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Abstract. We construct 2-representations of quantum affine algebras from 2-representations of

Heisenberg algebras. The main tools in the construction are categorical vertex operators, which
are special complexes in a Heisenberg 2-representation that recover vertex operators after passing to

the Grothendieck group. As an application we categorify the Frenkel-Kac-Segal homogeneous real-

ization of the basic representation of quantum affine algebras of simply-laced type. This gives rise to
categorical actions of quantum affine (and toroidal) algebras on derived categories of coherent sheaves

on Hilbert schemes of points of ALE spaces.

Dedicated to our advisors Igor Frenkel and Joe Harris on the occasion of their sixtieth birthdays.
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1. Introduction

Affine Lie algebras are central objects at the intersection of representation theory and mathematical
physics. They have a rich representation theory generalizing that of finite dimensional semi-simple
Lie algebras, and their integrable representations admit various explicit constructions. Distinguished
among these is the homogeneous vertex operator construction of the basic representation due to Frenkel-
Kac [FK] and Segal [S].

In this paper we categorify this construction. The key ingredients are the homogeneous Heisenberg
subalgebra, its Fock space representation, and the associated vertex operators. The first two ingredients
were categorified in [CLi1]. The main result in this paper is a categorification of the vertex operators.

A geometric construction of the basic representation was given by Nakajima [N1, N2] and Grojnowski
[G]. In their setting, the underlying vector space of the basic representation is the cohomology of the

moduli spaces of rank one torsion-free sheaves on the resolution Ĉ2/Γ of a singularity of type A,D
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or E. They define a Heisenberg algebra action on this cohomology and use the Frenkel-Kac-Segal
construction to induce an action of the affine Lie algebra.

In [CLi1] we lift the Nakajima-Grojnowski Heisenberg action to a 2-representation of the quantum
Heisenberg algebra. This gives a 2-representation on the derived category of C×-equivariant coherent

sheaves on the Hilbert schemes of points of Ĉ2/Γ. The current paper extends this to a 2-representation
of the entire quantum affine algebra. In fact, we can extend to a 2-representation of quantum toroidal
algebras. Subsequently, we recover quantum toroidal algebra actions on the C×-equivariant K-theory
of the moduli spaces of rank one sheaves, as conjectured by several mathematicians in the 1990s.

2-representations of quantum affine algebras have been studied in several circumstances [KL2, KL3,
R, CK, CKL3]. The 2-categories considered appear in the modular representation theory of symmetric
groups and of Hecke algebras at roots of unity, in the geometry of moduli spaces of sheaves on surfaces,
and elsewhere. However, all these examples use the Kac-Moody presentation of quantum affine alge-
bras. In this paper, the quantum affine algebra arises naturally in the alternative loop (or Drinfeld)
presentation. The higher representation theory of loop algebras is not well understood yet, and one
of our goals is to propose a definition for 2-representations of quantum affine algebras in their loop
realization.

The loop realization of quantum affine algebras is important if one wants to understand relationships
to conformal field theory and low dimensional topology (see section 1.1). A significant difference
between this realization and the Kac-Moody realization is that we must deal with 2-categories which
are triangulated rather than just additive. Nevertheless, our definition should be related (in a precise
but non-trivial way) to its Kac-Moody analogue.

We expect that this categorification of vertex operators in the Frenkel-Kac-Segal construction is
the beginning of a larger categorification program for vertex algebras. For example, the entire vertex
operator algebra structure in the basic representation, which contains not only the vertex operators of
this paper but also the Virasoro algebra and other structure, should be categorified. The problem of
categorifying vertex algebras was posed over ten years ago by Igor Frenkel.

1.1. Relations to mathematical physics and invariants in low dimensional topology. One
reason to be interested in categorifying representations of affine Lie algebra is the relationship to
conformal field theory. In particular, the Wess-Zumino-Witten model in conformal field theory take as
input the representation theory of affine Lie algebras. Spaces of conformal blocks are defined using the
fusion product on these representations giving vector bundles over a Riemann surface. Monodromy on
these bundles induces an action of the mapping class group which, in turn, gives rise to 3-manifold
invariants [Ko]. The existence of categorified vertex operators suggests that these 3-manifold invariants,
and perhaps much of conformal field theory itself, should be categorified.

The vertex operators used in the construction of the basic representation [FK, S] first arose in
physics literature of dual resonance models. We are curious about the physical significance, if any, of
the categorified vertex operators we consider here.

1.2. Vertex operators in the homogeneous realization. In the remainder of this introduction we
sketch the Frenkel-Kac-Segal homogeneous realization of the basic representation and our categorifica-
tion of it. Let g be a finite dimensional Lie algebra of type A,D or E, and let ĝ = g ⊗ C[t, t−1] ⊕ Cc
be its affinization. The enveloping algebra U(ĝ) contains a subalgebra ĥ, known as the homogeneous

Heisenberg subalgebra. The algebra ĥ has essentially one irreducible representation F , known as the
Fock space.

Let VΛ0
be the basic representation of ĝ, that is, the highest weight irreducible representation of

highest weight Λ0. The basic representation is the “simplest” of the representations of ĝ that can be
integrated to the group. The Frenkel-Kac-Segal construction of VΛ0

begins with the observation that

the restriction of VΛ0
from ĝ to the homogeneous Heisenberg algebra ĥ decomposes as a direct sum of



VERTEX OPERATORS AND 2-REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS 3

copies of the Fock space

VΛ0 =
⊕
λ∈Y

F ,

with the summands indexed by the root lattice Y of g. Thus, in order to give an explicit construction
of VΛ0

, one can take a direct sum of copies of the Fock space, one for each element of the root lattice,

and explain how to extend the action on this space from ĥ to ĝ.

Frenkel-Kac [FK] and Segal [S] show that the action of ĝ can be constructed from the action of ĥ and
translation in the root lattice Y via the use of vertex operators. A basic example of a vertex operator
is the formal series

X(i, z) = exp
( ∞∑
n=1

zn

n
hi,−n

)
exp

(
−
∞∑
n=1

z−n

n
hi,n

)
exp(log z · αi(0) + αi)

where hi,n are generators of ĥ and αi is a simple root of g. The above expression contains three
exponentials. The homogeneous components in z of the first two exponentials are endomorphisms of
the Fock space F , while the homogeneous components of the term exp(log z · αi(0) + αi) are “lattice
translation” operators which moves the various copies of F along the lattice (we refer to [FK] for the
precise definition of the lattice translation operator). Each homogeneous component of X(i, z) is thus
an endomorphism of VΛ0 . These endomorphisms, together with their adjoints, generate the action of
the affine Lie algebra, giving an explicit construction of the basic representation.

It was later shown in [FJ] that this construction admits a q-deformation. In this q-deformation, the

Heisenberg algebra ĥ is replaced by the quantum Heisenberg algebra, and the vertex operators X(i, z)
are replaced by q-vertex operators

Xq(i, z) = exp
( ∞∑
n=1

zn

[n]
hi,−n

)
exp

(
−
∞∑
n=1

z−n

[n]
hi,n

)
exp(log z · αi(0) + αi)

where [n] = qn−q−n
q−q−1 is the quantum integer. The homogeneous components of the Xq(i, z), together

with their adjoints, then give the basic representation of the quantum affine algebra Uq(ĝ).

In order to categorify the vertex operators Xq(i, z) we use new operators P
(n)
i and Q

(1n)
i defined by

the formulas

exp

∑
m≥1

hi,−m
[m]

zm

 =
∑
n≥0

P
(n)
i zn and exp

−∑
m≥1

hi,m
[m]

zm

 =
∑
n≥0

(−1)nQ
(1n)
i zn.

In terms of these operators, a single homogeneous component in z of Xq(i, z) becomes an expression
of the form

(1)
[∑
n≥0

(−1)nP
(n+k)
i Q

(1n)
i

]
ti,

where ti acts only in the lattice and
∑
n≥0(−1)nP

(n+k)
i Q

(1n)
i acts only in the Fock space. Thus, the q-

deformed Frenkel-Kac-Segal construction says that these alternating sums, together with their adjoints,
generate an action of the quantum affine Lie algebra Uq(ĝ).

1.3. Categorification of the basic representation. A categorification of the Heisenberg algebra ĥ
and its Fock space representation was given in [CLi1] (see also [K], [LS] for related definitions). We

recall this definition in section 3.2, where we also define a the notion of a 2-representations of ĥ. Very

roughly, a 2-representation of ĥ consists of a 2-category K where the objects are indexed by the natural
numbers, the 1-morphisms are compositions of generating 1-morphisms Pi and Qi, and there are 2-
morphisms with specified relations (these relations are described using a graphical calculus of planar
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diagrams). The relations for 2-morphisms imply that the 1-morphisms Pi and Qi satisfy categorical

analogs of the relations in the Heisenberg algebra. Thus a 2-representation of ĥ is a categorification of
a representation of the Heisenberg algebra.

To categorify the Frenkel-Kac-Segal construction of the basic representation of ĝ we need to lift the

operators in (1) from vector spaces to categories. In a 2-representation K of ĥ, the operators P
(n)
i and

Q
(1n)
i are lifted to indecomposable 1-morphisms in K. Thus, it is natural that alternating sums like

(1) should lift to complexes in the homotopy category Kom(K) of K,

· · · → P
(n+k)
i Q

(1n)
i 〈l〉 → P

(n+k+1)
i Q

(1n+1)
i 〈l + 1〉 → . . .

In Section 5.1 we define these complexes.
It is immediate from the definition that our complexes descend to the homogeneous components

of vertex operators after passing to the Grothendieck group. In fact, this would be true regardless
of the differentials we choose in our complex (indeed, even the zero differential would give a complex
which descends to the correct operator in the Grothendieck group). The interesting content is that
these complexes satisfy categorical relations of the quantum affine algebra inside Kom(K) itself, before
passing to the Grothendieck group. A summary of the relations we check is in the statement of Theorem
5.2.

The (somewhat long) list of relations satisfied by the complexes of Section 5.1 can be summarized by
saying that they define a 2-representation of ĝ. More precisely, in section 4.2 we define what it means
to have a 2-representation of ĝ. The content of our theorem 5.2 is then that, given a 2-representation

of ĥ, our complexes define a 2-representation of ĝ.
Our constructions also apply with no extra work to give a 2-representation of the quantum toroidal

algebra Uq(̂̂g). This algebra is a loop affinization of the quantum affine algebra in its Kac-Moody
presentation. In section 9 we explain how to obtain a 2-representation of the quantum toroidal algebra

on the derived categories of coherent sheaves on Hilbert schemes of points on Ĉ2/Γ.

1.4. Generalization to other Kac-Moody algebras. The essential idea at the core of our con-

struction is that 2-representations of ĥ (respectively
̂̂
h) give rise to 2-representation of ĝ (respecitivelŷ̂g). On the other hand, the only input data used to define 2-representations of ĥ is essentially the

finite dimensional algebra BΓ := C[Γ] n ∧∗(C2), where Γ ⊂ SL2(C) is the finite subgroup associated
to the Dynkin diagram of ĝ using the McKay correspondence. Thus we obtain what can be viewed
as a categorical form of the McKay correspondence: starting from the finite subgroup Γ ⊂ SL2(C),
we construct the finite-dimensional algebra BΓ, and using this algebra we construct 2-representations
of the associated quantum affine (and toroidal) algebra. Moreover, the algebra BΓ can be described
directly in terms of the underlying affine Dynkin diagram without direct reference to the finite group
Γ. This description suggests how to generalize the constructions of this paper to other Kac-Moody
type. More general Kac-Moody algebras are not the main subject of this paper and will therefore be
discussed elsewhere, but we will briefly describe how to generalize the algebra BΓ to other Dynkin
type.

Fix a simply laced Dynkin diagram D, and choose an orientation of the edges. Let C[dD] denote
the path algebra of the doubled quiver dD. Thus a path in dD is described as a sequence of vertices
(a1|a2| . . . |ak) where ai and ai+1 are connected by an edge in D. We define BD to be the quotient of
C[dD] by the two sided ideal generated by

• (a|b|c) if a 6= c and
• (a|b|a) + (a|c|a) whenever a is connected to both b and c.

The algebra BD can be used to define a 2-category which categorify the Heisenberg algebra hD associ-
ated to the root lattice of D. The constructions of this paper then categorify the Fock space modeled on
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this lattice. In particular, the categorical vertex operators can be used to construct 2-representations
of the quantum group associated to D.

The algebra BD appears in [HK], where it is called the skew zig-zag algebra. In that paper the zigzag
algebra is used to categorify the adjoint representation of g for g of finite type. Our categorification of
the basic representation is in fact an extension of their categorification of the adjoint representation: the
restriction of the basic representation VΛ0

of ĝ to g contains the adjoint representation of g as a direct
summand. After restricting our categorification of VΛ0

from ĝ to the copy of the adjoint representation
of g sitting inside it, our complexes recover the categorification in [HK]. In this restricted construction,
the complexes have length at most two, which makes checking the relations in the adjoint representation
of g much easier than checking the relations in the basic representation of ĝ.

Acknowledgments: The authors benefited from discussions with Mikhail Khovanov, Aaron Lauda,
Hiraku Nakajima, Raphael Rouquier, Travis Schedler and Joshua Sussan. S.C. was supported by NSF
grants DMS-0964439, DMS-1101439 and the Alfred P. Sloan foundation. A.L. would like to thank the
Institute for Advanced Study for support.

2. Notation and terminology

For the entirety of this paper we let k denote a field of characteristic zero. We let k(q) denote the
field of rational functions of one variable, q. We denote

[j] := q−j+1 + q−j+3 + · · ·+ qj−3 + qj−1

the quantum integer. If j ≥ 0 then Vj denotes the graded vector space

(2) Vj := k〈j〉 ⊕ k〈j − 2〉 ⊕ · · · ⊕ k〈−j + 2〉 ⊕ k〈−j〉

where 〈1〉 is a shift of 1 in the grading.
If λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) is a partition then |λ| :=

∑
i λi denotes its size. We say that λ′ ⊂ λ if

λ′ is contained in λ, meaning that λi ≥ λ′i for all i. We denote by λt the transposed partition of λ (for
example, (n)t = (1n)).

2.1. Dynkin data. From now on fix a simply-laced Dynkin diagram of affine type and denote its
vertex set by Î. The special affine vertex in Î is labeled 0 and we let I := Î \ {0}. The subdiagram
whose vertex set is I is a Dynkin diagram of finite type A,D,E. We denote the Lie algebras associated
to these Dynkin diagrams by g and ĝ.

We denote the weight lattice of g by X and the root lattice by Y . The standard pairing on the
weight lattice is denoted with brackets 〈·, ·〉, which should not be confused with the grading shift on
categories. For i ∈ I, αi ∈ Y and Λi ∈ X will denote the simple roots and fundamental weights,
respectively. These satisfy the relation Ci,j = 〈αi, αj〉 where Ci,j is the Cartan matrix of g. In terms
of the Dynkin diagram, we have

〈αi, αj〉 =


2 if i = j

−1 if i 6= j are joined by an edge

0 if i 6= j are not joined by an edge.

Moreover, 〈Λi, αj〉 = δi,j for all i, j ∈ I. Sometimes, if we will write 〈i, j〉 instead of 〈αi, αj〉. The

dominant weights in X are denoted X+ ⊂ X. Similarly, we denote by X̂ the weight lattice of ĝ, Ŷ the
affine root lattice, etc. We use the same notation 〈·, ·〉 for the pairing on the affine weight lattice as
for the finite weight lattice. The imaginary root, which is denoted δ, satisfies 〈δ, αi〉 = 0 for all i. The

associated Weyl groups of X and X̂ are denoted W and Ŵ .
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Fix an orientation ε of the Dynkin diagram of g. If 〈i, j〉 = −1 then we set εij = 1 if the edge is
oriented i → j by ε and εij = −1 if it oriented j → i. If 〈i, j〉 = 0 then we set εij = 0. Notice that in
both cases we have εij = −εji.

2.2. Graded 2-categories. By a graded category we will mean a category equipped with an auto-
equivalence 〈1〉. We denote by 〈l〉 the auto-equivalence obtained by applying 〈1〉 a total of l times. The
Grothendieck group K0(C) of an additive category C is the abelian group generated the set {[A] : A ∈
Ob(C)} modulo the relation [A] + [A′] = [A′′] if A′′ ∼= A⊕ A′. This group is a Z[q, q−1]-module where
q acts by the shift 〈1〉. We usually tensor this with the field k(q) to obtain a k(q)-module.

A graded additive k-linear 2-category K is a category enriched over graded additive k-linear cat-
egories. This means that for any two objects A,B ∈ K the Hom category HomK(A,B) is a graded
additive k-linear category. Moreover, the composition map HomK(A,B)×HomK(B,C)→ HomK(A,C)
is a graded additive k-linear functor.

A graded additive k-linear 2-functor F : K → K′ is a (weak) 2-functor that maps the Hom categories
HomK(A,B) to HomK′(FA,FB) by additive functors that commute with the auto-equivalence 〈1〉.

If K is an additive 2-category, the Grothendieck group K0(K) is a k(q)-linear category whose objects
are the same as those of K and whose morphism spaces are

HomK0(K)(A,A
′) = K0(HomK(A,A′)).

Example 1: Suppose Bn is a sequence of graded k-algebras indexed by n ∈ N. Then one can
define a 2-category K whose objects (0-morphisms) are indexed by N, the 1-morphisms are graded
(Bm, Bn)-bimodules and the 2-morphisms are maps of graded (Bm, Bn)-bimodules.

2.2.1. Idempotent completeness. An additive category C is said to be idempotent complete when every
idempotent 1-morphism splits in C. The idempotent completion (or Karoubi envelope) Kar(C), of
an additive category C is defined as the category whose objects exactly the objects of C, and whose
1-morphisms are pairs (A, e) where e : A → A is an idempotent endomorphism, e2 = e. 2-morphisms
(A, e) → (A′, e′) in Kar(C) are morphisms f : A → A′ in C such that the following diagram is
commutative.

A
f //

f

  @
@@

@@
@@

@

e

��

A′

e′

��
A

f
// A′

The idempotent completion of C can be viewed as a minimal enlargement of the category C so that
idempotents split.

Similarly, we say that the additive 2-category K is idempotent complete when the Hom categories
HomK(A,B) are idempotent complete for any pair of objects A,B ∈ K, (so that all idempotent 2-
morphisms split). The idempotent completion Kar(K) of a 2-category K is the 2-category with the
same objects as K, but with Hom categories given by Kar(HomK(A,B)).

2.2.2. Triangulated 2-categories. A graded triangulated category is a graded category equipped with
a triangulated structure where the autoequivalence 〈1〉 takes exact triangles to exact triangles. We
denote the homological shift by [·] where [1] denotes a downward shift by one. The Grothendieck group
K0(C) of a graded triangulated category C is the abelian group generated the set {[A] : A ∈ Ob(C)}
modulo the relation [A] + [A′] = [A′′] if there exists a distinguished triangle A→ A′′ → A′. As before,
this is a Z[q, q−1]-module where q acts by 〈1〉.

A graded triangulated k-linear 2-category K′ is a category enriched over graded triangulated k-linear
categories. This means that for any two objects A,B ∈ K′ the Hom category HomK′(A,B) is a graded
additive k-linear triangulated category. Here are two examples to keep in mind.
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Example 2: the homotopy category K′ := Kom(K) of a graded additive k-linear 2-category K.
The objects of K′ are the same as the objects of K. The 1-morphisms of K′ are unbounded complexes
of 1-morphisms in K, and 2-morphisms are maps of complexes. Two complexes of 1-morphisms are
then deemed isomorphic if they are homotopy equivalent. This makes HomK′(A,B) into a graded
triangulated category.

Example 3: the 2-category of Fourier-Mukai (FM) transforms. The objects are a set of varieties
{Yi}, where each variety defined over k. The 1-morphisms are objects in the derived category of
coherent sheaves DCoh(Yi × Yj) (these 1-morphisms are known as FM kernels). The 2-morphisms
are morphisms between these FM kernels. If all varieties also carry a k× action then considering
derived categories of k×-equivariant coherent sheaves allows for an extra grading and yields a graded
triangulated k-linear 2-category.

3. Heisenberg algebras and 2-representations of ĥ

3.1. The quantum Heisenberg algebra. The quantum Heisenberg algebra, which we denote by ĥ,
plays a central role in all of the constructions to come. We begin by describing this algebra and its
Fock space representation.

The traditional presentation for the quantum Heisenberg algebra is as a unital algebra generated by
hi,n, where i ∈ I and n ∈ Z \ {0}. The relations are

(3) [hi,m, hj,n] = δm,−n[n〈i, j〉] [n]

n
.

When q = 1, this presentation specializes to the standard presentation of the non-quantum Heisenberg
algebra. Sometimes, relation (3) appears in the literature with a minus sign on the right hand side,
though this does not change the isomorphism class of the algebra itself (just replace hi,m with −hi,m
if m > 0).

Our preferred presentation of ĥ is slightly less common. We use generators for P
(n)
i and Q

(n)
i which

are obtained from the standard generators hi,m via the generating functions

(4) exp

∑
m≥1

hi,−m
[m]

zm

 =
∑
n≥0

P
(n)
i zn and exp

∑
m≥1

hi,m
[m]

zm

 =
∑
n≥0

Q
(n)
i zn.

Lemma 3.1. The elements {P (n)
i , Q

(n)
i }i∈I,n≥0 also generate ĥ. They satisfy the following relations:

P
(n)
i P

(m)
j = P

(m)
j P

(n)
i and Q

(n)
i Q

(m)
j = Q

(m)
j Q

(n)
i for all i, j ∈ I,

Q
(n)
i P

(m)
j =


∑
k≥0[k + 1]P

(m−k)
i Q

(n−k)
i if i = j,

P
(m)
j Q

(n)
i + P

(m−1)
j Q

(n−1)
i if i 6= j ∈ I with 〈i, j〉 = −1

P
(m)
j Q

(n)
i if i 6= j ∈ I with 〈i, j〉 = 0.

Proof. This is proved in Lemma 1 of [CLi1]. Note P
(0)
i = Q

(0)
j = 1 and P

(k)
i = Q

(k)
i = 0 when k < 0

so the summations in the relations above are all finite. �

There is an alternative generating set of ĥ given by elements P
(1n)
i and Q

(1n)
i . These are defined

using generating functions similar to (4) as follows

(5) exp

−∑
m≥1

hi,−m
[m]

zm

 =
∑
n≥0

(−1)nP
(1n)
i zn and exp

−∑
m≥1

hi,m
[m]

zm

 =
∑
n≥0

(−1)nQ
(1n)
i zn.



