which vanishes along π(Cb). Now the dimension of coker(f)
(since f is injective) is precisely equal to (15). This means that the codimension of π(Cb) ⊂ M(λ) ×
G(vi − 1, vi) is at most that. Thus dimCb ≥ dimB{i,j}.

It remains to show that the closure of Co{i,j} contains B{i,j}. Now the map which forgets Sj is an

isomorphism on the general fibre Cb but collapses one of the components of B{i,j}. This means that the
other remaining component must be in the closure (otherwise the dimension of the central fibre of the
closure of Co{i,j} would be strictly smaller than dim(Cb)). On the other hand, forgetting Si shows that

this first component must also be in the closure. This means all of B{i,j} must be in the closure. �

We then set Ẽij = OC{i,j} ⊗ Lij{1} where on the right side, abusing notation slightly, Lij denotes
the line bundle as before but over the deformation. It follows immediately from the Lemma above that
the restriction of Ẽij to the fibre over 0 ∈ (αi + αj)

⊥ is Eij .

7. Affine braid group actions

In this section we describe an affine braid group action on the non-equivariant categories⊕λD(M(λ)).
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7.1. Braid group action. Associated to our graph Γ, we have a braid group BΓ. This group has
generator Ti for i ∈ I and relations

TiTjTi = TjTiTj if 〈αi, αj〉 = −1

TiTj = TjTi if 〈αi, αj〉 = 0

In [CK2], we showed that given a geometric categorical g action with weight space varieties {Y (λ)},
one obtains an action of BΓ on the categories D(Y (λ)). The generators of BΓ act by certain complexes
originally defined by Chuang-Rouquier [CR]. Applying this result in our situation, we obtain the
following result.

Theorem 7.1. There is an action of BΓ on ⊕D(M(λ)). The generator Ti acts by a functor from
D(M(λ))→ D(M(siλ)) and these generators satisfy the braid relations.

The above theorem holds at the level of equivariant derived categories. We will now upgrade this
action to an action of the affine braid group but only after passing to the non-equivariant setting.

7.2. Affine braid group action. We use the following presentation of the (extended) affine braid
group given by Riche in [Ric]:

• generators: Ti and Θi (i ∈ I)
• relations:

(i) TiTj = TjTi if 〈αi, αj〉 = 0 and TiTjTi = TjTiTj if 〈αi, αj〉 = −1
(ii) TiΘj = ΘjTi if i 6= j

(iii) Ti =
∏
j:〈αi,αj〉=−1 Θ−1

j ΘiT
−1
i Θi

Remark 7.2. Relation (iii) above is equivalent but not identical to relation (4) on page 132 of [Ric].

The action of each Ti is the same as above. We define Θi : D(M(λ))→ D(M(λ)) as the tensor product
with the line bundle det(Vi) or, equivalently, the functor induced by the kernel θi := ∆∗ det(Vi).

Theorem 7.3. The functors Ti and Θi defined above generate an affine braid group action on the
non-equivariant derived categories ⊕λD(M(λ)). In the equivariant setting relations (i) and (ii) still
hold but relation (iii) becomes

Ti(λ) =
∏

j:〈αi,αj〉=−1

Θ−1
j ΘiT

−1
i Θi{〈λ, αi〉}.

In particular, if λ is the zero weight space, meaning that 〈λ, αi〉 = 0 for all i ∈ I, then the affine
braid group acts on the equivariant derived category D(M(λ)).

Proof. As discussed above, the first relation follows from [CK2]. The second relation follows from the
simple observation that on M(λ)×M(λ+ rαi) we have

E(r)
i (λ)⊗ π∗1 det(Vj) ∼= E(r)

i (λ)⊗ π∗2 det(Vj) and F (r)
i (λ)⊗ π∗1 det(Vj) ∼= F (r)

i (λ)⊗ π∗2 det(Vj)

if i 6= j because Vj = V ′j on B
(r)
i . This means that

F (〈λ,αi〉+l)
i ∗ E(l)

i (λ)⊗ π∗1 det(Vj) ∼= F (〈λ,αi〉+l)
i ∗ E(l)

i (λ)⊗ π∗2 det(Vj).

and implies that

θj ∗ F (〈λ,αi〉+l)
i ∗ E(l)

i
∼= F (〈λ,αi〉+l)

i ∗ E(l)
i ∗ θj .

