VARIATIONS OF A CLASS OF MONGE-AMPE`RE TYPE FUNCTIONALS AND THEIR APPLICATIONS

HAODI CHEN, SHIBING CHEN, AND QI-RUI LI

ABSTRACT. In this paper, we study a class of Monge-Amp`ere type functionals arising from the L_p dual Minkowski problem in convex geometry. As an application, we obtain some existence and non-uniqueness results for the problem.

1. Introduction

The characterisation problem of geometric measures in convex geometry has a long history and strong influence on fully nonlinear PDEs. A best known example is the classical Minkowski problem. For a full discussion on this problem and its resolution, one may consult Cheng-Yau [18] and Pogorelov [34]. Other important geometric measures in Brunn-Minkowski theory include curvature measures and area measures, and the associated problems of prescribing curvature and area measures were also intensively studied. See Schneider’s book [35] for a comprehensive introduction.

Most recently Lutwak-Yang-Zhang [33] introduced the L_p dual curvature measures and proposed the associated Minkowski type problem. Let K_0 be the set of all convex bodies (i.e., compact convex sets that have non-empty interior) in \mathbb{R}^{n+1} containing the origin in their interiors. Associated to each $\Omega \in K_0$ are the support function $u = u_\Omega : S^n \to \mathbb{R}$ and the radial function $r = r_\Omega : S^n \to \mathbb{R}$, which are respectively defined by $u(x) = \max\{x \cdot z : z \in \Omega\}$, and $r(\xi) = \max\{\lambda : \lambda \xi \in \Omega\}$. Let $\tilde{r}(\xi) = \tilde{r}_\Omega(\xi) := r_\Omega(\xi)\xi$. Then $\partial \Omega = \{\tilde{r}(\xi) : \xi \in S^n\}$. Denote by $\nu = \nu_\Omega : \partial \Omega \to S^n$ the spherical image, namely $\nu(z) = \{x \in S^n : z \cdot x = u_\Omega(x)\}$. With these notions in hand, the radial Gauss mapping $\mathcal{A} = \mathcal{A}_\Omega$ and the reverse radial Gauss mapping $\mathcal{A}^* = \mathcal{A}_\Omega^*$ are defined as follows: for any $\omega \subseteq S^n$,

\begin{align}
\mathcal{A}(\omega) &= \{\nu(\tilde{r}(\xi)) : \xi \in \omega\}, \\
\mathcal{A}^*(\omega) &= \{\xi \in S^n : \nu(\tilde{r}(\xi)) \in \omega\}.
\end{align}

2010 Mathematics Subject Classification. Primary 35J20, 35J96; Secondary 52A40.

Key words and phrases. Minkowski type problems, Monge-Amp`ere type functionals, Second variation, Stability, non-uniqueness.
In [33] the L_p dual curvature measures $\tilde{C}_{p,q}(\Omega, \cdot)$, where $p, q \in \mathbb{R}$, are a two-parameter family of Borel measures on \mathbb{S}^n, defined by

$$\tilde{C}_{p,q}(\Omega, \omega) = \int_{\mathbb{S}^n(\omega)} \frac{r^q(\xi)}{u^p(\mathcal{S}(\xi))} d\sigma_{\mathbb{S}^n}(\xi).$$

The associated Minkowski type problem was posed by Lutwak-Yang-Zhang [33]: Given a finite Borel measure μ on \mathbb{S}^n, find necessary and sufficient conditions on μ so that it is the L_p dual curvature measure of a convex body. If μ is absolutely continuous w.r.t. $\sigma_{\mathbb{S}^n}$ and $f = \frac{d\mu}{d\sigma_{\mathbb{S}^n}}$ is the Radon-Nikodym derivative, then, in terms of the support function u, the problem reduces to the following Monge-Ampère equations

$$\det(\nabla^2 u + u I) = \left(u^2 + |\nabla u|^2 \right)^{n+1-q} u^{p-1} f(x) \quad \text{on } \mathbb{S}^n,$$

where ∇ is the covariant derivative w.r.t. an orthonormal frame on \mathbb{S}^n.

The L_p dual Minkowski problem includes the classical Minkowski problem as a special case, and unifies the L_p-Minkowski problem and dual Minkowski problem introduced in [25, 31]. There is a large number of papers devoted to these problems, see e.g. [4, 7, 16, 17, 19, 21, 30, 32] for the L_p-Minkowski problem, and [5, 15, 24, 25, 29, 38] for the dual Minkowski problem.

