Hypertoric category O

Tom Braden[l
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003

Anthony Licata
Department of Mathematics, Stanford University, Palo Alto, CA 94305

Nicholas Proudfoot
Department of Mathematics, University of Oregon, Eugene, OR, 97403

Ben Websterl|
Department of Mathematics, University of Oregon, Eugene, OR, 97403

Abstract. We study the representation theory of the invariant subalgebra of the Weyl algebra

b2

under a torus action, which we call a “hypertoric enveloping algebra.” We define an analogue

of BGG category O for this algebra, and identify it with a certain category of sheaves on a
hypertoric variety. We prove that a regular block of this category is highest weight and Koszul,
identify its Koszul dual, compute its center, and study its cell structure. We also consider a
collection of derived auto-equivalences analogous to the shuffling and twisting functors for BGG

category O.

1 Introduction

In this paper we study an algebra U analogous to the universal enveloping algebra U(g) of a semisim-
ple Lie algebra g. Just as the central quotients of U(g) are quantizations of the ring of functions on
the cotangent bundle to the flag variety, the central quotients of our algebra are quantizations of
the ring of functions on a hypertoric variety; for this reason, we call U the hypertoric enveloping
algebra. The most important structure from our perspective is a category O of U-modules analo-
gous to the Bernstein-Gelfand-Gelfand (BGG) category O of modules over the universal enveloping
algebra. Our category O shares many beautiful structures and properties with the BGG category
O, including a Koszul grading, the presence of “standard objects” (analogues of Verma modules),
a “cell” partition of the set of simple objects in a block, and two commuting actions (shuffling and
twisting) of discrete groups by derived auto-equivalences.

In the first part of the introduction, we will review how these structures arise in Lie theory, before
describing the analogous phenomena in the hypertoric setting. Let g be a semisimple Lie algebra
with Cartan and Borel subalgebras h C b C g. BGG category O is defined to be the category
of finitely generated U(g)-modules on which U(h) acts semisimply and U(b) acts locally finitely.
The center of U(g) also acts locally finitely on objects of O, which implies that O decomposes into
infinitesimal blocks O, indexed by central characters A of U(g).
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Each infinitesimal block has finitely many simple objects (at most the order of the Weyl group),
and may decompose further, depending on the existence of nontrivial extensions between the simple
objects. In this manner we decompose all of O into irreducible blocks. If A is generic, then Oy
is semisimple, and breaks into one block for each simple object. At the other extreme, when A
is integral, the infinitesimal block O is itself already a block. An infinitesimal block is called
regular if the number of (isomorphism classes of) simple objects is equal to the order of the Weyl
group. In the non-integral case, the constituent blocks of a regular infinitesimal block are called
regular, as well. Each of these blocks is equivalent to a regular integral block for a Levi subalgebra
of g, a phenomenon which is paralleled in the hypertoric setting.

One of the most powerful tools for studying BGG category O is the geometry of the flag
variety G/B. For any central character A of U(g), one can define A-twisted D-modules on G/B. If
the infinitesimal block Q) is regular, then it is equivalent via the Beilinson-Bernstein localization
theorem to the category of finitely generated A-twisted D-modules on G/ B with regular singularities
and singular supports in the conormal varieties to the Schubert strata. Such D-modules may also be
regarded as sheaves on the cotangent bundle T*(G/B), the “Springer resolution” of the nilpotent
cone in g. This perspective allows one to define a Koszul grading on Oy and to understand various
algebraic properties of the category in terms of the geometry of the flag variety and the Springer
resolution.

Kazhdan and Lusztig [KL79] define a partition of the simple objects of O called the two-sided
cell partition, which can be further refined into left and right cell partitions. The two-sided cell
partition induces a direct sum decomposition of the Grothendieck group K(O))c, in which the
subspaces are spanned by the classes of projective covers of simples in a given two-sided cell. The
set of cells has a natural partial order, and this defines for us a filtration of K(O))c that we will
call the cell filtration.

Two-sided cells are in bijection with special G-orbits in the nilpotent cone, and the partial
order is given by inclusions of closures of orbits. Let T := C* act on G/B in such a way so
that the associated Bialynicki-Birula stratification agrees with the Schubert stratification. Let
d := dim G/B. If we regard objects of O, as twisted D-modules on G/B, then the singular support
map defines an isomorphism from K(O,)c to H3(T*(G/B);C). In the case where g = sly, this
isomorphism takes the cell filtration of K(O,)c to the filtration of H3?(T*(G/B);C) determined
by the Beilinson-Bernstein-Deligne (BBD) decomposition theorem [BBD82, [CG97] [f

We now summarize some of the well known and important properties of regular integral blocks

of BGG category O, many of which we have already stated above.
Theorem 1.1. Let Oy be a reqular integral block of BGG category O.

1. Oy is highest weight (equivalent to the representations of a quasihereditary algebra) with
respect to some partial ordering of the simple objects [CPS8S].

2. Oy is Koszul (equivalent to the representations of an algebra with a Koszul grading) [BGS96).

1A statement of this form can be made for arbitrary g, but it is more complicated due to the existence of non-special
nilpotent orbits which show up in the BBD picture but not in the cell picture.



3. Oy is equivalent via the localization functor to a certain category of sheaves of modules over
a quantization of the structure sheaf of T*(G/B) [BBS81).

4. The center of the Yoneda algebra of Oy is isomorphic to H*(G/B;C) [Soe90].

5. The complegified Grothendieck group K(O))c is isomorphic to H*(G/B;C), and if g = sly,
the cell filtration corresponds to the BBD filtration [BBD82, |CG97).

6. There are two collections of derived auto-equivalences of Oy (shuffling and twisting) obtained
by varying the central character and the Borel subalgebra. These auto-equivalences define

commuting actions of the fundamental group of the complement to the Cozeter arrangement
for g (the pure Artin braid group of g) [AS03, [[rv93].

7. Oy is Koszul self-dual [BGS96)]. The corresponding derived auto-equivalence exchanges shuf-
fling and twisting functors. The induced permutation of the set of simple objects sends left
cells to right cells, right cells to left cells, and two-sided cells to two-sided cells. It is order-
reversing for the highest weight ordering of the simple objects, and also order-reversing on the

set of two-sided cells.

Now we turn to the hypertoric enveloping algebra. This algebra, which was originally studied
by Musson and Van den Bergh [MV98], is easy to define. Start with the ring Clz1, 01, ..., Zn, Op]
of polynomial differential operators on C", which is equipped with the action of an algebraic torus
T = (C*)™. The algebra U is defined to be the invariant ring with respect to a subtorus K C T.
Inside of U is the polynomial subalgebra H generated by x101,...,x,0,, which plays the role of
the Cartan subalgebra. The role of the Borel subalgebra is played by the subalgebra UT C U
consisting of elements of non-negative weight for a certain action of the multiplicative group T; this
subalgebra always contains H. We note that in our situation there is no analogue of the conjugacy
of Borel subgroups; different choices of T-action result in non-isomorphic subalgebras U™.

We define hypertoric category O to be the category of finitely generated U-modules with
the property that U™ acts locally finitely and the center Z(U) acts semisimply. Note that this
definition differs in a key way from the definition of BGG category O:

e in BGG category O the Cartan algebra acts semisimply, while the center acts locally finitely;
e in our definition, the center acts semisimply, but H only acts locally finitely.

In fact, the distinction vanishes if we look only at regular blocks or regular infinitesimal blocks.
A theorem of Soergel [Soe86] says that a regular infinitesimal block Oy of BGG category O is
equivalent to the “reversed” category obtained by allowing the Cartan subalgebra to act locally
finitely but requiring that the center act semisimply with character A. Indeed, the proof of Part
(3) of Theorem |1.1] goes through this equivalence, thus one can argue that even in the Lie-theoretic
setting the reversed category is the more fundamental of the two.

The geometric perspective on BGG category O begins with the observation that a central
quotient of U(g) can be realized as the ring of global twisted differential operators on G/B, or

equivalently as the ring of S-invariant global sections of an equivariant quantization of T*(G/B),



where S := C* acts by scaling the fibers. In our setting the analogue of 7%(G/B) is a hypertoric
variety 9. Though 991 is not itself a cotangent bundle, it is a symplectic variety that admits a
Hamiltonian T-action analogous to the induced T-action on T*(G/B) as well as a S-action analogous
to the scaling action on the cotangent ﬁbersﬁ In Sectionwe construct an equivariant quantization
of M whose ring of S-invariant global sections is isomorphic to a central quotient of U (there
is a unique equivariant quantization for each central quotient). This quantization has already
been studied by Bellamy and Kuwabara [BK], who prove an analogue of the Beilinson-Bernstein
localization theorem in this context.

The data required to construct a hypertoric variety along with the necessary group actions
are encoded by a linear algebraic object called a polarized arrangement. For any polarized
arrangement X, let 9¥(X) be the associated hypertoric variety. The data required to construct a
block of hypertoric category O (a subtorus K C T, a subalgebra U™ C U, a central character of
U, plus a little bit more dataﬂ) are encoded by another, slightly more complicated linear algebraic
object called a quantized polarized arrangement. For any quantized polarized arrangement X,
let O(X) be the associated block. We define what it means for X to be integral and regular, and
we show that the regular integral blocks are exactly those that have the largest possible number
of isomorphism classes of simple objects (Remark . Quantized polarized arrangements and
polarized arrangements are closely related; in Section 2.5 we make this precise by defining certain
pairs X and X to be linked.

Every statement in Theorem has a hypertoric equivalent. For example, we define left, right,
and two-sided cells in the category O(X), as well as a support isomorphism from the Grothendieck
group of O(X) to the degree 2d equivariant cohomology group of 9(X ), where 2d is the dimension
of M(X). The statement of Theorem is simplified by the fact that the category O, is Koszul
dual to itself. In the hypertoric setting any regular polarized arrangement X has a Gale dual X',

and we will see that Gale duality of arrangements corresponds to Koszul duality of categories.
Theorem 1.2. Suppose that X and X' are reqular, integral, and linked to a dual pair X and X"

1. O(X) is highest weight with respect to a partial ordering of the simple objects (C’orollary.
2. O(X) is Koszul (Corollary[4.10).

3. O(X) is equivalent to a certain category of sheaves of modules over a quantization of the

structure sheaf of M(X) (Corollary[6.5).

4. The center of the Yoneda algebra of O(X) is isomorphic to H*(MM(X); C) (Theorem [5.5).

5. The complexified Grothendieck group K(O(X))c is isomorphic to H2(OM(X); C), and the cell
filtration corresponds to the BBD filtration (Theorem .

6. There are two collections of derived auto-equivalences of O(X) (shuffling and twisting) ob-

tained by varying the central character or the subalgebra UT C U. These auto-equivalences

®The groups T and S are both copies of the multiplicative group, but they play very different roles in this paper.
In particular, T acts on both T*(G/B) and 91 preserving the symplectic forms, while S does not.
5The “little bit more data” is needed if and only if Ay fails to be unimodular or the central character fails to be

integral (Remark .



define commuting actions of the fundamental groups of the complements of the discriminantal

arrangements for X and X' (Corollary Theorems and .

7. O(X) is Koszul dual to O(X"). The associated derived equivalence exchanges shuffling and
twisting functors. The induced bijection between sets of simple objects sends left cells to right
cells, right cells to left cells, and two-sided cells to two-sided cells. It is order-reversing for the
highest weight orderings of the simple objects of O(X) and O(X'), and also order-reversing
from the set of two-sided cells of O(X) to the set of two-sided cells of O(X') (Corollary

Theorems and E'

Remark 1.3. A consequence of Parts (5) and (7) of Theorem [1.2]is that the cohomology groups
of M(X) and M(X') have dual BBD filtrations (Corollary [7.19). This fact has combinatorial
implications that we explore in Remark

Remark 1.4. Several parts of Theorem are proved by means of an equivalence between O(X)
and the category of modules over a finite dimensional algebra A(X) that we introduced in [BLPWD)]
(this equivalence is stated in Theorems[4.7]and [4.8]of this paper). In [BLPWDb] we proved that A(X)
is quasihereditary and Koszul, computed the center of its Yoneda algebra, gave a combinatorial
construction of shuffling functors, and showed that A(X) is Koszul dual to A(X"), so this equivalence
immediately implies the corresponding statements for O(X). To establish this equivalence we rely
heavily on work of Musson and Van den Bergh [MV9§|. They give an detailed analysis of U
and some of its representation categories, but they never consider the subalgebra U™ C U or our
category O(X). Everything involving the geometry of 9(X) or the cell structure of O(X) is new
to this paper.

Remark 1.5. This paper is a part of a larger program initiated by the authors, in which 9 will
be replaced by an equivariant symplectic resolution of an affine cone, and U will be replaced by an
algebra whose central quotients are quantizations of the algebra of functions on 9t [BLPWa]. When
two symplectic resolutions yield categories that are Koszul dual as in Parts (2) of Theorems and
we call those resolutions a symplectic dual pair. Above we see that 7*(G/B) is self-dual
and (X)) is dual to M(X"). Other conjectural examples of dual pairs include Hilbert schemes on
ALE spaces, which we expect to be dual to certain moduli spaces of instantons on C?, and quiver
varieties of simply laced Dynkin type, which we expect to be dual to resolutions of slices to certain
subvarieties of the affine Grassmannian. We expect further examples to arise from physics as Higgs
branches of the moduli space of vacua for mirror dual 3-dimensional N/ = 4 superconformal field
theories, or as the Higgs and Coulomb branches of a single such theory. That hypertoric varieties

occur in mirror dual theories was observed by Kapustin and Strassler in [KS99|.
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2 Linear algebraic data

In this section we introduce the basic linear algebraic constructions that will be crucial to our anal-
ysis of hypertoric category 0. We define polarized arrangements, which are used to construct
hypertoric varieties, and quantized polarized arrangements, whose combinatorics control our
category in a manner similar to the way the Weyl group and associated Coxeter arrangement control
BGG category O.

2.1 The polynomial rings

Fix a positive integer n, and consider the ring
H:=C[hi,....hE]/(hf —h7 +1]4,...,n).

It is isomorphic to a polynomial ring on n generators, but it is naturally filtered by the semigroup
2N rather than graded, where the (2k)th piece FoH of the filtration is the space of polynomials of
degree < k in the h;r (or equivalently in the h;)ﬁ Its associated graded is the polynomial ring

H:=grH =C[hy,...,h,], whereh; =h; + FFH=h; + FoH

The maximal spectrum W := Specm H is an n-dimensional complex affine space. It is naturally a
torsor for the vector space W := Specm H.

Both W and W have distinguished integral structures, given by
Wz = {ve W | hi(v) € Zfor all i} and Wy = {ve W | hi(v) € Z for all i}.
These in turn induce real structures

WR = WZ X7z R and WR = WZ X7z R.

2.2 Polarized arrangements

In this section we use only the graded ring H and the vector space W from Section the filtered

ring H and the affine space W will be used in the next section.

Definition 2.1. A polarized arrangement is a triple X = (Ag,n,&), where Ay C Wy is a direct
summand, 7 is a Ag-orbit in Wz, and £ € Af. For simplicity, we will also assume that h;(Ag) # 0

for every i.

81t will become clear in Section why we have indexed our filtration by the even natural numbers.



Given a polarized arrangement, let
Vo:=CAgC W and Vor :=RAg C Wg
be the complex and real vector spaces spanned by Ag, and let
VrR :=n+Vor C Wrk.

For each i € {1,...,n}, let
H; .= {’U e W | hZ(U) = 0},

and let H := {H; | i = 1,...,n} be the associated (multi)arrangement. The assumption that
hi(Ao) # 0 ensures that each H; is really a hyperplane.

We will also need the corresponding central arrangement Hp in Vo g, but to avoid notational
unpleasantness, we will refrain from giving names to its hyperplanes. If we identify Vg with Vo r by
choosing an origin (that is, by choosing a lift of n to Wz), then the arrangement #, is obtained from
‘H by translating all of the hyperplanes to the origin. We say that 7 is regular if the arrangement
‘H is simple, which means that no point in Vg lies on more than dim V' hyperplanes. This is a
genericity assumption with respect to the positions (but not the slopes) of the hyperplanes in H.

A flat of the arrangement H or Hg is any nonempty intersection of the hyperplanes. The
parameter £ determines a linear functional on Vy g, and an affine linear functional on Vg that is
only defined up to a constant. We say that the covector £ is regular if it is not constant on
any one-dimensional flat of Hg, or equivalently on any one-dimensional flat of H. We say that

X = (Ao, n,§) is regular if both 1 and ¢ are regular.

Remark 2.2. This definition differs slightly from the one in [BLPWD, 2.1]. In that paper n and &
were allowed to be real rather than integral, but they were always assumed to be regular.

2.3 Quantized polarized arrangements

In this section we introduce objects that are analogous to those considered in Section but with
H and W replaced by H and W.

Definition 2.3. A quantized polarized arrangement is a triple X = (A, A, ), where Ag C Wy,
is a direct summand, A is a Ag-orbit in W, and £ € AJ.

Given a quantized polarized arrangement, let
Vi=A+W=A+CA)CW and Ve :=A+Vor = A+RA) C Wk.

Let Ix be the set of indices i € {1,...,n} for which h; (A) C Z (or equivalently h; (A) C Z).
We say that X and A are integral if A C Wy, or equivalently if o = {1,...,n}. For each i € Ix,
let

HY = {ve Vg |h(v)=0} and H :={veVgr|h;(v)=0},



and let L := {H;" | i € Ip} be the associated (multi)arrangement.