Since Ti is induced by the kernel Ti which is the cone of the complex

· · · → F (〈λ,αi〉+l)
i ∗ E(l)

i [−l]→ · · · → F (〈λ,αi〉+1)
i ∗ Ei[−1]→ F (〈λ,αi〉)

i

it follows that θj ∗ Ti ∼= Ti ∗ θj which proves the second relation.
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To prove the third relation we reduce to the sl2 case of cotangent bundles to Grassmannians as in the
proofs above. First consider the sl2 case. Here we have quiver varieties T ∗G(k,N) and T ∗G(N −k,N)
and equivalences

T(k,N) : D(T ∗G(k,N))→ D(T ∗G(N−k,N)) and T(N−k,N) : D(T ∗G(N−k,N))→ D(T ∗G(k,N))

induced by kernels T (k,N) and T (N − k,N) respectively.

Lemma 7.4. As sheaves on T ∗G(k,N)× T ∗G(N − k,N) we have

T (k,N)L ∼= T (k,N)⊗ LN−2k−1{−2k} and T (N − k,N) ∼= T (k,N)⊗ LN−2k

where L = det(V ) det(V ′) det(CN )∨. Subsequently we have

T (N − k,N) ∼= T (k,N)L ⊗ det(V ) det(V ′) det(CN )∨{2k}.

Proof. For convenience suppose k ≤ N/2. The first isomorphism is a consequence of [C1] (see Remark
5.4). To see the second isomorphism recall that T (k,N) is the convolution of the complex

· · · → F (N−2k+2) ∗ E(2) → F (N−2k+1) ∗ E → F (N−2k)

while T (N − k,N) is the convolution of the complex

· · · → F (2) ∗ E(N−2k+2) → F ∗ E(N−2k+1) → E(N−2k).

So it suffices to show that term by term we have

(16) F (l)(k,N) ∗ E(N−2k+l)(N − k,N) ∼= F (N−2k+l)(N − k,N) ∗ E(l)(k,N)⊗ LN−2k.

This is easy to check using

• E(N−2k+l)(N − k,N) ∼= OB(N−2k+l)(N−k,N) ⊗ LN−2k+l{(N − 2k + l)(k − l)}
• F (l)(k,N) ∼= OB(l)(k,N) ⊗ det(V ′/V )N−2k+l{l(N − k)}
• E(l)(k,N) ∼= OB(l)(k,N) ⊗ Ll{l(k − l)}
• F (N−2k+l)(N − k,N) ∼= OB(N−2k+l)(N−k,N) ⊗ det(V ′/V )l{(N − 2k + l)k}.

More precisely, both sides of (16) are the pushforward π13∗ from the same variety

π−1
12 B(N−2k+l)(N − k,N) ∩ π−1

23 B(l)(k,N) ⊂ T ∗G(N − k,N)× T ∗G(k − l, N)× T ∗G(k,N).

Moreover, it is straightforward to see that F (l) ∗ E(N−2k+l) and F (N−2k+l) ∗ E(l) are the pushforwards
of the line bundles

det(V )N−2k+l det(V ′′)N−2k+l{k(N − k)− (k − l)2} and det(V )l det(V ′′)l{k(N − k)− (k − l)2}
respectively. Since these line bundles differ by π∗13(LN−2k) the result follows from the projection
formula. �

Remark 7.5. It is the first isomorphism in Lemma 7.4, more so than the second one, which should
be considered a bit surprising. This is because the kernel for T (k,N)L is the convolution of a complex
whose terms are similar to those of T (k,N), but where all the maps are in the opposite direction.
Thus, in general, there is no reason to expect that the two kernels differ only by tensoring with a line
bundle.