The L_p-Minkowski problem amounts to solve (1.3) with $q = n + 1$. It is of particular interest, as the problem describes the self-similar solutions to the flows by powers of the Gauss curvature [3, 22]:

$$\partial_t X(x, t) = -K^\alpha(x, t)\nu(x, t),$$

where $X(\cdot, t)$ is a time-dependent embedding of a family of convex hypersurfaces \mathcal{M}_t, $K(\cdot, t)$ and $\nu(\cdot, t)$ denote the Gauss curvature and unit outer normal of \mathcal{M}_t respectively. In fact the self-similar solutions to (1.4) satisfy (1.3) with $f \equiv 1$ and $p = 1 - 1/\alpha$. For $\alpha = 1$, flow (1.4) was first studied by Firey [20] to model the shape change of tumbling stones. It was conjectured that, when $\alpha > 1/(n + 2)$, flow (1.4) deforms each convex hypersurface in \mathbb{R}^{n+1} into a round point. Andrews proved the conjecture for the case $n = 1$ in [2], and for the case $n = 2$ and $\alpha = 1$ in [1]. Very recently Brendle-Choi-Daskalopoulos [8] resolved this conjecture for all dimensions $n \geq 2$. This shows that $u \equiv 1$ is the only solution to (1.3) when $q = n + 1$, $p \in (-n - 1, 1)$ and $f \equiv 1$. However

1 Lutwak-Yang-Zhang's L_p dual curvature measure [33] is more general than (1.2), as their definition allows a dependence of a fixed star body Q (i.e. a compact star-shaped set about the origin). If Q is taken as the unit ball $B_1 \subseteq \mathbb{R}^{n+1}$, then their conception is formulated by (1.2).
for non-constant \(f \), the \(L_p \)-Minkowski problem admits multiple solutions when \(p \leq 0 \) \cite{23, 27, 28, 37}.

For general \(p, q \in \mathbb{R} \), the existence of solutions to (1.3) was partially addressed in \cite{6, 12, 14, 26}, and the uniqueness of solutions was proved for \(p > q \) \cite{26, 33}. The main goal of this paper is to show a non-uniqueness result for the \(L_p \) dual Minkowski problem.

We say \(u \in C^2(S^n) \) is uniformly convex if \(u \) is the support function of a convex body whose boundary has uniformly positive principal curvatures. Our main result is the following.

Theorem 1.1. Let \(f \equiv 1 \). Then equation (1.3) admits an even, smooth, uniformly convex, positive solution \(u \neq 1 \), provided that \(p, q \in \mathbb{R} \) satisfy one of the following

(A1) \(q - 2n - 2 > p \geq 0 \),
(A2) \(q > 0 \) and \(-q^* < p < \min\{0, q - 2n - 2\}\), where \(q^* \) is given in (1.9) below.
(A3) \(p + 2n + 2 < q \leq 0 \).

Clearly \(u \equiv 1 \) is a solution to (1.3) for \(f \equiv 1 \). Hence our Theorem 1.1 shows that if one of (A1)-(A3) holds, then besides the unit ball \(B_1 \) there is another origin-symmetric convex body \(\Omega \) whose \(L_p \) dual curvature measure coincides with the standard spherical measure \(\sigma_{S^n} \). Since (1.5) is not affine-invariant unless \(q = -p = n + 1 \), ellipsoids are not solutions to the problem in general. In \cite{24} the authors showed that, if \(f \equiv 1, n = 1, p = 0 \), and \(q \) is an even integer no less than 6, then (1.3) has a non-constant solution. Our Theorem 1.1 (A1) extends their result.

Theorem 1.1 follows from Theorems 1.2 & 1.3 below. Both theorems are proved by studying a Monge-Ampère type functional (1.5). For any finite Borel measure \(\sigma \) on \(S^n \) and integrable function \(g \), we use the following convention:

\[
\int_{S^n} g d\sigma := \frac{1}{\sigma(S^n)} \int_{S^n} g d\sigma.
\]

Let \(\mu \) and \(\mu^* \) be two finite Borel measures on \(S^n \). Consider the functional:

\[
J_{p,q,\mu,\mu^*}(\Omega) = \Phi_{p,\mu}(\Omega) + \Psi_{q,\mu^*}(\Omega), \quad \text{for } \Omega \in \mathcal{K}_0,
\]

where

\[
\Phi_{p,\mu}(\Omega) = \begin{cases}
-\frac{1}{p} \log \int_{S^n} u_\Omega^p(x) d\mu(x), & \text{if } p \neq 0, \\
-\int_{S^n} \log u_\Omega(x) d\mu(x), & \text{if } p = 0,
\end{cases}
\]

and

\[
\Psi_{q,\mu^*}(\Omega) = \int_{S^n} \frac{1}{q} \sigma_{S^n}(\Omega) d\mu^*(x).
\]
and

\begin{equation}
\Psi_{q,\mu^*}(\Omega) = \begin{cases} \\
\frac{1}{q} \log \int_{\mathbb{S}^n} r_\Omega^q(\xi) d\mu^*(\xi), & \text{if } q \neq 0, \\
\int_{\mathbb{S}^n} \log r_\Omega(\xi) d\mu^*(\xi), & \text{if } q = 0.
\end{cases}
\end{equation}