8 SABIN CAUTIS AND ANTHONY LICATA

The Heisenberg algebra admits an involution ψ : ĥ −→ ĥ defined by

P
(n)
i 7→ P

(1n)
i , Q

(n)
i 7→ Q

(1n)
i , P

(1n)
i 7→ P

(n)
i , Q

(1n)
i 7→ Q

(n)
i .

In particular, the commutation relations among the P
(1n)
i and Q

(1n)
i are the same as those between

the P
(n)
i and Q

(n)
i (just replace (n) by (1n) everywhere).

The involution ψ is essentially the standard involution on symmetric functions. More precisely, fix

i ∈ I and let ĥ−i ⊂ ĥ denote the subalgebra generated by the {P (n)
i }. After setting q = 1, there is an

isomorphism of algebras

ĥ−i
∼= Sym = Z[h1, h2, . . . , hn, . . .]

which takes P
(n)
i to the homogeneous symmetric function hn. This isomorphism intertwines ψ with the

standard involution on symmetric functions which exchanges homogeneous and elementary symmetric
functions.

In addition to the relations from Lemma 3.1 we have the “mixed” relations

P
(m)
i P

(1n)
j = P

(1n)
j P

(m)
i and Q

(m)
i Q

(1n)
j = Q

(1n)
j Q

(m)
i

Q
(1m)
i P

(n)
j =


P

(n)
i Q

(1m)
i + [2]P

(n−1)
i Q

(1m−1)
i + P

(n−2)
i Q

(1m−2)
i if i = j∑

k≥0 P
(n−k)
j Q

(1m−k)
i if 〈i, j〉 = −1

P
(n)
j Q

(1m)
i if 〈i, j〉 = 0.

These relations can be checked in the same way as those in Lemma 3.1.

The unital algebra ĥ also admits an idempotent modification where the unit is replaced by a collection

of idempotents 1n, n ∈ Z. The relations between these idempotents and the generators P
(n)
i and Q

(n)
j

is

1n+kP
(n)
i = 1n+kP

(n)
i 1k = P

(n)
i 1k and 1kQ

(n)
i = 1kQ

(n)
i 1n+k = Q

(n)
i 1n+k

We also have that 1mP
(n)
i 1k and 1kQ

(n)
i 1m is zero unless m = n+k. Hence the idempotent Heisenberg

algebra can be thought of as a category, where the objects are the integers and the morphisms from

n to m are given by 1mĥ1n. From this point of view we should write Pi1n or 1nPi to make clear the
domain and codomain. However, the domain or codomain will often be obvious or irrelevant in which
case we just write Pi.

A representation of ĥ is said to be integrable if the object 1n is zero for n� 0. It is weakly integrable
if it is the direct sum of (possibly infinitely many) integrable representations.

3.1.1. The Fock space. The Heisenbeg algebra ĥ has a natural integrable representation F , known as

the Fock space. Let ĥ+ ⊂ ĥ denotes the subalgebra generated by the Q
(n)
i for all i ∈ I and n ≥ 0. Let

triv0 denote the trivial representation of ĥ+, where all Q
(n)
i (n > 0) act by zero. Then

F := Indĥ

ĥ+
(triv0)

is called the Fock space representation of ĥ. It inherits a Z grading F = ⊕m∈NF(m) by declaring triv0

to have degree zero, P
(n)
i degree n and Q

(n)
i degree −n.

3.2. 2-representations of ĥ. We now explain what it means to have a 2-representation of ĥ. This

concept is closely related to the categorification of ĥ defined in [CLi1]. In that paper we defined a

graded additive k-linear 2-category HΓ together with an algebra isomorphism from K0(HΓ) to ĥ (here
Γ ⊂ SL2(C) is the finite group associated to our affine Dynkin diagram by McKay correspondence). In

essence, a 2-representation of ĥ is a representation of the 2-categoryHΓ on a graded, k-linear 2-category.

A 2-representation of ĥ consists of a graded, idempotent complete k-linear category K where
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• 0-morphisms (objects) are denoted D(n) and are indexed by n ∈ Z.
• 1-morphisms include the identity 1-morphisms 1n of n ∈ Z (these are mutually orthogonal

idempotents) as well as

Pi1n : D(n)→ D(n+ 1), Qi1n : D(n)→ D(n− 1).

Other 1-morphisms are obtained from these by taking compositions, direct sums and grading
shifts.

• 2-morphisms include the identity 2-morphisms, cups, caps and dots (see the pictures below).
Other 2-morphisms are obtained from these by composition.

3.2.1. 2-morphisms in K. We require that the space of 2-morphisms between any two 1-morphisms be
finite dimensional and that Hom(1n,1n〈`〉) is zero if ` < 0 and one-dimensinal if ` = 0. Moreover, the
2-morphisms must satisfy the defining relations in the Heisenberg 2-category defined in [CLi1]. We
now summarize these relations.

The 2-morphisms are encoded by a graphical calculus similar to ones used in the categorifications
of quatum groups and other Heisenberg algebras, for example [L, KL1, KL2, KL3, K, LS].

Strands will be used to denote 1-morphisms. More precisely, an upward pointing strand labeled
by i denotes Pi while a downward pointing strand labeled i denotes Qi. Composition of 1-morphisms
is obtained by sideways concatenation of diagrams. The space of 2-morphisms between compositions
of Pis and Qjs is a k-algebra described by certain string diagrams with relations. By convention,
composition of 2-morphisms is done vertically from the bottom and going up.

We have the following generating 2-morphisms. For any i, j ∈ I with 〈i, j〉 = −1 there is a 2-
morphism Pi → Pj〈1〉 which is diagrammatically denoted by a solid dot:

i

j

Note that such an i − j dot is defined to have degree one. For each i ∈ I there is also a 2-morphism
Pi → Pi〈2〉 of degree two.

The other generators are given by caps, cups and crossings. These, together with their gradings, are
depicted below:

deg = 0

deg = deg = −1

deg = deg = 1

The diagrammatic relations include any planar isotopy which preserves the relative height of dots.
These planar isotopy relations imply that the caps and cups give canonical adjunctions, making Pi and
Qi biadjoint up to a shift. Explicitly, using the gradings above we see that the right and left adjoints
of Pi are

(Pi)R ∼= Qi〈−1〉 and (Pi)L ∼= Qi〈1〉.

In addition to the isotopy relations we have the following extra relations. First, dots are allowed to
move freely through crossings. Next, degree one dots on different strands supercommute when they
pass each other, meaning that they pick up the sign (−1)ab where a, b ∈ {1, 2} denotes their degree.
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For example, if i 6= j and k 6= l then we have

. . .
= −

. . .

i k

j l

i k

j l

,

since each of these dots has degree one. The above relation is technically not a local relation, since
there may be any number of vertical strands in between the dotted strands. The remaining relations
listed below are all local.

The relation which governs the composition of dots on the same strand is

(6) i

j

k

= δikεij

i

i

Next, for any i, j, k ∈ I we have

(7)

=

i j i j i j k

=

i j k

(8)

= 1

i

i

= 0.

i

Finally, if i 6= j then

(9) i j

=

i j

− εij

i j

i j

while

(10) i i

=

i i

−

i i

i i

−

i i

i i
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Notice all the graphical relations are compatible with the grading assigned to generators. Relation
7 above implies that there is a natural map k[Sn] −→ End(Pni ), which will be important in the next
section.

3.3. Idempotent completeness. Since the underlying 2-category in a 2-representation of ĥ is as-
sumed to be idempotent complete, any idempotent 2-morphism e of a 1-morphism A gives rise to a
direct sum decomposition A ∼= Ae⊕ A(1− e).

For example, since k[Sn] → End(Pni ), each idempotent in k[Sn] gives rise to a direct summand of
Pni . We let Pµi be the 1-morphism of K corresponding to a minimal idempotent of k[Sn] associated to
the partition µ of n. More explicitly, fix a labeling T of the boxes in a Young diagram of µ with the
numbers 1, . . . , n. Corresponding to T there are the subgroups Srow(T ) and Scol(T ) of Sn preserving
the rows and columns respectively. These subgroups have associated Young symmetrizers

aT =
∑

g∈Srow(T )

g,
∑

g∈Scol(T )

(−1)l(g)g,

where l(g) is the length of the permutation g.
We set cT = 1

nµ
aT bT , an idempotent in k[Sn]. Here the scalar nµ is defined as the cardinality of the

set {(s1, t1, s2, t2) : si ∈ row(T ), ti ∈ col(T ), (−1)l(t1) = (−1)l(t2), s1t1s2t2 = 1}. The idempotent cT
is used to construct the irreducible Sn representation k[Sn]cT associated to the partition µ. Note that
k[Sn]cT ∼= k[Sn]cT ′ if T and T ′ are different fillings of the same partition. Exchanging the roles of row
and column, one can also use instead the idempotent c̃T = 1

nµ
bTaT to construct the same irreducible

representation (see Chapter 7 of [F] for a discussion of the constructions of irreducible symmetric group
representations from tableaux).

In our case, cT and c̃T also define 1-morphisms Pni cT ,Pic̃T in K. Just as for representations of
the symmetric group, these 1-morphisms do not depend on the choice of labeling T but only on the
partition µ in the sense that Pni cT

∼= Pni cT ′ if T and T ′ are different labelings of µ; moreover, both of
these one-morphisms are isomorphic to Pic̃T . We will abuse notation slightly and write Pµi for Pni cT
for an arbitrary choice of T . The 1-morphism Pµi will generally be drawn as

(µ)i

When the strand label i is understood, which is often the case in this paper, it will not be drawn. We
define Qµi := Qni cT similarly and draw this 1-morphism with downward pointing arrows. In a few cases
we will need to emphasize the choice of the idempotent cT , in which case we draw

(µ) = 1
nµ

bT

aT

.

Of particular importance are the elements P
(n)
i ,P

(1n)
i ,Q

(n)
i and Q

(1n)
i corresponding to the partitions

µ = (n) and µ = (1n) = (1, 1, . . . , 1) (i.e. corresponding to the trivial and sign representations of Sn).

To emphasize the difference between P
(n)
i and P

(1n)
i in future calculations we will shade the box for

P
(1n)
i while leaving the box for P

(n)
i unshaded (this shading of the boxes is for visual convenience only).

The Ps and the Qs are biadjoint to each other in K. Precisely, if µ is an arbitrary partition then the
left and right adjoints are given by

(Pµi )R ∼= Qµi 〈−|µ|〉 and (Pµi )L ∼= Qµi 〈|µ|〉

where |µ| denotes the size of the partition.
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3.3.1. Integrability. A 2-representation of ĥ is said to be integrable if the object 1n is zero for n � 0.
It is weakly integrable if it is the direct sum of (possibly infinitely many) integrable 2-representations.

In this paper, all 2-representations are assumed to be weakly integrable. An example of such a

2-representation of ĥ was constructed in [CLi1] on categories of coherent sheaves on Hilbert schemes

of points on the surface Â2/Γ.

3.3.2. A symmetry of 2-representations. A 2-representation of ĥ admits a covariant involution Ψ : K →
K. It is defined as the identity on objects and 1-morphisms and also the identity on cups, caps, and
dots while acting as multiplication by −1 on any crossing. This means that Ψ takes the idempotent
2-morphism c(1n) to c(n) and vice versa. Subsequently

Ψ(P
(n)
i ) = P

(1n)
i , Ψ(P

(1n)
i ) = P

(n)
i , Ψ(Q

(n)
i ) = Q

(1n)
i , Ψ(Q

(1n)
i ) = Q

(n)
i

while more generally Ψ(P
(λ)
i ) = P

(λt)
i and Ψ(Q

(λ)
i ) = Q

(λt)
i . Thus Ψ categorifies the involution ψ from

section 3.1.

3.3.3. Induced relations among 1-morphisms in K. The relations among 2-morphisms in a 2-representation

of ĥ imply certain isomorphisms between 1-morphisms. We recall some of these relations below.

Proposition 3.2. [CLi1] We have the following direct sum decompositions of 1-morphisms in H:

(1) P
(m)
i P

(n)
j
∼=

{
P

(n)
i P

(m)
i
∼= ⊕min(n,m)

k=0 P
(n+m−k,k)
i if i = j

P
(n)
i P

(m)
j if i 6= j

(2) P
(m)
i P

(1n)
j
∼=

{
P

(m,1n)
i ⊕ P

(m+1,1n−1)
i if i = j

P
(1n)
j P

(m)
i if i 6= j

(3) Q
(n)
j P

(m)
i
∼=


⊕k≥0P

(m−k)
i Q

(n−k)
i ⊗k Vk if i = j

P
(m)
i Q

(n)
j ⊕ P

(m−1)
i Q

(n−1)
j if 〈i, j〉 = −1

P
(m)
i Q

(n)
j if 〈i, j〉 = 0

(4) Q
(1n)
j P

(m)
i
∼=


P

(m)
i Q

(1n)
i ⊕ P

(m−1)
i Q

(1n−1)
i ⊗k V1 ⊕ P

(m−2)
i Q

(1n−2)
i if i = j

⊕k≥0P
(m−k)
i Q

(1n−k)
j if 〈i, j〉 = −1

P
(m)
i Q

(1n)
j if 〈i, j〉 = 0

In each case the direct summands on the right hand side are indecomposable 1-morphisms in K.

3.4. Technical lemmas. We now discuss a few technical lemmas dealing with 2-representations of ĥ.
These will be used later but can be skipped on a first reading of the paper.

Lemma 3.3. For an arbitrary partition λ we have

Q
(λ)
i Pi ∼= PiQ

(λ)
i

⊕
λ′⊂λ

Q
(λ′)
i ⊗k V1 and QiP

(λ)
i
∼= P

(λ)
i Qi

⊕
λ′⊂λ

P
(λ′)
i ⊗k V1

where the sums are over all λ′ ⊂ λ with |λ′| = |λ| − 1.

Proof. We prove only the first relation (the second one is proved similarly). First, using the fact that

PiQ
(λ)
i is indecomposable and that QiPi1n ∼= PiQi1n ⊕ 1n ⊗k V1, it follows by induction that

Q
(λ)
i Pi ∼= PiQ

(λ)
i

⊕
µ⊂λ

Q
(µ)
i ⊗k Vµ,λ

for some graded vector spaces Vµ,λ. We will prove by induction on |λ| that Vµ,λ = V1 if µ ⊂ λ and that
Vµ,λ = 0 otherwise.
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Note that if Q
(µ)
i 〈l〉 is a summand of Q

(λ)
i Pi then we must have

Hom(Q
(λ)
i Pi,Q

(µ)
i 〈l〉) 6= 0 and Hom(Q

(µ)
i 〈l〉,Q

(λ)
i Pi) 6= 0.

Now, by adjunction

Hom(Q
(λ)
i Pi,Q

(µ)
i 〈l〉) ∼= Hom(Q

(λ)
i ,Q

(µ)
i Qi〈l + 1〉)

∼= Hom(Q
(λ)
i ,⊕µ⊂µ′Q(µ′)

i 〈l + 1〉)

and similarly

Hom(Q
(µ)
i 〈l〉,Q

(λ)
i Pi) ∼= Hom(⊕µ⊂µ′Q(µ′)

i ,Q
(λ)
i 〈−l + 1〉).

One of these two morphism spaces is zero unless l = −1 or l = 1 and µ ⊂ λ in which case one of these
is one dimensional. Thus Vµ,λ = 0 unless µ ⊂ λ in which case Vµ,λ ⊂ V1.

It remains to show that Vµ,λ actually equals V1. We do this by counting dimensions. Take ν ⊂ λ
with |λ| = |ν|+ 1. Then by induction

Q
(ν)
i QiPi ∼= PiQ

(ν)
i Qi ⊕ Q

(ν)
i ⊗k V1 ⊕ν′⊂ν Q(ν′)

i Qi ⊗k V1.

On the other hand, this equals

⊕ν⊂λ′Q(λ′)
i Pi ∼= ⊕ν⊂λ′PiQ(λ′)

i ⊕ν,λ′′⊂λ′ Q(λ′′)
i ⊗k Vλ′′,λ′ .

Comparing summands involving only Qi’s one can check that indeed dim(Vµ,λ′) = 2 for any µ ⊂ λ′.
The result follows. �

Lemma 3.4. Suppose λ, λ′, µ and µ′ are partitions such that |λ| > |λ′| and |µ| > |µ′|. Then

dim Hom(P
(λ)
i Q

(µ)
i ,P

(λ′)
i Q

(µ′)
i 〈1〉) ≤ 1 with equality if and only if λ′ ⊂ λ and µ′ ⊂ µ with |λ| = |λ′|+ 1

and |µ| = |µ′|+ 1. In this case this space is spanned by the diagram given by a single cap.

Likewise, if |λ| < |λ′| and |µ| < |µ′| then dim Hom(P
(λ)
i Q

(µ)
i ,P

(λ′)
i Q

(µ′)
i 〈1〉) ≤ 1 with equality if and

only if λ′ ⊃ λ and µ′ ⊃ µ with |λ| = |λ′| − 1 and |µ| = |µ′| − 1. In this case this space is spanned by
the diagram given by a single cup.

Proof. We prove only the first assertion (as the second one follows similarly). If |λ| − |λ′| ≥ 2 then the
space of degree one maps is zero since any map requires at least two caps and thus has degree at least
two. So from now on we assume that |λ| = |λ′|+ 1 and hence |µ| = |µ′|+ 1.

First we show by induction on |µ| that if µ′ 6⊂ µ then the space of maps is zero. Choose any λ′′ ⊂ λ′

with |λ′| = |λ′′|+ 1. Since QiQ
(λ′′)
i contains Q

(λ′)
i as a direct summand it suffices to show that

Hom(P
(λ)
i Q

(µ)
i ,PiP

(λ′′)
i Q

(µ′)
i 〈1〉) = 0.

By adjunction and lemma 3.3 we have

Hom(P
(λ)
i Q

(µ)
i ,PiP

(λ′′)
i Q

(µ′)
i 〈1〉)

∼= Hom(QiP
(λ)
i Q

(µ)
i ,P

(λ′′)
i Q

(µ′)
i )

∼= Hom(P
(λ)
i QiQ

(µ)
i ,P

(λ′′)
i Q

(µ′)
i )

⊕
λ′′′⊂λ′

Hom(P
(λ′′′)
i Q

(µ)
i ,P

(λ′′)
i Q

(µ′)
i ⊗k V1)

∼=
⊕
µ′′⊂µ

Hom(P
(λ)
i Q

(µ′′)
i ,P

(λ′′)
i Q

(µ′)
i )

⊕
λ′′′⊂λ′

Hom(P
(λ′′′)
i Q

(µ)
i ,P

(λ′′)
i Q

(µ′)
i ⊗k V1).

The terms in the first sum vanish since µ′′ and µ′ are never equal, while those in the second sum vanish
by induction. Likewise, one can show that the space of maps is also zero if λ′ 6⊂ λ.
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Now suppose λ′ ⊂ λ and µ′ ⊂ µ. It follows from degree consideration that any map P
(λ)
i Q

(µ)
i →

P
(λ′)
i Q

(µ′)
i 〈1〉 consists of a single cap composed with a diagram without local minima or local maxima.

Thus we have a diagram like the following

(λ) (µ)

(λ′) (µ′)

=

bT bS

aT aS

bT ′ bS′

aT ′ aS′

After possibly replacing the filling T ′ by the filling gT ′ for some permutation g, we may assume that
the upward pointing strands do not intersect. Similarly, replacing S′ by hS′ for some permutation h
we can assume the downward strands do not intersect. Thus we must show that the diagram

(11) bT bS

aT aS

bT ′ bS′

aT ′ aS′

which spans the space of maps.

It remains to show that dim Hom(P
(λ)
i Q

(µ)
i ,P

(λ′)
i Q

(µ′)
i 〈1〉) = 1. Now

Hom(PiP
(λ′)
i Q

(µ)
i ,P

(λ′)
i Q

(µ′)
i 〈1〉)

∼= Hom(P
(λ′)
i Q

(µ)
i ,QiP

(λ′)
i Q

(µ′)
i )

∼= Hom(P
(λ′)
i Q

(µ)
i ,P

(λ′)
i QiQ

(µ′)
i )

⊕
λ′′⊂λ′

Hom(P
(λ′)
i Q

(µ)
i ,P

(λ′′)
i Q

(µ′)
i ⊗k V1)

Now the left hand term is isomorphic to k while, by induction, the right hand term is isomorphic to
k` where ` is the number of λ′′ ⊂ λ′. Thus

dim Hom(PiP
(λ′)
i Q

(µ)
i ,P

(λ′)
i Q

(µ′)
i 〈1〉) = `+ 1.

On the other hand, PiP
(λ′)
i
∼= ⊕λ′⊂νP(ν)

i . Since the number of such partitions ν is `+ 1 it follows that

dim Hom(P
(ν)
i Q

(µ)
i ,P

(λ′)
i Q

(µ′)
i 〈1〉) = 1

for any ν containing λ′. The result follows since we can take ν = λ. �

Lemma 3.5. If i 6= j then dim Hom(P
(a)
i P

(b)
j Q

(1c)
i Q

(1d)
j ,P

(a′)
i P

(b′)
j Q

(1c
′
)

i Q
(1d
′
)

j 〈1〉) ≤ 1.
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Proof. Let D be a diagram depicting a 2-morphism in

Hom(P
(a)
i P

(b)
j Q

(1c)
i Q

(1d)
j ,P

(a′)
i P

(b′)
j Q

(1c
′
)

i Q
(1d
′
)

j 〈1〉).

Because all P ’s occur to the left of all Q’s one can simplify D so that it has no right-pointing cups or
left-pointing caps. One can also get rid of all degree zero crossings. The remaining map is made up
of dots, cups and caps all of which have positive degree. Of these only the the ij dot, the ji dot, the
right cap and the left cup have degree one. It follows that D is made up precisely of one such map and
hence the Hom space is zero except in the following cases:

(1) (a′, b′, c′, d′) = (a± 1, b∓ 1, c, d),
(2) (a′, b′, c′, d′) = (a, b, c± 1, d∓ 1)
(3) (a′, b′, c′, d′) = (a± 1, b, c± 1, d)
(4) (a′, b′, c′, d′) = (a, b± 1, c, d± 1)

�

The proof above shows, for example, that Hom(P
(a)
i P

(b)
j Q

(1c)
i Q

(1d)
j ,P

(a−1)
i P

(b+1)
j Q

(1c)
i Q

(1d)
j 〈1〉) is

spanned by the diagram

(12)
(a)i (b)j (1c)i (1d)j

(a− 1)i (b+ 1)j (1c)i (1d)j

where the dot is an i − j dot. A basic question is how to check that the diagram above is a nonzero
2-morphism. There are two ways to do this. One way is to check directly in some 2-representation of
H that this diagram is represents a nonzero 2-morphism. A representation of H which is faithful on
2-morphisms was defined in [CLi1], so in principle one can check that the above diagram becomes a
nonzero map in that representation.