Since the vector bundle CN is trivial (even C×-equivariantly), we obtain the following result. (Recall
that under the isomorphism between T ?G(k,N) and the corresponding sl2 quiver variety, the vector
bundle V corresponds to the shifted tautological bundle Vi{−1}).)

Corollary 7.6. When the M(λ) are sl2 quiver varieties, we have

T(N − k,N){N − 2k} ∼= Θ ◦ T(k,N)−1 ◦Θ

, where Θ is induced by θ := ∆∗ det(Vi).
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We now consider the case of arbitrary quiver varieties. As before, we will reduce the proof to the
sl2 case. Let

θ̃i := ∆∗ det(Vi) ∈ D(M̃i(λ)× M̃i(λ))

where M̃i(λ) ∼= T ?G(vi, Ni)×M′i(λ) and

θ̂k := ∆∗π
∗
i det(Vk) ∈ D(M̂i(λ)× M̂i(λ)).

Now Vi on M̃i restricts to π∗i Vi on M̂i so θ̃i is compatible with θ̂i. Moreover, ∆∗ det(CN ) is compatible
with

∆∗π
∗
i (
∏
j

det(Vj)⊗ det(Wi)) ∼=
∏
j

θ̂j

on M̂i(λ) × M̂i(λ) where the product on the right-hand side is the convolution product ∗ over all j
such that 〈αi, αj〉 = −1.

Finally, we saw in Corollary 5.9 that each Ẽ(r)
i is compatible with Ê(r)

i and likewise each F̃ (r)
i

compatible with F̂ (r)
i . Subsequently, if we form the corresponding complexes we obtain kernels T̃ and

T̂ which are compatible (and likewise their left adjoints are also compatible).

Now on the varieties M̃i(λ)× M̃i(si(λ)) we have

T̃i(λ){−〈λ, αi〉} ∼= θ̃i ∗∆∗ det(CN )∨ ∗ T̃i(si(λ))L ∗ θ̃i

as a consequence of Lemma 7.4 above (where si(λ) = λ−〈λ, αi〉αi). Here we have to assume 〈λ, αi〉 ≤ 0
in order for the equivariant shift to be correct. It follows that

(j × id)∗T̂i(λ){−〈λ, αi〉} ∼= (j × id)∗(
∏
j

θ̂j
−1
∗ θ̂i ∗ T̂i(si(λ))L ∗ θ̂i)

where j is the embedding of M̂i(λ) into M̃i(λ). Since all the kernels here are invertible, we can apply
inverses to both sides and express this as

(j × id)∗(T̂i(λ)L ∗
∏
j

θ̂j
−1
∗ θ̂i ∗ T̂i(si(λ))L ∗ θ̂i) ∼= (j × id)∗O∆{−〈λ, αi〉}.

Then, since O∆ is a sheaf, applying Lemma 5.7 we get

T̂i(λ)L ∗
∏
j

θ̂j
−1
∗ θ̂i ∗ T̂i(si(λ))L ∗ θ̂i ∼= O∆{−〈λ, αi〉}.

Since everything we did is Pi-equivariant, this isomorphism descends to M(λ)×M(si(λ)) and gives

Ti(λ)L ∗
∏
j

θ−1
j ∗ θi ∗ Ti(si(λ))L ∗ θi ∼= O∆{−〈λ, αi〉}.

The relation Ti(λ) ∼=
∏
j θ
−1
j θi ∗ (Ti)L ∗ θi{〈λ, αi〉} now follows. �

Remark 7.7. This braid group action can be shown to agree with the affine braid group action
constructed on the full flag variety by Riche in [Ric].
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7.3. K-theory. The geometric categorical g-action on {M(λ)} constructed in Theorem 3.2 gives an
action of Uq(g) on ⊕K(M(λ)). On the other hand, Nakajima [Nak00] defined an action of the quantized
loop algebra Uq(Lg) on the equivariant K-theory of these same varieties. The quantized loop algebra
Uq(Lg) contains the quantum group Uq(g) as a subalgebra. In Proposition 3.3, we showed that these
two actions of Uq(g) coincide.