Observe that J_{p,q,μ,μ^*} is homogeneous degree zero, namely

\begin{equation}
J_{p,q,\mu,\mu^*}(t\Omega) = J_{p,q,\mu,\mu^*}(\Omega), \quad \forall t > 0.
\end{equation}

For convenience, we shall omit sometimes the subscript μ (or μ^*) in (1.5)-(1.7) if μ (or μ^*) is exactly the standard spherical measure. We will see that, up to a rescaling, (1.3) is the Euler equation of functional (1.5) for $d\mu = f d\sigma^n$ and $d\mu^* = d\sigma^n$.

Let $\mathcal{K}_0 \subset \mathcal{K}_0$ be the set of all origin-symmetric convex bodies. By a Blaschke-Santaló type inequality [13], we are able to use a variational argument to prove Theorem 1.2 below, which shows the existence of origin-symmetric solutions to the L_p dual Minkowski problem.

To our best knowledge, even for the symmetric measures, Theorem 1.2 under condition (B2) gives the first existence result for the problem when $p < 0$, $q > 0$ and $q \neq n + 1$, hence is of particular interest. We point out that, under condition (B1) or (B3), the existence of origin-symmetric solutions was obtained in [12, 26] and in [29] for $p = 0$. As this existence result is needed in our main result Theorem 1.1, we still include a proof in this paper for reader’s convenience.

Theorem 1.2. Let $d\mu^* = d\sigma^n$, $d\mu = f d\sigma^n$, f be an even function on \mathbb{S}^n, and $1/C \leq f \leq C$ for some constant $C > 0$. Assume that $p, q \in \mathbb{R}$ satisfy one of the following

(B1) $p \geq 0$ and $q \geq 0$;

(B2) $q > 0$ and $-q^* < p < 0$, where $q^* > 0$ is defined as

\begin{equation}
q^* = \begin{cases} \\
\frac{q}{q-n} & \text{if } q > n + 1, \\
n + 1 & \text{if } q = n + 1, \\
nq & \text{if } 1 < q < n + 1, \\
\frac{q-1}{q-1} & \text{if } 0 < q \leq 1.
\end{cases}
\end{equation}

(B3) $p \leq 0$ and $q \leq 0$.

4
Then there is a convex body \(\Omega_0 \in \mathcal{K}_0 \) such that
\[
J_{p,q,\mu}(\Omega_0) = \max\{J_{p,q,\mu}(\Omega) : \Omega \in \mathcal{K}_0\}.
\]
Moreover \(\partial \Omega_0 \) is strictly convex and is \(C^{1,\gamma} \) for some \(\gamma \in (0,1) \), and satisfies
\[
\tilde{C}_{p,q}(\Omega_0,\omega) = \lambda_{\Omega_0} \int_{\omega} f d\sigma_{S^n}, \quad \text{for any Borel set } \omega \subseteq S^n,
\]
where
\[
\lambda_{\Omega_0} = \frac{\int_{S^n} r^q d\sigma_{S^n}}{\int_{S^n} \omega d\mu}.
\]
If \(f \) is additionally smooth, then the support function \(u_{\Omega_0} \) is an even, smooth, uniformly convex, positive solution to (1.3) with \(f \) replaced by \(\lambda_{\Omega_0} f \).

For \(p \neq q \), \(\tilde{\Omega}_0 := \frac{1}{\lambda_{\Omega_0}} \Omega_0 \) solves the \(L_p \) dual Minkowski problem, namely \(\tilde{\Omega}_0 \) satisfies
\[
\tilde{C}_{p,q}(\tilde{\Omega}_0,\omega) = \int_{\omega} f d\sigma_{S^n}, \quad \text{for any Borel set } \omega \subseteq S^n,
\]
a and \(u_{\tilde{\Omega}_0} \) is an even, smooth, uniformly convex, positive solution to (1.3), provided \(f \) is additionally smooth.

Remark 1.1. In [26], the existence of solutions to (1.3) when \(f \) is not necessarily even was obtained for \(p > q \). When \(p \leq q \), the existence result, without evenness assumption on \(f \), becomes much more difficult. It was available for \(p > -n - 1 \) and \(q = n + 1 \) [19], and for \(p > 1 \) and \(q > 0 \) [6]. In a subsequent paper [14], we will prove that, for \(p > 0 \) and all \(q \in \mathbb{R} \), the problem admits a weak solution if the prescribed measure \(\mu \) is not concentrated on any closed hemisphere, while the evenness of \(\mu \) is not required.