Remark 2.4. The definitions of polarized and quantized polarized arrangements are clearly very
close. One important difference is that the parameter 7 is required to be integral (it is a Ag-orbit
in Wz), while the parameter A can sit anywhere in the complex vector space W. This difference
is unavoidable: to define a hypertoric variety it is necessary for n to be integral, but to study the

hypertoric enveloping algebra it is necessary to consider arbitrary A.

The definition of regularity for the parameter A is more subtle than for 7, because of the
more complicated geometry of the doubled hyperplanes and certain integrality issues. Ignoring the
integrality issues for the moment, we make the following definitions. A hyperplane arrangement is
called essential if it has a zero-dimensional flat. The arrangement H is always essential, but H is
not, since the index set Iao may be very small or even empty. For a Ag-orbit A in W, let m be the
maximum over all points in Vi of the number of pairs of hyperplanes HZi in between which the
point lies:

m:zg%)ﬂi‘{iEIA|O<h;(v)<1}‘.

If H is essential, then we necessarily have m > dim V.

Definition 2.5. We say that A is quasi-regular if H is essential and m = dim V. This means
that any arrangement obtained by replacing each pair HljE with a single hyperplane lying strictly

between them is simple.

The definition of regularity of A and X will appear in the next section.

2.4 Boundedness and feasibility

Fix a polarized arrangement X = (Ao, 7, ) and a quantized polarized arrangement X = (Ag, A, §)
with the same underlying lattice Ag and the same covector £ € Ajj. The following definitions for X
are repeated from [BLPWbD]; we then adapt them for X.

For a sign vector a € {+, —}", define the chamber A, C V& to be the polyhedron cut out by

the inequalities
h; > 0 for all ¢ with a(i) = + and h; <0 for all i with a(i) = —,

and let Ao, be the polyhedral cone in Vyg cut out by the same inequalities. If A, # (), we say
that « is feasible for X; let Fx be the set of feasible sign vectors. If « is feasible, then Ag, is
the cone of unbounded directions in A,. Note, however, that A, is always nonempty, even if «
is infeasible.

We say that o is bounded for X if the restriction of £ is proper and bounded above on the
cone Ay . Note that if £ is regular, we can drop the properness hypothesis. Also note that if « is
feasible, then « is bounded if and only if £ is proper and bounded above on A,. Let Bx be the set
of bounded sign vectors, and let Px = Fx N Bx.



Remark 2.6. When X is regular, the set Px is in natural bijection with the set of vertices of
the hyperplane arrangement H, as each vertex appears as the £&~-maximal point of A, for a unique

bounded feasible sign vector «.

Remark 2.7. It will often be the case that we will fix a lattice Ay and vary the parameters n and
€. Since Fx depends only on Ag and 7, we will often abusively write F,, rather than Fx. Likewise,
since Bx depends only on Ag and &, we will often write B¢ rather than Bx. We will then write
Pp.e = Fn N Be = Px. This notation coincides with that of [BLPWb].

Remark 2.8. We have A, = {0} if and only if a € B¢ for any choice of £. We call such a sign
vector totally bounded. If « is feasible, then it is totally bounded if and only if the polyhedron
A, is compact. The set of totally bounded sign vectors depends only on Ag; it is independent of
both n and &.

Turning to the quantized polarized arrangement X, we define the chamber A, corresponding
to a € {+, —}IA to be the subset of the affine space Vg cut out by the inequalities

h >0 for all i € I5 with a(i) = + and h; <0 for all i € Ix with a(i) = —.

If A, N A is nonempty, we say that « is feasible for X, and we denote the set of feasible sign
vectors Fx. If £ restricts to a proper, bounded function on A, we say that a is bounded for
X, and we denote the set of bounded sign vectors Bx. Note that if « is feasible, then « is bounded
if and only if £ is proper and bounded above on A, (or equivalently on A, N A).

Remark 2.9. Following the conventions of Remark we will often use the notation F4 in place
of Fx, since this set does not depend on &. Unlike in the non-quantized case, the set Bx does depend
on A because /o depends on A. We will thus write B ¢ in place of Bx, and Pp ¢ = FANBA ¢ = Px.

It is possible for the polyhedron A, to be nonempty, but so small that it does not contain an
element of A. We are primarily interested in quantized polarized arrangements for which this does

not happen, thus we incorporate this condition into our definition of regularity.

Definition 2.10. We say that A is regular if it is quasi-regular and A, # () implies a € Fp for
every o € {+, —}".

Remark 2.11. We say that Ay is unimodular if its image under the projection Wz = Z" — Z!
is a direct summand of Z for every I C {1,...,n}. In this case regularity and quasi-regularity are

equivalent, since any vertex of a chamber A, must lie in A.

2.5 Linked arrangements

In this section we fix a direct summand Ag C W7 and an arbitrary element £ € Af. For any Ag-orbit
AC W, let 7:{+,—}" = {+, —}2 be the projection.



: A(+’+7_) :

: A(+)_7+) : : : A(+7_7_) :

hy =0 hif=0 hi =0 hy, =0

Figure 1: A regular quantized polarized arrangement. There are 7 feasible sign vectors, 3 of which
are bounded. The polyhedra associated to bounded feasible sign vectors are shaded.

Definition 2.12. We say that two regular parameters n and A are linked if 7(F,) = Fa. In this
case we also say that the polarized arrangement X = (Ag, 7, &) is linked to the quantized polarized

arrangement X = (Ao, A, €).

Remark 2.13. In general, a polarized arrangement does not determine a quantized polarized
arrangement, nor the other way around. Linkage is the only property that we will consider that

relates these two types of objects.

Definition 2.14. We will consider two polarized arrangements (respectively quantized polarized
arrangements) to be equivalent if they have the same direct summand Ay C Wz and the same

sets F, and Bg (respectively Ia, Fa, and By ¢) of feasible and bounded sign vectors.

It is clear that every regular 7 is linked to some regular integral A and vice versa, hence the
concept of linkage provides a bijection between equivalence classes of regular polarized arrangements
and equivalence classes of regular integral quantized polarized arrangements with the same lattice

Ay and covector £. The following proposition will be a key tool for us in Section [6.2

Proposition 2.15. Two reqular parameters n and A are linked if and only if there exists a positive
integer k such that FA = Faqrky for all positive integers r. If Ao is unimodular, then k may be

taken equal to 1.

Since we need to consider the polyhedra A, and A, and arrangements H for varying choices

of n and A, we add them to the notation for this section only, writing A, o, AA o, and Ha. Let

10



Np be the number of subsets I C I such that the composition Ag C Wr — R’ is surjective; such

subsets are commonly known as independent sets of the matroid associated to Hy.
Lemma 2.16. For any A, |Fa| < Na, and equality is attained if and only if A is regular.

Proof. If A is regular, then it is possible to replace each pair HZi of hyperplanes in ‘Hp with a
single hyperplane lying strictly in between them in such a way so that the new arrangement of ||
hyperplanes is simple, and every chamber of the new arrangement contains a unique non-empty
set of the form Aa o N A. (To visualize this, see Figure ) Thus the feasible sign vectors Fa
are in bijection with the chambers of the new arrangement, which is a simplification of our central
arrangement Hy.

The Orlik-Solomon algebra of any arrangement has dimension equal to the number of chambers,
and if the arrangement is simple, it has a basis indexed by the independent sets of the matroid
associated to the corresponding central arrangement [OT92, 3.45 & 5.95]. Since the number of
chambers is equal to |Fa| and the size of the basis is equal to N, this proves the equality when A
is regular.

If A is not regular, it is still possible to construct a simplification of Hy in the manner described
above, but some of the chambers will not contain any nonempty sets of the form Aj o, N A. Thus

the number of chambers is strictly greater than |FA |, which proves the inequality. O

Proof of Proposition Suppose that n and A are linked. Choose a positive integer k such
that Ay, o N Wz # 0 for every a € F,. The same condition will hold when k is replaced with any
positive multiple rk. When Ag is unimodular, we can take k = 1 (see Remark [2.11)).

For any positive integer r and any a € {+, —}", we have
(Arkna NWz) + (A 1) VA) C (Afrinr(a) TA),
which tells us that Fa C FA4rky. Since
|FAl = NA = Nagrin = | FAatrknl,

this inclusion must be an equality.

Conversely, suppose that there exists a positive integer k such that Fa = FA_,k, for all positive
integers . Choose an arbitrary element of W; this allows us to identify W with W. Choose an
arbitrary sign vector a. As r approaches oo, the set %A A4rknr(a) € W = W approaches a set
containing A, , C W. In particular, when r is very large, one set is non-empty if and only if the

other is, so we have F, = FA rty = FA. Thus n and A are linked. O

2.6 Gale duality

We recall the notion of Gale duality for polarized arrangements from [BLPWD 2.3]. Fix a positive
integer n, and let X = (Ag,7,¢) and X' = (A}, 7n',&') be two polarized arrangements with n
hyperplanes.

11



Definition 2.17. We say that X' is Gale dual to X if
. AB and Ay are complementary with respect to the coordinate inner product on Wy = Z"
e ' = —¢ and ¢' = —7 under the resulting identifications W7/A} =2 A} and (A})* = Wy /Ao.

Theorem 2.18 ([BLPWH, 2.4]). If X and X' are Gale dual, then
Fn = Bg and  Fp = Be.

In particular, we have Px = Px1. Furthermore, 1 is reqular if and only if & is regular, and & is

reqular if and only if n' is reqular.

There is no direct way to define Gale duality for quantized polarized arrangements. However,
if both X and X' are regular and integral, then we will say that X and X' are Gale dual if they

are linked to a pair of Gale dual polarized arrangements X and X'

3 The hypertoric enveloping algebra

Recall that a quantized polarized arrangement consists of a triple (Ao, A,€). The hypertoric en-
veloping algebra itself is determined by the parameter Ay, and the affine space V=A+CAg C W
determines a central character of the algebra (Section [3.2]). There are of course many different
choices of A that yield the same V; this choice of a lattice A C V determines a certain subcategory
of modules over the algebra with central character given by V (Section . The entirety of Section
is devoted to understanding this subcategory, which we describe in combinatorial terms in Section
[3:4] In Section we consider translation functors between these subcategories for various choices
of V and A.

The parameter £ will not enter the picture until Section [4, where we use it to define hypertoric
category 0. The intersection of O with the category studied in Section [3| will be a block of O.

3.1 The Weyl algebra

Fix an integer n, and consider the n-dimensional torus 7' := Specm C[W7], where C[W7] denotes
the group ring of the lattice W7 that was introduced in Section Thus the Lie algebra t of T is
naturally identified with C{hq,...,hy,}, Sym(t) is naturally identified with H, and t* is naturally
identified with W. The character lattice t; is equal to W7, and the cocharacter lattice tz is the
lattice spanned by hi, ..., hy.

Consider the coordinate vector space C" := Specm C[zy,...,z,]. We let T act on C" in a
manner such that the induced action of t on the ring of regular functions is given by h;-x; = 5ijij|

Let D be the Weyl algebra of polynomial differential operators on C". The ring D is generated over

?Note that if we use the basis {h1,...,hs} of t to identify T with the coordinate torus (C*)", then the action of
T on C™ is the opposite of the standard action.
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Clz1,...,zy] by pairwise commuting elements {01, ...,0,} that satisfy the relations [0;, z;] = d;;

for all 1 <1i,j < mn. The action of T" on C™ induces an action on D, along with a grading

]D:@]DZ

weWy

of D by the character lattice of 7. We identify the 0" graded piece
Do = DT = C[2104,. .., 2,0,] = C[O121, . .., Ony]

with the ring H from Section by sending x;0; to hj and O;z; to h; . This algebra will play a
role for us analogous to a Cartan subalgebra of a semisimple Lie algebra.

We filter D by the semigroup N by letting FjID be the linear span of all monomials of total
degree < k. In particular, we have For,H = H N Fy D, where FyH is the filtered piece introduced
in Section The associated graded ring grD is canonically identified with functions on T*C",
with its T-action induced by the action on C". We have the following link between the algebra
structure on D and the T-action: let o € FoH =2 F5Dg, and let o be its image in the degree 2 part
of H = gr H, which we have identified with t. Then for all z € Wz = t* and a € D,, we have

[0, a] = z(0)a € D,. (1)

3.2 The hypertoric enveloping algebra

In this section we fix a direct summand Ag C Wz, and use it to define the hypertoric enveloping
algebra. Let Vo := CAg C W 2 t*, and let € := V55 € W* 2 t. Let K C T be the connected
subtorus with Lie algebra £, so that Ay may be identified with the character lattice of T'/K and
Wyz/Ay may be identified with the character lattice of K. Our main object of study is the ring of
K-invariants
U:=D" = P D.,
z€Ao

which we will call the hypertoric enveloping algebra associated to Ag.

From Equation (1)) it is easy to see that the center Z(U) is the subalgebra generated by all
o € F>H whose image o € t lies in €. In particular, Z(U) C H, and its maximal spectrum
Specm Z(U) is naturally the quotient of the affine space W = Specm H by the action of V) C W.

Let V.C W be a Vy-orbit, and let A\: Z(U) — C be the associated central character of U. We
stress that V and A completely determine each other. Let Uy := U/U (ker A) be the corresponding
central quotient, and let Hy := H/H(ker \) be the image of H in U).

Remark 3.1. There is a unique splitting of the surjection F5Z(U) — ¢ whose image is the kernel
of A\. The induced map py : Sym(¢) — Z(U) — D is known as a quantized moment map for

the K-action, since the associated graded map
gruy : Sym(k) — gr Z(U) — grD = C[T*C"]
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is given by composition with the classical moment map T*C" — €*. The ring U, is known as a

noncommutative Hamiltonian reduction of D by K [CBEGOQT7]. The associated graded algebra

grlU, = gr(lDK/<Ma(E)>>
=~ (gr]D)K/<grua(f)>
~ (C[T*(C”]K/<grua(P)>

is isomorphic to the coordinate ring of the symplectic quotient of T*C™ by K, which is a hypertoric
variety (see Proposition [5.2]). This ring inherits a natural Poisson structure from the symplectic
structure on the hypertoric variety, and U, is a quantization of this Poisson structure. Since gr U

is a finitely generated C-algebra, U) is finitely generated as well.

Remark 3.2. The algebra Uy can also be realized as the ring of K-equivariant endomorphisms of
the right D-module
Yy = ID/<ker)\>]D.

The isomorphism is given by sending an endomorphism ¢ to ¥(1) € V¥ = U,.

3.3 Weight modules

Let D—mod, U—mod, and Uy—mod denote the category of finitely generated left ID-modules, U-
modules, and Uy-modules, respectively. (All modules over any ring in this paper will be assumed to
be finitely generated.) We will mainly be interested in modules which decompose into (generalized)
weight spaces for the action of H. For v € W = Specmm H, let J, C H be the associated maximal
ideal. For any module M € U—mod, define the v-weight space of M to be

M, :=={m € M | 3¥m = 0 for k> 0}.

Remark 3.3. It is more conventional to call M, a “generalized weight space”, and reserve the

13

term “weight space” for the more restrictive k£ = 1 condition. In this article, however, we will never

be interested in weight spaces in the usual sense, and will always use “weight space” to mean the

subspace defined above.

Equation implies that J,1,a = aJ, for all z € Ag C Wz, v € W, and a € D,, and therefore
that
D, M, C M,y,.

For any U-module M, define its support by
Supp M = {v e W | M, #0}.

Let D—modj¢, U—modjs, and Uy—mody; be the full subcategories of D—mod, U —mod, and Uy—mod

consisting of modules for which H acts locally finitely. Objects of these categories will be called

14



weight modules; these are exactly the modules that are isomorphic to the direct sum of their
weight spaces.

So far we have chosen an integer n, a direct summand Ag C Wz, and a central character
A Z(U) — C. Now choose a Ag-orbit A C V, and let Uy—mod, be the full subcategory of
U)—modj; consisting of modules supported in A. This is the category on which we will focus our

attention for the rest of Section [Bl

Remark 3.4. Since a point v € W lies in V if and only if ker A C J,, the category Uy—mod); can
be thought of as the subcategory of U—mody; consisting of objects that are scheme-theoretically
supported on V. However, an object M of U—modj; can have Supp M C V and still not lie in
Uy—mod;;. We will consider the larger category of weight modules for U with set-theoretic support

in A in Section [4.5| when we discuss a deformation of our category O.

Define functors
(-)A: D—modj; — Uy—mod}; and (-)A: D—modj; — Uyx—mody

by

M = {me@Mv

veEV

(ker)\)m:O} and MA = {me @Mv ‘ (ker)\)m:()}.

veEA

These functors are left exact, and they are also right exact when restricted to the full subcategory of
objects annihilated by ker A. They are right adjoint to the functor (D ®y —) restricted to Uy—mods¢
or Uy—mod,, respectively. Furthermore, the adjunction map M — (D ®y M) is an isomorphism
for any M € Uy—mody;.

Fix a weight v € A. For any sign vector o € {4, —}/A consider the simple D-module
Lo =D /D(0; | a(i) = +) + Dizi | ali) = =) + Db = b (0) |7 & In)-
It is easy to check that the isomorphism class of L, does not depend on the choice of v and that
Supp LA = A, NA. (2)

Proposition 3.5. The modules {L2 | o € Fo} give a complete and irredundant set of representa-

tives for the isomorphism classes of simple objects of Uy—modp .