It is natural to expect that the Uq(Lg) action on the K-theory can be categorified to a categorical
Uq(Lg) action on {D(M(λ))} (though the notion of categorical Uq(Lg) action has yet to be defined).
The affine braid group action constructed in the previous section should be seen as a manifestation of
this expectation for the following reason: recall that by the results of [CK2], the braid group action on
the categories D(M(λ)) descend to the braid group action on K-theory, which comes from the Lusztig
map BΓ → Uq(g). Similarly, there is a map of the affine braid group to Uq(Lg) and hence an action of
the affine braid group on ⊕K(M(λ)). So a suitably defined categorical Uq(Lg) action on {D(M(λ))}
should be the source of the above affine braid group action.

7.4. On a conjecture of Braverman-Maulik-Okounkov. Given a resolution of a symplectic singu-
larity X → X0, Braverman-Maulik-Okounkov [BMO] study the quantum connection on H∗(X). This
quantum connection gives rise to a monodromy action of a group B on H∗(X). Based on homologi-
cal mirror symmetry considerations, they conjectured in [BMO] that this monodromy action of B on
H∗(X) can be lifted to an action of B on D(X).

Assume Γ is a finite type Dynkin diagram and consider X = ∪λM(λ), a union of quiver varieties. In
not-yet-published work, Braverman-Maulik-Okounkov check that the quantum connection on H∗(X)
is the trigonometric Casimir connection recently defined by Toledano-Laredo [TL]. On the other hand,
Toledano-Laredo conjectures that the monodromy of the trigonometric Casimir connection coincides
with the affine braid group action on K(X) coming from Nakajima’s Uq(Lg) action. This conjecture
was recently proven when g = sln in [GTL].

Thus, in order to verify the Braverman-Maulik-Okounkov conjecture in the quiver variety setting, it
suffices to verify Toledo-Laredo’s conjecture and verify that our affine braid action on K-theory comes
from Nakajima’s Uq(Lg) action.

8. Categorification of Irreducible Representations

The geometric categorical g action of Theorem 3.2 induces an action of Uq(g) on ⊕λK(M(λ)). This
representation is reducible in general, so in this section we explain how to categorify the irreducible
representations as well as tensor product representations.

Unfortunately, this construction only works in the non-equivariant setting. This means that in the
rest of this section everything will be non-equivariant (in particular, we only categorify irreducible
representations of U(g) and not Uq(g)). This unfortunate phenomenon already appears at the level of
K-theory in the work of Nakajima.

For this section, we use D(X) for the ordinary (non-equivariant) bounded derived category of co-

herent sheaves on X. We can specialize all our functors E
(r)
i ,F

(r)
i to this non-equivariant setting. Then

the conclusion of Theorem 2.4 in the equivariant setting implies the conclusion of Theorem 2.4 in this

non-equivariant setting — namely the functors E
(r)
i ,F

(r)
i define a naive categorical action of U(g) on

the (non-equivariant) derived categories of coherent sheaves of quiver varieties. Note that condition (i)
of a geometric categorical g does not hold in the non-equivariant setting and thus we cannot draw the
above conclusion without first working with the equivariant categories as we have done.

8.1. Dimension filtration. Suppose that X is a smooth quasi-projective variety. We will denote by
K(Coh(X)) and K(D(X)) the Grothendieck groups of Coh(X) and D(X). Both K(Coh(X)) and
K(D(X)) are naturally Z-modules, though we can always tensor with the complex numbers to make
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them into complex vector spaces. There is an isomorphism K(Coh(X))
∼−→ K(D(X)) given by viewing

a coherent sheaf as a complex lying in cohomological degree zero.
Now K(Coh(X)) (and hence K(D(X))) has a dimension filtration

0 = Γ−1 ⊂ Γ0 ⊂ Γ1 ⊂ . . . ⊂ Γdim(X) = K(Coh(X)) = K(D(X))

where Γk ⊂ K(Coh(X)) is the submodule spanned by sheaves M such that dim(supp(M)) ≤ k (see
[CG], Section 5.9). This induces a filtration of D(X)

0 = Γ−1D(X) ⊂ Γ0D(X) ⊂ . . . ⊂ Γdim(X)D(X) = D(X)

by setting ΓkD(X) ⊂ D(X) to be the subcategory whose image in K(D(X)) lies in Γk ⊂ K(D(X)).
The subcategories ΓkD(X) are themselves triangulated and we have

K(ΓkD(X)) ' Γk ⊂ K(D(X)).