A second proof that the above diagram is nonzero proceeds by closing off the diagram, simplifying
using the graphical relations, and then showing that the resulting diagram is nonzero. Since we use this
technique several times in future sections we now explain in this example how this procedure works.
First note that it suffices to show that the diagram

(a) (b)

(a− 1) (b+ 1)

.

is nonzero. To do this we close it off as shown in figure 13 below to get an endomorphism of the identity.
Note that that there are two i − j dots in the diagram (the ones on the two diagonal line segments)
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while the remaining ones are either i− i or j − j dots.

(13)

. . .

(a) (b)

. . .
(a− 1) (b+ 1)
. . . . . .

This procedure can be thought of as defining a linear map

Hom(P
(a)
i P

(b)
j 1n,P

(a−1)
i P

(b+1)
j 1n〈1〉) −→ Hom(1n,1n).

We now explain why this defines a nonzero multiple of the identity endomorphism of 1n. First, the
idempotent labeled (a − 1) can be absorbed into the idempotent (a) and the idempotent (b) can be
absorbed into the idempotent (b + 1). Now, expanding the remaining idempotents (a) and (b + 1)
explicitly as a sum of permutations we see that almost all of the summands contain either two degree
2 dots on the same strand (giving zero) or a left-twist curl (which is also zero). Some of the remaining
terms may have double crossings between strands but these double crossings can all be removed using
the graphical relations.

The only remaining diagrams are a collection of disjoint counterclockwise circles with a degree 2 dot
on them. Each such circle is equal to the identity and hence can be erased. This leaves us with the
empty diagram, which is the identity endomorphism of 1n and is therefore nonzero.

Lemma 3.6. Suppose ∂1 and ∂2 are nonzero 2-morphisms

∂1 : P
(a)
i P

(b)
j Q

(1c)
i Q

(1d)
j → P

(a′)
i P

(b′)
j Q

(1c
′
)

i Q
(1d
′
)

j 〈1〉

∂2 : P
(a)
i P

(b)
j Q

(1c)
i Q

(1d)
j → P

(a′′)
i P

(b′′)
j Q

(1c
′′

)
i Q

(1d
′′

)
j 〈1〉.

Then there exist maps ∂′1, ∂
′
2 that form a commutative square

P
(a)
i P

(b)
j Q

(1c)
i Q

(1d)
j

∂1−−−−→ P
(a′)
i P

(b′)
j Q

(1c
′
)

i Q
(1d
′
)

j 〈1〉y∂2

y∂′2
P

(a′′)
i P

(b′′)
j Q

(1c
′′

)
i Q

(1d
′′

)
j 〈1〉 ∂′1−−−−→ P

(a′′′)
i P

(b′′′)
j Q

(1c
′′′

)
i Q

(1d
′′′

)
j 〈2〉

so that the compositions ∂′2 ◦ ∂1 = ∂′1 ◦ ∂2 are nonzero.
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Proof. This follows from Lemma 3.5. For example, suppose ∂1 is the diagram consisting of an i− j dot
and ∂2 is the diagram consisting of a right cap labeled i. Then ∂′2 is defined as a right cap while ∂′1 is
now an i− j dot.

In the composition ∂′2 ◦∂1 the dot lies below the right cap while in ∂′1 ◦∂2 the right cap lies below the
dot. These diagrams are equivalent just because of the isotopy relation which allows one to slide the
portion of the diagram containing the dot past the portion containg the right cup. Similar equivalences
can be checked for any other pair of nonzero 2-morphisms ∂1, ∂2.

Finally, one can check that these compositions are nonzero just like we proved that the map (12) is
nonzero. �

3.5. Complexes in a 2-representation of ĥ. Since the underlying 2-category K of a 2-representation

of ĥ is a graded, additive, k-linear 2-category, its homotopy category Kom(K) is a graded, additive,
k-linear triangulated 2-category. The objects of Kom(K) are the objects of K, the 1-morphisms are
(possibly unbounded) complexes of 1-morphisms of K and 2-morphisms are chain maps up to homotopy.

Many such complexes arise naturally in categorification of quantum affine algebras. We give an
example of such a complex below. This complex will by useful later.

Fix i ∈ I. We define complexes

P
[1k]
i :=

[
P

(k)
i 〈−2(k − 1)〉 → · · · → P

(3,1k−3)
i 〈−4〉 → P

(2,1k−2)
i 〈−2〉 → P

(1k)
i

]
[1]〈−1〉(14)

Q
[1k]
i :=

[
Q

(1k)
i → Q

(2,1k−2)
i 〈2〉 → Q

(3,1k−3)
i 〈4〉 → · · · → Q

(k)
i 〈2(k − 1)〉

]
[−1]〈1〉(15)

where the right hand term in (14) and the left hand term in (15) are in cohomological degree zero. The
differential in the above complexes is (essentially) defined by a single dot. More precisely, consider a
filling of the hook partition (a, 1k−a) with numbers 1, . . . , a in the row of the hook and a, a+ 1, . . . , k
in the column (so that the unique box in the first row and first column is filled with a). Then the

idempotent defining Q
(a,k−a)
i is the product of the trivial idempotent of C[Sa] ⊂ C[Sk] (embedded as

permutations which fix a+ 1, . . . , k) and the sign idempotent of C[Sk−a+1] (embedded as permutations
which fix 1, . . . , a− 1). Diagrammatically we have

(a, k − a) =
(1k−a+1)

(a)

,

where all strands are labeled by i. The differential Q
(a,1k−a)
i → Q

(a+1,1k−a−1)
i in Q

[1k]
i is defined by the

diagram

(1k−a+1)

(a)

(1k−a+2)

(a− 1)

,
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Notice that there is one degree two dot on the middle downward strand. To see that this defines a
differential (i.e. d2 = 0) note that the picture for d2 is

(1k−a+1)

(a)

(1k−a+2)

(a− 1)

(1k−a+3)

(a− 2)

,

Expanding the middle idempotents (1k−a+2) and (a− 1) explicitly as a sum of permutations we write
the above as a sum of diagrams where there are three (at least) three strands connecting the top
(1k−a+3) box and the bottom (a) box. Each of these three strands contains 0, 1 or 2 dots but it is easy
to check that for any such configuration one gets zero because of the idempotents (1k−a+2) and (a−1).
Therefore all the expansion terms are zero and it follows that d2 = 0.

Finally, we would like to check that d 6= 0. To see this consider the closure of the map with a dot on
each strand except for the strand already containing a dot (meaning that if we erased the idempotents
in the differential we would have a collection of counterclockwise circles each of which has a dot).
Expanding all the idempotents and using that a dot squares to zero one sees that all diagrams vanish
except for the ones containing k counterclockwise circles, each with one dot. Since each such circle is
the identity, it follows this map is nonzero and hence that d 6= 0.

4. Quantum affine algebras and 2-representations of ĝ

4.1. The idempotent vertex presentation. The quantum Heisenberg algebra ĥ plays an important
role in infinite dimensional representation theory in part because it occurs as a subalgebra of an
associated quantum affine algebra. In this section we will define an idempotent version of this quantum
affine Lie algebra, which we denote by U̇q(ĝ). In general this definition involves a parameter c known
as the level. Since we are primarily concerned with the basic representation, which is level one, we have
set c = 1 in the definitions below. For the general definition involving an arbitrary level, see [CLi2].

We define the level one quantum affine algebra U̇q(ĝ) to be the k(q) algebra generated by

Ei,r1λ, Fi,r1λ, Q
(n)
i 1λ, P

(n)
i 1λ, Q

(1n)
i 1λ, P

(1n)
i 1λ, where i ∈ I, r ∈ Z and n ∈ N.

By definition taking n = 0 gives the identity morphism.
We also define the following additional elements

Q
[1n]
i :=

n∑
m=0

(−q)m[m]Q
(1n−m)
i Q

(m)
i and Q

[n]
i :=

n∑
m=0

(−q)m[m]Q
(n−m)
i Q

(1m)
i

P
[1n]
i :=

n∑
m=0

(−q)−m[m]P
(1n−m)
i P

(m)
i and P

[n]
i :=

n∑
m=0

(−q)−m[m]P
(n−m)
i P

(1m)
i

Note that P
[1]
i = −q−1Pi and Q

[1]
i = −q−1Qi. The relations in U̇q(ĝ) are as follows.
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(1) {1λ : λ ∈ X̂} are mutually orthogonal idempotents, moreover

Ei,r1λ = 1µEi,r1λ = 1µEi,r

Fi,r1µ = 1λEi,r1µ = 1λEi,r

where µ = λ+ αi + rcδ
(2) We have

P
(n)
i 1λ = 1µP

(n)
i 1λ = 1µP

(n)
i and P

(1n)
i 1λ = 1µP

(1n)
i 1λ = 1µP

(1n)
i

Q
(n)
i 1µ = 1λQ

(n)
i 1µ = 1λQ

(n)
i and Q

(1n)
i 1µ = 1λQ

(1n)
i 1µ = 1λQ

(1n)
i

where µ = λ+ ncδ.

(3) The subalgebra generated by P s and Qs is isomorphic to the quantum Heisenberg algebra ĥ.
(4) We have

[Q
[1a+1]
i , Ei,b]1λ =

{
q2Q

[1a]
i Ei,b+11λ − q−2Ei,b+1Q

[1a]
i 1λ if a > 0

[2]Ei,b+11λ if a = 0.

q−1[Q
[1a+1]
i , Fi,b]1λ =

{
q−2Q

[1a]
i Fi,b+11λ − q2Fi,b+1Q

[1a]
i 1λ if a > 0

−[2]Fi,b+11λ if a = 0.

q[P
[1a+1]
i , Ei,b+1]1λ =

{
q2Ei,bP

[1a]
i 1λ − q−2P

[1a]
i Ei,b1λ if a > 0

[2]Ei,b1λ if a = 0

[P
[1a+1]
i , Fi,b+1]1λ =

{
q−2Fi,bP

[1a]
i 1λ − q2P

[1a]
i Fi,b1λ if a > 0

−[2]Fi,b1λ if a = 0.

while if 〈i, j〉 = −1 we have

[Q
[1a+1]
j , Ei,b]1λ =

{
qEi,b+1Q

[1a]
j 1λ − q−1Q

[1a]
j Ei,b+11λ if a > 0

Ei,b+11λ if a = 0.

q−1[Q
[1a+1]
j , Fi,b]1λ =

{
q−1Fi,b+1Q

[1a]
j 1λ − qQ[1a]

j Fi,b+11λ if a > 0

−Fi,b+11λ if a = 0

q[P
[1a+1]
j , Ei,b+1]1λ =

{
q−1Ei,bP

[1a]
j 1λ − qP [1a]

j Ei,b1λ if a > 0

Ei,b1λ if a = 0

[P
[1a+1]
j , Fi,b+1]1λ =

{
qFi,bP

[1a]
j 1λ − q−1P

[1a]
j Fi,b1λ if a > 0

−Fi,b1λ if a = 0.

If 〈i, j〉 = 0 then P
[1a]
j 1λ and Q

[1a]
j 1λ commute with both Ei,b1λ and Fi,b1λ.

(5) We have

[Ei,a, Fi,b]1λ =


q−bq〈λ,i〉Q

[1a+b]
i 1λ if a+ b > 0

q−aq−〈λ,i〉P
[1−a−b]
i 1λ if a+ b < 0

[〈λ, i〉+ a]1λ if a+ b = 0.

while if i 6= j then [Ei,a, Fj,b]1λ = 0.
(6) For any m,n ∈ Z we have

Ei,mEi,n−11λ + Ei,nEi,m−11λ = q2 (Ei,m−1Ei,n1λ + Ei,n−1Ei,m1λ)

Fi,n−1Fi,m1λ + Fi,m−1Fi,n1λ = q2 (Fi,nFi,m−11λ + Fi,mFi,n−11λ) .
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(7) For any m,n ∈ Z, if 〈i, j〉 = −1 we have

Ei,mEj,n+11λ − qEj,n+1Ei,m1λ = Ej,nEi,m+11λ − qEi,m+1Ej,n1λ

Fi,m+1Fj,n1λ − qFj,nFi,m+11λ = Fj,n+1Fi,m1λ − qFi,mFj,n+11λ

while if 〈i, j〉 = 0 then

Ei,mEj,n1λ = Ej,nEi,m1λ and Fi,mFj,n1λ = Fj,nFi,m1λ.

(8) If 〈i, j〉 = −1 then∑
σ∈S2

(
Ej,nEi,mσ(1)

Ei,mσ(2)
1λ + Ei,mσ(1)

Ei,mσ(2)
Ej,n1λ

)
=
∑
σ∈S2

[2]Ei,mσ(1)
Ej,nEi,mσ(2)

1λ

and similarly if we replace all Es by F s.

This definition is an idempotent modified version of Drinfeld’s new realization of the quantum affine
algebra. The modification is not entirely trivial. For example, we no longer have the generators qh, q±d

or q±c/2 which are standard in the Drinfeld presentation. Our presentation also differs from Drinfeld’s
by a renormalization which includes certain sign changes. This presentation is described in the last
section of [CLi2] where we show that it is equivalent to Drinfeld’s new realization.

The fact that U̇q(ĝ) is idempotent means that we can think of it as a 1-category. The objects are
labeled by the weights of ĝ while elements like Ei1λ are 1-morphisms between λ and λ+ αi.

4.1.1. The basic representation of Uq(ĝ). The basic representation VΛ0 of the affine Lie algebra ĝ is
characterized by the fact that it is irreducible and that there exists a vector v ∈ VΛ0

such that

(g⊗ C[t]) · v = 0 and c · v = v.

It follows from this that the central element c acts by the identity on all of VΛ0
, so that VΛ0

is a
level one irreducible representation. This representation deforms to give the basic representation of the
quantum affine algebra U̇q(ĝ).

An explicit construction of VΛ0
was given by Frenkel-Kac [FK] and Segal [S] in the case of the

affine Lie algebra (q = 1). The construction, which is known as the homogeneous realization of VΛ0
,

was extended to the quantum affine algebra in [FJ]. It begins by restricting VΛ0
to the homogeneous

Heisenberg subalgebra ĥ ⊂ g. Each vector u ∈ VΛ0
such that ĥ+ · u = 0 generates a copy of the Fock

space F . The space of such vectors has a basis given by Ŵ · v, namely the affine Weyl group orbit of
the highest weight vector v ∈ VΛ0(Λ0). This orbit can be identified with the root lattice Y of g. Thus,

as an ĥ module, VΛ0 decomposes as

VΛ0 |
ĥ

∼= F ⊗k(q) k(q)[Y ].

For α = w · Λ0 ∈ X, the summand F(n) ⊗ α is the weight space in VΛ0
of weight w · Λ0 − nδ. This

bijection between weight spaces of the basic representation and pairs (α, n) ∈ Y × N will be used in
section 5.1. The Frenkel-Kac-Segal construction, as described in [FJ], then uses vertex operators to

extend the action of ĥ on VΛ0
to the entire quantum affine algebra.

4.2. 2-representations of ĝ. Since the affine Lie algebra ĝ also has a description as a Kac-Moody
Lie algebra, there already exist several notions of a 2-representation of ĝ [KL3, R, CK]. Although
the definitions in these papers are slightly different, they are all closely related, and are in some cases
equivalent. For example, the main result of [CKL2] shows that when g = sl2, a 2-representation in the
sense of [CK] induces a 2-representation in the sense of [R]. Similarly, in [CLa] it is shown that a 2-
representation in the sense of [R], together with a mild additional hypothesis, induces a 2-representation
in the sense of [KL3].
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However, in this paper ĝ and its q-deformation U̇q(ĝ) appear not in their Kac-Moody presentation,

but rather in their loop presentation. In particular, the Heisenberg algebra ĥ ⊂ ĝ, which does not
appear in the theory of Kac-Moody categorification, plays a prominent role. In this section we give
a definition of a 2-representation of ĝ which is natural from the loop point of view. This definition is
independent from, but parallel to, the Kac-Moody theory.

Since the basic representation has level one, we consider here only the notion of a level one 2-
representation of ĝ. Higher level 2-representations are also natural and will be discussed in future
work.

A level one 2-representation of ĝ consists of a graded, triangulated, k-linear idempotent complete
2-category K where:

• 0-morphisms (objects) are denoted D(λ) and are indexed by weights λ ∈ X̂,
• 1-morphisms include

(1) the idempotent 1λ which is the identity on D(λ) and zero on D(µ) if µ 6= λ

(2) E
(r)
i,m1λ : D(λ)→ D(λ+ rαi −mrδ) and 1λF

(r)
i,m : D(λ+ rαi +mrδ)→ D(λ)

(3) P
(n)
i 1λ,P

(1n)
i : D(λ)→ D(λ+ nδ) and 1λQ

(n)
i ,Q

(1n)
i : D(λ+ nδ)→ D(λ)

where i ∈ I, m ∈ Z and r, n ∈ N.
• 2-morphisms include a map θi : 1λ → 1λ〈2〉 for each i ∈ I.

Note that if λ, µ ∈ X̂ then Hom(D(λ),D(µ)) is a graded, triangulated, k-linear category where the
objects are the 1-morphisms from D(λ) to D(µ) and the morphisms are 2-morphisms between them.

By convention E
(r)
i,m1λ and 1λF

(r)
i,m are zero if r < 0 and equal 1λ if r = 0. Usually we will write E

(r)
i

and F
(r)
i for E

(r)
i,0 and F

(r)
i,0 .

We say K is integrable if for any root α ∈ X̂ the objects D(λ± nα) are zero for n� 0. Note that if
D(λ) is zero then, by definition, HomK(1λ,1λ〈l〉) = 0 for all l. We say that K is weakly integrable if it
is the direct sum of (possibly infinitely many) integrable 2-representations.

On this data we impose the following conditions.

(1) K is weakly integrable.
(2) If D(λ) 6= 0 then HomK(1λ,1λ〈l〉) is zero if l < 0 and one-dimensional if l = 0. Moreover, the

space of 2-morphisms between any two 1-morphisms is finite dimensional.

(3) E
(r)
i,m1λ and 1λF

(r)
i,−m are left and right adjoints of each other up to shift. More precisely

(a) (E
(r)
i,m1λ)R ∼= 1λF

(r)
i,−m〈r(〈λ, αi〉+ r +m)〉, and

(b) (E
(r)
i,m1λ)L ∼= 1λF

(r)
i,−m〈−r(〈λ, αi〉+ r +m)〉.

(4) The Pi’s and Qi’s define a (weakly integrable) 2-representation of ĥ.
(5) We have

Fi,−mEi,m1λ ∼= Ei,mFi,−m1λ ⊕ 1λ ⊗k V−〈λ,αi〉−m−1 if 〈λ, αi〉+m ≤ 0,

Ei,mFi,−m1λ ∼= Fi,−mEi,m1λ ⊕ 1λ ⊗k V〈λ,αi〉+m−1 if 〈λ, αi〉+m ≥ 0.

(6) For m+ n 6= 0 then there exist distinguished triangles

Q
[1m+n]
i 1λ〈〈λ, αi〉 − n〉 → Ei,mFi,n1λ → Fi,nEi,m1λ if m+ n > 0,

Fi,nEi,m1λ → Ei,mFi,n1λ → P
[1−m−n]
i 1λ〈−〈λ, αi〉 −m〉 if m+ n < 0.

(7) For i ∈ I and m ∈ Z the maps

IθiI : Fi,−mEi,m1λ → Fi,−mEi,m〈2〉1λ if 〈λ, αi〉+m ≤ 0 and

IθiI : Ei,mFi,−m1λ → Ei,mFi,−m〈2〉1λ if 〈λ, αi〉+m ≥ 0

induce an isomorphism between all summands 1λ〈·〉 of the same degree on either side.
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(8) If i 6= j then Ei,m and Fj,n commute.
(9) For i ∈ I and m ∈ Z we have

(a) Ei,mE
(r)
i,m1λ ∼= E

(r+1)
i,m 1λ ⊗k Vr ∼= E

(r)
i,mEi,m1λ and

(b) Fi,mF
(r)
i,m1λ ∼= F

(r+1)
i,m 1λ ⊗k Vr ∼= F

(r)
i,mFi,m1λ.

(10) For i ∈ I and m ∈ Z we have the distinguished triangles

Ei,m−1 ⊗k V1〈−1〉1λ → P
[1]
i Ei,m1λ → Ei,mP

[1]
i 1λ

Ei,mQ
[1]
i 1λ → Q

[1]
i Ei,m1λ → Ei,m+1 ⊗k V11λ

and their adjoints.
(11) If 〈i, j〉 = −1 and m ∈ Z then there exist distinguished triangles

Ei,m−1[1]〈−1〉1λ → Ei,mP
[1]
j 1λ → P

[1]
j Ei,m1λ

Ei,m+11λ → Q
[1]
j Ei,m1λ → Ei,mQ

[1]
j 1λ

and their adjoints. If 〈i, j〉 = 0 then Ei,m1λ and Fi,n1λ commute with P
[1]
j 1λ and Q

[1]
j 1λ.

(12) For i ∈ I and m ∈ Z we have

Ei,m−1Ei,m1λ ∼= Ei,mEi,m−1〈−2〉1λ
Fi,m−1Fi,m1λ ∼= Fi,mFi,m−1〈2〉1λ.

(13) In fact it follows from the relations above that if 〈i, j〉 = −1 and m ∈ Z then

Hom(Ei,mEj,m+11λ,Ej,m+1Ei,m〈1〉1λ) and Hom(Ej,mEi,m+11λ,Ei,m+1Ej,m〈1〉1λ)

are both one-dimensional. If α and β are 2-morphisms which span these spaces, then we require
the relation Cone(α) ∼= Cone(β).

(14) If 〈i, j〉 = −1 and m,n ∈ Z then

Ei,mEj,nEi,m1λ ∼= E
(2)
i,mEj,n1λ ⊕ Ej,mE

(2)
i,m1λ

and similarly if we replace E by F. Meanwhile, Ei,m commutes with Ej,n and Fi,m commutes
with Fj,n if 〈i, j〉 = 0.

The 1-morphisms P
[1n]
i and Q

[1n]
i above denote the complexes defined in (14) and (15).