Proof. Since the adjoint action of H on U, is semisimple and the resulting weight spaces are all cyclic
left H-modules, the theory developed in [MV98] applies to Uy. The modules {L, | a € {+, —}a}
are precisely the simple weight modules for ID supported in the lattice A + Wy, and the results
IMV9S8] 4.2.1, 4.3.1, & 7.2.4] imply that the isomorphism classes of simples in Uy—mod, are given by
the set of all nonzero L2. Since L2 is a weight module, we have LA # 0 if and only if Supp L2 # 0.
By Equation , this is exactly the condition that o € Fi. O
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3.4 Quiver description of weight modules

The results of Musson and Van den Bergh [MV98] give an equivalence between Uy—mod, and the
category of finite dimensional modules over a certain algebra, which we now describe.
Let @ be the path algebra over C of the quiver
(=)

~__ (+)

with vertices labeled 4+ and — and one arrow in each direction, and let Q,, = Q ®¢c Q ®¢ - - - R¢ @
be the tensor product of n copies of ). The algebra @, is the path algebra of the quiver whose
vertices are labeled by {+, —}", the set of vertices of an n-cube, with an edge connecting « to
whenever « and S differ in exactly one position, modulo the relations that whenever a and ~y differ
in exactly two positions, the two paths @« — 8 — v and o — 8’ — 7 are equal in @,,. Consider the
grading on @, for which a path of length d has degree d, and let @n be the completion of @,, with
respect to the grading.

For each a € {4+, —}" and each 1 < i < n, let 6, ; be the element of @), represented by the path
a — B — a, where § agrees with o except in the i*® place, and put 6; := ZaG{Jr,f}" 0qi- The
center Z (@) is a polynomial algebra on the elements {0; | 1 < i < n}, and the center of Z(Q,,) is
the completion of this polynomial algebra with respect to the grading. Let ¥: t — Z(Q,) denote
the linear map which sends h; to 6;.

Next, let QA C @y and @A - @n be the centralizers of all length 1 paths a — § where « and
B agree in every position except for i ¢ I5. If A is integral, we have Qx = @, and @A = @n
Otherwise, @4 is isomorphic to

Qi1a) ®c Clo; |1 ¢ 14l

and @A is its completion. The primitive idempotents of @A are indexed by a € {+,—}/A. The
idempotent e, corresponding to « is the sum of the primitive idempotents of @n for all vertices

in the fiber over a of the projection {4, —}" — {+, —}A forgetting the indices i ¢ I. Let

€A = D e F, Ca

Theorem 3.6. There is an equivalence of categories between Uyx—mody and the category of finite
dimensional modules over the ring (eA Qa €A> /<19(93)6A |z €t).

Proof. [MV98, 3.5.6 & 6.3] give an equivalence between the category of weight modules for D with
weights in A+ W7 and the category of finite dimensional @ a-modules. The result now follows from
Proposition [3.5| and [MV98| 4.4.1]. O

Remark 3.7. In the proof of Theorem below we explain in more detail how the equivalence
of Theorem [3.6] is constructed.
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3.5 Translation functors

Let A, \': Z(U) — C be two central characters, and let V, V'’ be the corresponding Vj-orbits in W.
Since W is a torsor for W, the difference V — V' is naturally a Vy-orbit in W. Let

D= P D.,

zeV-V’/
and consider the (Uy, Uy )-bimodule
ATy := DM /DA (ker V)

= D /(ker YDA
>~ Hompg (Ya, Yy).

Note that yT) is nonzero if and only if A — )\’ is integral, meaning that V — V' contains an element

of Wy. We have an associative collection of maps
ATy ®u,, I — AT (3)

given by compositions of homomorphisms. If A = )\, then we have Ty = U, and Equation is
the obvious isomorphism. The following proposition is proved in [MV98, 4.4.4].

Proposition 3.8. Assume A\ — X is integral. Then to any Ag-orbit A’ C V' there is a unique
Ag-orbit A C 'V such that A — A C Wy. The bimodule map

A ®u,, ¥vTa = 2Th = Uy

is an 1somorphism if and only if Far = Fa for all Ag-orbits A’ C V.

Remark 3.9. The functor of tensoring with 7/ can be considered a kind of “translation functor”
on weight modules, and on the category O which we will define in Section The reader should
be warned, however, that it behaves quite differently from the translation functors on the BGG
category O. In particular, tensoring with T’ is only right exact. (See Remark below for more
about the difference between our framework and classical BGG category O.) These functors will be
important in Section [6] when we use them to study the localization of Uy-modules to a hypertoric
variety, in Section [7] when we define right cells in our category O, and in Section [§] where use them

to construct certain derived equivalences between different blocks of our hypertoric category O.

The following easy result is useful in describing the effect of tensoring with 7T\, on weight

modules.

Lemma 3.10. There is an equivalence of functors

()\T)\/ ®U/\/ —) = (]D Ru —))\: Uy —modj; — Uy—mody.
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We have the following explicit formula for tensoring with yT) in terms of the quiver algebra in
Theorem Let A C V and A’ C V' be as in Proposition so that A’ — A C Wy. Let R be
the ring @A/(ﬁ(:v) | z € €), and put e = ep, € = eps so that Theorem 3.6 gives equivalences

F: Uy—modp — eRe—modg, and F': Uy—mody — ¢ Re’—modgy,.

(Note that A’ — A C Wy, implies that Ip =I5/, 0o Qa = Qa’.)

Theorem 3.11. The square

Uy—mody _r, eRe—modg,
(A'TA®UA—)l l(e’Re ®cRe —)

F/
Uy —modp, —— ¢/ Re’ —modg,
commutes up to natural isomorphism.

Proof. First we explain more carefully how the functors F' and F’ are constructed using the methods
of [MV98]. For each a € {+, —}/A, choose an element v, € A + W7 satisfying the inequalities

hi(ve) >0 for all i € I with a(i) = + and h; (va) <0 for all i € Ip with a(i) = —.

7

Note that these are exactly the inequalities that cut A, out of Vg. Thus when o € Fa, we can
and will assume that v, € Ay N A.

Recall from Section that J,, C H is the vanishing ideal of the point v, € W. Musson and
van den Bergh [MV98| 6.3] give an isomorphism

op
lim Endp P D/ = Qa,
k ae{+,—}a

and we have an equivalence of categories
Fp : D—moda 4w, = Qa—modgy

given by
Fip(M) := lim Homp, &b b/ttt M
k ae{+,—}a
In particular, we have
Fp (n)/mﬁjl) S (@A/<9i>k+1) ea.

Let M be an object of D—modp4w,. For any m € M and v € A + W7, let m, denote the
projection of m onto M,, so that m = Y m,. For each 1 < i < n, consider the endomorphism
©; € Endp (M) given by @i(zmv) => (hf — hj(v)) m,. Using [MV98| 6.3] it is easy to check
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that ©; corresponds under the equivalence Fppy to multiplication by the central element 6; € @A‘
When M = D/DJ%+1 ) ©; is given by right multiplication by ©;(1) = k" — bt (va).

For each a € {+, —}!A, let A\, be the unique character of Z(U) for which ker ), is contained in
J,., (equivalently, the character corresponding to the Vy-orbit v, + Vo € W), and put

P = ]D/(]Djﬁjl + Diker Aa)).

This module is the quotient of D/DJX! by the sum of the images of the operators

n
Zaﬁi@i, T € ¢t
=1

and since Fp is an equivalence, it follows that
Fip(P®) = (Qa /(00" + (9(2) | 7 € 1)) ea.

This in turn implies that

lim Endp ( D ng)) ~ R,

OAE{-‘F,—}IA

and the functor F" is given by lim Homy, (@%FA(R&’C))A’ _>.

)

The key property of the modules Pc(yk that we will need is the fact that for any o € FA we have

D @y (PIYA >~ D o (U/U(Jﬁjl + (ker /\a>)> >~ pk) (4)

since v, € A, N A. Note that does not hold for a ¢ Fj.
Now let M be an object of Uy—mod,. Then if a € Fp, we have

eo (M) = Homy (P, M) = Homy ((PF)A, (D @y M)*) = Homp (P, D @y M),

where the second isomorphism comes from and adjunction. On the other hand, if 8 € Fas, we
get
esF' (T ®u, M) = Homy ((P{”)A (D @y M)N) 2 Homp (P, D @y M).

The required natural transformation ¢ar: € Re®cpe F(M) — F'(xTh ®u, M) therefore comes from

taking inverse limits of the composition

Homp (P, P{?) @ Homp (P, D @y M) — Homp(P{”, D @y M).

«

Furthermore, it is clear from that ¢ is an isomorphism on (Po(ék))A, a € FA. This object is the

projective cover of Lé} in U,\—modsf), the full subcategory of M € Uy—mod for which J¥+1M, =0

)

for all v € A. This category has enough projectives, and any M € Uy—mod, lies in UA—mong for

some k, so we can find an exact sequence P; — Py =+ M — 0 where ¢p, and ¢p, are isomorphisms.
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Since both the source and target of ¢ are right exact functors, ¢, is an isomorphism for all M. [

4 Hypertoric category O

Fix a quantized polarized arrangement X = (Ag, A, ). In Section we explained how Ag determines
an algebra U, how V = A + CAy C W determines a central character A : Z(U) — C, and how the
lattice A C V determines a subcategory Uy—mod, of the category of weight modules over Uy. In
this section we use the parameter £ € A{ to restrict our categories even further, and thus obtain

the hypertoric category O.

4.1 Definition of the category

Recall that U has the decomposition U = @ U,, where U, = D, is the z-isotypic piece of D. For
z€Mg

Uk .= @ U..
(2)=

£(2)=k

any k € Z, put

Then put

U+t ::GBU’C and U~ ::@Uk.
k>0 k<0
The algebra U™ will play a role for us similar to the role played by the enveloping algebra of a
Borel in the definition BGG category O. Note that the analogy is not exact; in particular, we have
a surjection
Ut @up U~ = U,

but it is not an isomorphism.

These subalgebras and subspaces induce corresponding subalgebras and subspaces of the central
quotient Uy: we let U ,, U)’f, U;r, and U, be the images of U, Uk, UT, and U™, respectively,
under the quotient map U — U,.

Definition 4.1. We define hypertoric category O to be the full subcategory of U—mod con-
sisting of modules that are U*-locally finite and semisimple over the center Z(U). We define O,
to be the full subcategory of O consisting of modules on which U acts with central character A;
equivalently, it is the full subcategory of Uy—mod consisting of modules that are U ;r -locally finite.
We define O(X) to be the full subcategory of O) consisting of modules supported in A; equivalently,
it is the full subcategory of Uy—mod, consisting of modules that are U ;’ -locally finite.

We have a direct sum decomposition

O= P O(ro, A%

AeW /Ag

It follows from Theorem below that these summands of O are blocks, that is, they are the
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smallest possible direct summands. In accordance with the terminology in Lie theory, we will call

O)\ = @ O(A()vA:f)

A€V /Ag

an infinitesimal block of O. We will call the block O(X) regular (respectively integral) if X is
regular (respectively integral) as defined in Section we call an infinitesimal block regular if its

constituent blocks are all regular.

Remark 4.2. If Aj is unimodular (Remark [2.11)) and X is integral, then Iy, = () for all [p» C V
different from A, and therefore O(X) = O,. If Ag is not unimodular, however, then the regular

infinitesimal blocks of @ are never themselves blocks.

Remark 4.3. We warn the reader of a subtle but important difference between hypertoric category
O and the classical BGG category O. Let g be a semisimple Lie algebra with h C b C g a Cartan
and Borel subalgebra. BGG category O is the full subcategory of finitely generated U(g)-modules
for which U(b) acts locally finitely and U(h) acts semisimply, while hypertoric category O is the
full subcategory of finitely generated U-modules for which U™ acts locally finitely and Z(U) acts
semisimply. The analogy is imprecise because U (h) is not the center of U(g).

In the case of a regular infinitesimal block, we are rescued by a theorem of Soergel: a regular
infinitesimal block of BGG category O is equivalent to a regular infinitesimal block of the category
obtained by requiring the center of U(g), rather than the Cartan U(h), to act semisimply [Soe86].
Thus, it is reasonable to regard regular infinitesimal blocks (or blocks) of hypertoric category O as
analogues of regular infinitesimal blocks (or blocks) of BGG category O. Furthermore, Theorems
and demonstrate that regular integral blocks of BGG category O and hypertoric category

O have many properties in common.

Consider the natural projection W; — Ag, and choose any lift é € W; of . Recall from Section
that we have identified W with t* and t with the degree 2 part of H, thus we may regard é
as a linear combination of {h1,...,h,}. Lift it further to an element ¢ € FyH, that is, to a linear
combination of {hf, ...,hr}. Note that, by Equation , the subspace U* C U is exactly the

space on which the conjugation operator ad(§) acts with eigenvalue k.

Lemma 4.4. Let M be a finitely generated Uy-module. Then the following are equivalent:
1. M is an object of O.
2. M 1is generated by a finite-dimensional U™ -invariant subspace S.

3. é € H c UY acts locally finitely on M with finite dimensional generalized eigenspaces and the

etgenvalues that appear are bounded above.

Proof. (1) = (2): Given a finite generating set for M, we can apply UT to obtain a finite-

dimensional UT-invariant generating set.
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(2) = (3): Suppose that S is a finite-dimensional U*-invariant generating set for M. Choose
finitely many algebra generators uq, ..., u, for U which are T-weight vectors, and let k; € Z be the
weight of u;. Let U’ C U be the subalgebra generated by those w; for which k; < 0. Then we have
U'U™T = U, since this holds after taking the associated graded. This in turn implies that M = U’S.
Since U’ NU¥ is finite dimensional for all k and is zero for k > 0, M has finite dimensional é—weight
spaces, all of which have no higher weight than the highest occurring in S.

(3) = (1): If the generalized € eigenspaces of M are both finite dimensional and bounded above,
then for all m € M, UTm is a subspace of finitely many generalized eigenspaces and thus finite

dimensional. O

Recall from Section [2.4] that F4 is defined to be the set of all a € {4, —}!A such that A, N A
is nonempty, and Pp ¢ C Fa is the subset for which { is proper and bounded above on A, N A.
Thus Lemma [£.4] has the following immediate corollary.

Corollary 4.5. Suppose that o € F, so L2 is a simple object of Ux—moda. Then LA € O(X) if
and only if a € Ppg.

Remark 4.6. Corollary [4.5] tells us that the block O(X) has |Pj ¢| isomorphism classes of simple
objects. This number is always less than or equal to the number of bases for the matroid associated
to Ho, or equivalently the number of vertices of H,, for a regular value of 7 (Remark . Equality
is achieved if and only if X is both regular and integral. If X fails to be integral, then there will
be too few hyperplanes in H, and therefore too few chambers A,. If X is integral but fails to be
quasi-regular, then there will again be too few chambers. If X is integral and quasi-regular but not
regular, then we will have the right number of chambers, but some of them will not contain any

points of the lattice A.

4.2 Quiver description of O(X)

Theorem and Corollary [£.5] combine to give us the following result. Let

€ = Zea.

agBa ¢

Theorem 4.7. The category O(X) is equivalent to the category of finite dimensional modules over

A(X) = (eA Qa 6A> /<6§€A> + (d(z)ep |z €N tIA>.
In [BLPWD), 3.1] we constructed an algebra A(X) from a regular polarized arrangement X.

Theorem 4.8. If X is integral and regular and linked to X, then A(X) = A(X).

Proof. The linkage of of X and X implies that Pp ¢ = P, ¢, and knowing this, it is straightforward
to check that the algebra defined in [BLPWD, 3.1] is equal to the “polynomial part” of A(X),
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namely the uncompleted algebra

(ea QA €p) /<€€€A> + (V(z)ey | @ € E).

But [BLPWD| 4.14] implies that this algebra is finite dimensional, so it is isomorphic to its com-
pletion. ]

This result implies that if X is a regular integral quantized polarized arrangement then, up to
equivalence, the category O(X) only depends on the equivalence class of X (Deﬁnition. More
precisely, if X and X’ are regular integral polarized arrangements in the same equivalence class,
then Theorem [3.11] implies that tensoring with a bimodule /T gives an equivalence of categories
from O(X) to O(X/).

When the quantized polarized arrangement X is not integral, there are two possibilities. First,
the hyperplane arrangement H associated to X could be inessential (Section . In this case the
arrangement H has no vertices; this happens, for example, when Ip = (. For any a € Pa¢ the
polyhedron A, has a vertex of H as a {&-maximal point. Thus, when H is inessential, Pp ¢ must
be empty, so there are no nonzero objects in O(X).

Suppose on the other hand that # is essential. Then we can define an integral quantized
polarized arrangement X' = (A{, A,{’) with n’ := |Io| hyperplanes along with an isomorphism
Vi =V} that takes H to H'. To define X', let W’ and W’ be the vector space and affine space
defined in Section but with n replaced by n/. More precisely, they are the spectra of the
subrings of H and H generated by hfc and h; for all i € In. Then let A and A’ be the images
of Ag and A under the natural projections W — W’ and W — W'. The condition that # has a
vertex implies that the projections induce isomorphisms Aj = Ag and A’ = A. Letting £ be the

composition of £ with the isomorphism A{j = Ay, we obtain equalities
Far = ]:A, BA/,g = BA@ and 'PA/7§/ = PAé
of subsets of {4+, —}A. The following result now allows us to reduce the study of arbitrary blocks
of hypertoric category O to the integral case.
Theorem 4.9. If H is essential, then O(X) is equivalent to O(X') and A(X) = A(X').