We refer the reader to [T] for more details about the relationship between triangulated subcategories
of a triangulated category and subgroups of the Grothendieck group.

Let HBM
∗ (X,C) denote the Borel-Moore homology of X. Then ΓiD(X) can also be defined as

the inverse image of ⊕j≤2iH
BM
j (X,C) under the character map ch : K(D(X)) → HBM

∗ (X,C). This
character map is an isomorphism by [Nak00], section 7. See [CG] section 5.9 for a more detailed
discussion about the relationship between filtrations in K(D(X)) and the grading on Borel-Moore
homology.

8.2. Categories for irreducible representations.

Proposition 8.1. Both E
(r)
i and F

(r)
i restrict to functors on the triangulated category

VΛw = ⊕λΓ 1
2 dimM(λ)D(M(λ)).

Moreover, the induced action of U(g) on the complexified Grothendieck group K(VΛw) is isomorphic to
the irreducible module with highest weight Λw.

Proof. The fact that E
(r)
i and F

(r)
i preserves Γ 1

2 dimM(λ)D(M(λ)) follows from Proposition [CG] 5.11.12.

More precisely, in the notation of [CG], we take M1 to be a point, M2 = M(λ) and M3 = M(λ+ rαi)

and use that E
(r)
i and F

(r)
i are induced by sheaves inside M2 ×M3 whose support is half dimensional.

Note that this would be false if we worked equivariantly.
Now HBM

i (M(λ),C) = 0 if i < dimM(λ). To see this we use that M(λ) retracts, using our C×
action, to the core of M(λ) which is half dimensional (i.e. of real dimension dim

(
M(λ)

)
). This means

that Hi(M(λ),C) = 0 if i > dim
(
M(λ)

)
. Since there is a non-degenerate pairing HBM

i (X,C) ×
H2dim(X)−i(X,C)→ C, this then implies that HBM

i (M(λ),C) = 0 when i < dimM(λ).
Hence Γ 1

2 dimM(λ)−1D(M(λ)) = 0 and the map

ch : K(Γ 1
2 dimM(λ)D(M(λ)))→ HBM

dimM(λ)(M(λ),C)

is an isomorphism.
Now, Nakajima [Nak98] shows that the dimension of HBM

dimM(λ)(M(λ),C) is the dimension of the

λ weight space of the irreducible U(g) module of highest weight Λw. Hence by the above isomor-
phism, we see that K(Γ 1

2 dimM(λ)D(M(λ))) is also the dimension of this weight space. Since integrable

representations are determined by their characters, the result follows. �
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8.3. Categories for tensor product representations. Denote by L(Λw) the irreducible U(g) mod-
ule with highest weight Λw. One would also like to categorify tensor products such as L(Λw1)⊗L(Λw2)
as follows.

Let w1, w2 be dimension vectors with w1+w2 = w, and fix a direct sum decompositionW = W 1⊕W 2

with dim(W i) = wi. Define a one parameter subgroup λ : C∗ → GL(W ) by

λ(t) = idW 1 ⊕ tidW 2 ∈ GL(W 1)×GL(W 2) ⊂ GL(W ).

Define the tensor product variety

M(v, w1, w2) = {y ∈M(v, w) | lim
t→0

λ(t)πv(y) = 0 ∈M0(w)}.

This variety was defined by Nakajima in [Nak01] and also by Malkin in [Mal]. We will use

⊕vD(M(v, w);M(v, w1, w2))

to categorify L(Λw1)⊗L(Λw2) where D(X;Y ) denote the subcategory of D(X) consisting of complexes
which are exact over the complement of Y ⊂ X.