One difference between the definition above and that of Kac-Moody 2-representations is the appear-
ance of triangulated categories and distinguished triangles. It would be interesting to rephrase the
definition definition above to more closely resemble the defintions from [KL3, R], where all generat-
ing 2-morphisms are written explicitly, though it is not yet clear to us how to do this. Furthermore,
the presence of cones and exact triangles in the relations makes it unclear philosophically how to
conveniently encode the relations for 2-morphisms in a graphical calculus.

4.3. Decategorification. We now explain why a (level one) 2-representation of ĝ decategorifies to

give a (level one) representation of U̇q(ĝ). In other words, why there exists a map U̇q(ĝ)→ K0(K). We
will denote the class of a 1-morphism by square brackets. For example, the class of Pi is [Pi].

Lemma 4.1. We have [P
[1n]
i 1λ] = P

[1n]
i 1λ and [Q

[1n]
i 1λ] = Q

[1n]
i 1λ and likewise if we replace [1n] by

[n].
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Proof. We prove that [P
[1n]
i 1λ] = P

[1n]
i 1λ (the other equalities follow similarly). First recall that

P
(1n−m)
i P

(m)
i = P

(m,1n−m)
i + P

(m+1,1n−m−1)
i . So we get

P
[1n]
i =

n∑
m=1

(−q)−m[m]
(
P

(m,1n−m)
i + P

(m+1,1n−m−1)
i

)
=

n∑
m=1

P
(m,1n−m)
i

(
(−q)−m+1[m− 1] + (−q)−m[m]

)
=

n∑
m=1

(−1)mq−2m+1P
(m,1n−m)
i

= −q−1
n∑

m=1

(−1)m−1q−2(m−1)P
(m,1n−m)
i

= [P
[1n]
i ]

where the last equality follows from the definition of P
[1n]
i . �

The first five relations in U̇q(ĝ) hold as immediate consequences of the corresponding relations in

K. For example, relations (10) and (11) in K decategorify to give relation (4) in U̇q(ĝ). In [CLi2] we

showed that relations (6) and (7) in U̇q(ĝ) are implied by the for all m and n once they are known for
the case m = n. The case m = n, in turn, is an immediate consequence of relations (12) and (13) in K.

Finally, in [CLi2] we showed that relation (8) in U̇q(ĝ) follows from other relations when working
in an integrable representation. Together with lemma 4.1, this completes the check that a level one
2-representation of ĝ descends in the Grothendieck group to a representation of the quantum affine
algebra.

4.4. Toroidal modifications. All definitions above can be extended from the affine case to the
toroidal case as follows. First recall that the Heisenberg 2-category HΓ from [CLi1] has 1-morphisms

Pi and Qi for i ∈ Î a node in the affine Dynkin diagram (not just the finite one); thus 2-morphisms in

the 2category HΓ also incldue generators P0 and Q0, where 0 ∈ Î is the affine node. The 2-category HΓ

categorifies the quantum toroidal Heisenberg algebra, which is a subalgebra of the idempotent quantum

toroidal algebra U̇q(̂̂g).

The definition of a 2-representation of
̂̂
h and ̂̂g is then essentially the same as for ĥ and ĝ, taking into

account the existence of new 1-morphisms P0, Q0, E0,b, F0,b, etc. The categorified vertex operators of

this paper then produce the basic 2-representation of ̂̂g from the Fock space 2-representations of
̂̂
h.

In particular, the structure of the basic representation of U̇q(̂̂g) is very similar to that of the basic

representation of U̇q(ĝ). For example, the underlying vector space for the basic toroidal representation
is

VΛ0 := F̂ ⊗k(q) k(q)[Ŷ ]

where F̂ is the Fock space representation of the quantum toroidal Heisenberg algebra and Ŷ is the
affine root lattice, [FJW]. In section 9 we will give algebraic and geometric categorifications of the

basic representation of U̇q(̂̂g).
All the proofs to follow extend without extra work from the affine case to the toroidal case, with one

exception. The definition of a 2-representation of
̂̂
sl2 should be changed slightly, essentially because

the Dynkin diagram of ŝl2 is not simply-laced. The appropriate definition of Heisenberg category for
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this case is given in the appendix of [CLi1], and after using that definition, all the theorems of the
current paper then carry over.

5. Definitions of categorified vertex operators and main results

5.1. Categorified vertex operators. Let K denote the underlying 2-category of a 2-representation

of ĥ. For any i ∈ I we define the following complexes in the homotopy category Kom(K). We let

C−i (k) :=
[
· · · → P

(−k+l)
i Q

(1l)
i 〈−l〉 → · · · → P

(−k+1)
i Qi〈−1〉 → P

(−k)
i

]
〈k〉[−k](16)

C−i (k) :=
[
· · · → P

(l)
i Q

(1k+l)
i 〈−l〉 → · · · → PiQ

(1k+1)
i 〈−1〉 → Q

(1k)
i

]
(17)

depending on whether k ≤ 0 or k ≥ 0 respectively. Here the right most term is in cohomological degree
zero and the minus signs indicate that the complex is unbounded below. Likewise, we let

C+
i (k) :=

[
Q

(−k)
i → PiQ

(−k+1)
i 〈1〉 → · · · → P

(1l)
i Q

(−k+l)
i 〈l〉 → . . .

]
〈−k〉[k](18)

C+
i (k) :=

[
P

(1k)
i → P

(1k+1)
i Qi〈1〉 → · · · → P

(1k+l)
i Q

(l)
i 〈l〉 → . . .

]
(19)

depending on whether k ≤ 0 or k ≥ 0. Here the left most term is in cohomological degree zero and
the plus signs indicate that the complex is unbounded above. The differentials in these complexes are
either given by a cap or a cup. For example, the differentials

P
(l)
i Q

(1k+l)
i 〈−l〉 −→ P

(l−1)
i Q

(1k+l−1)
i 〈−l + 1〉 and

P
(1k+l)
i Q

(l)
i 〈l〉 −→ P

(1k+l+1)
i Q

(l+1)
i 〈l + 1〉

in the definition of C−i (k) and C+
i (k) when k ≥ 0 are given by

(l) (1k+l)

(l − 1) (1k+l−1)

and

(1k+l) (l)

(1k+l+1) (l + 1)

.

Lemma 5.1. The maps defined above define a differential (i.e. they square to zero).

Proof. We consider C−i . Applying the differential twice gives the following

(l − 1) (1k+l−1)

(l − 2) (1k+l−2)

=

(l) (1k+l)

(l) (1k+l)

(l − 2) (1k+l−2)

=

(2) (12)

(l − 2) (1k+l−2)

(l) (1k+l)

= 0.

The first and second equalities above follows from the fact for s ≥ 0, if we denote by c(s) and c(1s) the
idempotents in k[Ss] corresponding to the trivial and sign representation, then after embedding k[Sr]
into k[Sr+s] in the natural way we have

c(r)c(r+s) = c(r+s) = c(r+s)c(r) and c(1r)c(1r+s) = c(1r+s) = c(1r+s)c(1r).

Now last equality in the proof of the Lemma follows from the fact that c(2)c(12) = 0 ∈ k[S2]. Thus C−i
is a chain complex. The proof that C+

i is a chain complex is the same. �



VERTEX OPERATORS AND 2-REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS 25

5.2. Defining a 2-representation of ĝ. Suppose K is an integrable 2-representation of ĥ. Since the
object labeled n is zero for n � 0 we can relabel the objects of K so that 1n = 0 if n < 0. We will
assume this from now on.

We now define a 2-representation of ĝ by describing the objects, 1-morphisms and 2-morphisms. If

λ ∈ X̂ does not occur in the basic representation VΛ0
of ĝ then we define D(λ) := 0. On the other

hand, any nonzero weight space of VΛ0 corresponds to a weight λ ∈ X̂ of the form λ = w ·Λ0−nδ where
w ∈Wĝ and n ∈ N (this w and n are uniquely determined by λ). In this case we define D(λ) := D(n).
Since the Wĝ orbit of Λ0 is in bijection with the root lattice Y of g, it follows that nonzero objects of
are in bijection with pairs (α, n) where α ∈ Y and n ∈ N.

Next we define 1-morphisms Ei,m1λ and 1λFi,m as 1-morphisms in Kom(K). We set

(20) Ei,m1λ 7→ C−i (〈λ, αi〉+ 1 +m)1n and 1λFi,m 7→ 1nC
+
i (〈λ, αi〉+ 1−m).

The 1-morphisms P
[1n]
i 1λ and Q

[1n]
i 1λ are defined as in (14) and (15).

5.2.1. Divided powers. One can also define divided powers E
(r)
i,m1λ and 1λF

(r)
i,−m in Kom(K), though

these will not play a role in what follows. If k := −(〈λ, αi〉+ r +m) ≥ 0 we define

E
(r)
i,m1λ :=

· · · → ⊕
w(µ)≤r,|µ|=l

P
(kr,µt)
i Q

(µ)
i 〈−l〉 → · · · → P

(kr,1)
i Qi〈−1〉 → P

(kr)
i

 〈−kr−(r
2

)
〉[kr+

(
r

2

)
]

where the sum is over all partitions µ of size |µ| which fit in a box of width r (w(µ) denotes the width
of µ).

Similarly, if k := 〈λ, αi〉+ r +m ≥ 0 we define

E
(r)
i,m1λ :=

· · · → ⊕
w(µ)≤r,|µ|=l

P
(µt)
i Q

(rk,µ)
i 〈−l〉 → · · · → PiQ

(rk,1)
i 〈−1〉 → Q

(rk)
i

 〈−(r
2

)
〉[
(
r

2

)
].

The differentials are defined using caps as above. For example, in the first complex above there is a
map

P
(kr,µt)
i Q

(µ)
i 〈−l〉 → P

(kr,νt)
i Q

(ν)
i 〈−l + 1〉

if and only if µ is obtained from ν by adding a box. Moreover, in this case, this map is unique up to
scalar and given by a cap. The scalar multiples need to be chosen so as to satisfy ∂2 = 0, but it is not
hard to see (using the same arguments as in lemmas 7.6 or 7.4) that any two such choices of scalars
yield homotopic complexes.

The divided powers 1λF
(r)
i,−m are defined as the appropriately shifted right (or equivalently left)

adjoints of the complexes above.

5.2.2. Definition of θ. For each i ∈ I we have the following 2-morphism in K

: 1n → 1n〈2〉i

Replacing 1n by 1λ defines the map θi1λ : 1λ → 1λ〈2〉.

5.3. The main results. The main work in this paper is proving that the functors defined above satisfy
the relations required for a 2-representation of ĝ. Below we summarize all the relations that we check
directly.

Theorem 5.2. In the homotopy 2-category Kom(K) we have the following relations.

• [Proposition 6.1] For i ∈ I and m ∈ Z, r ∈ N we have

(1) (E
(r)
i,m1λ)R ∼= 1λF

(r)
i,−m〈r(〈λ, αi〉+ r +m)〉
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(2) (E
(r)
i,m1λ)L ∼= 1λF

(r)
i,−m〈−r(〈λ, αi〉+ r +m)〉

(3) (P
[1n]
i 1λ)R ∼= Q

[1n]
i 〈−n〉

(4) (P
[1n]
i 1λ)L ∼= Q

[1n]
i 〈n〉.

• [Proposition 6.3] For i ∈ I we have

Fi,−mEi,m1λ ∼= Ei,mFi,−m1λ ⊕ 1λ ⊗k V−〈λ,αi〉−m−1 if 〈λ, αi〉+m ≤ 0

Ei,mFi,−m1λ ∼= Fi,−mEi,m1λ ⊕ 1λ ⊗k V〈λ,αi〉+m−1 if 〈λ, αi〉+m ≥ 0.

• [Proposition 6.12] Under the two isomorphisms above, for i ∈ I and m ∈ Z the maps

IθiI : Fi,−mEi,m1λ → Fi,−mEi,m〈2〉1λ if 〈λ, αi〉+m ≤ 0 and

IθiI : Ei,mFi,−m1λ → Ei,mFi,−m〈2〉1λ if 〈λ, αi〉+m ≥ 0

induce an isomorphism between all summands 1λ〈·〉 of the same degree on either side.
• [Proposition 6.8] If m+ n 6= 0 then for any i ∈ I there exist distinguished triangles

Q
[1m+n]
i 1λ〈〈λ, αi〉 − n〉 → Ei,mFi,n1λ → Fi,nEi,m1λ if m+ n > 0

Fi,nEi,m1λ → Ei,mFi,n1λ → P
[1−m−n]
i 1λ〈−〈λ, αi〉 −m〉 if m+ n < 0.

• [Proposition 8.1] For i 6= j ∈ I and m,n ∈ Z we have Fj,nEi,m1λ ∼= Ei,mFj,n1λ.

• [Proposition 7.3] For i ∈ I and m ∈ Z we have Ei,mEi,m1λ ∼= E
(2)
i,m〈−1〉1λ ⊕ E

(2)
i,m〈1〉1λ.

• [Proposition 7.1] For i ∈ I and m ∈ Z we have the distinguished triangles

Ei,m−1 ⊗k V1〈−1〉1λ → P
[1]
i Ei,m1λ → Ei,mP

[1]
i 1λ

Ei,mQ
[1]
i 1λ → Q

[1]
i Ei,m1λ → Ei,m+1 ⊗k V11λ

Q
[1]
i Fi,m1λ → Fi,mQ

[1]
i 1λ → Fi,m+1 ⊗k V1〈1〉1λ

Fi,m−1 ⊗k V11λ → Fi,mP
[1]
i 1λ → P

[1]
i Fi,m1λ.

• [Proposition 8.2] If 〈i, j〉 = −1 then there exist distinguished triangles

Ei,m−1[1]〈−1〉1λ → Ei,mP
[1]
j 1λ → P

[1]
j Ei,m1λ

Ei,m+11λ → Q
[1]
j Ei,m1λ → Ei,mQ

[1]
j 1λ

Fi,mQ
[1]
j 1λ → Q

[1]
j Fi,m1λ → Fi,m+1[−1]〈1〉1λ

P
[1]
j Fi,m1λ → Fi,mP

[1]
j 1λ → Fi,m−11λ

while if 〈i, j〉 = 0 then Ei,m and Fi,m commute with P
[1]
j and Q

[1]
j .

• [Proposition 7.5] For i ∈ I and any m ∈ Z we have

Ei,m−1Ei,m1λ ∼= Ei,mEi,m−1〈−2〉1λ.

• [Proposition 8.3] If 〈i, j〉 = −1 then there exist unique (up to a multiple) nonzero maps

α ∈ Hom(Ei,mEj,m+11λ,Ej,m+1Ei,m〈1〉1λ) and β ∈ Hom(Ej,mEi,m+11λ,Ei,m+1Ej,m〈1〉1λ)

for any m ∈ Z. The cones of these maps are isomorphic: Cone(α) ∼= Cone(β). Meanwhile, if
〈i, j〉 = 0 then Ei,m and Ej,n commute for any m,n ∈ Z.

Corollary 5.3. Given a 2-representation K of ĥ, the definitions of E’s and F’s from section 5.2 induce
a 2-representation of ĝ on ⊕λ∈Y,n∈ZD(n).
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Proof. The relations we need to check are a consequence of the relations in theorem 5.2, with two
exceptions.

First, the definition of a 2-representation of ĝ from section 4.2 includes the condition Ei,mE
(r)
i,m1λ ∼=

E
(r+1)
i,m ⊗k Vr although theorem 5.2 does not claim to prove this condition. The reason for this is that

the existence of these divided power as well as the relations they satisfy follow formally from the other
relations. This will be proved in [Cau]. For this reason we do not need to check this condition directly

in this paper (except when r = 1). Indeed, the somewhat complicated definition of E
(r)
i,m indicates that

such a check would be quite tedious.
Since we do not check this condition it would have been more honest to remove the condition on

divided powers from our definition of a 2-representation of ĝ. We have elected to leave it in, however,
since these divided powers are natural categorically and we prefer to emphasize their appearance at
the expense of some details.

Second, in theorem 5.2 we never check the Serre relation, namely that

Ei,mEj,nEi,m1λ ∼= E
(2)
i,mEj,n1λ ⊕ Ej,mE

(2)
i,m1λ

if 〈i, j〉 = −1. The reason is that this follows formally from the other relations. This should not
come as a complete surprise since it is known that (at the decategorified level) the Serre relation in an
integrable representation is redundant. The categorical analog of this fact is proved in [Cau]. �

6. The sl2 relations

In this section we prove the sl2 relations which appear in Theorem 5.2. Since we are only dealing
with sl2 we abbreviate Pi by P, Qi by Q while λ is now just the integer 〈λ, αi〉.

Proposition 6.1. The left and right adjoints of E
(r)
i,m1λ and P

[1n]
i 1λ are given by

(E
(r)
i,m1λ)R ∼= 1λF

(r)
i,−m〈r(λ+ r +m)〉 and (E

(r)
i,m1λ)L ∼= 1λF

(r)
i,−m〈−r(λ+ r +m)〉

(P
[1n]
i 1λ)R ∼= 1λQ

[1n]
i 〈−n〉 and (P

[1n]
i 1λ)L ∼= 1λQ

[1n]
i 〈n〉.

Proof. This is a consequence of the fact that PR ∼= Q〈−1〉 and PL ∼= Q〈1〉. �

6.1. Gaussian elimination. The following result is a slight generalization of a lemma which Bar-
Natan [BN] calls “Gaussian elimination”. We will use it to simplify complexes in the homotopy category
of H.

Lemma 6.2. Let X,Y, Z,W,U, V be four objects in an additive category and consider a complex

(21) · · · → U
u−→ X ⊕ Y f−→ Z ⊕W v−→ V → . . .

where f =

(
A B
C D

)
and u, v are arbitrary morphisms. If D : Y →W is an isomorphism, then (21) is

homotopic to a complex

· · · → U
u−→ X

A−BD−1C−−−−−−−→ Z
v|Z−−→ V → . . .(22)

Proof. The key is the following commutative diagram:

. . . // U
u //

id

��

X ⊕ Y
f //

α

��

Z ⊕W

β

��

v // V //

id

��

. . .

. . . // U
αu // X ⊕ Y

g // Z ⊕W
vβ−1

// V // . . .
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where

g =

(
A−BD−1C 0

0 D

)
α =

(
1 0

D−1C 1

)
β =

(
1 −BD−1

0 1

)
.

The vertical map of complexes is a homotopy equivalence and it is straightforward to check that the
bottom row is homotopic to (22). �

6.2. The basic sl2 commutator relation.

Proposition 6.3. We have

Fi,−mEi,m1λ ∼= Ei,mFi,−m1λ ⊕ 1λ ⊗k V−λ−m−1 if λ+m ≤ 0(23)

Ei,mFi,−m1λ ∼= Fi,−mEi,m1λ ⊕ 1λ ⊗k Vλ+m−1 if λ+m ≥ 0.(24)

We will only prove (24) as (23) follows similarly. Because of the way Ei,m is defined it suffices to
prove the case m = 0. To do this we identify in the following two propositions explicit expressions for
FiEi1λ and EiFi1λ which we then compare. For simplicity we will write E and F for Ei and Fi.

Proposition 6.4. The composition FE1λ is homotopic to the complex

(25) · · · →
⊕
i≥0,−l

P(i+1,1λ+i+l)Q(l+i+1,1λ+i)〈l〉 →
⊕

i≥0,−l−1

P(i+1,1λ+i+l+1)Q(l+i+2,1λ+i)〈l + 1〉 → . . .

where the nonzero part of the differential maps the summand P(i+1,1λ+i+l)Q(l+i+1,1λ+i)〈l〉 to the two
terms

P(i+1,1λ+i+l+1)Q(l+i+2,1λ+i)〈l + 1〉 and P(i,1λ+i+l)Q(l+i+1,1λ+i−1)〈l + 1〉
using a cup and cap as in figures (26) and (27) below.

(26)
(i+ 1, 1λ+i+l) (l + i+ 1, 1λ+i)

(i) (1λ+i+l+1) (l + i) (1λ+i+1)

(i) (1λ+i+l+2) (l + i+ 1) (1λ+i+1)

(i+ 1, 1λ+i+l+1) (l + i+ 2, 1λ+i)

(27)
(i+ 1, 1λ+i+l) (l + i+ 1, 1λ+i)

(1λ+i+l+1) (i) (1λ+i+1) (l + i)

(1λ+i+l+1) (i− 1) (1λ+i) (l + i)

(i, 1λ+i+l) (l + i+ 1, 1λ+i−1)

Proof. The composition FE1λ is equal to the complex

(28) · · · →
⊕
i≥0,−l

P(1λ+1+i+l)Q(l+i)P(i)Q(1λ+1+i)〈l〉 → . . .
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where the terms occurs in cohomological degree l. One can decompose the Q(l+i)P(i) part of the
expression to obtain

(29) · · · →
⊕

i≥0,−l≥j−i

P(1λ+1+i+l)P(i−j)Q(l+i−j)Q(1λ+1+i) ⊗k Vj〈l〉 → . . .

where Vj is the graded vector space in (2). Now, by Proposition 3.2, each term above breaks up into

four terms. Let us consider the term P(i0−j0,1λ+i0+l0+1)Q(l0+i0−j0,1λ+1+i0 ) for some fixed (i0, j0, l0). This
indecomposable 1-morphism occurs four times, namely, when

(30) (i, j, l) equals (i0, j0, l0), (i0 + 1, j0 + 2, l0), (i0 + 1, j0 + 1, l0 − 1) or (i0, j0 + 1, l0 + 1).

When −1 ≤ j0 < min(i0, i0 + l), these terms taken together form a subcomplex

(31) P(i0−j0,1λ+1+i0+l0 )Q(l0+i0−j0,1λ+1+i0 )〈l0〉 ⊗k (Vj0+1〈−1〉 → Vj0 ⊕ Vj0+2 → Vj0+1〈1〉)

We empose the restriction −1 ≤ j0 < min(i0, i0 + l0) because otherwise the term in (29) disappears for
at least one of the choices of (i, j, l) in (30). In lemma 6.5 below, we show that the complex in equation
(31) exact. Thus we can cancel out such terms using the cancellation lemma 6.2.

If j0 > min(i0, i0 + l0) then the term P(i0−j0,1λ+i0+l0+1)Q(λ+i0−j0,1λ+1+i0 ) vanishes because (29)
disappears for all choices of (i, j, l) in (30). So it remains to study the case j0 = min(i0, i0 + l0). For
convenience let us assume l0 ≥ 0 so that j0 = i0 (the case l0 ≤ 0 is similar).