Proof. As noted in Section there is an isomorphism Qa = Q|[A| Rc (C[[ i | i ¢ IA]], and the
map ¥ gives an 1som0rphlsm from t = C™ to the degree two part of Z(Q ( A). Let t/A C t be the
th coordinates vanish for all i ¢ I, so 9(t/2) = (@|1A|)2 ® C. Then the

assumption that H is essential implies that the composition

space of vectors whose i

Est— t/tia

is a surjection. Thus

Qa/(W(V) = Qyry /(W (ENEA)),
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where ¢ : tIA — Z (@| 1x)) is the induced map. The isomorphism A(X) 22 A(X') follows, since ENta
is the annihilator of A) under the natural isomorphism t/A = (W')*. The equivalence of O(X) and
O(X’) now follows from Theorem O

As a corollary we obtain the first two parts of Theorem along with the beginning of the

seventh part.

Corollary 4.10. If X is regular, then the category O(X) is highest weight and Koszul. If X and
X' are regular, integral, and Gale dual to each other, then the rings A(X) and A(X') are Koszul
dual.

Proof. These facts follow from Theorems and and [BLPWD, 3.11, 5.23, & 5.24]. O

Example 4.11. We illustrate the preceding results with a simple example. Let K C T be the 1-
dimensional torus acting diagonally on C", so the corresponding (n—1)-dimensional lattice Ag C Wy,
is the vanishing locus of hy + ...+ hy,. For ¢ € Z, let A, := {v € Wy | I, hf (v) = c}; it is
regular if and only if ¢ > 0 or ¢ < —n. The quantized polarized arrangement H consists of n pairs
of parallel hyperplanes in a vector space of dimension n — 1, with each pair in general position with
respect to each other pair. Take any covector £ € Af which is positive on the weight of z;0; if and
only if ¢ < j. These weights are exactly the directions of the 1-dimensional flats, so £ is regular.
Let X. = (Ag, A¢,&). An example with n = 3 is illustrated in Figure [II We warn the reader that
even when A, is regular it is possible to obtain a picture in which three hyperplanes pass through
a single point (see Definition . In fact, when ¢ = 0, the n hyperplanes {H;",..., H,;} all pass
through a single point.

Let us examine the case ¢ = 0 in more detail. We have
PA0,£:{(+7+7“'7+)7(_7+7"’7+)7(_7_7+7"'7+)7"'7(_7_7"’7_7+)}‘

The algebra A(Xj) is the quotient of the path algebra of the quiver

al as an—1
[ ] [} cee [ ]
b1 ba br—1

by the relations bja; = 0, and a;y1a; = 0, b;b;y1 = 0 and a;b; = bjr1a;41 for all 1 < i < n — 2.
The corresponding block O(Xj) of our hypertoric category O is equivalent to a parabolic block of
classical BGG category O for g := gl,, in the following way. There is a surjective homomorphism
U(g) — U which takes the elementary matrix E;;j to 2;0; and sends U(b) to UT. Pulling back by
this homomorphism is a full and faithful functor from hypertoric category O into the category O’(g)
of U(g)-modules on which U(b) acts locally finitely and Z(U(g)) acts semisimply. The image of this
functor is the subcategory generated by the simple modules with highest weights w - 0 = w(p) — p,
where p is half the sum of the positive roots of g and w runs over all smallest representatives in S,
for the left cosets S, /(1 x Sp,—1).
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The equivalence of [Soe86] gives an equivalence between this category and the subcategory of
BGG category O(g) generated by simple modules with highest weights w~"! - 0, where w runs over
the same set; this subcategory is a block of the parabolic category OP(g) consisting of p-locally
finite modules in O(g), where p C g is the set of block matrices preserving the first basis vector of
Cc.

Example 4.12. We now give an example that shows how Corollary can fail when X is not
regular. Let K C T be the (n — 1)-dimensional subtorus that acts on C" with determinant 1,
so that Ag C Wy is the 1-dimensional lattice cut out by the equations h; = h; for all 4,j < n.
For appropriate choices of regular A and &, the resulting quantized polarized arrangement X =
(Ao, A, &) will be Gale dual to the one from example On the other hand, if either A or £ is
not regular, then O(X) can fail to be highest weight and Koszul.

Consider first the example where A = {v € Wz | hf(v) = hj(v) for all 4,5 < n} (which is
not regular) and { # 0. Then Fo = {(—,—,...,—),(+,+,...,+)} and Pa¢ contains exactly
one of these sign vectors (which one depends on our choice of £.) Theorem tells us that
A(X) = C[0]/(0™), which is not quasihereditary when n > 1 and is not Koszul when n > 2.

On the other hand, suppose that A is integral and regular, so Fa contains n+ 1 sign vectors. If
§ = 0, then Pp ¢ contains exactly those n — 1 sign vectors whose associated polyhedra are compact.

The resulting algebra A(X) is the quotient of the path algebra of the quiver

c1 c2 Cn—2
[ ] [} cee [ ]
d1 d2 dn—2

by the relations dyc; = 0, cp—2dn—2 = 0, and c¢;d; = djy1ci41 for 1 < i < n — 3. This algebra is not

quasihereditary when n > 1 and is not Koszul when n > 2.

4.3 Projective objects in O(X) and {-truncation

Let X = (Ao, A, €) be a quantized polarized arrangement, and let A be the corresponding character
of Z(U). The inclusion functor ¢: O(X) — Ux—mod, has a left adjoint ¢, which we call &-
truncation. To define it, take M € Uy—mody; and let m¢ (M) be the quotient of M by the submodule

generated by all weight spaces M, with v ¢ | A,. It is evident that this functor is right

a€PA ¢
exact, and that m¢ o ¢ is the identity functor on O(X).

Equivalently, m¢(M) is the largest quotient of A/ which is UT-locally finite. This leads im-
mediately to a description of truncation in terms of the equivalent quiver categories. We use the

notation of Theorems and so e = ep, and A(X) is the eRe algebra eRe/eReceRe.

Proposition 4.13. The diagram

Uy—modp, —— eRe—modg,
ﬂfl J((A(X) ReRe _)
O(X) A(X)—mod

25



commutes up to natural equivalence of functors, where the horizontal functors are the equivalences

of Theorems and [,

We use the &-truncation functor to construct the projective objects in our category as follows.
Take o € Pp ¢, and recall the Uy-module (Po(ék))A from the proof of Theorem This module,
which is projective in the subcategory U,\—mod%) C Uy—mod,, represents the functor M — M,
for any v € A, NA. It follows that for k large enough (say k > dimc A(X)), the truncated module
e (Pc(yk))A is independent of k, and represents the v-weight space functor on O(X). It is thus the

projective cover of LQ.

4.4 Standard modules of O(X)

Let us assume that X = (Ao, A, ) is regular, so that by Corollary the category O(X) is
highest weight. Being highest weight means that O(X) contains certain objects called standard
modules, which are analogues of the Verma modules of BGG category O. The definition of
standard modules involves a partial order on the set P ¢ that indexes the simple objects of O(X);
this partial order was introduced in [BLPWb| §2.6]. For a € Pay, the standard module SA s
defined to be the projective cover of LA in the full subcategory O(X)<, C O(X) consisting of
modules whose composition factors Lg satisfy 8 < a. In this section we construct the standard
modules explicitly.

Fix an element o € Ppg, and let ve be the {&-maximal point of the polyhedron A, C Vg
(regularity of ¢ implies that there is a unique such point). Fix any weight v € A, N A, and let
Jo C D be the left ideal generated by the following elements:

0; for all i such that ve € H, ,L+

x; for all 7 such that ve € H;~

hD for all i € Iy

h — hi(v) for all i ¢ I,.

Let Sy := D/J,. This module lies in D—moda 1w, , and there is a natural surjection S, — Lq of
D-modules. Each simple object Lg in D—moda_w, appears in the composition series of S, with
multiplicity either 0 or 1, with the multiplicity being 1 if and only if 8(i) = «(i) for all i € Ip
such that ve € Hf Since all the weight spaces are 1-dimensional, S, is semisimple over Z(U),
and so S2 = @, cp(Sa)v- It follows that that the simple object LZ} in Uy—modp appears in the
composition series of SA if and only if 3 € Fa and B(i) = (i) for all i such that ve € HE. It
follows from Corollary that SA € O(X), and from [BLPWH], 2.11] that S2 € O(X) <.

For use in Section [6.3] it will be convenient if we restate these observations for integral X in

terms of a polarized arrangement X linked to X.

Proposition 4.14. Suppose that X is integral and linked to X. Choose any o € Ppg, and let

Yo C Vg be the unique cone that coincides with A, in a neighborhood of the &-maximal point of
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Aq. The simple module Lg appears in the composition series of S if and only if Ag C Xq, in

which case it appears exactly once.
Proposition 4.15. The module Sé} s a projective cover of LQ in the category O(X)<q.

Proof. The v-weight space of S, is 1-dimensional, and S2 is a cyclic Uy-module generated by any
nonzero element x of this weight space. In particular, SO’} is indecomposable, and it remains only
to show that it is projective in O(X)<q.

To do this, we will show that for any object M of O(X)<,, the map

Homy, (S, M) — M,, ¢~ ¢(z)

is surjective. Since this map is obviously injective, it will follow that S2 represents the exact functor
M s M,, and therefore that S is projective in O(X)<q.

To see surjectivity, let M =D ®y M, and consider the analogous map for D-modules
Homp (Sy, M) — M,, v — (x).

It suffices to show that this map is surjective since it factors

_()A -
Homp (Sa, M) 5 Homy, (SA, M) — M, = N,
and ()2 is surjective.
Let v, be the weight of the element 1 € S,; the associated ideal J,, C H is spanned by
{h?(l) | i € IN}U{h — hi(v) | i ¢ In}. Let m be a monomial which generates D,_,, as a left
or right H-module. For any D-module N, multiplication by m gives an isomorphism N, 6 — N,.

Thus it is sufficient to show that the map
Homp (Sq, M) — M,,

taking ¢ to (1) is surjective. In other words, we must show that the defining ideal J, of S,
annihilates M, .

The ideal .J, has four types of generators; we treat them one at a time. If v¢ € Hf , then 0;
takes Mva to MUB,
B < a, thus M € O(X)<, implies that ]\vaﬁ = 0. Hence 0; annihilates Mva. By similar reasoning,

where £ differs from « only in the i*" coordinate. But such a 3 cannot satisfy

if v € H;”, then xz; annihilates Mva. Now consider the third and fourth set of generators in the
list. These lie in the ideal J,,, and we know (by definition) that some power of J,, annihilates
M,,,. We only need to show that the first power does the trick.

Let A\o: Z(U) — C be the character for which ker A\, C J,,. Since M is semisimple over Z(U),
so is M, and so (ker \o)M,, = 0. Furthermore, if ve € H;" (i), then h?(i) annihilates M,, by
our analysis of the action of the first two types of generators of J,. Now we observe that J,,  is

generated by
{h?(z) | ve € Hl.a(z)} U ker A\q,
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and we are done. O

4.5 Deformed category O

In [BLP™] we described a universal flat graded deformation of any Koszul graded algebra, and we
studied its properties in the special case when the original module category and its Koszul dual
are both highest weight. Let X = (Ao, A, ) be a regular quantized polarized arrangement, and for
simplicity assume that it is integral. We now explain how to interpret modules over the universal
deformation of the Koszul algebra A(X) as modules over the hypertoric enveloping algebra U. The
results of this section will not be used later in the paper.

Let A(X) be the universal deformation of the Koszul algebra A(X), as defined in [BLPT] 4.1].
It is a flat graded algebra over a certain polynomial ring .S, and its specialization at 0 € Specm S
is isomorphic to A(X) as a graded algebra. The following result relates A(X) to the other quiver

algebras we have considered in this paper.

Proposition 4.16. There are isomorphisms

A(X) = epaQnen/(ecen) and S = Sym(¥),
and under these isomorphisms the S-algebra structure on A(X) is induced by 9: & — Q.

Proof. Let X be a polarized arrangement linked to X, so A(X) = A(X), the algebra defined in
[BLPWb]. Then [BLPWHD, 4.14] tells us that A(X) = B(X') and eaQaen/{ecen) = B(X'), where
X' is Gale dual to X and the algebras B(X') and B(X') are defined in [BLPWb]. Thus the
proposition is reduced to showing that the Sym()-algebra B(X !) is the universal deformation of
B(X"); this is proven in [BLPT, 8.7]. O

Let S be the completion of Sym(¢) at the maximal ideal generated by €, and define
A(X) = S @5 AX);

it is the completion of A(X) with respect to the grading. Consider the categories K(X)—modﬁn
and X(X)—mod of finite dimensional and finitely-generated modules over X(X) Our task will be
to understand these two categories in terms of the hypertoric enveloping algebra.

Let @ﬁn(X) be the full subcategory of U—modjs consisting of weight modules whose support
lies in A and which are locally finite over UT. Modules of this category differ from modules in

O(X) in that the center acts by a generalized character rather than an honest character. Let
fj N\ = U® A 2 As
where Z \ is the completion of the center Z(U) at the maximal ideal Jy := ker \. Set

I/‘\I)\ =—H®z Z\)\ and /U\;_ =U" &Kz /Z\)\,
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and define @(X) to be the category of finitely generated Ux-modules M so that
o M =@, p My, that is, M is set-theoretically supported on A C W = Specm IfI,\, and
e for any m € M, ﬁ;r -m is a finitely generated Z y-module.

Theorem 4.17. There are equivalences

12

OX)fn = AX)—modg,  and  O(X) = A(X)—mod.

For any x € &, the action of px(z) € Z(U) corresponds to multiplication by 9(z)ep € Z(A(X)).

Proof. The first equivalence and the identification of the action of u)(x) on the left category follows
from [MV98|, 3.5.6, 4.3.1, & 6.3]. For the second equivalence, note that the methods of [MV98] do
not directly apply to U \, Since H ) is not a quotient of a polynomial ring. However, any object M
of O(X) is isomorphic to the limit lim m M/(J\)*M, and each M/(Jx)¥M lies in Ogn(X), or more
precisely in the subcategory Oy of modules annihilated by (.Jy)*. This gives an equivalence between
@(X) and the category of inverse systems --- — M, — M_1 — --- — Mj, where each M, lies
in Oy, and each map My — Mj_; induces an isomorphism My, /(J\)*"' M), = M;_;. The result
now follows from the equivalence between Oy and the category of finitely-generated (hence finite
dimensional) modules over A(X)/(9(£)ea)". O

5 Hypertoric varieties

In this section we recall the definition of a hypertoric variety associated to a regular polarized
arrangement X = (Ag,n, §), along with a quantization of its structure sheaf. The ring of equivariant
sections of this quantization coincides with a central quotient of the hypertoric enveloping algebra

determined by Ag.

5.1 The variety defined

Consider the moment map ® : T*C™ — € for the action of K on T*C". As noted in Remark
one way to define @ is by taking the associated graded of the quantized moment map. More
concretely, for any (z,w) € T*C™ and kihy + ... + kyh, € € C #,

O(z,w)(k1hy + ... + kphy) = k1z1w1 + . ..+ kpzpwy,.

The parameter 7 lies in Wy /Ay, which is naturally identified with the character lattice of K (Section
. Consider the subset X C T*C" of n-semistable points in the sense of geometric invariant theory.
Then the hypertoric variety M = 91(X) is defined as the categorical quotient of X N ®~1(0) by
K. Let 7 : XN®~1(0) — 91 be the quotient map. Since 7 is regular, the action of K on XN®~1(0)
is locally free, the quotient is geometric (that is, the fibers of 7 coincide with the orbits of K), and

M is a symplectic orbifold. It is smooth if and only if Ay is unimodular [BD0O, 3.3].
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Let MMy be the categorical quotient of ®~1(0) by K. The inclusion of X N ®~1(0) into ®~1(0)

induces a projective map v : 9t — IMy. Moreover, 9 comes equipped with a line bundle
£, =XNd 10) xx Cy,

where K acts on C,, via the character n. This bundle is ample, and very ample relative to 9. If
M is smooth, then v is a resolution, and the Grauert-Riemenschneider theorem tells us that the
higher cohomology of the holomorphic structure sheaﬂ Ggp vanishes [Kal, 2.1]. This is the first
hint that 991 is morally close to being affine.

Example 5.1. If K C T is the one-dimensional diagonal subtorus as in Example then
M = T*CP"! for any choice of regular 7, and My is obtained from M by collapsing the zero
section. If K C T is the (n — 1)-dimensional determinant 1 subtorus as in Example then 9%y
is isomorphic to the quotient of C? by the symplectic action of Z/nZ, and for any choice of regular

7, 9 is a minimal resolution (all of which are isomorphic).

Let S := C* act on T*C" by inverse scalar multiplication; that is, s - (z,w) := (s 'z, s 'w).

This induces an action on both 9t and My, and the map v is S-equivariant. This action does not
preserve the symplectic form; rather we have s - w = s?w for all s € S. Let 0 € My be the point
represented by 0 € T*C", so that

lim s-py=o0
S3s5—00

for all pg € M. It follows that, for all p € M, the limit lim s - p exists and lies in v~1(0).

S3s5—00

The hypertoric variety 9t admits a Hamiltonian action of T'/K, induced by the action of T
on C", which commutes with the action of S. Let T := C* act on 9 via £, which is naturally a
cocharacter of T'/K (Section [3.2)). The following proposition is straightforward.

Proposition 5.2. The hypertoric variety My is affine, and for any central character \ of the

hypertoric enveloping algebra U there is a natural isomorphism
grUy = C[gﬁo] = (C[gﬁ]

The Z-grading on Uy, given in Section descends to the grading on C[9] induced by the action of
T. The N-grading on gr Uy induced by the associated graded construction coincides with the grading
on C[OM] induced by the action of S.