Denote by D<(M(v, w);M(v, w1, w2)) the subcategory in D(M(v, w);M(v, w1, w2)) whose support
has dimension strictly smaller than dimM(v, w1, w2) (this is the second last term in the dimension
filtration of D(M(v, w);M(v, w1, w2)). Denote by

Dquot(M(v, w);M(v, w1, w2)) := D(M(v, w);M(v, w1, w2))/D<(M(v, w);M(v, w1, w2))

the quotient category and set

Dquot(w
1, w2) := ⊕vDquot(M(v, w);M(v, w1, w2)).

One can show that Dquot(w
1, w2) categorifies L(Λw1)⊗L(Λw2). Once again, this only holds if q = 1

since the subcategory D<(M(v, w);M(v, w1, w2)) is preserved by the functors E
(r)
i and F

(r)
i only if

q = 1.

Remark 8.2. The above construction of tensor product representations makes sense when w2 = 0,
in which case the tensor product representation of U(g) is irreducible. However, this categorification
of irreducible representations does not use the same categories as the categorification from section 8.2.
For example, in the second construction, every object is supported on the compact core of the quiver
variety. On the other hand, the first construction includes objects like the structure sheaf Op for any
point p. These two constructions end up categorifying the same representation in part because objects
like Op are trivial in (non-equivariant) K-theory.

9. Examples

We conclude by singling out a few examples of special quiver varieties, the geometric categorical
actions on them, and the accompanying braid group actions.

Example 9.1. (Quiver varieties of type A.) Let Γ be of type An, and let w = (N, 0, 0, . . . , 0). For
v = (v1, v2, . . . , vn), the quiver variety M(λ) is empty unless N ≥ v1 ≥ v2 . . . ≥ vn ≥ 0, in which case
M(λ) is isomorphic to the cotangent bundle of a partial flag variety:

M(λ) ∼= {(X,V1, . . . , Vn) | 0 ⊂ Vn ⊂ · · · ⊂ V1 ⊂ CN , X(Vj) ⊂ Vj+1}

(see [Nak94]). This example of cotangent bundles of partial flag varieties was discussed in [CK2],
section 3. More generally, other type A quiver varieties are isomorphic to resolved type A Slodowy
slices by a theorem of Maffei [Maf]. So from section 7 we obtain new braid group actions on derived
categories of coherent sheaves on resolved Slodowy slices.
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Example 9.2. (Adjoint representation of g when g is of finite type.) When the Kac-Moody Lie algebra
g is finite-dimensional the adjoint representation of g is an integrable highest weight representation.
The highest weight of the adjoint representation is called the longest root. Let w be such that Λw is
the longest root. It is well-known that for this w, M(0) is the resolution of the Kleinian singularity
corresponding to Γ under the McKay correspondence, while all other M(λ) are either empty or a point.
The functor Ei : D(pt) → D(M(0)) is induced by the structure sheaf (tensored with a line bundle) of
the P1 ⊂ M(0) indexed by i. Meanwhile, the functor Eij : D(pt) → D(M(0)) (corresponding to the
kernel Eij) is induced by the structure sheaf of the union the the two P1’s indexed by i and j.

The induced affine braid group action preserves the 0 weight space and thus gives an affine braid
group action on the derived category of the resolution of the Kleinian singularity. This example is well
known in literature (see for instance [KS] or [CK2] section 2.4).

Example 9.3. (The basic representation of ĝ.) The adjoint representation of example 9.2 is closely
related to the basic representation of the corresponding affine Kac-Moody algebra Uq(ĝ). The Dynkin
diagram of an affine Kac-Moody Lie algebra ĝ is obtained from that of the finite dimensional Lie algebra
g by adding a single new node (the affine node) and connecting it with a single edge to each node in
the support of the vector w from example 9.2.