Case j0 = i0, |l0| ≥ 2. Here we are interested in terms of the form P(1λ+1+i0+l0 )Q(l0,1
λ+1+i0 ) when

l0 ≥ 2. Looking again at (29), such terms occur when

(i, j, l) equals (i0, i0, l0), (i0, i0 − 1, l0 − 1), (i0 + 1, i0 + 1, l0 − 1) or (i0 + 1, i0, l0 − 2).

So the resulting complex looks like

P(1λ+1+i0+l0 )Q(l0,1
λ+1+i0 )〈l0 − 1〉 ⊗k (Vi0〈−1〉 → Vi0+1 ⊕ Vi0−1 → Vi0〈1〉) .

The same type of argument used in lemma 6.5 works to show that it is exact.
Case j0 = i0, l0 = 0, 1. Here we are looking at terms of the form P(1a)Q(1a). Such terms occur in

(29) when

(i, j, l) equals (a− λ, a− λ− 1,−1), (a− λ, a− λ, 0), (a− λ− 1, a− λ− 2, 0) or (a− λ− 1, a− λ− 1, 1)

and again we get an exact complex.
Case j0 = −2. So it seems like every complex is exact, but we missed one case, namely terms of

the form P(i+1,1λ+i+l)Q(l+i+1,1λ+i) which occur when j0 = −2. Then three of the four terms in the

complex in (31) are zero and we are left with just one term P(i+1,1λ+i+l)Q(l+i+1,1λ+i)〈l〉 in degree l.
Such indecomposable terms only occur once and hence cannot cancel out with anything else. Putting
all these terms together we obtain a complex like in (25).

Finally, we need to determine the differential

P(i+1,1λ+i+l)Q(l+i+1,1λ+i)〈l〉 → P(i+1,1λ+i+l+1)Q(l+i+2,1λ+i)〈l + 1〉.
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For degree reasons it is not hard to see that the cancellation above does not alter the original differential
between such terms. This differential is given by the following composition

(i+ 1, 1λ+i+l) (l + i+ 1, 1λ+i)

(1λ+i+l) (i+ 1) (l + i+ 1) (1λ+i)

(1λ+i+l) (l + i+ 1) (i+ 1) (1λ+i)

(1λ+i+l+1) (l + i+ 2) (i+ 1) (1λ+i)

(1λ+i+l+1) (i+ 1) (l + i+ 2) (1λ+i)

(i+ 1, 1λ+i+l+1) (l + i+ 2, 1λ+i)

where the cup in the middle of the diagram comes from the differential in the complex for F. It is not
hard to check that this diagram simplifies to give the map in (26). Likewise, one has such a diagram
which simplifies to give the map in (27). Finally, all the other possible differential have to be zero by
lemma 3.4. Thus, in the end, we get the complex in (25). �

Lemma 6.5. The complex in (31) is exact.

Proof. We need to show that the complex

(32) P(i0−j0,1λ+1+i0+l0 )Q(l+i0−j0,1λ+1+i0 )〈l0〉 ⊗k (Vj0+1〈−1〉 → Vj0 ⊕ Vj0+2 → Vj0+1〈1〉)

is exact. To do this we first show that the map α : Vj0+1〈−1〉 → Vj0+2 at the bottom left of the
complex is injective. This map is given as a sum of the following compositions:
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(i0 − j0, 1λ+1+i0+l0) (l0 + i0 − j0, 1λ+1+l0)

(1λ+1+i0+l0) (i0 − j0) (l0 + i0 − j0 − 1) (1λ+2+i0)

(1λ+1+i0+l0) (l0 + i0) (i0 + 1) (1λ+2+i0)

(1λ+2+i0+l0) (l0 + i0 + 1) (i0 + 1) (1λ+2+i0)

(1λ+2+i0+l0) (i0 − j0 − 1) (l0 + i0 − j0 − 1) (1λ+2+i0)

(i0 − j0, 1λ+1+i0+l0) (l0 + i0 − j0, 1λ+1+l0)

Here there are j0 + 1 right pointing cups in the bottom part of the above picture, one left pointing cup
in the middle, and j0 + 2 left pointing caps in the top part. The sum is taken over a basis of the space
of solid dots on the right pointing cups (this space is Vj0+1 given by 0, 1, . . . , j0 + 1 dots) and a basis
for the space of solid dots on the left cups (this space is Vj0+2 given by 0, 1, . . . , j0 + 2 dots).

If there are k dots on the right pointing cups then the diagram evaluates to zero unless the left
pointing caps have either j0 + 1− k or j0 + 2− k dots. This is because of the following three facts:

• two dots on the same strand is zero
• a counter-clockwise circle with no dots is also zero
• a counter-clockwise loop on an upward strand is zero.

Now let us look at the two cases when the diagram is nonzero.
Case 1. In the first case, when the total number of dots is j0 + 1 the diagram simplifies to

(i0 − j0, 1λ+1+i0+l0) (l0 + i0 − j0, 1λ+1+l0)

(1λ+1+i0+l0) (i0 − j0) (l0 + i0 − j0 − 1) (1λ+2+i0)

(1λ+2+i0+l0) (i0 − j0 − 1)(l0 + i0 − j0 − 1) (1λ+2+i0)

(i0 − j0, 1λ+1+i0+l0) (l0 + i0 − j0, 1λ+1+l0)

.

In this simplification we use the fact that a counter-clockwise circle with a degree two dot is equal to
the identity and hence can be erased. Let us call the composition in the above diagram f1. Now, the
left part of the diagram, the part which involves only Ps, is the composition

P(a,1b) → P(a)P(1b) → P(a−1)PP(1b) → P(a−1)P(1b+1) → P(a,1b)
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where a = i0− j0 and b = λ+1+ i0 + l0. It is an exercise in the representation theory of the symmetric
group that this composition is a nonzero multiple of the identity. Thus f1 is (a nonzero multiple of)
the identity.

Case 2. In the second case, when the total number of dots is j0 +2 the diagram simplifies to almost
the same thing, namely:

(i0 − j0, 1λ+1+i0+l0) (l0 + i0 − j0, 1λ+1+l0)

(1λ+1+i0+l0) (i0 − j0) (l0 + i0 − j0 − 1) (1λ+2+i0)

(1λ+2+i0+l0) (i0 − j0 − 1) (l0 + i0 − j0 − 1) (1λ+2+i0)

(i0 − j0, 1λ+1+i0+l0) (l0 + i0 − j0, 1λ+1+l0)

Let us denote this map by f2.
In terms of f1 = id and f2 the matrix for α : Vj0+1 → Vj0+2 is

α =


0 . . . 0 f2

0 . . . f2 id
. . . . . . . . . . . .
f2 id 0 . . .
id 0 . . . 0.


Note that there are j0 + 2 rows and j0 + 1 columns in the above matrix. Since this matrix has rank
j0 + 1, it follows that α : Vj0+1〈−1〉 → Vj0+2 is injective.

An almost identical analysis shows that the second map β : Vj0+2 → Vj0+1〈1〉 in (32) is surjective.
Thus the complex in (32) is exact, since the first map is injective, the second is surjective and the
dimension of the middle term is the sum of the dimensions of the right and left terms. �

Proposition 6.6. The composition EF1λ is homotopic to the complex in (25) direct sum 1λ ⊗k Vλ−1.

Proof. The composition EF1λ is given by

(33) · · · →
⊕
i≥0

P(i)Q(1λ−1+i)P(1λ−1+i+l)Q(i+l)〈l〉 → . . .

which we can rewrite as

(34) · · · →
⊕
i,j≥0

P(i)P(1λ−1+i+l−j)Q(1λ−1+i−j)Q(i+l) ⊗k Vj〈l〉 → . . .

Now consider the term P(i0,1
λ−1+i0+l0−j0 )Q(i0+l0,1

λ−1+i0−j0 ). Such a term occurs when

(i, j, k) equals (i0, j0, l0), (i0 − 1, j0 − 2, l0), (i0, j0 − 1, l0 − 1) or (i0 − 1, j0 − 1, l0 + 1).

Thus we end up with a complex

(35) P(i0,1
λ−1+i0+l0−j0 )Q(i0+l0,1

λ−1+i0−j0 )〈l0〉 ⊗k (Vj0−1〈−1〉 → Vj0 ⊕ Vj0−2 → Vj0−1〈1〉) .

The same argument as in lemma 6.5 shows that this complex is exact with the following possible
exceptions: i0 = 0 or j0 = 0.
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Case i0 = 0, j0 > 0, l0 ≥ 2. Here we have terms of the form P(1λ−1+l0−j0 )Q(l0,1
λ−1−j0 ). If l0 ≥ 2

then one can check again by looking at (34) that there are four cases when such a term occurs, namely
when

(i, j, l) equals (0, j0, l0), (0, j0 − 1, l0 − 1), (0, j0 + 1, l0 − 1) or (0, j0, l0 − 2).

Thus we end up with a complex

P(1λ−1+l0−j0 )Q(l0,1
λ−1−j0 )〈l0 − 1〉 ⊗k (Vj0〈−1〉 → Vj0−1 ⊕ Vj0+1 → Vj0〈1〉)

and one can prove like before that if j0 > 0 then it is exact. Likewise, one obtains an exact sequence
if l0 ≤ −2.

Case i0 = 0, j0 > 0, l0 = −1, 0, 1. This time we end up with terms of the form P(1a)Q(1a) for some
a. Such terms occur when

(i, j, l) equals (0, λ− 1− a, 0), (1, λ+ 1− a, 0), (0, λ− a, 1) or (1, λ− a,−1).

So again, if a > 0 we obtain a complex

P(1a)Q(1a) ⊗k (Vλ−a〈−1〉 → Vλ−1−a ⊕ Vλ+1−a → Vλ−a〈1〉)

which, by the same type of argument as in lemma 6.5, is exact. The reason a = 0 is special is that we
require that j0 ≤ min(λ − 1 + i, λ − 1 + i + l). So if a = 0 this condition is violated for three of the
terms in the complex above and we end up with only 1λ ⊗k Vλ−1.

Case j0 = 0. Finally, if j0 = 0 then three of the four terms in the complex (35) become zero and
we end up with

P(i0,1
λ−1+i0+l0 )Q(i0+l0,1

λ−1+i0 )〈l0〉 ⊗k (0→ V0 ⊕ 0→ 0) ∼= P(i0,1
λ−1+i0+l0 )Q(i0+l0,1

λ−1+i0 )〈l0〉.

Putting these terms together leaves us with a complex

· · · →
⊕

i≥1,−l+1

P(i,1λ−1+i+l)Q(i+l,1λ−1+i)〈l〉 → . . .

Notice that after replacing i by i+1 the terms are the same terms as those in the complex (25). Tracing
through the differentials as before it is not hard to see that they are the same as those in (26) and (27),
at least up to a nonzero multiple. Although these nonzero multiples may differ, one can show that the
particular choice of multiples does not matter since any two such complexes must be homotopic.

Finally, one can check that the term 1λ ⊗k Vλ−1 is a direct summand (i.e. there are no differentials
into it or out of it). In fact, by adjunction one can check that

Hom(P(i+1,1λ−1+i)Q(i,1λ+i)〈−1〉,1λ ⊗k Vλ−1) = 0 = Hom(1λ ⊗k Vλ−1,P
(i,1λ+i)Q(i+1,1λ−1+i)〈1〉)

if i ≥ 1. For example, the left hand space is equal to

Hom(Q(i,1λ+i)〈−1〉, (P(i+1,1λ−1+i))R ⊗k Vλ−1) = Hom(Q(i,1λ+i),Q(i+1,1λ−1+i) ⊗k Vλ−1〈−λ− 2i+ 1〉)

= ⊕λ−1
j=0 Hom(Q(i,1λ+i),Q(i+1,1λ−1+i)〈−2i− 2j〉)

which is zero since 2i+ 2j > 0 if j ≥ 0 and i ≥ 1.
It follows that EF1λ is a direct sum of the complex in (25) and 1λ⊗k Vλ−1 which is what we needed

to prove. �

Remark 6.7. If λ ≤ 0 the argument is the same. In that case one shows that EF1λ is the complex

· · · →
⊕
i≥0,−l

P(−λ+i+2,1i+l−1)Q(−λ+i+l+2,1i−1)〈l〉 →
⊕

i≥0,−l−1

P(−λ+i+2,1i+l)Q(−λ+i+l+3,1i−1)〈l + 1〉 → . . .

where the differentials are given by cups and caps like the ones in (26) and (27).
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6.3. The loop sl2 commutator relation.

Proposition 6.8. In Kom(K) there exist distinguished triangles

Q
[1m+n]
i 〈λ− n〉1λ → Ei,mFi,n1λ → Fi,nEi,m1λ if m+ n > 0

Fi,mEi,n1λ → Ei,nFi,m1λ → P
[1−m−n]
i 〈−λ−m〉1λ if m+ n < 0

where λ = 〈λ, αi〉.

Remark 6.9. It is possible to see in simple examples that the triangles above do not split. For
example, in order to split the first triangle we need (at least) a non-zero map Fi,nEi,m1λ → Ei,mFi,n1λ.
Now, if we take m = 1, n = 0 then by adjunction and using that EiEi,1 ∼= Ei,1Ei〈−2〉 it is not difficult
to check that

Hom(FiEi,11λ,Ei,1Fi1λ) ∼= Hom(EiEi,11µ,EiEi,1〈−4〉1µ)

where µ = λ − αi. Now, you can choose µ so that 1µ = 10 and the complexes for Ei,1 and Ei start
with Pi and id respectively. Then, because Qi1µ = 0, one can check that EiEi,11µ ∼= Pi10[1] and
hence Hom(EiEi,11µ,EiEi,1〈−4〉1µ) ∼= Hom(Pi,Pi〈−4〉) = 0. So, in this instance, the first triangle in
Proposition 6.8 does not split.

Proof. We prove only the first exact triangle (the second triangle follows by taking adjoints). We
assume that λ ≥ n+ 1 (a similar proof works if λ ≤ n+ 1). As usual we write P and Q for Pi and Qi.

First we identify Fi,nEi,m1λ explicitly just like in the proof of proposition 6.3. The composition
Fi,nEi,m1λ is equal to

· · · →
⊕
i≥0

P(1λ+1+i+l−n)Q(l+i)P(i)Q(1λ+1+m+i)〈l〉 → . . .

just like the complex in equation (28). Then the same proof as that of proposition 6.4 shows that this
is homotopic to the complex
(36)

· · · →
⊕
i≥0,−l

P(i+1,1λ+i+l−n)Q(l+i+1,1λ+m+i)〈l〉 →
⊕

i≥0,−l−1

P(i+1,1λ+i+l+1−n)Q(l+i+2,1λ+m+i)〈l + 1〉 → . . .

which is just like the complex in (25).
On the other hand, the composition Ei,mFi,n1λ is given by

(37) · · · →
⊕
i≥0

P(i)Q(1λ−1+i+m)P(1λ−1+i+l−n)Q(i+l)〈l〉 → . . .

just like in equation (33). Cancelling out terms as in proposition 6.6 they all cancel with the exception
of terms just like those appearing in (36) and terms involving only Q’s (this is in contrast with extra
copies of the identity in the computation of EF1λ). Terms involving only Q’s can occur in (37) only
when i = 0 and l = 0, . . . ,m. In other words, we get the complex

Q(1λ−1+m)
[
P(1λ−1−n) → QP(1λ−n)〈1〉 → · · · → Q(m)P(1λ−1+m−n)〈m〉

]
where the left-most term is in degree zero. By lemma 6.10 the terms involving only Q’s in this complex

cancel out to give Q[1m+n]〈λ− n〉.
The left over terms in Ei,mFi,n1λ cancel out, just like in the proof of the [Ei,Fi] commutator relation,

to leave us with the complex for Fi,nEi,m1λ from (36). For the same degree reasons as in the proof of

lemma 6.10, this cancellation does not change the differentials in Q[1m+n]〈λ− n〉.
Finally we show that, although Q[1m+n]〈λ − n〉 is not a direct summand of Ei,mFi,n1λ, there is a

natural inclusion map

Q[1m+n]〈λ− n〉 → Ei,mFi,n1λ.
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To see this one needs to check that there are no maps from the term Q(l,1m+n−l)〈λ − 1 + 2l〉 inside

Q[1m+n]〈λ〉 (which lies in cohomological degree l ≥ 1) to a term in cohomological degree (l+ 1) in (36).
By adjunction we have:

Hom(Q(l,1m+n−l)〈λ− 1 + 2l〉,P(i+1,1λ+i+l+1)Q(l+i+2,1λ+m+n+i)〈l + 1〉)
∼= Hom(P

(i+1,1λ+i+l+1)
L Q(l,1m+n−l),Q(l+i+2,1λ+m+n+i)〈−λ− l + 2〉)

∼= Hom(Q(i+1,1λ+i+l+1)Q(l,1m+n−l)〈λ+ 2i+ l + 2〉,Q(l+i+2,1λ+m+n+i)〈−λ− l + 2〉)
∼= Hom(Q(i+1,1λ+i+l+1)Q(l,1m+n−l),Q(l+i+2,1λ+m+n+i)〈−2(λ+ i+ l)〉)

which is zero since λ, i ≥ 0 and l ≥ 1. Thus we end up with an exact triangle

Q[1m+n]〈λ− n〉1λ → Ei,mFi,n1λ → Fi,nEi,m1λ

as in the statement of the proposition. �

Lemma 6.10. Modulo terms of the form P(1m)Q(1n)Q(n′) where m > 0, the complex

Q(1a+l)
[
P(1a−b) → · · · → P(1a)Q(b)〈b〉 → P(1a+1)Q(b+1)〈b+ 1〉 → · · · → P(1a+l)Q(b+l)〈b+ l〉

]
is homotopic to Q[1b+l]〈a− b+ 1〉.

Proof. Modulo terms involving P’s the complex is equal to
(38)

Q(1l+b)⊗kVa−b → · · · → Q(1l)Q(b)⊗kVa〈b〉
γa−→ Q(1l−1)Q(b+1)⊗kVa+1〈b+1〉 → · · · → Q(b+l)⊗kVa+l〈b+l〉.

The map γa is given by a sum of diagrams of the form

(1l) (b)

(1a+l) (1a) (b)

(1a+l) (1a+1) (b+ 1)

(1l−1) (b+ 1)

,

with the summation being over the possible dots on the cups and caps. We denote the map above by
γjka where there are 0 ≤ j ≤ a and 0 ≤ k ≤ a+ 1 dots on the cups and caps respectively. Now

Q(1l)Q(b) ∼= Q(b,1l) ⊕ Q(b+1,1l−1) and Q(1l−1)Q(b+1) ∼= Q(b+1,1l−1) ⊕ Q(b+2,1l−2).

The composition

Q(b+1,1l−1) ↪→ Q(1l−1)Q(b+1) γjka−−→ Q(1l−1)Q(b+1)〈2(a+ 1− j − k)〉 → Q(b+1,1l−1)〈2(a+ 1− j − k)〉
can be shown, much like in the proof of lemma 6.5, to be an isomorphism if j + k = a + 1. Thus γa
induces an isomorphism between a + 1 summands of the form Q(b+1,1l−1)〈·〉. The cancellation lemma
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then leaves us with only one such summand, namely Q(b+1,1l−1)〈a + b + 2〉 on the right hand side.
Similarly, one has such cancellations in every degree which leaves us with a complex

0→ Q(1l+b)〈a− b+ 2〉 → Q(2,1l+b−2)〈a− b+ 4〉 → · · · → Q(b+l−1,1)〈a+ b+ 2l− 2〉 → Q(b+l)〈a+ b+ 2l〉.

The terms here are the same as those in Q[1b+l]〈a−b+1〉. So we just need to check that the connecting
boundary maps are also the same. To see this we first note that the restriction of the original boundary
map to

Q(b+1,1l−1)〈a+ b+ 2〉 −→ Q(b+2,1l−2)〈a+ b+ 4〉
simplifies to give the map in the definition of Q[1b+l] given by a dot. The computation needed to prove
this is almost identical to the analysis of cases 1 and 2 in the proof of lemma 6.5 (so we omit it here).

The second step is to show that this map remains unchanged after applying the cancellation lemma
6.2 repeatedly. To do this we use that all the maps involved have even degree. Then, using the notation

from the cancellation lemma 6.2, we take X = Q(b,1l) and Z = Q(b+1,1l−1)〈2〉. It follows that either B
or C are degree zero. Suppose B is degree zero (the case of C having degree zero is the same). Then
B = 0 or B is an isomorphism. The latter is impossible since each indecomposable occurs at most once
in each degree in (38) and D is already an isomorphism. Thus B = 0 and the cancellation lemma does
not change the map A : X → Z given by a dot. �

6.4. The map θ. The map θi : 1n+m → 1n+m〈2〉 gives a map

(39) IθiI : Q
(n)
i P

(n)
i 1m ∼= Q

(n)
i 1m+nP

(n)
i −→ Q

(n)
i 1m+nP

(n)
i 〈2〉 ∼= Q

(n)
i P

(n)
i 1m〈2〉.

Now recall that Q
(n)
i P

(n)
i 1m ∼= ⊕nk=0P

(n−k)
i Q

(n−k)
i ⊗k Vk1m.

Lemma 6.11. The map IθiI : Q
(n)
i P

(n)
i 1m → Q

(n)
i P

(n)
i 1m〈2〉 induces an isomorphism between n

summands of the form 1m〈·〉 on either side (in other words between all summands 1m〈·〉 of the same
degree on either side).

Proof. Note that we have a canonical inclusion and projection

ι : 1m〈n〉 → Q
(n)
i P

(n)
i 1m, π : Q

(n)
i P

(n)
i 1m → 1m〈n〉

given by a cup and cap. The result follows if we can show that the composition π(IθiI)nι : 1m → 1m
is (some nonzero multiple of) the identity.

Diagrammatically, π(IθiI)nι is given by the picture

. . .

(n) (n)

n. . .

where the n in the middle of the center circle indicates that there are n concentric circles corresponding
to (IθiI)n. Now, slide each of these circles from the inside towards the outside using that

= + 2
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This fact is an easy consequence of the relations among 2-morphisms in a Heisenberg 2-representation.
After moving all the circles to the outside we end up with a bunch of circles and solid dots. Using that

• a dot squares to zero
• a counter-clockwise circle with no dots is zero

this simplifies to give some nonzero multiple of

. . .

where there are n circles. The result follows since each of these circles evaluates to the identity. �

Proposition 6.12. The maps

IθiI : Fi,−mEi,m1λ → Fi,−mEi,m〈2〉1λ if λ+m ≤ 0

IθiI : Ei,mFi,−m1λ → Ei,mFi,−m〈2〉1λ if λ+m ≥ 0

induce an isomorphism between all summands 1λ〈·〉 of the same degree on either side (here λ = 〈λ, αi〉).