For any quantized polarized arrangement X = (Ao, A, §), let L := @acp, . LA be the direct sum

of the simple objects, and consider the Yoneda algebra

P Ext'(L, L).

i>0

10Here and elsewhere we use the unconventional notation & for the structure sheaf of a variety, since the standard
symbol O is being used for the category.
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(This is the algebra whose module category is Koszul dual to O(X), as explained in Section [8.4])
The following result can be taken as a first piece of evidence that there is a strong relationship

between O(X) and the geometry of hypertoric varieties.

Theorem 5.3. If X is integral and reqular and linked to X, then the center of the Yoneda algebra
of O(X) is isomorphic as a graded algebra to the cohomology of M(X).

Proof. By Theorem O(X) is equivalent to the module category of the ring A(X) introduced in
[BLPWD]. By [BLPWHD, 5.24], the Yoneda algebra of O(X) is isomorphic to the ring B(X) intro-
duced in [BLPWD]. By [BLPWD), 4.7 & 4.16], the center of B(X) is isomorphic to the cohomology
ring of M(X). O

Remark 5.4. By Theorem every regular block O(X) of hypertoric category O is equivalent
to a regular integral block O(X') for some different quantized polarized arrangement X’. Thus

Theorem gives a characterization of the center of the Yoneda algebra of an arbitrary regular
block.

5.2 The relative core

It contains the core v~!(0) (because the S and T actions commute and v is projective) but is
strictly bigger. We call 9" the relative core of I.

Another Lagrangian subvariety of 971 that has appeared in the literature is the extended core,
which is equal to the zero set of the moment map for the 7'/ K-action. The extended core contains
the relative core; in fact, it is equal to the union of all of the (finitely many) possible relative cores,

as ¢ varies among generic parameters.

Proposition 5.5 ([BD00, 6.5]). The extended core of M is isomorphic to a union of toric vari-
eties Cy, given by the polyhedra A, for o € F;, glued along toric subvarieties as prescribed by the
incidences of the polyhedra. The relative core is the subvariety of the extended core corresponding

to those o in Pp¢ C JF;), and the core is the subvariety corresponding to those o that are totally
bounded.

As in Section let x1,...,z, be coordinates on C", and let yi,...,y, be dual coordinates,
so that
C[T*Cn] = C[x17 Yis-- -y Tn, yn]

The subvariety C, C 9 of Proposition [5.5|is cut out by the equations

Y; = 0 if Oz(l)

+ and xz; =01if a(i) = —. (5)
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If o ¢ F,,, then these equations will have no solutions in M. Let Cp o C Mg be defined by the same
equations. If « is feasible, then Cy , is the image of C, along the map v : 9t — My. However Cp o
is nonempty even if « is infeasible; in particular, it always contains the point o.

If M is a finitely-generated Uy-module, we can put a filtration on M which is compatible
with the filtration on Uy by choosing a generating set for M. We can then consider the support
Supp(gr M) C My, where we think of gr M as a sheaf on gr Uy = C[9Mp]. Standard arguments show
that the support of this sheaf is independent of the choice of ﬁltrationﬂ

Lemma 5.6. If A C W is an integral Ag-orbit and o € Fp, then Cy o = Supp (gr LQ)

Proof. Let W, C T*C™ be the Lagrangian subspace defined by the equations , so that C[Cp o] =
C[W,]¥. If we put the filtration on L, induced by the image of 1 € ID, then we get an isomorphism
gr Lo, & C[W,] of modules over grD = C[T*C"]. This induces a filtration on LA

A making gr LA a
gr Ux-submodule of gr L. It follows immediately that Supp(gr LA) C Cp 4.

For the other inclusion, note that gr LA will be isomorphic to some nonzero K-isotypic com-
ponent C[W,]%¢ of C[W,]. There is an injection C[W,]¥ < C[W,]%*? given by multiplication by

any nonzero polynomial in C[W,]5?, so we have Cy,, C Supp(gr L2). O

We end this section with two technical lemmas about 9™. Let J be the ideal generated by
functions on 9T which are eigenvectors for the S x T-action of positive S-weight and non-negative
T-weight.

Lemma 5.7. The relative core MM C M is the vanishing locus of J.

Proof. Let f € J be an eigenvector of positive S-weight and non-negative T-weight. Then f vanishes
on S-fixed points, and the core (being projective) contains at least one such point. Thus f vanishes

on the entire core. For any p € IM™T,

f(p)=_lim (t- f)(t-p)=0,

T3t—0

since t - f is approaching either f or 0, and t - p is approaching an element of the core. Thus f
vanishes on all of 9™, so M™* is contained in the vanishing locus of J.

For the other inclusion, consider the ideal J’ generated by functions of positive T-weight. Since
all points of My limit to o under the S-action, all functions on 91 have non-negative S-weight, and
the only functions with S-weight zero are the constant functions, so we have J' C J. Suppose that
p € M lies in the vanishing locus of J, and therefore of J’. Then for every function f € C[91], the
limit

f Qg%t-p) =lim(t™" - f)(p)
exists. (If f has non-positive T-weight the right-hand side clearly exists, and if f has positive
T-weight then =1 . f € J, so the right-hand side is equal to zero.) Since 90 is projective over the
affine variety 9y, this implies that %gr[l) t - p exists, and therefore that p € M™T. O

1The reader is cautioned not to confuse the support of gr M, which is a subvariety of 9o, with the support of M
as defined in Section which is a subset of V.
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Let fr : 9 — t* =2 C be the moment map for the T-action on 9, where t is the Lie algebra of T.
We say a coherent sheaf F' on 9 is t-equivariant if it is equipped with an endomorphism d : F' — F
such that, for all meromorphic sections 7 and functions f, we have d(fv) = {fr, f}y+ fd(v). Here
{, } is the Poisson bracket induced by the symplectic form on 9, so {fr, f} = %(t - f)]e=o0-

Lemma 5.8. For any t-equivariant coherent sheaf F' on 9 which is set-theoretically supported on
IMM*, the t-action on T'(IM; F) is locally finite, the generalized eigenspaces are finite dimensional,

and the eigenvalues that appear are bounded above.

Proof. The conclusion holds for a sheaf if it holds for the successive quotients of a filtration of the
sheaf, so we may assume that F' is scheme-theoretically supported on one of the components C,
of M*. Now consider the pushforward v, F to 9. This is a coherent sheaf scheme-theoretically
supported on Cp o = v(Cy), and so there is a surjective t-equivariant morphism N ® &¢, , — v« F
for some finite dimensional t-representation N. Since 9 is affine, the sections functor is exact, so
we need only prove the result for the t-action on the ring of functions on Cp . This follows from

the fact that lim t-py = o for all py € Cp q. O
T>t—0

5.3 Quantizing the hypertoric variety
In this section we explain how the algebra U) arises as sections of a quantization of the structure
sheaf of M. Let

D:=6pcn(h7?) and  D(0) := Specn[[i7?]] € D,

where again Gp+cn denotes the holomorphic structure sheaf of T*C" and h'/? is a formal parameter.
Let x be the Poisson bivector on T*C"™. The Moyal product on D is defined by

frg=moe™?(f®yg),

where m : Gp«cn Q¢ Sprcn — Spscn is the multiplication map. Thus D is a sheaf of associative
K x S-equivariant C((%"/?))-algebras, where S acts on h"/> with weight 1, and therefore on % with
weight 2. (This reflects the fact that S acts on the symplectic form of T*C™ with weight 2.) This

sheaf is flat over C[[hl/ ?]], and we have natural isomorphisms
D(0)/h*D(0) = Sr-cn and  Tg(D) =D,

where I's is the functor that takes S-invariant global sections [BK| 2.6]. The second isomorphism
is given by sending the element i~ "/2z; € I's(D) to x; € D and B2y e I's(D) to 0;.

The reduction procedure we applied to obtain Uy from D can be “sheafified” as follows. Let
A: Z(U) — C be any central character. Since ker A C Z(U) C U C D, we can regard elements of

ker A\ as S-invariant sections of D. Let
Yy = D|3€/ kerA-Dlx  and  Yy(0) = D(O)\x/ (D(o) Nker \- D]%>.
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Thus Y is a S x K-equivariant sheaf of right D-modules on X, and )Y,(0) is a S x K-equivariant
D(0)-lattice. Both are supported on X N ®~1(0), thus

Uy = (mEndpOW)S  and  Uy(0) == (mEndp(o)(Px(0)))"
are S-equivariant sheaves of algebras on 9. Consider also the sheaf of (U, Uy )-bimodules
ATy 1= (mHomp(Vx, Yx))
and its (Ux(0),Ux (0))-lattice
AT (0) := (mHomp() (VA (0), Yar(0))) ™ .
Just as Uy (0)/h*Ux(0) = Ggy, we have that
AT (0) /B2 3T (0) = £y = XN ®7H0) xx Cr_y.

Proposition 5.9. We have isomorphisms I's(Uy) = Uy and T's(xTx) = AT -

Proof. The isomorphism D 2 I's(D) induces a map Yy — T'(X, )5, where Yy = D/(ker \)D is
the D-module introduced in Remark Since the complement of X in 7*C" has codimension at
least 2, this map is an isomorphism. Since 1 is an S-invariant section of )\, evaluating at 1 gives

a map I's(Uy) — Endp(Y)) = Uy, which is easily seen to be an isomorphism. O

Following [KRO§|, we call a Uy-module good if it admits a U (0)-lattice and coherent if it is
locally finitely generated and every locally defined, locally finitely generated submodule is locally
of finite presentation. Let ModéOOd(Z/{A) denote the category of good, coherent, S-equivariant -

modules.

Remark 5.10. There are heuristic reasons to treat ModgC)Od(UA) as a version of the Fukaya category
of M. One justification comes from the physical theory of A-branes, which the Fukaya category
attempts to formalize. Kapustin and Witten [KWO07] suggest that on a hyperkdhler manifold
such as 91 there are objects in an enlargement of the Fukaya category which correspond not just to
Lagrangian submanifolds, but higher dimensional coisotropic submanifolds. In particular, there is a
object in this category supported on all of 2 called the canonical coisotropic brane. Following
the prescription of Kapustin and Witten further shows that endomorphisms of this object are
exactly the algebra Uy, or if interpreted sheaf theoretically, U,. This leads us to conjecture that
there is a natural equivalence between Modgmd(bﬁ) and the Fukaya category of 9, twisted by the
B-field H?(9; C*) determinedlﬂ by A. When 91 is replaced by the cotangent bundle of an arbitrary

real analytic manifold an analogous statement is proven by Nadler and Zaslow [NZ09].

2The group H?(9;C*) is isomorphic to H?(IM;C)/H?(9M;Z). The vector space H?(9;C) is isomorphic to
" =2 W/V, via the Kirwan map. The parameter A\ determines a Vp-orbit in W, which determines a Vp-orbit in W up
to translation by the lattice Wz /Ao = H?(901; Z).
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6 Localization

As in Section [5 let X = (Ag,n,&) be a regular polarized arrangement, let 9t be the hypertoric
variety associated to X, let U be the hypertoric enveloping algebra associated to Ag. Fix a central
character A of U, and let V. C W be the corresponding Vj-orbit. In this section we show that
the infinitesimal block O, of hypertoric category O (Definition can be “localized” to a certain
category of sheaves of modules over the quantized structure sheaf Uy, supported on the relative
core M C M. When Ag is unimodular and X an integral quantized polarized arrangement linked

to X, we use localization to obtain a topological interpretation of the Grothendieck group of O(X).

6.1 The localization functor

We define the functor
Loc : Uy—mod — Modg‘md(u)\)

by putting Loc(M) := U\ ®y, M for any Uy-module M. We note that any good filtration of
M induces a Uy (0)-lattice for Loc(M), namely Ux(0) @g,)y R(M), where R(U,) and R(M) are
the Rees algebra and Rees module of Uy and M, respectively. The functor Loc is adjoint to the

S-invariant global sections functor
T's : Mod2”!(Uy) — Uy—mod.

Just as a choice of a good filtration of M induces a particular lattice in Loc(M), a choice of lattice

M(0) € M € Mod&° (1) induces a good filtration of Is(M) with gr I'g(M) = I'(M(0)/R72M(0)).
The following theorem, based on the results of Kashiwara and Rouquier [KRO8] and their

adaptation to the hypertoric case by Bellamy and Kuwabara [BK], is an analogue of the localization

theorem of Beilinson and Bernstein [BB&I].

Theorem 6.1. If Ag is unimodular and FA = Faqry for all Ag-orbits A C 'V and integers r > 0,

then the functors I's and Loc are quasi-inverse equivalences.

Proof. This follows from [BKl 3.5] and Proposition Note that a very similar theorem with
slightly different hypotheses is proven in [BK] 5.8]. O

6.2 The category O,

Our next task is to determine which objects of ModgOOd (Uy) are sent by the sections functor I's to
O,, and conversely to determine the image of the localizaation functor restricted to Oy. Note that

we do not assume that I's and Loc are equivalences in this section.

Definition 6.2. Let Q) C ModéOOd(L{A) be the full subcategory consisting of objects M satisfying

the following two additional conditions:

e there exists a Uy (0)-lattice M(0) C M that is preserved by the action of £ € U

3Note that hf is contained in U (0), but é is not, so this condition is not vacuous.
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e M is supported on the relative core ™ C M.
Theorem 6.3. If M € Q,, then I's(M) € O,.

Proof. Choose a Uy (0)-lattice M(0) that is preserved by the action of ¢, and let F' := M (0)/h/>M(0).
The action of £ on M(0) induces a t-equivariant structure on F; Lemma [5.8| tells us that (91, F)
decomposes into finite dimensional generalized eigenspaces and that the eigenvalues that appear
are bounded above. Since I'(OM, F) = gr's(M) and the t-equivariant structure on F' is induced
by the action of f on M, this implies that I's(M) decomposes into finite dimensional generalized

eigenspaces for the action of f and that the eigenvalues that appear are bounded above. Thus
I's(M) lies in Oy by Lemma [4.4] O

Theorem 6.4. If M € O, then Loc(M) € Q.

Proof. We need to verify that Loc(M) satisfies the two conditions of Definition The first
condition is easy; if we choose a filtration of M generated by weight vectors, then the associated
lattice Loc(M)(0) C Loc(M) will be preserved by the action of £. Thus we only need to show that
Loc(M) is supported on the relative core.

Let f be a global function on 9t which is an S x T-weight vector of non-negative T-weight and
positive S-weight. Let 91y be the subset of 9t where f is not zero, and iy : M, — M be the
inclusion. Then i;l Loc(M)(0) is a sheaf of flat C[[k"/?]]-algebras with fiber Son; @cpom gr(M) at
B2 = 0. Lemma tells us the T-weight spaces of gr(M) are finite dimensional and the weights
that appear are bounded above. If f has positive T-weight, then it acts nilpotently on gr(M) by
the boundedness of the weights that appear. If f has T-weight 0, then it still acts nilpotently by
the finite dimensionality of the T-weight spaces and the fact that f has positive S-weight. This
implies that Gon, @cpn gr(M) = 0, and therefore that ifl Loc(M)(0) = 0. Thus the support of
Loc(M) is disjoint from 9Miy. The theorem then follows from Lemma O

Corollary 6.5. Suppose that Ay is unimodular and A C 'V is integral. If X := (Ao, A, §) is linked

to X, then the functors I's and Loc induce quasi-inverse equivalences between O(X) and Q).

Proof. By Proposition we have FA = Faqpy for all positive integers . By unimodularity,
we have Inr = ) = Ip/qyy for all Ag-orbits A’ C 'V different from A. By Remark we have
O(X) = O,. The result then follows from Theorems and O

Remark 6.6. We have assumed unimodularity of Ay (which is equivalent to the statement that
M is a manifold rather than an orbifold) so that we can use the results of [KR08] and [BK]. We

expect that this condition is not essential.

Example 6.7. Consider the example where n = 2 and K C T is the diagonal subtorus (see
Examples and [5.1), so that 9 = T*CP'. In this case it is possible to choose A such that

U)\ = C(ZElal, 1'281, 17182, $262>/($161 + $282 = 0)
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is isomorphic to the ring of polynomial differential operators on CP! and ModgOOd (U,) is equivalent
to the category of D-modules on CP'. The second condition of Definition requires the singular
support to lie in the relative core, which in this case consists of the zero section along with the fiber
at a single point. The first condition is a regularity assumption that is needed for Theorem to
hold.

To see this, consider the Uy-module Uy /Ux(x102 — 1). Restricted to the open subset where
x1 # 0, this is a non-singular connection on the trivial vector bundle; if z = x9 /21, then it is simply
d% — 1. Thus this module satisfies the second condition of Definition Its S-equivariant sections,
however, are isomorphic to Uy /Uy (2102 — 1), and the fact that the image of 1 € U, is fixed by 210,
implies that this is not a weight module. This reflects the fact that the corresponding D-module

has a non-regular singularity at z = oc.

6.3 The Grothendieck group

Let d := dim V{y. Consider the homomorphism
Supp : K(Qx)e — Hi(9M; C)

given by taking an object M to the support cycle of the coherent sheaf M(0)/h72M(0). The fact
that this does not depend on the choice of U (0)-lattice M(0) C M is a sheafified version of [Gin86),
1.1.2]. The vector space H%d(im; C) has a natural nondegenerate pairing given by integrating the
product of two classes. Though 91 is not compact, this integral can be defined by formally applying
the Atiyah-Bott-Berline-Vergne localization formula; see [HP05, §1] for details. We will refer to
this pairing as the integration pairing on H%d(i)ﬁ; C).

Remark 6.8. It may seem more intuitive for the support homomorphism to take values in the
group HEM(M+; C), since the support cycle of M(0)/h/>M(0) is always a sum of relative core

components. In fact, these groups are canonically isomorphic via the isomorphisms
BM BM BM 2d
Hyg'(9MF5C) — Haygp (MM C) — Hogp(9M; C) — Hi(MM; C).