Let ŵ = (1, 0, . . . , 0) be the dimension vector of a one-dimensional vector space supported on the
affine node. The weight Λŵ = Λ0 is a fundamental weight, and the corresponding irreducible represen-
tation VΛ0

of highest weight Λ0 is known as the basic representation of Uq(ĝ).
The finite dimensional Lie algebra g sits naturally as a subspace of VΛ0

:

g ∼=
⊕

λ=Λ0−αv :〈Λ0,αv〉=1

VΛ0(λ).

When VΛ0 is restricted to the subalgebra Uq(g) ⊂ Uq(ĝ), the above copy of g is a copy of the adjoint
representation. Thus the adjoint representation of g is categorified by⊕

λ=Λ0−αv :〈Λ0,αv〉=1

D(M(λ)),

where M(λ) is a quiver variety of affine type (the quiver variety M(λ) which occur in the above
summation are those with dim(W ) = (1, 0, . . . , 0) and dim(V0) = 1).

The two categorifications of the adjoint representation (one using finite type quiver varieties and one
using affine type quiver varieties) are actually equivalent. Indeed, each of the affine type quiver varieties
above is isomorphic to the corresponding finite type quiver variety from example 9.2. In particular,
the resolution of the Klenian singularity occurs as both the 0 weight space variety of example 9.2 and
as the Λ0 − δ weight space variety of the basic representation (here δ is the imaginary root, i.e. the
positive generator of the kernel of the affine Cartan matrix).

The quiver varieties M(λ) for the basic representation are also of independent geometric interest

because of their relation to Hilbert schemes. Let Hilbk(C2) denote the Hilbert scheme of k points on
C2. The finite subgroup Γ ⊂ SL2(C) acts naturally on C2 and hence on each of the Hilbert schemes

Hilbk(C2). The connected components of
(
Hilbk(C2)

)Γ
are parametrized by certain representations of

the finite group Γ: a point
(
Hilbk(C2)

)Γ
is by definition a Γ-invariant ideal I ⊂ C[x, y] codimension k,

and thus the quotient C[x, y]/I is a k-dimensional representation of Γ. The connected components of(
Hilbk(C2)

)Γ
are then parametrized by the isomorphism classes of Γ representations that occur in this

way. Moreover, these connected components are isomorphic to the quiver varieties M(λ) which occur
in the basic representation [Nak99],

(17)
∐
k

(
Hilbk(C2)

)Γ ∼= ∐
λ

M(λ).
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It follows that the construction of section 7 gives an action of the double affine braid group on

⊕kD
(
Hilbk(C2)

)Γ
. This double affine braid group action does not preserve any of the individual

connected components of
(
Hilbk(C2)

)Γ
, but some of the components are preserved by natural subalge-

bras of the double affine braid group. For example, if R is the regular representation of Γ, the derived
category of the component

{I ⊂ C[x, y] : C[x, y]/I ∼= R⊕n} ⊂ Hilbn|Γ|(C2)

(which is known as the Γ-equivariant Hilbert scheme) is preserved by all of the generators of the double
affine braid group except the generator T0. (This component is isomorphic to the quiver variety M(nδ)
in equation (17).) Since the double affine braid group generators without T0 generate a copy of the
affine braid group, the construction of section 7 gives an action of the affine braid group on the derived
category of the Γ-equivariant Hilbert scheme.

Example 9.4. (Doubly extended hyperbolic Kac-Moody algebras) Outside of finite and affine type
another class of Kac-Moody algebras to attract independent consideration is the class of doubly extended
hyperbolic Kac-Moody algebras. The Dynkin diagram of such a doubly extended algebra is obtained
from an affine Dynkin diagram by adding a single new node and connecting it to the affine vertex
with a single edge. The Weyl groups (and perhaps the braid groups) of these algebras are interesting
because of their relation to modular forms. For example, the double extension of sl2 is a hyperbolic
Kac-Moody algebra whose Weyl group isomorphic to PGL2(Z) (see [FF]), while the Weyl group of the
double extension of E8 (this double extension is also known as E10) admits a construction as a matrix
algebra over the octonionic integers (see [FKN]). The construction of section 7 provides categorical
actions of the braid groups of these modular Weyl groups.
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