Proof. We consider the case λ + m ≥ 0 (the other case is very similar). Examining the proof of
proposition 6.6 shows that the direct sum 1λ ⊗k Vλ−1+m inside Ei,mFi,−m1λ comes from the term

Q(λ−1+m)P(λ−1+m) ∼= 1λ ⊗k Vλ−1

⊕
A where the precise form of A is not important. The map IθiI

then restricts to the endomorphism IθiI : Q(λ−1+m)1µP
(λ−1+m) → Q(λ−1+m)1µP

(λ−1+m)〈2〉 where µ
is some weight. The result now follows by applying lemma 6.11. �

7. The loop relations

7.1. The [P,E]-type commutator. In this section we examine how the functors Ei and Fi commute
with Pi and Qi. More precisely, we prove the following.

Proposition 7.1. In Kom(K) there exist exact triangles

Ei,m−1 ⊗k V1〈−1〉1λ → P
[1]
i Ei,m1λ → Ei,mP

[1]
i 1λ

Ei,mQ
[1]
i 1λ → Q

[1]
i Ei,m1λ → Ei,m+1 ⊗k V11λ

as well as the triangles obtained by applying the (left or right) adjoint.

Proof. We prove the first relation (the second relation is similar). For simplicity we write P and Q for
Pi and Qi and assume that m = 0.

Case λ ≥ 0. First note that

Ei1λ ∼= · · · → P(l)Q(1λ+l+1)〈−l〉 → · · · → P(2)Q(1λ+3)〈−2〉 → PQ(1λ+2)〈−1〉 → Q(1λ+1)

which means that PEi1λ is isomorphic to the complex

(40) · · · → P(l,1)Q(1λ+l+1)〈−l〉 ⊕ P(l+1)Q(1λ+l+1)〈−l〉 → · · · → PQ(1λ+1).

It is easy to check that the diagonal maps in the differential, namely

P(l,1)Q(1λ+l+1)〈−l〉 → P(l)Q(1λ+l)〈−l + 1〉 and P(l+1)Q(1λ+l+1)〈−l〉 → P(l−1,1)Q(1λ+l)〈−l + 1〉
are both zero.
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On the other hand, the general term of Ei1λ+δP is

P(l)Q(1λ+l+1)P〈−l〉 ∼= P(l,1)Q(1λ+l+1)〈−l〉 ⊕ P(l+1)Q(1λ+l+1)〈−l〉 ⊕ P(l)Q(1λ+l) ⊗k V1〈−l〉.

If we consider terms of the form P(l)Q(1λ+l) which occur in this complex we get

P(l)Q(1λ+l) ⊗k V1〈−l〉 → P(l)Q(1λ+l)〈−l + 1〉.

The two differential maps here are given by the following composition where the number of dots is
either zero or one.

(l) (1λ+l)

(l) (1λ+l+1)

(l − 1) (1λ+l)

(l − 1) (1λ+l)

(l) (1λ+l)

If there is no dot then the diagram simplifies to give the identity map on the terms P(l)Q(1λ+l)〈−l+ 1〉
on either side. Applying the cancellation lemma we find that Ei1λP is homotopy equivalent to the
complex

(41) · · · → P(l,1)Q(1λ+l+1)〈−l〉
P(l)Q(1λ+l)〈−l − 1〉

A B
C D


−−−−−−−→ P(l−1,1)Q(1λ+l)〈−l + 1〉

P(l−1)Q(1λ+l−1)〈−l〉
→ · · · → Q(1λ) ⊗k V1.

where it is not difficult to check that A and D are given by the usual capping map as in (27), C = 0
and B is some map whose precise form does not matter.

Now consider the following map of complexes from (40) to (41):

. . . // P
(l,1)Q(1λ+l+1)〈−l〉

P(l+1)Q(1λ+l+1)〈−l〉
//

id 0
0 0


��

P(l−1,1)Q(1λ+l)〈−l + 1〉
P(l)Q(1λ+l)〈−l + 1〉

//

id 0
0 0


��

. . . // P
(1,1)Q(1λ+2)〈−1〉
P(2)Q(1λ+2)〈−1〉

//

id 0
0 0


��

PQ(1λ+1)

∂
0


��

. . . // P
(l,1)Q(1λ+l+1)〈−l〉

P(l)Q(1λ+l)〈−l − 1〉
// P

(l−1,1)Q(1λ+l)〈−l + 1〉
P(l−1)Q(1λ+l−1)〈−l〉

// . . . // P
(1,1)Q(1λ+2)〈−1〉
PQ(1λ+1)〈−2〉

// Q
(1λ)〈1〉

Q(1λ)〈−1〉

It is not difficult to check that this is a map of complexes. Now the map

PQ(1λ+1)〈−2〉 → Q(1λ)〈1〉
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induced by the bottom right arrow is given by

(1λ+1)

(1λ+2)

(1λ+1)

(1λ)

which simplifies to give zero. Thus we can apply lemma 7.2 below to find that the cone of this map of
complexes is homotopic to the direct sum of two complexes

P(l)Q(1λ+l)〈−l〉 → P(l−1)Q(1λ+l−1)〈−l + 1〉 → · · · → PQ(1λ+1)〈−1〉 → Q(1λ)

(one shifted by 〈−1〉 and the other by 〈1〉) where the differential is induced by capping. Thus we get
a distinguished triangle

PEi1λ → EiP1λ → Ei,−1 ⊗k V11λ.

The result follows since P
[1]
i = P[1]〈−1〉.

Case λ ≤ 0. We now only sketch the proof since it is similar to the one above. This time Ei1λ is
congruent to[
· · · → P(−λ−1+l)Q(1l)〈−l〉 → · · · → P(−λ+1)Q(12)〈−2〉 → P(−λ)Q〈−1〉 → P(−λ−1)

]
〈λ+ 1〉[−λ− 1]

which means that

(42) PEi1λ ∼=

[
· · · → P(−λ+2)Q(12)〈−2〉⊕

P(−λ+1,1)Q(12)〈−2〉
→ P(−λ+1)Q〈−1〉⊕

P(−λ,1)Q〈−1〉 →
P(−λ)⊕
P(−λ−1,1)

]
〈λ+ 1〉[−λ− 1]

while EiP1λ is isomorphic to the complex[
· · · → P(−λ+1)Q(12)P〈−2〉 → P(−λ)QP〈−1〉 → P(−λ−1)P

]
〈λ+ 1〉[−λ− 1]

∼=
[
· · · → P(−λ+1)PQ(12)〈−2〉⊕

P(−λ+1)Q⊗k V1〈−2〉
→ P(−λ)PQ〈−1〉⊕

P(−λ) ⊗k V1〈−1〉 → P(−λ−1)P

]
〈λ+ 1〉[−λ− 1].

Now cancelling terms as before this is homotopic to the complex

(43) EiP1λ ∼=
[
· · · → P(−λ+1,1)Q(12)〈−2〉⊕

P(−λ+1)Q〈−3〉
→ P(−λ,1)Q〈−1〉⊕

P(−λ)〈−2〉 → P(−λ−1,1)

]
〈λ+ 1〉[−λ− 1].

Now, as before, one can write a natural map of complexes from (42) to (43) whose cone, after cancelling

the terms of the form P(−λ−1+l,1)Q(1l)〈−l〉, is isomorphic to[
· · · → P(−λ+2)Q(12)〈−2〉⊕

P(−λ+2)Q(12)〈−4〉
→ P(−λ+1)Q〈−1〉⊕

P(−λ+1)Q〈−3〉 →
P(−λ)⊕

P(−λ)〈−2〉 → 0

]
〈λ+ 1〉[−λ− 1].

This is then isomorphic to Ei,−1⊗k V11λ and the result follows. Notice that it is important to have the
shifts 〈λ+ 1〉[−λ− 1] in the definition of E or this calculation would be off by a shift. �
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Lemma 7.2. Consider the following map of complexes of objects in an additive category

. . . // Al
Bl+1

//

id 0
0 0


��

Al−1

Bl
//

id 0
0 0


��

. . . // A1

B2

//

id 0
0 0


��

B1∂
0


��

. . . // Al
Cl

// Al−1

Cl−1

// . . . // A1

C1

// B0

C0

such that the maps satisfy the following conditions:

• in the top line all “diagonal” maps Al → Bl and Bl+1 → Al−1 are zero,
• Hom(Bl+1, Cl) = 0 and Hom(Al, Cl−1) = 0 for all l and
• the map C1 → B0 is zero.

Then the restriction of the differentials to B• and C• give complexes and the cone of the vertical map
is homotopic to B• ⊕ C•.

Proof. Given all the zero maps above it is easy to verify that the restriction of the horizontal maps to
B• and C• yield complexes. Now, the cone of the vertical map is a complex

. . . −→ Al ⊕Al−1

Cl ⊕Bl
−→ Al−1 ⊕Al−2

Cl−1 ⊕Bl−1
−→ . . . −→ A1 ⊕B1

C1
−→ B0

C0

where the differentials induce isomorphisms Al−1
∼−→ Al−1 for all l. Also, the conditions above imply

that the following maps are zero

Bl → Cl−1, Al−1 → Bl−1, Cl → Bl−1 for all l.

This means that using the cancellation lemma to cancel all the A’s does not change the differentials in
B• and C• leaving us with the direct sum B• ⊕ C•. �

7.2. Divided powers.

Proposition 7.3. We have Ei,mEi,m1λ ∼= E
(2)
i,m〈−1〉1λ ⊕ E

(2)
i,m〈1〉1λ and similarly for Fs.

Proof. The proof is actually very similar to that of Proposition (7.5). We assume m = 0 and that

λ+ 1 ≥ 0 (the other cases are similar). Recall that E
(2)
i 1λ is given by the complex

(44)

[
· · · → P(3)Q(2λ+2,13)〈−3〉

⊕P(2,1)Q(2λ+3,1)〈−3〉
→ P(2)Q(2λ+2,12)〈−2〉
⊕P(12)Q(2λ+3)〈−2〉

→ PQ(2λ+2,1)〈−1〉 → Q(2λ+2)

]
[1]〈−1〉

where the term in cohomological degree −(l − 1) is⊕
k1+k2=l

k1≥k2

P(k1−1,k2−1)Q(2λ+1+k2 ,1k1−k2 )〈−l + 1〉

The differential out of P(k1−1,k2−1)Q(2λ+1+k2 ,1k1−k2 ) is made up of two caps as depicted below.

(45)
(k1 − 1, k2 − 1) (2λ+1+k21k1−k2) (k1 − 1, k2 − 1) (2λ+1+k21k1−k2)

(k1 − 2, k2 − 1) (2λ+1+k21k1−k2−1) (k1 − 1, k2 − 2) (2λ+k21k1−k2+1)
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Note that by lemma 7.4 it suffices to specify these two maps only up to a multiple. Now EiEi1λ is
given by the composition of complexes[

· · · → PQ(1λ+4)〈−1〉 → Q(1λ+3)
] [
· · · → PQ(1λ+2)〈−1〉 → Q(1λ+1)

]
which means that the term in cohomological degree −l is⊕

k1+k2=l

P(k2)
(
P(k1)Q(1λ+3+k2 ) ⊕ P(k1−1)Q(1λ+2+k2 ) ⊗k V1 ⊕ P(k1−2)Q(1λ+1+k2 )

)
Q(1λ+1+k1 )〈−l〉.

If we collect terms with a shift of 〈−l〉 they must occur in cohomological degrees (−l − 1),−l and
(−l + 1). These are

(46)
⊕

k1+k2=l

P(k2)P(k1−2)Q(1λ+1+k2 )Q(1λ+1+k1 ) −→
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1λ+2+k2 )Q(1λ+1+k1 )

in cohomological degree −l and (−l + 1) and

(47)
⊕

k1+k2=l+1

P(k2)P(k1−1)Q(1λ+2+k2 )Q(1λ+1+k1 ) −→
⊕

k1+k2=l

P(k2)P(k1)Q(1λ+3+k2 )Q(1λ+1+k1 )

occuring in cohomological degree (−l − 1) and −l.
Calculation of (46). As we did in the proof of Proposition 7.5 where we showed that the map in

(52) was injective one can show (in a very similar manner) that the map in (46) is also injective. We
do not do this in detail again but instead just keep track of what terms we have left on the right hand
side of (46). First we rewrite (46) as⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1λ+1+k2 )Q(1λ+2+k1 ) −→
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1λ+2+k2 )Q(1λ+1+k1 )

and then we cancel out to get⊕
k1+k2=l−1

k2≥k1+1

P(k2)P(k1−1)Q(2λ+2+k1 ,1k2−k1−1) −→
⊕

k1+k2=l−1

k1≥k2+1

P(k2)P(k1−1)Q(2λ+2+k2 ,1k1−k2−1).

Now we rewrite this again as⊕
k1+k2=l−1

k1≥k2+1

P(k1)P(k2−1)Q(2λ+2+k2 ,1k1−k2−1) −→
⊕

k1+k2=l−1

k1≥k2+1

P(k1−1)P(k2)Q(2λ+2+k2 ,1k1−k2−1)

which then cancels out to give

(48)
⊕

k1+k2=l−1

k1≥k2+1

P(k1−1,k2)Q(2λ+2+k2 ,1k1−k2−1)〈−l〉 ∼=
⊕

k1+k2=l

k1≥k2

P(k1−1,k2−1)Q(2λ+1+k2 ,1k1−k2 )〈−l〉

in cohomological degree −(l − 1) (we added back in the shift 〈−l〉). These are precisely the terms in
(44) shifted by 〈−1〉.

Calculation of (47). The map in (47) can be shown to be surjective. For simplicity we will just
keep track of the what terms survive after cancellation. First rewrite (47) as⊕

k1+k2=l

P(k2)P(k1)Q(1λ+2+k2 )Q(1λ+2+k1 ) −→
⊕

k1+k2=l

P(k2)P(k1)Q(1λ+3+k2 )Q(1λ+1+k1 )
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and then cancelling terms we get⊕
k1+k2=l

k2≥k1

P(k2)P(k1)Q(2λ+2+k1 ,1k2−k1 ) −→
⊕

k1+k2=l

k1≥k2+2

P(k2)P(k1)Q(2λ+1+k2 ,1k1−k2−2)

which we rewrite to obtain⊕
k1+k2=l

k1≥k2

P(k2)P(k1)Q(2λ+2+k2 ,1k1−k2 ) −→
⊕

k1+k2=l

k1≥k2

P(k2−1)P(k1+1)Q(2λ+2+k2 ,1k1−k2 ).

This map is surjective and we are left with⊕
k1+k2=l

k1≥k2

P(k1,k2)Q(2λ+2+k2 ,1k1−k2 )〈−l〉

in cohomological degree −(l+ 1). Replacing k1, k2 and l by k1 − 1, k2 − 1 and l− 2 this is the same as
the terms in (44) shifted by 〈1〉.

To conclude that EiEi1λ is homotopic to a direct sum of E
(2)
i 〈−1〉1λ and E

(2)
i 〈1〉1λ one needs to

check that there are no cross differentials such as

P(k1−1,k2−1)Q(2λ+1+k2 ,1k2−k1 ) → P(k1−2,k2−1)Q(2λ+k2 ,1k2−k1+1)〈3〉

or P(k1−1,k2−1)Q(2λ+1+k2 ,1k2−k1 ) → P(k1−1,k2−2)Q(2λ+1+k2 ,1k2−k1 )〈3〉.

Fortunately, such maps have degree three and cannot show up (even after various applications of the
cancellation lemma) because in the original complex for EiEi1λ, all maps between irreducibles are
either isomorphisms or degree one maps given by a cap. �

Lemma 7.4. Let C and C ′ be two complexes whose terms are as in (44) and whose differentials are
given by some nonzero multiples of the maps in (45). Then C and C ′ are homotopic.

Proof. The proof is similar (but easier) than that of lemma 7.6. Each term in (44) has either one or
two maps coming out (namely those in (45)). If there are two maps coming out (call them α1 and α2)
then these can always be completed to a complex

A
α1

⇒
α2

B1

B2

β1

⇒
β2

C

like that in (51) where Hom(A,B1) ∼= Hom(A,B2) ∼= Hom(B1, C) ∼= Hom(B2, C) ∼= Hom(A,C) ∼= k
are spanned by α1, α2, β1, β2 and β1 ◦ α1 = −β2 ◦ α2 respectively.

Thus, starting from the right end of a complex like that in (44), one can can homotope it into
any other such complex using maps which act by multiples of the identity on each summand in the
complex. �

7.3. Commutation of Es or Fs. In general Ei,m and Ei,n do not commute. But in the simplest case
they do commute up to a shift.

Proposition 7.5. For any n ∈ Z we have

Ei,n−1Ei,n1λ ∼= Ei,nEi,n−1〈−2〉1λ and Fi,n−1Fi,n1λ ∼= Fi,nFi,n−1〈2〉1λ.
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We use the rest of this section to prove the first relation above (the second relation is obtained by
taking the adjoint of the first relation). The idea of the proof is to show that both sides are homotopic
to a complex

(49)

· · · → P(2)Q(2a+1,13)〈−2〉
⊕P(12)Q(2a+2,1)〈−2〉
⊕P(2)Q(2a+2,1)〈−2〉

→ PQ(2a+1,12)〈−1〉
⊕PQ(2a+2)〈−1〉

→ Q(2a+1,1)

 [1]〈−2〉

where a := λ+ n ≥ 0. In the equation above, the term in cohomological degree (−l + 1) is⊕
k1+k2=l−1

k1≥k2

P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 )〈−l〉
⊕

k1+k2=l−1

k1≥k2+1

P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 )〈−l〉.

Using lemma 3.4 one checks that there are three possible nonzero maps out of each summand above,
all of which are given by a cap:

f1 : P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1−1,k2−1)Q(2a+1+k2 ,1k1−k2−1)

f2 : P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1−1,k2−1)Q(2a+k2 ,1k1−k2+1)

f3 : P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1,k2−2)Q(2a+k2 ,1k1−k2+1)

g1 : P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1−1,k2−1)Q(2a+1+k2 ,1k1−k2−1)

g2 : P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1−1,k2−1)Q(2a+k2 ,1k1−k2+1)

g3 : P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1−2,k2)Q(2a+1+k2 ,1k1−k2−1).

The differential in (49) is of the form

(50) ∂ = a1f1 + a2f2 + a3f3 + b1g1 + b2g2 + b3g3 for some a1, a2, a3, b1, b2, b3 ∈ k.

Using the following lemma we will check that a2 = 0 = b2 and a1, a3, b1, b3 ∈ k× which determines the
complex uniquely up to homotopy.

Lemma 7.6. Consider a complex as in (49) with differential ∂ as in (50). If b1, b3 ∈ k× then a1, a3 ∈
k× while a2 = 0 = b2. Moreover, any two such complexes with this property are homotopy equivalent.

Proof. Suppose we have a complex as in (49) where b1, b3 ∈ k×.
The first step is to show that a2 = 0 = b2. To see this consider the following three compositions

P(k1−1,k2−1)Q(2a+1+k2 ,1k1−k2−1)〈1〉
a2f2

++WWWWWWWWWWWWWWWWWWWW

P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 )

b′1g1

33hhhhhhhhhhhhhhhhhhhh
b′2g2 //

b′3g3

++VVVVVVVVVVVVVVVVVVVV P(k1−1,k2−1)Q(2a+k2 ,1k1−k2+1)〈1〉
b3g3 //P(k1−2,k2−1)Q(2a+k2 ,1k1−k2 )〈2〉

P(k1−2,k2)Q(2a+1+k2 ,1k1−k2−1)〈1〉

b2g2

33gggggggggggggggggggg

By induction we can assume that b2 = 0. Looking at the top two compositions, this means that
a2f2 ◦ b′1g1 + b3g3 ◦ b′2g2 = 0. But one can check that the compositions f2 ◦ g1 and g3 ◦ g2 are linearly
independent since they span the two dimensional vector space

Hom(P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 ),P(k1−2,k2−1)Q(2a+k2 ,1k1−k2 )〈2〉) ∼= k2.
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This space is 2-dimensional since the two boxes we add to go from partition (k1−2, k2−1) to (k1−1, k2)
and from (2a+k2 , 1k1−k2) to (2a+1+k2 , 1k1−k2) occur in different columns and rows. This implies that
a2 = 0 and b′2 = 0. Thus, by induction, we always have a2 = 0 = b2.

Next we show that a1, a3 ∈ k×. First consider the following two compositions

P(k1−1,k2−1)Q(2a+1+k2 ,1k1−k2−1)〈1〉
a1f1

++WWWWWWWWWWWWWWWWWWW

P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 )

b′1g1

33hhhhhhhhhhhhhhhhhhhh

b′3g3

++VVVVVVVVVVVVVVVVVVVV P(k1−2,k2−1)Q(2a+1+k2 ,1k1−k2−2)〈2〉

P(k1−2,k2)Q(2a+1+k2 ,1k1−k2−1)〈1〉

b1g1

33ggggggggggggggggggg

These two compositions both span the one dimensional vector space

Hom(P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 ),P(k1−2,k2−1)Q(2a+1+k2 ,1k1−k2−2)〈2〉) ∼= k.

Since b1, b
′
3 are both nonzero this means a1 6= 0.

Similarly, we can consider the two compositions

P(k1−1,k2−1)Q(2a+1+k2 ,1k1−k2−1)〈1〉
a3f3

++VVVVVVVVVVVVVVVVVVV

P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 )

a′1f1

33hhhhhhhhhhhhhhhhhhhh

a′3f3

++VVVVVVVVVVVVVVVVVVVV P(k1−1,k2−2)Q(2a+k2 ,1k1−k2 )〈2〉.

P(k1,k2−2)Q(2a+k2 ,1k1−k2+1)〈1〉

a1f1

33hhhhhhhhhhhhhhhhhhh

These two compositions both span the one dimensional vector space

Hom(P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 ),P(k1−1,k2−2)Q(2a+k2 ,1k1−k2 )〈2〉) ∼= k.