Geometrically, this isomorphism takes the class [Cy] to [C,]. The main reason that we choose to
work with H%d(i)ﬁ; C) is that it is easier to understand the integration pairing on this space; it is

also useful for the analysis below of the supports of localizations of standard modules.

Suppose now that the hypotheses of Corollary [6.5] are satisfied. Then it is easy to check that
Supp[Loc(LA)] = [C,] for all & € Pa¢. Since we know the multiplicities of each simple module
in the standard module S2,

localization isomorphism H24(9;C) — H24(IMT;C). A proof of the following result in a more

we can compute its image under Supp as follows. We will use the

general setting will appear in [BLPWal.
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Proposition 6.9. The class Supp[Loc(S2)] restricts to the element of

H'(MC) = € Sym(t*)

a€Pp ¢

which is supported at the fixed point po, and whose value at p,, is the product of the negative weights
of the action of T on the tangent space T}, ,IN.

Proof. By Proposition Supp[Loc(S2)] is equal to the sum of [C3] for all 3 such that Ag C 3.
For any v € Pag, let wy, € Vg be the vertex of H corresponding to v by Remark Then the
restriction of [Cg] to py is equal to the product of the projections onto t* of the primitive vectors in
the directions of the one-dimensional flats of H passing through w,; the signs of these vectors are
determined by requiring that they point away from Ag. Alternatively, this may be described as the
product of the weights of the normal bundle to Cz C 9 at p,. For any v # « such that w, € X,
the contributions of the various [Cj] to p, will cancel. Thus the restriction of Supp[Loc(S2)] to pa
coincides with the restriction of [Cy]. Since T, C, is equal to the sum of the positive weight spaces
of T, M, the fiber of the normal bundle at p, is isomorphic to the sum of the negative weight
spaces, thus the restriction of [C,] to p, is equal to the product of the negative weights. 0

Proposition 6.10. Suppose that A is unimodular and X is integral and linked to X, so that O(X)
is equivalent to Q. The isomorphism Supp : K(Qy)c — H24(9M; C) takes takes the Euler form to

(—l)d times the integration pairing.

Proof. The classes {[Loc(S2)] | @ € Pa¢} form an orthonormal basis for K(Qy)c. The fact that
the integration pairing of Supp[Loc(SA)] with Supp[Loc(Sﬁ)] is zero for a # [ follows from the
fact that the restriction of Supp[Loc(S2)] to the fixed point set is supported at p,. The integration
pairing of Supp[Loc(SA)] with itself is equal to the square of the product of the negative weights of
the action of T on T},, M divided by the product of all of the weights. Since the action is symplectic,
the weights come in d pairs that each add to zero, so this quotient is equal to (—1)d. ]

7 Cells

In this section we define and study the hypertoric analogues of Kazhdan-Lusztig cells in BGG
category 0. We fix quantized polarized arrangement X = (Ag, A, §), which we assume to be both
regular and integral. Recall that the assumption of integrality does not actually lose any generality,
since Theorem tells us that O(X) is either trivial (if H is inessential) or equivalent to O(X’)

for some integral quantized polarized arrangement X'.

7.1 Left cells

Consider a pair of feasible sign vectors «, 8 € FA along with the corresponding simple objects of
LA and Lg of Uy—mody.
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L
Definition 7.1. We say that a < g if and only if Ann LIBX C Ann L2. We say that a and j are in

L L
the same left cell of Fp if a < § and 8 < a.

In order to give a characterization of the left cells of Fj, we introduce some basic notation and
constructions for hyperplane arrangements. If F' C Vj is a flat of the hyperplane arrangement Hy

(Section [2.2)), we let
Ip:= {2 ‘ FCH(M} C {1,...,n}

be the set indexing the hyperplanes that contain F'. We define the localizatiorﬂ of Ho at F to
be the hyperplane arrangement
My = {Ho;/F | i€ Ir}

in the vector space Vo r/F. Similarly, we define the localization of H at F to be the hyperplane

arrangement

HY = {HE/F |icIp}

in the affine space Vi/F.
Any sign vector o € {+, —}?F determines a polyhedron AZ C Vy/F given by the equations

h; >0 for all i € Ip with a(i) = + and h; <0 for all i € Zp with a(i) = —.

Our assumption that X is regular implies that every non-empty polyhedron A will contain a
point in the lattice A/(F N Ag). We call a sign vector a € {4, —}*¥ compact if AL is non-empty
and compactE We say that I is coloop-free if there exists a compact sign vector in {4+, —}F
for the localized arrangement . Our assumption of regularity ensures that this definition agrees
with the standard notion of coloop-free flats. In [PW07, §2], the authors show that the symplectic
leaves of My are indexed by coloop-free flats; we will denote by 9" the leaf indexed by F.

For any sign vector a € {+,—}", let F,, C Vo r be the linear span of the cone Ay, defined in
Section @, and let Z,, := Zp,. If « is feasible, then the restriction of o to Z, is a compact sign
vector for the localized arrangement H>. In particular, F, is coloop-free, and every coloop-free
flat arises in this manner.

Fix a polarized arrangement linked to X, and let 91 be the associated hypertoric variety. Let
E, C 9 be the closure of the unique component of V_l(i)ﬁg“) that contains the relative core

component C,. Then E, is cut out of 9 by the equations
zi = 0 for all i € Z,, with a(i) = — and w; = 0 for all i € Z,, with a(i) = +. (6)

For example, if F,, = Vg, then Z,, = 0, img"‘ is the dense leaf, and E, = 9. At the other extreme,
if F, = {0}, then Z,, = {1,...,n}, M{> = {0}, and E, = C..

“There is no relationship between this notion of localization and the one that is the topic of Section @
15This definition is closely related to the notion of feasibility and total boundedness in Remark but that had
to do with ordinary arrangements rather than “doubled” arrangements, which we have here.

39



Proposition 7.2. For all o, 8 € Fp, the following are equivalent:
L
1. a<p

2. Ig C I, (equivalently F,, C Fg) and o and (B agree on I

3. Ay NAC AgN A, where the bar denotes Zariski closure
4. Eo C Eg.

Proof. The equivalence of (1) and (3) is proven by Musson and Van den Bergh [MV98| 7.3.1]. The
equivalence of (2) and (4) is manifest from Equation (6)). To see that (2) and (3) are equivalent,
note that A, N A is equal to the preimage of the image of A, N A in Vg/F,, and the condition
(2) is equivalent to the condition that A, N A and Ag N A have the same image in Vg/F3. O

Corollary 7.3. There is a bijection between the set of left cells of Fa and the set of compact sign

vectors for various localizations of H.

Proof. A flat F along with a compact sign vector 3 € {4, —}*F indexes the left cell consisting of
all « such that F,, = F' and the restriction of o to Zp is equal to j. ]

By a theorem of Ginzburg |Gin03, 2.1], the zero set in My of the associated graded ideal
gr Ann LA € C[My] is the closure of a single symplectic leaf.

Proposition 7.4 ([MV98, 7.4.1]). For any a € Fa, the zero set of gr Ann L2 is equal to the closure
of the leaf SI)TOF“. Furthermore, Uy/ Ann LA is a quantization of the ring of square matrices with
coefficients in C[i)ﬁg“], and the size of the matrices (the Goldie rank of L2 ) is equal to the number
of components of A, N A.

Remark 7.5. The number of components in the last part of Proposition [7.4 may also be described
as the number of lattice points in the polytope AL where g € {+, =} is the compact sign vector
that indexes the left cell in which « lies; indeed, A, N A is equal to the preimage in V of this finite
set of lattice points. Thus, the Goldie rank polynomial of Lg} (which has been studied quite deeply
in the Lie theoretic case; see, for example [BBM89]) is equal to the Erhart polynomial of Aga.

7.2 Right cells

Suppose that X = (Ag, A,€) and X' = (Ag, A’,§) are two regular, integral, quantized polarized
arrangements that differ only in that A # A’. Because X and X’ are both integral, we have
Bae = Barg; we will denote this set as B (see Remark . In this section we define right cells
using a preorder on Be. Let A\, X': Z(U) — C be the characters corresponding to A,A’, respectively.

Definition 7.6. We call a (Uy/,Uy)-bimodule B Harish-Chandra if it is finitely generated over
both Uy and Uy, it has a filtration such that gr B is supported on the diagonal of 9ty x My, and

it is the sum of its generalized weight spaces for the adjoint action of £.
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We note that if M is a finitely-generated U-module which is the sum of its weight spaces, then
its weight spaces are finite dimensional. However, the analogous statement does not necessarily
hold for bimodules considered with the adjoint action. For example, the O-weight space of Uy,

regarded as a bimodule over itself, is H.
Example 7.7. The bimodule /T from Section [3.5|is Harish-Chandra.

Lemma 7.8. If B is a Harish-Chandra (Uy/, Uy)-bimodule, then the functor B ®y, — sends objects
of Oy to objects of Oyr.

Proof. Let M>* denote the finite-dimensional subspace of M consisting of é—weight vectors of weight
greater than k. Fix a k such that M>* generates M (such a k must exist by finite generation of
M). Let {b1,...,b,} C B be a finite set of adjoint weight vectors which generate B both as a left
and a right module, let p; be the weight of b;, and let p = min{pi,...,p,}. Let

S:=) b @ M7FPFP C By, M.

The set S contains the tensor product of a left-generating set for B with a generating set for M,
and therefore generates B ®y, M. Since the weight spaces of M are finite dimensional and the
weights that appear are bounded above (Lemma , S is finite dimensional. If u € U™, then for
all i, there exist {u1,...,u,} such that u; € UZPi=Pi and ub; = Y bju;. Thus, if m € M>k-Pitp

u-bi®m:ij®(ujm)eS.

Thus S is U™-invariant, and B ®y, M € Oy by Lemma O

Let a, B € B¢ be bounded sign vectors.

R
Definition 7.9. We write a < 3 if A and A’ may be chosen such that o € Fa/, 8 € Fa, and
there exists a Harish-Chandra (Uy/, Uy)-bimodule B such that the simple Uy-module Lgl is a

R
composition factor in B ®y, L’B\. We say that o and 3 lie in the same right cell of B¢ if a < 3

R
and 8 < a.

In order to give a characterization of right cells in B, we introduce and study a related class of
D-modules. Given any o € Fp and any subset A C Iy = {1,...,n}, define S, 4 to be the quotient
of D by the left ideal generated by

e 0; for all i € A with a(i) = +,
o z; for all i € A with (i) = —, and
o 12 forall 1 <i<n.

If A= {1,...,n} we have Sq 4 = Lo. Moreover, following the notation of Section if A is the
set of 7 for which v¢ € Hia(z), then S, 4 is the module S, defined in that section.
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Let Ay 4 C Vg be the polyhedron defined by the same inequalities that cut out A, but only

for the indices in A:
h >0 for all i € A with a(i) = + and h; <0 for all i € A with a(i) = —.

Then we have Supp ((SajA)A) = A, aNA. All of the weight spaces of S, 4 and are one-dimensional.
It follows that S, 4 is semisimple over Z(U), and so (SQ’A)A = @,ca(Sa,4)0. For any 3 € Fy, the
simple module Lg appears with non-zero multiplicity in (SmA)A if and only if Ag C A, 4, which
is equivalent to the condition |4 = al4.

We say that an index i € A is active for a and A if there exists § € Fp with 3(i) # «(i) and
Blavi = alay;- In other words, i is active if and only if the ith inequality is actually necessary to
cut out the polyhedron A, 4. Let A, C A be the set of indices that are active for a and A. Thus
we have A, 4, = Aq 4, and A, is the smallest subset of A with this property.

Proposition 7.10. There is an isomorphism
D @1 (Sa,4)* = Sa A,

In particular, Lg is a composition factor of D ®y (Sa.a) if and only if Bla, = ala, -

Proof. The natural surjection S, 4, —+ Sa,4 induces a surjection (Sa,AQ)A — (Sa,A)A. In fact, this
surjection is an isomorphism, since both sides have one-dimensional weight spaces and the same

support. Thus we need only show that the adjunction map
M =D ®y (SQ,A&)A — S(LAQ

is an isomorphism. It is certainly surjective, since S, 4, is generated by its v-weight space for any
vin A, N A, and this set is nonempty since a € Fy.

Take some element ¢ ® x € M which maps to 1 € S, 4,; we can assume that x lies in a weight
space (Sq,4,)v for ve Ay, N A and ¢ € D,,,_,, where v, is the weight of 1 € S, 4. It is easy to
see that ¢ @ x generates M, so we only need to show that it is killed by the defining ideal of S, 4., -
)

The generators h?(i are in the ideal J,,_, so some power of these generators will kill ¢ ® x. For
the other two classes of generators, let i € A,. We will assume that a(i) = + (the argument for
a(i) = — is similar). The weight of 0;(¢ ® v) is vg, where B(j) = a(j) for all j # i. Suppose
that 0;(¢ ® v) is nonzero; then it follows that the simple module Lg appears in M with non-zero
multiplicity. Since ¢ is an active index, we have 5 € Fj, and so Lﬁ has non-zero multiplicity in

MA = (S, 4,)", contradicting the fact that i € A,. O

Next we give several equivalent formulations of the right preorder on B¢. As in the case of the
left preorder, we have four characterizations: one from the definition, another in terms of flats, a
third in terms of polyhedra, and a fourth in terms of subvarieties of a hypertoric variety. (In this
section we only need to consider the affine hypertoric variety 97, which is completely determined

by Ag, thus we do not need to choose a polarized arrangement.)
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Proposition 7.11. For all o, 3 € B, the following are equivalent:

1. « § I3

2. Ig C Iy (equivalently F,, C Fg) and o and ( agree on the complement of L,
3. Do CAop

4. Co,a C Cop.

Proof. The fact that (4) implies (3) follows from the fact that A, is the image of Cy , along the
real moment map introduced in [BD00]. The fact that (1) implies (4) is immediate from Lemma
and Definition The equivalence of (2) and (3) is clear from the definition of the flat F,.
Thus we only need to show that (3) implies (1).

Take «, 8 € {+,—}", and suppose that Ao, C Agg. Let J = {i | a(i) = B(i)}. We define an
integral character A of Z(U) as follows. Recall that, by choosing a parameter n € Wy/Ag, we obtain
a hyperplane arrangement H,, in the affine space V; g. If we identify V;, g with Vor by choosing
an origin (this is equivalent to choosing a lift of n to Wz = Z"), then H,, is obtained from #g by
translating the i*" hyperplane away from the origin by the i*® coordinate of the lift of . Removing
the inequalities indexed by ¢ ¢ J does not change the polyhedron Ag g; this means that a regular
parameter 1 may be chosen such that A, 3 = Ag g but A, , is empty for any v # § with v|; = 8.
Choose a regular integral A which is linked to 7, and let A be the corresponding character of Z(U).

Every index which is active for 8 and {1,...,n} lies in J. It follows from Proposition that
Le is a composition factor of D @y LA, so LA is a composition factor of (D & LQ)A/ for any
integral A’ with o € Fps. By Lemma [3.10] we have

(D oy L)Y = (D oy L)Y = vTh ®u, L,

R
where ) is the central character determined by A’. Thus o < 3, as desired. O
Corollary 7.12. The right cells of B¢ are in bijection with the §-bounded faces of Ho.

Proof. The &-bounded faces of H are exactly the polyhedra {Ayo | o € Be}. O

7.3 Two-sided cells

2 L
Definition 7.13. We define a third preorder on Pa ¢ = Fa N B¢ by putting o < B if o < 3 or

R 2 2
a < B, and then taking the transitive closure. If a < § and 8 < «a, we say that a and § lie in the

same two-sided cell of Pp ..

Proposition 7.14. Two bounded feasible sign vectors o, 3 € Pp ¢ lie in the same two-sided cell if
and only if o, = Ig (equivalently F,, = Fp).
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Proof. The only if statement is an immediate consequence of Propositions [7.2] and [7.11} To prove
the if statement, we will show that the intersection of the left cell containing o and the right cell
containing ( is nonempty.

Let 7 = 1, = 1g, and let v be the sign vector that agrees with o on Z and with 3 on Z°.
Propositions [7.2] and tell us that ~ is in the same left cell as o and the same right cell as
B provided that we can show that v € Pp¢. That « is {-bounded follows from the fact that
Ao~ = A g.

Feasibility follows from Gale duality together with the same argument. Let X = (Ag,n,¢)
be a polarized arrangement linked to X, and let X' = (Ao, 77!,5!) be its Gale dual, as defined in
Section . We have o € FA = F; = Bg, where the last equality is by Theorem m Then
the boundedness argument from the previous paragraph allows us to conclude that v € Bg, and

therefore v € Fa, as required. O
We conclude the section by showing that Gale duality exchanges left cells with right cells.

Theorem 7.15. Suppose that X and X' are Gale dual reqular integral quantized polarized arrange-
ments. Then the two preorders on FA = B are opposite to each other, as are the preorders on

Far=DBg and on Ppe = Ppr ¢

Proof. This follows from Propositions and along with the fact that Gale duality

induces an order-reversing bijection of coloop-free flats. O

As a corollary, we find that left cells in FA coincide with right cells in B, and the partial order
on the set of left cells is the opposite of the partial order on the set of right cells, with similar
statements holding for Fo1 = B and Pp ¢ = Py 1. We state this corollary explicitly for two-sided

cells, since we will use it in the next section.

Corollary 7.16. Let P := Pp¢ = Pp1 . The two-sided cells of P induced by X are the same as
the two-sided cells of P induced by X', and the partial order on the set of cells induced by X is
opposite to the partial order on the set of cells induced by X'.

7.4 Cells and the BBD filtration

Let X be a polarized arrangement linked to X. Assume that Ag is unimodular, so that Corollary
m provides an equivalence between the algebraic category O(X) and the geometric category Q)
of sheaves on the hypertoric variety 9t = 9(X). In this section we use the two-sided cells to define
a natural filtration of the Grothendieck group of O(X). This filtration will be shown to coincide
with the Beilinson-Bernstein-Deligne (BBD) filtration of H24(9t;C) via the cycle map of Section
6.3l

Recall the projective morphism v : 9 — My from MM to the affine hypertoric variety Mp.

Since v is semismall, the BBD decomposition theorem gives a canonical isomorphism

vCo = P 1C*(M§; Tp) (7)
F
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where v, is the derived pushforward, I’ ranges over all coloop-free flats of Hg, IIr is the local system
whose fiber over a point x is the top nonvanishing cohomology group of v~1(z), and 1C*(IM'; 1)
is the intersection cohomology sheaf of M with coefficients in Iz [CGI7, 8.9.3]. (In fact, as shown
in [PWO07, 5.2], the local system Il is always trivial.) By applying the functor H%d(-) to both sides
of Equation , we obtain the decomposition

@I (md' p).

We will be interested not in the full direct sum decomposition, but rather in one of the two

associated filtrations. More precisely, let

= P moni up) c HEAOMC)  and  Ep:= @ HFO 1) C Dy
FCF’ FCF'

This filtration has a topological interpretation, which we prove (for arbitrary equivariant symplectic
resolutions) in [BLPWa].

Theorem 7.17. For each coloop-free flat F' of Ho, Dr is equal to the intersection

N [Cl"

{a:FZFo}

where [Cy]* is the perpendicular space to [Cy] with respect to the integration pairing on H2(9M; C).
For all v € Pp ¢, let P2 be the projective cover of LA in O(X).
Theorem 7.18. We have

Dy = C{ Supp[Loc(P, )]|FCF} and Ep = C{ Supp[Loc(P; )HFCF}

In other words, the BBD filtration of H%d(i)ﬁ; C) corresponds, via the support isomorphism, to the
filtration of K(O(X))c defined by the basis of projective objects and the order on two-sided cells.

Proof. We have
C { Supp[Loc(PA)] | F € Fo} = C { SupplLoc(LA)] | F ¢ Fu}" = C{[Ca] | F ¢ Fu}*

by Proposition and the fact that the classes of simple and projective objects are dual with
respect to the Euler form. The first statement of the theorem then follows from Theorem
The statement about Er is proven in the same way. The interpretation in terms of two-sided cells
follows from Proposition O

For all a € {4, —}", let dg := |[{i | a(i) = —1}|. Let X' be the Gale dual of X, and let X be a

regular, integral, quantized polarized arrangement linked to X'. Consider the pairing
K(O(X))c® K(O(X')e = C
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given by the formula

(IPA][PA]) = (~1)%80s
for all o, 8 € Ppg¢ = Pprg. Using the support isomorphism from Section we may interpret
this pairing as a pairing between H2¢(901(X); C) and H%d!(im(X!); (C), where d' := dim V. For each
coloop-free flat F' of Hg, F¢ is a coloop-free flat of 7—[6, and we denote by

Ele ¢ Dhe © H%d!<9ﬁ(X!); @)

the corresponding pieces of the BBD filtration. Theorem has the following immediate corollary.

Corollary 7.19. The BBD filtrations of H2(9(X);C) and H%dl(im(X!); C) are dual to each other
under the above pairing. More precisely, for any coloop-free flat F' of H, E},C is the perpendicular
space to Dp and D!FC 1s the perpendicular space to Er. In particular, the pairing induces a canonical

duality between
IHF (Mo(X)F;1p) 2 Dp/Ep  and IH%d!(imo(X!)FC;H%c) = Dipe/Efpe.

Remark 7.20. Corollary would still be true if we did not include the twist of (—1)% in the
definition of our pairing. We regard the twisted pairing as more natural than the untwisted pairing

because the twisted pairing has the property that
(181 18) = (1521, 158]) = ([PA), [PA) = (~1)™ap

for all o, 8 € Pae = Pprg. It the twist were not included, then the pairing would not be well-

behaved with respect to the simple or standard bases.

Remark 7.21. For any coloop-free flat F', the dimension of IH%d(img ; I1) is equal to the dimension
of IH* (ML I1F). In fact, the full equivariant cohomology group IH:(IME'; I1x) is a flat family over
Spec Hy(pt) = t with general fiber isomorphic to IH%d(i)ﬁg ;IIp) and special fiber isomorphic to
IH* (ML 1), Thus Corollary [7.19| tells us that for every coloop-free flat F', a deformation of the
vector space IH *(93?0 (X)F, HF) is canonically dual to a deformation of IH *(fmo(X hEe, H!FC).

If we take F' = {0} to be the minimal flat, this says that a deformation of

IH*(0;1;0y) = H2d(1/71(0); C) = H*(9m; C)

is canonically dual to a deformation of IH *(Dﬁo(X h; (C). In light of the combinatorial interpretation
of the ordinary and intersection Betti numbers of a hypertoric variety [PWO0T7, 3.5 & 4.3], this is
a geometric interpretation of the well-known combinatorial statement that the top hA-number of a

matroid is equal to the sum of the h-numbers of the broken circuit complex of the dual matroid.
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8 Shuflling and twisting functors

In this section we explain how to relate the derived categories of various regular integral blocks of

O which are obtained by fixing Ay and varying A and &.

8.1 Defining the functors

Fix an integer n and a direct summand Ag C Wy. For any pair of parameters A and &, let
XA,E = (A07 A7 5)

be the corresponding quantized polarized arrangement. We will denote by D(X4 ¢) the bounded
derived category of the associated block O(X4 ¢) of hypertoric category O. We introduce subscripts
in the notation because we intend to vary the parameters A and &, restricting our attention to those
parameters for which Xy ¢ is both regular and integral.

We begin by varying only A. Consider a pair of regular integral parameters A and A’, and let
A and )\ be the associated central characters of the hypertoric enveloping algebra. Fix a regular

covector &, and consider the functor
R D(Xpe) = D(Xpre)

obtained as the derived functor of the translation functor /7y ®y, — in Lemma

Definition 8.1. A shuffling functor is an endofunctor of D(Xj, ¢) obtained as a composition
q)ﬁr o @2:71 0...0 @ﬁf o @ﬁl
for any finite sequence Aq,..., A, of regular integral parameters.

The following lemma tells us that shuffling within an equivalence class is trivial.

Lemma 8.2. Suppose that A, A', and A" are chosen such that the quantized polarized arrange-
ments XA ¢, Xare, and Xparv ¢ are all equivalent in the sense of Definition . Then the natural
transformation

R 0 dR — BR”

provided by Equation 1 a natural isomorphism.

Proof. For each a € Pp¢ = Ppie = Parg, consider the projective cover Po{\ of LQ in O(Xpe).
The D-module D ®y PA is the quotient of the module Pék) from Section by the submodule
generated by the weight spaces corresponding to all weights v € Ag N A for all 3 € Fp \ Pag.
This submodule is independent (up to isomorphism) of the choice of A in a fixed equivalence class,
so it follows that A

vT\ ®u, P2 = (D @y Pf)A, = <1D ®u Pé‘) =~ pA,
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and similarly for A” and \”.

Thus the functors given by tensor product with y»Ty ® y»T)\ and y»T» are both equivalences.
To show that they are the same equivalence, it is sufficient to show that, for all a, 8 € Par¢ =
Pare, they induce the same isomorphism between HomUA(PO‘}, Pé‘) and HomUA,,(PCI}N, P,B ">. This
follows from the fact that, in both cases, the isomorphism is compatible with the surjections from
HomID(PO([k), Pék)> to the two groups. O

Remark 8.3. The term shuffling is derived from the fact that our shuffling functors are analogous
to the derived functors of the shuffling functors which Irving [Irv93] defined for BGG category O.
Irving’s functors give braid group actions [MS05, 5.10], and, as we will see in Theorem our

shuffling functors are analogous to the Irving shuffling functors associated to pure braids.

Now fix a regular integral parameter A and let § and &' be regular. Let Uy—mod,,, be the
category of topologically finitely generated Uy-modules with profinite dimensional weight spaces,
that is, the category of Uy-modules which are inverse limits of weight modules such that all modules
in the inverse limit have a consistent finite generating set. This category contains the objects
representing each weight space, and thus has enough projectives. Furthermore, the functor F' arising
from Theorem gives an equivalence from Uy—mod,,, A to the category of finitely generated
modules over ep Rep. As we will prove in Lemma this category has finite global dimensionm

Consider the functor

UE : D(Xpg) = D(Xpg)

obtained as the composition of the derived functors

. Ler
D(O(Xp¢)) —= D(Ux—modyoa) —> D(O(Xa ),

where ¢ is the inclusion and 7¢ is the projection functor from Section The functor ¢ is exact,
but it does not send projectives to projectives. As a result, the composition of the above derived
functors is not the same as the derived functor of the composition. The left derived functor L

preserves bounded derived categories since all the categories involved have finite global dimension.

Definition 8.4. A twisting functor is an endofunctor of D(Xy ¢) obtained as a composition
£ &r &2 &1
We oWg o oW oW
for any finite sequence &1, ...,&, of regular parameters.

If XA ¢ and X ¢ are equivalent in the sense of Definition then the categories O(Xa ¢) and
O(X ¢) are in fact equal and \Ifgl is the identity functor. In particular, as was true for shuffling

functors, twisting within an equivalence class is trivial.

That theorem concerns an uncompleted version of eaRea, which is sufficient for our purposes because the
completion of a projective resolution is still a projective resolution.
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Remark 8.5. We chose the term “twisting functor” because these functors are in a sense analogous
to Arkhipov’s twisting functors on BGG category O [Arkl [AS03], though the connection is a bit
more remote than it was with shuffling functors. Let us illustrate the precise relationship using
the simplest possible example, the arrangement of two points in a line (the n = 2 case of Example
4.11)). Then any regular integral block O(X) of hypertoric category O is equivalent to the block
Op(sly) of the BGG category.

There are only two equivalence classes of regular covectors in Ag, represented, say, by £ and —&.
Arkhipov’s twisting functor arises from \Ilgg by dualizing and a shift: H _1\IJg£ is identified with
the functor which Khomenko and Mazorchuk [KMO05] call “Joseph’s version of Enright’s completion
functor”. Tt is right adjoint to Arkhipov’s twisting functor T, its derived functor is the inverse of
the derived functor of T', and it is isomorphic to dT'd, where d is the duality functor on Op(slz)
[ASO03].

Furthermore, this identification relies on a feature special to this example, namely, that both
the categories for £ and for —¢ can be identified with Og(slz). This fact also appears in the
original construction of Arkhipov’s functor, wherein a module in O(g) is first sent to a module
of the equivalent category for a different Borel subgroup; this category is then identified with the
original category by an automorphism of g. For general arrangements, identifications analogous
to the conjugacy of Borels are not possible, and our “twisting functors” should be more properly
considered as analogues of the (shifted, dualized) derived functors of those Arkhipov functors

associated to elements of the pure braid group.

Remark 8.6. It is not immediately obvious that shuffling and twisting functors are equivalences.

That they are will be a consequence of Proposition [8:8| for shuffling and Theorem [8.19] for twisting.

8.2 Combinatorial interpretations

In this section we give combinatorial interpretations of shuffling and twisting functors, and we use
them to prove that shuffling and twisting commute. For various reasons it will be easier to work
with polarized arrangements rather than quantized polarized arrangements; we lose no information
with this choice, since shuffling and twisting are trivial within equivalence classes and linkage gives
a bijection between equivalence classes of regular, integral, quantized polarized arrangements and
regular polarized arrangements with the same Ag. Thus we will let D(X, ¢) denote the bounded
derived category of modules over the algebra A(n,§) = A(X,¢) from [BLPWb|, and use the

notation
!

&) : D(Xy¢) > D(Xye)  and g : D(Xy¢) = D(Xe),

for the functors obtained from those in the previous section via Theorems [4.7 and
Following the notation of Theorem let R := Q,/(0(E)) (since everything in sight is integral
we write @n rather than CAQ A), and put
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We define algebras
A(n,—) == ey Rey, and A(—,§) := R/Re¢R,

so that we have
677‘4(_7 f)e'r] = A(% 5) = A(Tlv _)/A(nv —)6514(7% _)'

Lemma 8.7. Multiplication induces an isomorphism
Rey ®@ap,—) AN, &) — A(=,&)ey.
Proof. Clearly the multiplication map is surjective. To show injectivity it is enough to show that
Reg¢Rey @ (5, A(n,€) = 0.

This is an immediate consequence of the following fact, which says that any path in the quiver
algebra @n from a feasible sign vector to an unbounded one is equivalent to one which first goes
through feasible sign vectors to one which is both feasible and unbounded: for any o € F,, and any
B € {+,—}"\ Be, there exists v € F;, so that v ¢ B and

for any 1 < i <mn, either (i) = a(i) or (i) = 5(4). *)

To see that this fact holds, we drop the integrality assumption on n and allow n € Wgr/VjR.
The regularity of n implies that there is an open ball B with center n so that F,, = F, for any
n' € B. Take n" for which § € F,», and choose points p € int(A, ) and p” € int(A,g). If a
point p’ € A, ., lies on the line segment joining p and p”, then v satisfies (*), since the line segment
cannot cross a hyperplane more than once. We can take p” so that £(p”) is arbitrarily large (keeping

n" fixed), so we can find p’ so that 7 € B but £(p) is as large as we like, giving v € F,y = F,, with
v ¢ Be. O

Proposition 8.8. The functor @Z/ : D(Xy¢) = D(Xyy¢) is given by
’ L
DT (M) = ey A(—,&)e, Dame M.
In particular, @Z/ is an equivalence.
Proof. Theorem and Lemma imply that the diagram

OX) —L A(y,€)—mod

NI\ ®u, — en A(=8)ey @ame) —

O(X') T) A(n',&)—mod
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commutes up to natural isomorphism, where F' and F’ are the equivalences of Theorems and
[4.8] The Proposition then follows from passing to derived functors.

These functors are exactly those studied in [BLPWD, §6], which were proven to be equivalences
in Theorem 6.13 of that paper. In that paper we considered the derived category of graded mod-
ules, but the corresponding functors (given by the same bimodules) on ungraded modules are still
triangulated and fully faithful on gradable modules, and these generate the category. Thus these

functors are equivalences on the ungraded categories. O

Proposition 8.9. The functor \Ilgl 1 D(X,¢) = D(X,,¢r) is given by

/ L
\Ilg (M) = A(U,fl) ®A(777—) M.

Proof. As before, we need only draw the commutative diagram

F
D(X ) ———— D(A(n,§)—mod)
3 A(T],*)
L mfA(n,g)

D(Ux—mod, ) T) D(A(n, —)—mod)

L
LT{'&/ A(%f’) ®A(77,—) -

D(Xyg1) ————— D(A(n,)-mod)

(

. Am,—)
where inf A(.€)

denotes the inflation (or restriction) of A(n, &) modules to modules over A(n, —) by

the obvious homomorphism. O
As a corollary of Propositions [8.8 and we can prove that shuffling and twisting commute.

Corollary 8.10. There is a natural isomorphism of functors
! ¢~ gl '
(I>Z o \I’g = \Ilg o (IDZ :D(Xpe) = D(Xn/f/).
Proof. Consider the commutative diagram

A, &) =——A(n, =) —— A(n,¢)
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where all the maps are the obvious inclusions or projections. By Proposition the functor \Ifgl
is given by following across the top row or the bottom row of this diagram, first pulling back, then
pushing forward. By Proposition CIJZ/ is given by pushing forward then pulling back along the
left or right column. Note that since the map A(n',§) — A(—,&) does not take the unit to the
unit, pulling back by this map involves first multiplying by the idempotent e,/ and then taking the
induced module.

It is sufficient to show that going along the top and right sides of each small square is naturally
isomorphic to going along the left and bottom sides. For the upper right and lower left squares
this is simply the fact that these squares commute. For the other two squares, this follows from
Lemma O

8.3 Fundamental group action via shuffling functors

This section is about shuffling functors only, so we fix Ag and £ and vary n among regular param-
eters. The set of regular 7 is the intersection of €, = Wy /Ay with the complement of a central
hyperplane arrangement in € = Wg/Vogr. This arrangement, known as the discriminantal ar-
rangement, has its hyperplanes indexed by the circuits of Hg, (the minimal subsets of hyperplanes
with dependent normal vectors). It was first considered for generic arrangements in [MS89)] and for
general arrangements in [BB97].

Let T C & be the complement of the discriminantal arrangement. If 1,7 are regular, then
X.¢ is equivalent to X, ¢ if and only if 7 and 7’ lie in the same connected component of Y. Let
B C TN, be a finite set consisting of one integral basepoint from each connected component of
T. Let Y¢ be the complexification of T, that is, the set of elements in €* whose real or imaginary

part lies in Y.

Definition 8.11. The Deligne groupoid of the discriminantal arrangement is the subgroupoid

of the fundamental groupoid of T consisting of paths that begin and end in B.

Since each connected component of T is simply connected, the Deligne groupoid is independent
(up to canonical isomorphism) of our choice of B. Furthermore, it has an entirely combinatorial
interpretation. Let the Deligne quiver be the quiver with with vertex set B and edges in both
directions between two base points if and only if the components of T in which they lie are separated

by a single hyperplane.