We know that a1, a
′
1 are nonzero and by induction we can assume a3 6= 0. This implies that a′3 6= 0

and hence, by induction, all a3 are nonzero.
Finally we show that any two such complexes are homotopy equivalent to each other. The idea is

very simple. Suppose you have a complex

A
α1

⇒
α2

B1

B2

β1

⇒
β2

C(51)

where Hom(A,B1) ∼= Hom(A,B2) ∼= Hom(B1, C) ∼= Hom(B2, C) ∼= Hom(A,C) ∼= k are spanned by
α1, α2, β1, β2 and β1 ◦α1 = −β2 ◦α2 respectively. Then any other complex where the four maps above
are nonzero is homotopic to it via a map which acts by certain multiples of the identity on A,B1, B2

and C. This is a simple exercise which we leave to the reader.
If we now look at (49) and recall that each differential is made up of maps f1, f3 or g1, g3 it follows

that (49) is made up of little complexes like (51). Thus starting from the far right, we can repeatedly
apply the homotopy above to show that any two such complexes are homotopy equivalent. �

Computation of Ei,n−1Ei,n1λ. This composition is isomorphic to[
· · · → P(2)Q(1a+4)〈−2〉 → PQ(1a+3)〈−1〉 → Q(1a+2)

] [
· · · → P(2)Q(1a+3)〈−2〉 → PQ(1a+2)〈−1〉 → Q(1a+1)

]



VERTEX OPERATORS AND 2-REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS 45

which means that the term in cohomological degree −l is⊕
k1+k2=l

P(k2)Q(1a+2+k2 )P(k1)Q(1a+1+k1 )〈−l〉

∼=
⊕

k1+k2=l

P(k2)
(
P(k1)Q(1a+2+k2 ) ⊕ P(k1−1)Q(1a+1+k2 ) ⊗k V1 ⊕ P(k1−2)Q(1a+k2 )

)
Q(1a+1+k1 )〈−l〉.

If we collect terms with a shift of 〈−l〉 they must occur in cohomological degrees (−l − 1),−l and
(−l + 1). These are

(52)
⊕

k1+k2=l

P(k2)P(k1−2)Q(1a+k2 )Q(1a+1+k1 ) −→
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+1+k2 )Q(1a+1+k1 )

in cohomological degree −l and (−l + 1) and

(53)
⊕

k1+k2=l+1

P(k2)P(k1−1)Q(1a+1+k2 )Q(1a+1+k1 ) −→
⊕

k1+k2=l

P(k2)P(k1)Q(1a+2+k2 )Q(1a+1+k1 )

occuring in cohomological degree (−l − 1) and −l.
There are two parts to the differentials in (52). To describe the first we rewrite (52) as

(54)
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+k2 )Q(1a+2+k1 ) −→
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+1+k2 )Q(1a+1+k1 ).

Then the first part of the differential is given by the composition

(k2) (k1 − 1) (1a+k2) (1a+2+k1)

(k2) (1a+2+k2) (k1 + 1) (1a+2+k1)

(k2) (k1 − 1) (1a+k2+1) (1a+k1+1)

which is equal to a scalar multiple of

(k2) (k1 − 1) (1a+k2) (1a+2+k1)

(k2) (k1 − 1) (1a+k2+1) (1a+1+k1)

To see the other part of the differential we can also rewrite (52) as

(55)
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+k2 )Q(1a+2+k1 ) −→
⊕

k1+k2=l−1

P(k2−1)P(k1)Q(1a+k2 )Q(1a+2+k1 )
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and then there is a similar map given by

(k2) (k1 − 1) (1a+k2) (1a+2+k1)

(k2 − 1) (k1) (1a+k2) (1a+2+k1)

Claim. The map in (52) is injective.
Let us consider a general indecomposable term on the left side of (54) or (55). Using proposition

3.2 such a term is of the form P(m,n)Q(2a+m′ ,1a+n′ ) where m ≤ n and m+ n = l− 1 = 2m′ + n′. There
is one such summand for each (k1, k2) where

m ≤ min(k1 − 1, k2) and m′ ≤ min(k1 + 2, k2).

On the right hand side of (54) there is one such summand corresponding to each pair (k1, k2) where

m ≤ min(k1 − 1, k2) and m′ ≤ min(k1 + 1, k2 + 1)

and the map in figure 7.3 induces an isomorphism between any two such summands corresponding to
the same pair (k1, k2). Likewise, on the right side of (55) there is one such summand corresponding to
each (k1, k2) where

m ≤ min(k1, k2 − 1) and m′ ≤ min(k1 + 2, k2)

and the map in 7.3 also induces an isomorphism between summands corresponding to the same pair
(k1, k2).

Using the inequalities above and looking at (54), we see that the map in (7.3) is injective on

summands P(m,n)Q(2a+m′ ,1a+n′ ) unless k1 +2 ≤ k2 in which case there is precisely one term, namely the
one corresponding to k1 + 2 = m′ on the left, which maps to zero. Notice that for such a term to exist
on the left side of (54) we must also have m ≤ min(m′ − 3, l+ 1−m′) (and in particular m ≤ m′ − 3).

On the other hand, looking at (55), we see that the map in (7.3) is an isomorphism between all

summands P(m,n)Q(2a+m′ ,1a+n′ ) unless k2 ≤ k1− 1 in which case there is precisely one term mapped to
zero, namely the one corresponding to k2 = m. This time such a term exists on the left hand side of
(55) only if m′ ≤ min(l + 1−m,m) (and in particular m′ ≤ m).

Since we cannot have both m ≤ m′−3 and m′ ≤ m either (7.3) or (7.3) is injective on all summands

of the form P(m,n)Q(2a+m′ ,1a+n′ ). The map in (52) is upper triangular and hence also injective.
Now we need to figure out what terms remain on the right hand side of (52) after cancelling terms.

We can replace (54) by

(56)
⊕

k1+k2=l−1

k2≥k1+2

P(k2)P(k1−1)Q(2a+2+k1 ,1k2−k1−2) −→
⊕

k1+k2=l−1

k2≤k1

P(k2)P(k1−1)Q(2a+1+k2 ,1k1−k2 ).

since, using proposition refprop:rels1, we have

Q(1a+k2 )Q(1a+2+k1 ) ∼= Q(1a+1+k2 )Q(1a+1+k1 ) ⊕ Q(2a+2+k1 ,1k2−k1−2) if k2 ≥ k1 + 2

Q(1a+1+k2 )Q(1a+1+k1 ) ∼= Q(1a+k2 )Q(1a+2+k1 ) ⊕ Q(2a+1+k2 ,1k1−k2 ) if k2 ≤ k1

Q(1a+k2 )Q(1a+2+k1 ) ∼= Q(1a+1+k2 )Q(1a+1+k1 ) if k2 = k1 + 1.
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Now, switching the roles of k1 and k2 on the left hand side and replacing the new k1 by k1 + 1 and the
new k2 by k2 − 1 we get that (56) is equivalent to

(57)
⊕

k1+k2=l−1

k1≥k2

P(k1+1)P(k2−2)Q(2a+1+k2 ,1k1−k2 ) −→
⊕

k1+k2=l−1

k1≥k2

P(k2)P(k1−1)Q(2a+1+k2 ,1k1−k2 ).

Again, we can cancel terms using that

P(k1−1)P(k2) ∼= P(k1+1)P(k2−2) ⊕ P(k1,k2−1) ⊕ P(k1−1,k2) if k1 ≥ k2 + 1

P(k1−1)P(k2) ∼= P(k1+1)P(k2−2) ⊕ P(k1,k2−1) if k1 = k2

to obtain ⊕
k1+k2=l−1

k1≥k2

P(k1,k2−1)Q(2a+1+k2 ,1k1−k2 )〈−l〉
⊕

k1+k2=l−1

k1≥k2+1

P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 )〈−l〉

in cohomological degree (−l+ 1) (where we have added back the 〈−l〉 shift). Notice that these are the
same as the terms in the complex (49).

Now we also need to examine (53). Fortunately, things are much simpler here. We rewrite (53) as

(58)
⊕

k1+k2=l

P(k2)P(k1)Q(1a+1+k2 )Q(1a+2+k1 ) −→
⊕

k1+k2=l

P(k2)P(k1)Q(1a+2+k2 )Q(1a+1+k1 ).

Then the part of the differential which looks like that in (7.3) induces an isomorphism between the two
sides. The total differential is upper triangular and hence also induces an isomorphism. Thus all the
terms in (53) cancel out.

The differentials. Finally, we need to compute the differentials. In light of lemma 7.6 it suffices
to show that the differentials of the form g1 and g3 are nonzero.

This is trickier than it looks since the cancellation lemma was applied many times. Let us consider
the map g3. In the original complex for Ei,n−1Ei,n1λ we see this map show up as the composition

(k1 − 1, k2) (2a+1+k2 , 1k1−k2)

(k2) (k1 − 1) (1a+1+k2) (1a+1+k1)

(k2) (1a+2+k2) (k1) (1a+1+k1)

(k2) (k1 − 2) (1a+k2+1) (1a+k1)

(k1 − 2, k2) (2a+1+k2 , 1k1=k2−1)
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which is equal to a scalar multiple of

(k1 − 1, k2) (2a+1+k2 , 1k1−k2)

(k2) (k1 − 1) (1a+1+k2) (1a+1+k1)

(k2) (k1 − 2) (1a+k2+1) (1a+k1)

(k1 − 2, k2) (2a+1+k2 , 1k1−k2−1)

The right hand side is clearly equal to the map

g3 : P(k1−1,k2)Q(2a+1+k2 ,1k1−k2 ) −→ P(k1−1,k2)Q(2a+1+k2 ,1k1−k2−1)〈1〉.
Thus g3 shows up as the map induced by the differential

P(k2)Q(1a+1+k2 )P(k1)Q(1a+1+k1 )
��
OO OO

−−−−−−−→ P(k2)Q(1a+1+k2 )P(k1−1)Q(1a+k1 )〈1〉.
However, it is possible that in the cancellation process this map becomes zero. A little bit of reflection
convinces one that this can only happen if the other differential

P(k2)Q(1a+1+k2 )P(k1)Q(1a+1+k1 )

OO OO
��

−−−−−−−→ P(k2−1)Q(1a+k2 )P(k1)Q(1a+1+k1 )〈1〉
also induces the map g3 since then in the process of applying the cancellation lemma these two maps

could cancel. Fortunately, the right hand side P(k2−1)Q(1a+k2 )P(k1)Q(1a+1+k1 ) does not contain any

summand P(k1−1,k2)Q(2a+1+k2 ,1k1−k2−1) so this does not happen.
Similarly, one can show that g1 also occurs in the differential of (49). Thus Ei,n−1Ei,n1λ is indeed

homotopic to the (unique up to homotopy) complex (49) with nonzero multiples of g1 and g3 in the
differential.

Computation of Ei,nEi,n−11λ. This is isomorphic to[
· · · → P(2)Q(1a+5)〈−2〉 → PQ(1a+4)〈−1〉 → Q(1a+3)

] [
· · · → P(2)Q(1a+2)〈−2〉 → PQ(1a+1)〈−1〉 → Q(1a)

]
which simplifies to give⊕

k1+k2=l

P(k2)
[
P(k1)Q(1a+k2+3) ⊕ P(k1−1)Q(1a+k2+2) ⊗k V1 ⊕ P(k1−2)Q(1a+k2+2)

]
Q(1a+k1 )〈−l〉

in cohomological degree −l. This computation is similar so we just sketch it. Again we collect terms
with a grading shift 〈−l〉 to obtain

(59)
⊕

k1+k2=l

P(k2)P(k1−2)Q(1a+k2+1)Q(1a+k1 ) −→
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+k2+2)Q(1a+k1 )

and

(60)
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+k2+2)Q(1a+k1 ) −→
⊕

k1+k2=l

P(k2)P(k1)Q(1a+k2+3)Q(1a+k1 ).

It turns out that (59) is an isomorphism and that (60) is injective.
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Calculation of (59). We rewrite (59) as⊕
k1+k2=l−1

P(k2)P(k1−1)Q(1a+k2+1)Q(1a+k1+1) −→
⊕

k1+k2=l−1

P(k2)P(k1−1)Q(1a+k2+2)Q(1a+k1 )

and then cancel to get⊕
k1+k2=l−1

k2≥k1

P(k2)P(k1−1)Q(2a+k1+1,1k2−k1 ) −→
⊕

k1+k2=l−1

k2+2≤k1

P(k2)P(k1−1)Q(2a+k2+2,1k1−k2−2).

We then rewrite this as⊕
k1+k2=l−1

k2≥k1

P(k2)P(k1−1)Q(2a+k1+1,1k2−k1 ) −→
⊕

k1+k2=l−1

k2≥k1

P(k1−1)P(k2)Q(2a+k1+1,1k2−k1 )

which turns out to be an isomorphism. So (59) is homotopic to zero.
Calculation of (60). One can check using the same argument as before that the map in equation

(60) is surjective. We do not repeat this argument but instead just keep track of the terms left over
after cancellation. First we rewrite (60) as⊕

k1+k2=l

P(k2)P(k1)Q(1a+k2+2)Q(1a+k1+1) −→
⊕

k1+k2=l

P(k2)P(k1)Q(1a+k2+3)Q(1a+k1 )

which simplifies to⊕
k1+k2=l

k2≥k1−1

P(k2)P(k1)Q(2a+k1+1,1k2−k1+1) −→
⊕

k1+k2=l

k2+3≤k1

P(k2)P(k1)Q(2a+k2+3,1k1−k2−3).

We then rewrite both sides to obtain⊕
k1+k2=l−1

k1≥k2

P(k2+1)P(k1)Q(2a+k2+2,1k1−k2 ) −→
⊕

k1+k2=l−1

k1≥k2

P(k2−1)P(k1+2)Q(2a+k2+2,1k1−k2 ).

This in turn simplifies to give⊕
k1+k2=l−1

k1≥k2

P(k1+1,k2)Q(2a+k2+2,1k2−k1 )〈−l〉
⊕

k1+k2=l−1

k1≥k2+1

P(k1,k2+1)Q(2a+k2+2,1k2−k1 )〈−l〉

in cohomological degree (−l − 1) (where we have added back the 〈−l〉 shift). Replacing l, k1, k2 by
l−2, k1−1, k2−1 we see that these are the same terms as those in the complex (49) with the extra shift
〈2〉. One can check as before that g1 and g3 appear in the differentials and hence Ei,nEi,n−1〈−2〉1λ is
also homotopic to (49). Thus we are done.

8. The remaining relations

8.1. Commutation of Ei and Fj.

Proposition 8.1. For any i 6= j ∈ I and m,n ∈ Z we have Fj,nEi,m1λ ∼= Ei,mFj,n1λ.
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Proof. There are two cases, depending of whether i and j are connected by an edge. If they are not
connected then Pi and Qi commute with Pj and Qj and the result follows immediately. So suppose i
and j are connected by an edge. There are several cases to consider.

Case 1. Suppose that 〈λ, αi〉+m ≥ −1 and 〈λ, αj〉 − n ≤ −1. This means that

Ei,m1λ ∼=
[
· · · → P

(k)
i Q

(1a+k)
i 〈−k〉 → · · · → PiQ

(1a+1)
i 〈−1〉 → Q

(1a)
i

]
Fj,n1λ+αi+mδ

∼=
[
Q

(b)
j → PjQ

(b+1)
j 〈1〉 → · · · → P

(1l)
j Q

(b+l)
j 〈l〉 → . . .

]
〈b〉[−b]

Fj,n1λ ∼=
[
Q

(b−1)
j → PjQ

(b)
j 〈1〉 → · · · → P

(1l
′
)

j Q
(b−1+l′)
j 〈l′〉 → . . .

]
〈b− 1〉[−b+ 1]

Ei,m1λ−αj+nδ
∼=

[
· · · → P

(k′)
i Q

(1a+1+k′ )
i 〈−k′〉 → · · · → PiQ

(1a+2)
i 〈−1〉 → Q

(1a+1)
i

]
where a = 〈λ, αi〉+ 1 +m and b = −〈λ, αj〉+ n.

Now, the terms in Fj,nEi,m1λ in cohomological degree (h+ b) are⊕
l−k=h

P
(1l)
j Q

(b+l)
j P

(k)
i Q

(1a+k)
i 1λ〈h+ b〉.

Since Q
(b+l)
j P

(k)
i
∼= P

(k)
i Q

(b+l)
j ⊕ P

(k−1)
i Q

(b+l−1)
j this simplifies to give

(61)
⊕
l−k=h

[
P

(1l)
j P

(k)
i Q

(b+l)
j Q

(1a+k)
i 1λ ⊕ P

(1l)
j P

(k−1)
i Q

(b+l−1)
j Q

(1a+k)
i 1λ

]
〈h+ b〉.

Likewise, the terms in Ei,mFj,n1λ in cohomological degree (h′ + b− 1) are⊕
l′−k′=h′

P
(k′)
i Q

(1a+1+k′ )
i P

(1l
′
)

j Q
(b−1+l′)
j 1λ〈h′ + b− 1〉

which simplifies to give

(62)
⊕

l′−k′=h′

[
P

(k′)
i P

(1l
′
)

j Q
(1a+1+k′ )
i Q

(b−1+l′)
j ⊕ P

(k′)
i P

(1l
′−1)

j Q
(1a+k′ )
i Q

(b−1+l′)
j

]
〈h′ + b− 1〉.

Now it is easy to see that the terms in (62) match up with the terms in (61) when h′ = h + 1 and
(k′, l′) = (k, l + 1) or (k′, l′) = (k − 1, l). Thus the complexes for Ei,mFj,n1λ and Fj,nEi,m1λ match up
term by term and it is not hard to check that the differentials are the same.

Case 2. Now, consider the case that 〈λ, αi〉+m ≥ −1 but 〈λ, αj〉 − n ≥ 0. This means that:

Ei,m1λ ∼=
[
· · · → P

(k)
i Q

(1a+k)
i 〈−k〉 → · · · → PiQ

(1a+1)
i 〈−1〉 → Q

(1a)
i

]
Fj,n1λ+αi+mδ

∼=
[
P

(1b)
j → P

(1b+1)
j Qj〈1〉 → · · · → P

(1b+l)
j Q

(l)
j 〈l〉 → . . .

]
Fj,n1λ ∼=

[
P

(1b+1)
j → P

(1b+2)
j Qj〈1〉 → · · · → P

(1b+1+l′ )
j Q

(l′)
j 〈l

′〉 → . . .

]
Ei,m1λ−αj+nδ

∼=
[
· · · → P

(k′)
i Q

(1a+1+k′ )
i 〈−k′〉 → · · · → PiQ

(1a+2)
i 〈−1〉 → Q

(1a+1)
i

]
where a = 〈λ, αi〉+ 1 +m and b = 〈λ, αj〉 − n. The terms in Fj,nEi,m1λ in cohomological degree h are⊕

l−k=h

P
(1b+l)
j Q

(l)
j P

(k)
i Q

(1a+k)
i 〈h〉
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which simplifies to give

(63)
⊕
l−k=h

[
P

(1b+l)
j P

(k)
i Q

(l)
j Q

(1a+k)
i 1λ ⊕ P

(1b+l)
j P

(k−1)
i Q

(l−1)
j Q

(1a+k)
i 1λ

]
〈h〉.

Likewise, the terms in Ei,mFj,n1λ in cohomological degree h′ are⊕
l′−k′=h′

P
(k′)
i Q

(1a+1+k′ )
i P

(1b+1+l′ )
j Q

(l′)
j 1λ〈h′〉

which simplifies to give

(64)
⊕

l′−k′=h′

[
P

(k′)
i P

(1b+1+l′ )
j Q

(1a+1+k′ )
i Q

(l′)
j 1λ ⊕ P

(k′)
i P

(1b+l
′
)

j Q
(1a+k′ )
i Q

(l′)
j 1λ

]
〈h′〉.

It is easy to see that the terms in (63) match up with those in (64) via the identification (k′, l′) = (k, l)
or (k′, l′) = (k − 1, l − 1). Again, it is not hard to check that the differentials also match up.

Case 3 and 4. There are two further cases which to consider, namely when 〈λ, αi〉 + m ≤ 0 and
either 〈λ, αj〉 − n ≤ −1 or 〈λ, αj〉 − n ≥ 0. These are proven in exactly the same way as above and so
we omit the details. �

8.2. The [Pj ,Ei]-type commutator.

Proposition 8.2. If 〈i, j〉 = −1 then we have the following exact triangles in Kom(H)

Ei,m−1[1]〈−1〉1λ → Ei,mP
[1]
j 1λ → P

[1]
j Ei,m1λ

Ei,m+11λ → Q
[1]
j Ei,m1λ → Ei,mQ

[1]
j 1λ

a as well as the triangles obtained by applying the (left or right) adjoint.

Proof. We prove the first commutation relation (the other case is similar). For simplicity we assume
m = 0.

Case λ ≥ 0. We have

PjEi1λ ∼=
[
· · · → PjP

(2)
i Q

(1λ+3)
i 〈−2〉 → PjPiQ

(1λ+2)
i 〈−1〉 → PjQ

(1λ+1)
i

]
and

EiPj1λ ∼=
[
· · · → P

(2)
i Q

(1λ+3)
i Pj〈−2〉 → PiQ

(1λ+2)
i Pj〈−1〉 → Q

(1λ+1)
i Pj

]
∼=

[
· · · → PjP

(2)
i Q

(1λ+3)
i 〈−2〉

⊕P(2)
i Q

(1λ+2)
i 〈−2〉

→ PjPiQ
(1λ+2)
i 〈−1〉

⊕PiQ(1λ+1)
i 〈−1〉

→ PjQ
(1λ+1)
i

⊕Q(1λ)
i .

]
One can check as in the proof of (7.1) that there is a natural map of complexes EiPj1λ → PjEi1λ
whose cone is isomorphic to[

· · · → P
(2)
i Q

(1λ+2)
i 〈−2〉 → PiQ

(1λ+1)
i 〈−1〉 → Q

(1λ)
i → 0

]
which is isomorphic to Ei,−1[1]1λ. Thus we get a triangle

Ei,−11λ → EiPj1λ → PjEi1λ

and the result follows since P
[1]
j = Pj [1]〈−1〉.

Case λ ≤ 0. We have

PjEi1λ ∼=
[
· · · → PjP

(−λ+1)
i Q

(12)
i 〈−2〉 → PjP

(−λ)
i Qi〈−1〉 → PjP

(−λ−1)
i

]
〈λ+ 1〉[−λ− 1]
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and

EiPj1λ ∼=
[
· · · → P

(−λ+1)
i Q

(12)
i Pj〈−2〉 → P

(−λ)
i QiPj〈−1〉 → P

(−λ−1)
i Pj

]
〈λ+ 1〉[−λ− 1]

∼=

[
· · · → PjP

(−λ+1)
i Q

(12)
i 〈−2〉

⊕P(−λ+1)
i Qi〈−2〉

→ PjP
(−λ)
i Qi〈−1〉

⊕P(−λ)
i 〈−1〉

→ PjP
(−λ−1)
i

]
〈λ+ 1〉[−λ− 1].