Theorem 8.12 ([Par93]). The Deligne groupoid is isomorphic the quotient of the fundamental
groupoid of the Deligne quiver by the identification of any pair of paths of minimal length between

the same two points.

Theorem 8.13. By assigning the equivalence @Z/ to the shortest oriented path in the Deligne quiver
from n to n', we obtain an action of the Deligne groupoid on the categories {D(X,¢) | n € B}. In

particular, for each n € B, we obtain an action of m1(Yc,n) on D(X,¢) by auto-equivalences.
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Proof. For any n,n',n" € B, we defined in [BLPWD, §6.3] a natural transformation from @Z;, o @Zl
to @Zu. We need to show that if 1’ lies on a path of minimal length from 7 to 7" in the Deligne
quiver, this natural transformation is an isomorphism.

In the proof of [BLPWD, 6.12], we showed that our natural transformation is a natural isomor-

phism if and only if the following condition is satisfied for each S C {1,...,n}:

For every a € P, ¢ and o’ € Py ¢ such that a|s = o|g is boundedlﬂ for the subarrangement
{H;o | i€ S} C Ho, there is a sign vector o € Py ¢ such that a|g = o/[s = a”|s.

We prove this statement by induction on the size of the complement of S. If S = {1,...,n},
the statement says that P, ¢ NPy ¢ C Py e; for this it is sufficient to show that F, N Fpr C Fyp.
Indeed, a sign vector o € F,; N F,y fails to lie in F,y if and only if there is a circuit C' such that o|c
is infeasible for the sub-arrangement {H;( | ¢ € C'} C Hp. This would imply that the hyperplane
in the discriminantal arrangement indexed by C' separates  and 1’ from 7, which contradicts the
fact that n’ lies on a path of minimal length from 7 to ” in the Deligne quiver.

Now consider the general case. Choose some i ¢ S; by our inductive hypothesis, there exists
a sign vector on {1,...,n} \ {i} that agrees with a and o’ on S and is bounded and feasible for
the polarized arrangement obtained by deleting the i hyperplane of H,y. Both of the extensions
of this sign vector to {1,...,n} will be bounded, and at least one of them will lie in F,/, so we are
done. O

For any n € B, let (; € m(Yc,n) be the central element represented by the path [0,1] — Y¢

taking t to e2™iy.

Theorem 8.14 ([BLPWb), 6.11]). The element ¢, acts as the Serre functor on D(X,¢).

Remark 8.15. For a regular block of O(sly), the derived functor of the square of the basic shuffling
functor is the Serre functor [MS07, 1.3]. Thus Theorem can be taken as further evidence for
the analogy with Irving’s shuffling functors for pure braids (Remark .

8.4 Koszul duality

Our last goal is to prove that shuffling and twisting functors are exchanged by Koszul duality. First
we recall the basic features of the theory of Koszul duality that we will need. Throughout this section
let A=6&p >0 Aj be a finite dimensional nonnegatively graded ring such that A9 = @ p Ce, is a
commutative semisimple ring with primitive idempotents indexed by a finite set P.

Let A—gr denote the category of finitely generated graded A-modules. The ring A is called
Koszul if Extil_gr(Ao, Apl—j]) = 0 for all i # j. If we let

E(A) := @ Ext'y(Ao, Ag) = @D Ext’y (Ao, Ao[—j])

i>0 i,j>0

"By this we mean that ¢ is bounded above on the chamber of the subarrangement determined by a.
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be the Yoneda algebra of A, then A is Koszul if and only if the two gradings on E(A) coincide.
If A is Koszul, then it is quadratic, that is, it is generated by over Ay by A, with relations are

generated in degree 2. Furthermore,
e E(A) is also Koszul,
e there is a canonical isomorphism A = E(FE(A)),

e FE(A) isisomorphic to the opposite algebra of the quadratic dual of A, which is the quadratic

ring generated by A} over A with relations orthogonal to the relations of A.

Suppose that A is Koszul, and suppose in addition that F(A) is left Noetherian. Then [BGS96),
2.12.6] gives an equivalence Dg;(A) — Dg(E(A)°P) between the bounded derived categories of
finitely generated graded modules. Since A°P is also Koszul [BGS96, 2.2.1] and E(A°P)°P) = E(A),
we obtain an equivalence Dy, (A°P) = Dy (E(A)). It will be more convenient for us to consider the

contravariant equivalence

K: Dgr(A) = Dgi(E(A))

given by composing this functor with the duality functor D(A) — D(A°P) induced by M — M*.
The functor K takes (shifted) simple objects to (shifted) projective objects and vice-versa: we have
K(Ape) = E(A)e and K(Ae) = E(A)pe for any e € Ay = E(A)o.

If A is quadratic (but not necessarily Koszul), we will denote by A' the opposite algebra of the
quadratic dual of A. Thus if A is Koszul, we have A' = E(A) and

K: Dg(A) = Dg(A).

Remark 8.16. We warn the reader that our notation conflicts with the notation in [BGS96]. In
that paper A'is defined to be the quadratic dual of A, which is opposite to the Yoneda algebra E(A).
The reason that we make our definition is that we want an equivalence Dg(A) — Dg(A") that
swaps simples and projectives. Our equivalence K has this property, but the basic BGS equivalence
Dy (A) = Dgr(E(A)P) takes simples to projectives and injectives to simples.

We also note that our algebras A(X) and A(X) are isomorphic to their own opposites, which
makes this conflict academic. However, it is still important to note that our equivalence differs

from the BGS equivalence by an application of the duality functor.

We wish to study the interaction of Koszul duality with the inclusion i: eAe — A and the
projection ¢: A' — A!/A!éA!, where e € Ag is an idempotent and € = 1 — e is the complementary

idempotent. The following lemma follows immediately from the definition of quadratic duality.
Lemma 8.17. If A and the subring eAe are both quadratic, then (eAe)' = A'/A'eA'.

The following theorem is the main result of this section; in the next section we will apply it to

the ring A(X) to prove the duality of shuffling and twisting.
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Theorem 8.18. Suppose that A and the subring eAe are both Koszul. Then A'JA'€A' is Koszul,

and in the diagram

Dg(ede) — 22 Dy (Al A'eAY)

*

|| s | | q

Dgr(A) Dgr(A!)

both squares commute up to natural isomorphism. Here the horizontal maps are the appropriate
Koszul duality equivalences and the vertical maps are either pushing forward (tensoring) or pulling

back (taking the induced module) by the homomorphisms i and q.

Proof. The Koszulity of A'/A'€A" follows from Lemma To prove the rest of the theorem, we
must look closely at how the functor K is defined. On a complex (M?,9) it is given by

(KM)P = @ A ®a, (M)
p=—1i—j
q=l+j

with differential
Ia® f)=(—1)" Zm}c@wcf +a®of

for a € Aj and f € (M]’)*, where {v.} is a basis of Ay, {0} is the dual basis of A}, and v.f and Of
are defined by dualizing the actions of v. and 0 on M.
Let us show that K i* ~ ¢, K. For M € Dy, (A), the underlying vector space of K.(i*M) is

A'JA'A' @ 4y jen, €M,

while g, (K M) is
AyA'eA @ 4 (A! ® 4 M*) = A'/A'eA' ® 4, M*.

It is easy to see that these are isomorphic and that the gradings agree. To check that the differentials
are the same, use a basis {v.} of A; obtained by combining bases of Aje and A;e.
Next note that i*i, is naturally equivalent to the identity functor on Dy (eAe). From this it
follows that
K, ~ K i"1, ~ q.Ki*.

It is also easy to see that the restriction of ¢.q* to the full subcategory of Dgr(A!) given by complexes
M* with eM? = 0 for all 7 is naturally equivalent to the identity. But since

Ki,(eAe) = K(Ae) = Aje,
the functor Ki, lands in this subcategory, so we have
K, ~ q¢"'q. Ki* ~ Ki*. O
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8.5 Duality of shuffling and twisting

Let X, ¢ = (Ao,m,§) and X, ¢ = (Ao, 72,§) be regular polarized arrangements, and let X

Y 1
X:}l . be their Gale duals, as defined in Section Our shuffling and twisting functors have graded
82

versions, given by putting the natural grading on the bimodules that appear in Propositions
and We denote the graded functors by the same symbols:

|

E!
s Dgr (X, ) = Dgr(Xipy ) and ‘1’5?3 D (X, £l ) = Dge(X,

752)

Theorem 8.19. There is a natural equivalence
U o Ky = Ky o O,

where Ki: Dgr (X5, ¢) — Dgr(X!

b g’.) s the contravariant Koszul equivalence defined in Section .

Proof. We denote by
A!pol(’r/!a —) = En! (Qn/<'l9(fl)>) €p's

the graded ring whose completion is A!(n!, —). The theorem will follow from applying Theorem
to the diagram

AIU ) —— (A’f?’,ii))
AJf ) — 5 Dy (AL (')

er(A(72,€) Dgr(A'(1), £5))

where the vertical maps are the respective derived pushforwards and pullbacks, and the horizontal
maps are the Koszul duality functors. Proposition [8.8]tells us that the composition of the left-hand
vertical functors is @72, and Proposition . 3.9| tells us that the composition of the right-hand vertical
functors is W .2, since the finite dimensionality of A'(n',£&!) implies that the images of Apol(n , =)
and A'(n, ) in this ring are the same.

In order to apply Theorem we must verify that A(—, ) and Ai)ol(n!, —) are Koszul and dual
to each other, A(—,¢) is finite dimensional, and A;Ol(n!, —) is left Noetherian. Let R := Q,/(J(¢))
and R' := Q,/(9(¥)). (Note that unlike in Section here R is a quotient of the quiver algebra

n rather anlscompelonAn. ute:=eand €:=e: =1 — e, so tha
Q ther than it letion @,.) Put d ¢e=1 that

n
Ao, =) =eR'e and  A(—.£) = R/ReR.

From this description it is clear that A(—, &) is isomorphic to the ring Aext(X) defined in [BLPWD),
§6.1], where X = X, ¢ for i =1 or 2 (the definition does not use the parameter 7). The proposition
[BLPWD, 6.1] says that this ring is isomorphic as a vector space to the direct sum of cohomology
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groups
@ H*(C,, N C;C),
a,ﬂGBg

« and B range over the set Be = Forand C, is the relative core component indexed by « in the
hypertoric variety 9t(X ) Thus A(—, €) is manifestly finite dimensional. To see that Apol(n ,—)

is left Noetherian, s1mply note that for any o, 8 € F,

6OéApol(” )6,3 - eaR €s

is a free module of rank one over Z(R'), which is isomorphic to the polynomial ring Sym(C"/¢")
via the map ¢. Using [BLPWb| 3.8], we observe that our description of Ai)ol(n!, —) coincides with
that of [BLPWH), 3.1] for the polarized arrangement X', o€ with the relation Al deleted. The proof
of [BLPWHb), 3.2] then adapts immediately to show that Apol(n!, —) is quadratic.

At this point we simplify notation by putting

A= A;ol(n!, -) and B := A(—,¢).

The rings R and R' are quadratic dual, where we let the natural basis of R; = (Qn)1 = R!1 given
by making length one paths self-dual up to a sign that makes the commutation relations around
each square in the cube quiver dual on the two sides (see [BLPWD, §3.3] for one way to produce
these signs). It now follows from Lemma that A and B are quadratic dual rings. Since both
rings are isomorphic to their own opposites, we have A(—, &) = A! (n',—)". It thus remains only

pol
to show that
Lemma 8.20. A is Koszul and B is its Koszul dual. In particular, A has finite global dimension.

By [BGS96, 2.6.1], A is Koszul if and only if its Koszul complex is a resolution of Ag = A/A~.
This complex can be defined as follows. As a vector space it is A ® B*, where we put ® = ®4, for
the remainder of the proof. This complex is bigraded, with 4; ® B;f in degree (—j,i+ 7). Itis a
graded left A-module using the second grading, and a complex using the first grading, where the

differential J is the composition
ARB* - A®(Bf®B*) » (A® A1) ® B* - A® B*

using the comultiplication on B*, the identification A; = B, and the multiplication on A. The
map A ® B* — Ag sends Ay ® Bj isomorphically to Ag and kills all higher degree terms. As a
result, what we need to show is that for any «, 8 € F,1 = B¢ the complex e, A® B¥eg is a resolution
of C if a = 8 and is exact if a # .

First consider the case o # 3. Since e, A ® B*eg is a complex of free graded modules over
Z = Z(R"), it is exact if and only if the reduced complex C ®yz e, A ® B¥ep is exact. It will be

more convenient to work with the dual complex, which we denote by 2&5' To describe X2, 3 more
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precisely, first note that for any v € F,, C ®z eqAey is a copy of C placed in degree

dory = {1 <@ < | afi) # (i)}

Following the notation of [BLPWD §4.1], we have an isomorphism of vector spaces

o = @ H*(Cy N Cp; C)[—doy — dyg] = @ Rygl—day — dygl,
’YEBg 7685

where R, is the reduced face ring of the simplicial complex associated to the polyhedron A,z :

I

A, N Ag. More precisely, if we let fiw be the quotient of the polynomial ring Sym(W)

Cleq, . .., en], with generators e; in degree 2, by the ideal
(ILei | a0 1=0).
€S €S

then R, is the quotient of RW by the ideal generated by ), a;e; for all a = (a1, ..., a,) € tcw.

Consider the component
Oyy s Rygl—=dary = dyp] = Ryrp[—dars — dyyg]

of the boundary map. It is easy to see for degree reasons that d,,, = 0 unless d,, = 1 and
day = day — 1, which means that 7' is one step closer to a than + is. If these conditions hold and
dgy = dgy + 1, then A3 C Ayg and up to a sign 0, is the natural quotient R,53 — R,g. If
instead dg, = dg, — 1, then A 3 C A, and up to a sign 9, is induced by multiplication by
e;, where v and +/ differ in the i*" place. The signs come from the choice of signs in the quadratic
duality between R and R', and they are arranged so that the two paths around any square given
by 71,...,71 € F,; which differ in exactly two places have opposite signs.

To show that X2 5 is exact, it will be enough to show exactness of the “equivariant” complex f];l 3
which is obtained by replacing each summand R,3 with R, and using the same formula for the
boundary map, since each Rvﬁ is a free C[¢']-module. Since Rvﬁ is a monomial module and the 9,/
are monomial maps, we can check this one monomial at a time. For a function v: {1,...,n} - N
we let e :=[], e;’(i) be the corresponding monomial of Cley, ..., ey], and let Rvg(u) C ng be the
vector space spanned by its image. Let I = {1 < i < n | (i) = B(i)}. Then i;ﬁ splits into a
direct sum of complexes

“0s(v) = @ Rypv — (v, 8)), (8)

YEF

where
1 ifie I and v(i) # B(i),

0 otherwise.

(7, B) (i) =

Each summand in has dimension zero or one, and if d,, = 1 and the corresponding terms are
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nonzero, then the restriction of 9,/ to %2, 5(v) is £1 with respect to our monomial basis.
The nonzero terms of are indexed by

{7 e{+ -}"

Vi, =al, =B, and Aygn (] H;# (Z)} (9)
v(i)#0

where I, = {i € I | v(i) = 0}.
First suppose that v|; =0, so I, = I. Define the set

Ji={i¢I|HnAg#0}

indexing the hyperplanes which separate A, and Ag and meet Ag. Since a # 3, it follows that
J # 0, and since A, # 0, we must have Ag N (,c;J; # 0. Take some i € J; then for any 7 in the
set @, the sign vector 7/ obtained by flipping the i*" entry will also be in this set. It follows that
f]t’w(y) has a filtration by two-step acyclic complexes and thus is itself acyclic.

Alternatively, if v|; # 0, choose ¢ € I with v(i) # 0. We can assume that H; N Ag # 0, since if
there is no such 7 then SZMB(I/) = 0. Then for any v in , flipping the i*" entry gives another sign
vector in the same set, so again E&ﬁ(u) is acyclic.

Finally, consider the case o = . Our argument above is not quite enough, since although we

can use it to show that X is a resolution of C, we haven’t proved a direct connection between

ax
eaA ® B*eq and X¢,,, but only between their reductions:
Ste = C ®gym() Soa = (C®z A ® Breq)*. (10)

Let p be a vertex of A,, and set I'y := {y € F» | p € A,}. This set has 2% elements, k = dim(¢'),
namely all v € {4, —}" for which v(i) = (i) if p ¢ H;.
Consider the subspace D = @, cp,

degree elements of e, Ae, and e,B*e,, respectively. It is a subcomplex of Z-submodules, and it is

Z(aay ®@b,) of eaA® B*eqn, where aqy and b}, are minimal

easy to check that it is a resolution of C. On the other hand, let E be the kernel of multiplication by
the monomial [] ., e; on the complex ¥2.. Then ¥, /F is isomorphic as a S = Sym(¢')-module
to EBver S, and one can check that it is a resolution of C. It follows that E is acyclic, and therefore
S0 is

Cos EX[C®yz (eaA® B*ey/D)]|".

It follows that e, A ® B*e, is a resolution of C, as desired. O

Remark 8.21. There is an ungraded version of this theorem as well; Koszul duality gives an
equivalence between the ungraded derived category D(X,, ¢) and the triangulated category of finitely
generated DG-modules over A'(¢',n'). There is a version of shuffling and twisting functors in the
DG setting as well, given by tensor product with the same bimodules, and the proof of Theorem
8.19|shows that Koszul duality sends DG shuffling to ungraded twisting and vice versa. By standard
homological algebra, we can infer from Theorem [8.19| that all versions (graded, ungraded, and DG)
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of shuffling functors are equivalences: they are full and faithful on gradable modules, and these

generate the triangulated category.
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