Again there is a natural map of complexes EiPj1λ → PjEi1λ whose cone is isomorphic to[
· · · → P

(−λ+1)
i Qi〈−2〉 → P

(−λ)
i 〈−1〉 → 0→ 0

]
〈λ+ 1〉[−λ− 1].

Taking into account the shifts this is also isomorphic to Ei,−1[1]1λ and the result follows as above.
�

8.3. The commutator type relation of Ei and Ej.

Proposition 8.3. If 〈i, j〉 = −1 and m ∈ Z then there exist unique nonzero maps

Ei,mEj,m+11λ
α−→ Ej,m+1Ei,m〈1〉1λ and Ej,mEi,m+11λ

β−→ Ei,m+1Ej,m〈1〉1λ
in K and we have Cone(α) ∼= Cone(β). Meanwhile, if 〈i, j〉 = 0 then Ei,m and Ej,n commute for any
m,n ∈ Z.

The commutation of Ei,m and Ej,n when 〈i, j〉 = 0 is obvious since Pi commutes with Qj in this
case. It remains to prove the first assertion when 〈i, j〉 = −1.

8.3.1. The definition of α and β. To simplify notation we assume m = 0 (the general case follows in
the same way). First we have the following formal result which shows that the maps α and β are
unique.

Lemma 8.4. If 〈i, j〉 = −1 then Hom(EiEj,11λ,Ej,1Ei〈1〉1λ) ∼= k ∼= End(EiEj,11λ).

Proof. This is a formal consequence of the other relations in a 2-representation, together with the
fact that End(1λ) ∼= k. More precisely, in [CK] Lemma 4.5 we prove that Hom(EiEj ,EjEi〈1〉) is one-
dimensional. To do this we only used that the representation is integrable, biadjointness of Ei and
Ej , that Ei and Fj commute and the commutator relations of [Ei,Fi] and [Ej ,Fj ]. So the same proof
applies here if we replace Ej by Ej,1. �

We now give an explicit description of α and β as maps of complexes of 1-morphisms in Kom(K).
Let us suppose that 〈λ, αi〉 = a− 1 ≥ 0 and 〈λ, αj〉 = b+ 1 ≥ 0. Then the general terms of Ej,11λ and
Ei1λ+αj+δ are

P
(n)
j Q

(1b+n+1)
j 〈−n〉 and P

(n)
i Q

(1a−1+n)
i 〈−n〉.

This means that EiEj,11λ is a complex which looks like
(65)

· · · →
n+1⊕
k=0

P
(n+1−k)
i Q

(1a+n−k)
i P

(k)
j Q

(1b+1+k)
j 〈−n− 1〉 →

n⊕
k=0

P
(n−k)
i Q

(1a−1+n−k)
i P

(k)
j Q

(1b+1+k)
j 〈−n〉 → . . .

where the right hand term is in cohomological degree −n.
Similarly, the general terms of Ei1λ and Ej,11λ+αi are

P
(n)
i Q

(1a+n)
i 〈−n〉 and P

(n)
j Q

(1b+n)
j 〈−n〉.

This means that Ej,1Ei〈1〉1λ is a complex which looks like

(66) · · · →
n+1⊕
k=0

P
(k)
j Q

(1b+k)
j P

(n+1−k)
i Q

(1a+n+1−k)
i 〈−n〉 →

n⊕
k=0

P
(k)
j Q

(1b+k)
j P

(n−k)
i Q

(1a+n−k)
i 〈−n+1〉 → . . .
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where the right hand term is in cohomological degree −n.
On the other hand, EjEi,11λ looks like

(67)

· · · →
n+1⊕
k=0

P
(k)
j Q

(1b−1+k)
j P

(n+1−k)
i Q

(1a+n+2−k)
i 〈−n− 1〉 →

n⊕
k=0

P
(k)
j Q

(1b−1+k)
j P

(n−k)
i Q

(1a+n+1−k)
i 〈−n〉 → . . .

while Ei,1Ej〈1〉1λ looks like
(68)

· · · →
n+1⊕
k=0

P
(n+1−k)
i Q

(1a+n+1−k)
i P

(k)
j Q

(1b+k)
j 〈−n〉 →

n+1⊕
k=0

P
(n−k)
i Q

(1a+n−k)
i P

(k)
j Q

(1b+k)
j 〈−n+ 1〉 → . . . .

We now write down the pictures which define the map of complexes EiEj,1 → Ej,1Ei〈1〉. The chain
map will take

P
(n+1−k)
i Q

(1a+n−k)
i P

(k)
j Q

(1b+1+k)
j −→ P

(k)
j Q

(1b+k)
j P

(n+1−k)
i Q

(1a+n+1−k)
i ⊕P

(k)
j Q

(1b+k)
j P

(n+1−k)
i Q

(1a+n+1−k)
i .

The map to the first summand is

(69)
(n+ 1− k)i (1a+n−k)i (k)j (1b+1+k)j

(k + 1)j (1b+1+k)j (n− k)i (1a+n−k)i

where the solid dot is a degree one i− j dot. Similarly, the map to the second summand is

(70)
(n+ 1− k)i (1a+n−k)i (k)j (1b+1+k)j

(k)j (1b+k)j (n+ 1− k)i (1a+n−k+1)i

We need to check that these diagrams define a chain map, meaning that the map above commutes
with the differential. Diagrammatically, this amounts to checking that diagrams

(n+ 1− k)i (1a+n−k)i (k)j (1b+1+k)j

(k + 1)j (1b+1+k)j (n− k − 1)i (1a+n−k−1)i

,
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and

(n+ 1− k)i (1a+n−k)i (k)j (1b+1+k)j

(k + 1)j (1b+1+k)j (n− k)i (1a+n−k)i

(k + 1)j (1b+1+k)j (n− k − 1)i (1a+n−k−1)i

commute. To see this we simplify the second diagram. The two middle box idempotents in the middle
level (the 1(b+1+k) and the (n − k)) can be absorbed into the idempotents in the bottom level. Now
slide the cap downwards. It moves through the first line for free. To pass it through the second line
involves creating a sum of two diagrams, the first term of which just moves the cap through; the second
term creates a subdiagram

(2)j

(2)i

=

(2)j

(2)i

= −

(2)j

(2)i

= −

(2)j

(2)i

In the above graphical computation the minus sign comes from the two degree one dots passing one
another with respect to the horizontal; from the above computation we see that this subdiagram is
zero.

We conclude that we have a map of complexes EiEj,1 → Ej,1Ei〈1〉. A straightforward check shows
that this map of complexes is nonzero. This defines the chain map α, and we define the chain map β
similarly.

8.3.2. Proof of proposition 8.3. Looking at equations (65) and (66) we see that Cone(α) is a complex
where

(71)

n⊕
k=0

P
(n−k)
i Q

(1a−1+n−k)
i P

(k)
j Q

(1b+1+k)
j 〈−n〉

n+1⊕
k=0

P
(k)
j Q

(1b+k)
j P

(n+1−k)
i Q

(1a+n+1−k)
i 〈−n〉

is the term appearing in cohomological degree −n− 1. The second term above can be rewritten as

(72)

n⊕
k=0

P
(k)
j Q

(1b−1+k)
j P

(n−k)
i Q

(1a+n+1−k)
i 〈−n〉

n+1⊕
k=0

P
(k)
j P

(n+1−k)
i Q

(1b+k)
j Q

(1a+n+1−k)
i 〈−n〉.

On the other hand, looking at equations (67) and (68) we find that Cone(β) is a complex where

(73)

n⊕
k=0

P
(k)
j Q

(1b−1+k)
j P

(n−k)
i Q

(1a+n+1−k)
i 〈−n〉

n+1⊕
k=0

P
(n+1−k)
i Q

(1a+n+1−k)
i P

(k)
j Q

(1b+k)
j 〈−n〉

is the term appearing in cohomological degree −n− 1. The second term above can be rewritten as

(74)

n⊕
k=0

P
(n−k)
i Q

(1a+n−k−1)
i P

(k)
j Q

(1b+k+1)
j 〈−n〉

n+1⊕
k=0

P
(n+1−k)
i P

(k)
j Q

(1a+n+1−k)
i Q

(1b+k)
j 〈−n〉.
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Let us denote by A−n−1 the direct sum of the first term in (71) and all of (72) and likewise by B−n−1 the
direct sum of the first term in (73) and all of (74). These are the degree −n−1 terms in the complexes
Cone(α) and Cone(β). It is straight-forward to check that A−n−1 ∼= B−n−1 by just matching terms.

It remains to show that the differentials in Cone(α) and Cone(β) agree. We do this by applying
Lemma 8.5. The first and second conditions in Lemma 8.5 follow from Lemmas 3.5 and 3.6. The
third condition follows from a computation almost identical to that used for the proof of the relations

in section 7.3. We include the indecomposable 1-morphism P
(a+1)
i P

(1b)
j Q

(1c)
i Q

(d)
j into the appropriate

term of Cone(α), apply the boundary map and then project onto each indecomposable summand. The
composition is a collection of diagrams which can be simplified. Doing this we find the degree one
map from Lemma 3.5. This map can be shown to be nonzero by taking its closure as explained in the
example of section 3.5.

Lemma 8.5. Consider a finite complex

A• := . . . −→ ⊕`A−n−1
` −→ ⊕`A−n` −→ . . . −→ ⊕`A0

`

in the homotopy category of some additive category. Suppose that it satisfies the following:

(1) Hom(A−n` ,A−n+1
`′ ) is either zero or one-dimensional for all `, `′, n

(2) for any `, `1, `2, n such that

Hom(A−n−1
` ,A−n`1 ) ∼= k ∼= Hom(A−n−1

` ,A−n`2 )

there exists `′ and a nonzero map in Hom(A−n−1
` ,A−n+1

`′ ) which factors through A−n`1 and A−n`2
(3) for any `, n 6= 0 there exists a nonzero map with domain A−n` .

Now suppose B• is another complex such that A−n ∼= B−n for all n and B• satisfies the same conditions
as A• above. Then A• ∼= B•.

Proof. The proof is similar to that of lemma 7.4. It is based on the same observation that given a
complex

A
α1

⇒
α2

B1

B2

β1

⇒
β2

C

where Hom(A,B1) ∼= Hom(A,B2) ∼= Hom(B1, C) ∼= Hom(B2, C) ∼= Hom(A,C) ∼= k are spanned by
α1, α2, β1, β2 and β1 ◦ α1 = −β2 ◦ α2 then any three of the maps determines uniquely the fourth.

We now apply this to our problem. Fix an isomorphism A−n
∼−→ B−n and proceed by induction

starting from the far right. For the base case we note that A1
` = 0 so there is a unique nonzero map

out of each A−1
` . Acting by a multiple of the identity on A−1

` this map can be scaled so that it equals

to that in B•. For the induction step consider a nonzero map A−n−1
` → A−n`′ and rescale A−n−1

` so that
this map agrees with that in B•. Then using the observation above (and induction) it follows that all
the other maps out of A−n−1

` must also agree with those in B•. �

9. Applications, conjectures and further comments

In this section, we set the field k = C to be the complex numbers. Fix Γ ⊂ SL2(C), a non-trivial
finite subgroup. By the McKay correspondence, such subgroups are classified by finite Dynkin diagrams
of type A,D or E. To such a diagram there are three associated Lie algebras: a finite dimensional

simply-laced Lie algebra g, the affine Lie algebra ĝ and the associated toroidal Lie algebra ̂̂g with

g ⊂ ĝ ⊂ ̂̂g. We now describe two (essentially equivalent) categorifications of the basic representation

of U̇q(̂̂g) using the finite subgroup Γ ⊂ SL2(C).
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9.1. 2-representations via Hilbert schemes. Let XΓ = Ĉ2/Γ denote the minimal resolution of the

quotient singularity C2/Γ and denote by X
[n]
Γ the Hilbert scheme of n points on XΓ. The diagonal

C×-action on C2 induces a C×-action on X
[n]
Γ . Let DCohC

×
(XΓ) denote the derived category of C×-

equivariant coherent sheaves on XΓ. Its Grothendieck group (tensored with C(q)) is denoted KC×(XΓ).

In [CLi1] we constructed a level one integrable 2-representation of
̂̂
h on

⊕
n∈NDCoh(X

[n]
Γ ) where

̂̂
h

is the toroidal Heisenberg algebra. Corollary 5.3 explains how we obtain a 2-representation of ĝ from

one of ĥ. Adding the extra affine vertex to the story this immediately implies the following theorem.

Theorem 9.1. The action of
̂̂
h on ⊕n∈NDCoh(X

[n]
Γ ) induces a 2-representation of ̂̂g on⊕

α∈Ŷ ,n∈N

DCoh(X
[n]
Γ ).

Corollary 9.2. The quantum toroidal algebra U̇q(̂̂g) acts on⊕
α∈Ŷ ,n∈N

KC×(X
[n]
Γ ) =

⊕
n≥0

KC×(X
[n]
Γ )⊗C(q) C(q)[Ŷ ].

The resulting module is the basic representation.

Theorem 9.1 and Corollary 9.2 were conjectured by Nakajima in [N4]. Moreover, Corollary 9.2 is
both an affinization and a q-deformation of the work of Nakajima and Grojnowski which gives affine
Lie algebra actions on cohomology of Hilbert schemes.

9.2. 2-representations via wreath products. A 2-representation of ̂̂g can also be constructed using
the representation theory of finite dimensional superalgebras. Let BΓ := C[Γ]n∧∗(C2) and set BΓ(n) =
C[Sn]nB⊗nΓ (we include n = 0 in this definition, setting BΓ(0) = C). The natural Z grading on ∧∗(C2)
makes BΓ(n) into a Z-graded superalgebra. Let BΓ(n) denote the category of finitely generated, graded
BΓ(n) supermodules.

In [CLi1], a level one 2-representation of
̂̂
h was constructed on

⊕
n≥0 BΓ(n) categorifying the Fock

space representation of
̂̂
h. We do not need to use derived categories of modules since, in contrast to

the action on Hilbert schemes, the Heisenberg generators Pi and Qi act by exact functors. However,

to obtain a 2-representation of ̂̂g we still need to pass to the homotopy category Kom(BΓ(n)), since Ei
and Fi are given by complexes.

Theorem 9.3. The 2-representation of
̂̂
h on BΓ(n) induces a 2-representation of ̂̂g on⊕
α∈Ŷ ,n∈N

Kom(BΓ(n)).

Theorem 9.3 is very similar in spirit to the constructions of toroidal basic representations in [FJW].

9.3. The Kac-Moody description. The affine Lie algebra ĝ = g⊗k[t, t−1]⊕kc is also a Kac-Moody
Lie algebra. This Kac-Moody presentation has generators {ei, fi, hi}i∈Î . The isomorphism between
the Kac-Moody and loop presentations is defined as follows.

Let θ denote the highest root of g and gθ the associated root space. Choose elements Eθ ∈ g−θ,
Fθ ∈ gθ such that θ(Hθ) = −2, where Hθ := [Eθ, Fθ]. Then we define

e0 7→ Eθ ⊗ t, f0 7→ Fθ ⊗ t−1 and h0 7→ Hθ ⊗ 1 + c

while ei 7→ Ei and fi 7→ Fi if i ∈ I.
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Categorifications of Kac-Moody algebras have been defined by Khovanov-Lauda [KL1, KL2, KL3]
and Rouquier [R]. They are given by a 2-category UQ(ĝ)KM which depends on some scalars Q (we use
the notation from [CLa]). The 2-category in [KL3] corresponds to a particular choice of such scalars.
Although many of these 2-categories are isomorphic this is not always the case. In general the space
of isomorphism classes of these 2-categories is the first homology of the associated Dynking diagram.

We next describe a (conjectural) relationship between the categorification of the basic representation
constructed in the Kac-Moody setting and the categorification in the current paper. We do this from
a geometric and then an algebraic point of view.

9.3.1. Quiver varieties. The basic representation of ĝ was constructed geometrically by Nakajima using
the Γ-equivariant geometry of the Hilbert scheme of points on C2 (see [N1]). More precisely, Γ ⊂ SL2

acts on C2 and hence on all the Hilbert schemes C2[n]
. The fixed point components (C2[n]

)Γ are

Nakajima quiver varieties of affine type. Nakajima defines an action of ĝ on
⊕

n∈NHmid((A2[n]
)Γ,C),

where Hmid denotes the middle cohomology, giving the basic representation. One can also carry out
this construction by replacing homology with C×-equivariant K-theory, in which case the quantum
affine Kac-Moody algebra U̇q(ĝ) acts.

This action was lifted to derived categories of coherent sheaves in [CKL3].

Theorem 9.4. [CKL3] There exists a geometric categorical ĝ action on
⊕

n∈NDCoh
C×((C2[n]

)Γ).

A geometric categorical action is a notion introduced in [CKL2, CK] which enhances that of a näıve
categorical action in the context of geometry. In [CKL2] we studied the relationship between geometric
categorical sl2 actions and 2-representations of sl2 in the sense of Khovanov-Lauda and Rouquier. More
precisely, we showed that a geometric categorical sl2 action induces an action of Rouquier’s 2-category
(in particular, there is an action of the nilHecke algebra). In [Cau], we plan to prove an analogous result
for any simply laced Kac-Moody algebra. In conjunction with [CLa] this will imply that geometric
categorical ĝ action in Theorem 9.4 extends to give a 2-representation of the 2-category UQ(ĝ)KM (for
some choice of scalars Q).

The Grothendieck group of DCohC
×

((C2[n]
)Γ) contains more than just the basic representation

of U̇q(ĝ). This is because the entire quantum toroidal algebra U̇q(̂̂g) acts and this gives its basic
representation [N1]. In light of this we conjecture the following.

Conjecture 9.5. The geometric categorical ĝ action in Theorem 9.4 extends to a 2-representation of
the toroidal algebra.

Remark 9.6. The toroidal algebra in the conjecture above should be thought of as the loop algebra
of the Kac-Moody quantum affine algebra. In particular, UQ(ĝ)KM should act (for some choice of Q)
together with the loop algebra part which acts like in the definition in section 4.2 but at level zero
rather than level one. This conjecture was not proven in [CKL3] in part because there was no such
definition of a 2-representation of toroidal algebras.

So there are two possible categorifications of the basic representation of U̇q(̂̂g) using derived categories
of coherent sheaves, that of Theorem 9.1 and that of Conjecture 9.5. These categorifications are in

some ways quite different. For example, in the categorification involving (C2[n]
)Γ, the Kac-Moody

generators Ei and Fi are explicitly described, while the homogeneous Heisenberg generators Pi and Qi

are not as easily visible. On the other hand, in the categorification involving Ĉ2/Γ
[n]

the Heisenberg
generators Pi and Qi acquire a simpler geometric interpretation while the Kac-Moody generators Ei
and Fi are given by more complicated categorified vertex operators.
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However, the varieties (C2[n]
)Γ and Ĉ2/Γ

[k]
are closely related. Both can be realized as Nakajima

quiver varieties, but for different stability conditions and hence are derived equivalent. Subsequently
one can conjecture the following.

Conjecture 9.7. There is an equivalence between the 2-representations of ̂̂g from Theorem 9.1 and
Conjecture 9.5.

The above conjecture is complicated by the fact that the isomorphism between the loop and Kac-
Moody presentations of the quantum affine algebra is somewhat subtle. In particular, to prove conjec-
ture 9.7 one should assign endofunctors to the Kac-Moody 1-morphism e0 lifting the relation e0 = Eθ⊗t
between the Kac-Moody and loop descriptions of this operator. Such an assignment is not given in the
current paper.

9.3.2. Cyclotomic KLR algebras and wreath products. There is a parallel algebraic version of these
categorifications. In [KL1, KL3] a family of cyclotomic quiver Hecke algebras – also known as cyclotomic
KLR algebras – were defined. In particular, the following theorem was conjectured in [KL1, KL3] and
subsequently proven in [KK, W].

Theorem 9.8. The 2-categories UQ(ĝ)KM act on ⊕λRΛ0

Q,λ −mod where RΛ0

Q,λ is the cyclotomic KLR

algebra for the weight space λ in the basic representation VΛ0 (and for some choice of scalars Q).

In light of the connections between KLR algebras and quiver varieties [VV, R] this theorem is an
algebraic analogue of Theorem 9.4. Subsequently we expect that Theorem 9.8 can be extended to give
a 2-representation of quantum toroidal algebras. Then there should be an equivalence between the

categorification of the basic representation of U̇q(̂̂g) using toroidal cyclotomic KLR algebras and the
categorification of Theorem 9.3.

However, since toroidal cyclotomic KLR algebras have not been defined, we now restrict the con-
struction of Theorem 9.3 from the quantum toroidal algebra to the quantum affine algebra in order to
formulate a precise conjecture relating cyclotomic KLR algebras to the algebras BΓ(n) of section 9.

The isomorphism classes of indecomposable projective BΓ modules, {Pi}i∈Î are in bijection with
the nodes of the affine Dynkin diagram. The endomorphism algebra

B′Γ := EndBΓ(⊕i∈IPi)
where we omit the projective module correponding to the affine node, is a subalgebra of BΓ. Let
B′Γ(n) = k[Sn] nB′Γ

⊗n
.

Conjecture 9.9. For each n ∈ N there is some weight λ of the form λ = w ·Λ0−nδ (and some choice

of scalars Q) such that RΛ0

Q,λ is Morita equivalent to B′Γ(n).

Remark 9.10. Note that there is a braid group acting and hence, assuming the conjecture above,
there is a derived Morita equivalence between RΛ0

Q,λ and the algebra B′Γ(n) for any λ = w · Λ0 − nδ.
Part of the content of Conjecture 9.9 is that this equivalence is non-derived for an appropriate λ.

9.4. Braid groups. An application of 2-representations of quantum groups in the Kac-Moody setting
is that they induce actions of the associated braid group [CR, CK]. More precisely, in [CK] we defined
the concept of a geometric categorical action and showed that it induces braid group actions. In the
last section of that paper we give a version of a strong categorical g action and explain that the same
proof implies that such an action also induces a braid group action. More generally, we expect the
following.

Conjecture 9.11. A 2-representation of ̂̂g (in the sense of this paper) induces an action of the double
affine braid group B̂̂g.
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9.5. Work of Carlsson-Okounkov. In [CO, Car] Carlsson and Okounkov describe an operator,
denoted W, on the cohomology of Hilbert schemes of points on a surface. This operator is defined
using the Chern class of a virtual bundle over these Hilbert schemes, and their main theorem states
that W can be expressed as a vertex operator. It would be interesting to understand their result at the
categorified level, and to define an analogue of their operator W as a functor between derived categories
of coherent sheaves on Hilbert schemes. For ALE spaces, the resulting functor should be related to the
higher vertex operators of this paper.
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