Remark 1.2. As in [4], we are able to prove by approximation the \(L_p \) dual Minkowski problem admits an origin-symmetric solution when \(p, q \) satisfy condition (B2) in Theorem 1.2 and \(f \) is an even and nonnegative function on \(S^n \), \(\int_{S^n} f d\sigma_{S^n} > 0 \), and \(L^{q^*} \)-integrable (when \(q^* \neq +\infty \)) or \(L^s \)-integrable for some \(s > 1 \) (when \(q^* = +\infty \)). See Theorem 3.2 in Section 3 below.

We then show that, if \(\mu = \mu^* = \sigma_{S^n} \) and \(q > p + 2n + 2 \), then the unit ball \(B_1 \) is not a maximiser of (1.10). This together with Theorem 1.2 proves Theorem 1.1.

Theorem 1.3. Let \(\mu = \mu^* = \sigma_{S^n} \). If \(q > p + 2n + 2 \), then there is an even function \(\eta \in C^\infty(S^n) \), and a small \(\varepsilon > 0 \), such that the convex body \(\Omega_{\varepsilon} \in \mathcal{K}_0 \), whose support
function is \(u(x, t) = 1 + t\eta(x) \), satisfies

\[
(1.14) \quad J_{p,q}(B_1) < J_{p,q}(\Omega_t), \quad \text{for } t \in (0, \varepsilon).
\]

This paper is organised as follows. In Section 2, we calculate the first and second variations of functional \((1.5)\). We show that \(B_1 \) is an unstable critical point of the functional \(J_{p,q} \) provided \(q > p + 2n + 2 \), which consequently proves Theorem \(1.3\). In Section 3, we prove Theorem \(1.2\) via variational argument, and then complete the proof of Theorem \(1.1\). The Poincaré inequality on \(S^n \) is related to the stability of \(B_1 \) under the functional \((1.5)\). It can be obtained by studying the eigenvalues of the spherical Laplace operator \([36]\). In Section 4, we provide an alternative proof for the Poincaré inequality with sharp constant via the uniqueness of the self-similar solution to the flow \((1.4)\) when \(\alpha > \frac{1}{n+2} \) \([1, 2, 8]\), which makes our paper self-contained.

2. Second variation for Monge–Ampère type functional \((1.5)\)

Let \(u \) and \(r \) be respectively the support function and radial function of \(\Omega \in \mathcal{K}_0 \). Given any \(\eta \in C^0(S^n) \), there is an \(\varepsilon > 0 \), depending on \(\min_{S^n} u \) and \(\max_{S^n} |\eta| \), such that \(u(x) + t\eta(x) > 0 \) for all \(x \in S^n \) and \(|t| < \varepsilon \). Consider a family of convex bodies

\[
(2.1) \quad \Omega_t = \{ z : z \cdot x \leq u(x) + t\eta(x), \; x \in S^n \}, \quad \text{for } |t| < \varepsilon.
\]

Let \(u(x, t) \) and \(r(x, t) \) be the support function and radial function of \(\Omega_t \).

Lemma 2.1. Suppose that \(\partial \Omega \) is \(C^1 \) and strictly convex at \(z_0 \in \partial \Omega \). Then the limits below exist

\[
\dot{u}(x_0) := \lim_{t \to 0} \frac{u(x_0, t) - u(x_0, 0)}{t},
\]

\[
\dot{r}(\xi_0) := \lim_{t \to 0} \frac{r(\xi_0, t) - r(\xi_0, 0)}{t},
\]

where \(x_0 \) is the unit outer normal of \(\partial \Omega \) at \(z_0 \) and \(\xi_0 = z_0/|z_0| = \mathcal{A}_1^*(x_0) \). Furthermore

\[
(2.2) \quad \dot{u}(x_0) = \eta(x_0),
\]

and

\[
(2.3) \quad \frac{\dot{r}(\xi_0)}{r(\xi_0)} = \frac{\dot{u}}{u}(x_0).
\]

Proof. By \((2.1)\) and the definition of support function, we have

\[
(2.4) \quad u(x, t) \leq u(x) + t\eta(x), \quad \text{for all } x \in S^n, \; |t| < \varepsilon.
\]
Therefore

\[(2.5) \quad \limsup_{t \to 0^+} \frac{u(x_0, t) - u(x_0, 0)}{t} \leq \eta(x_0).\]

On the other hand, let \(u_{z_0}(x) = u(x) - z_0 \cdot x \) and \(u_{z_0}(x, t) = u(x, t) - z_0 \cdot x \). Since \(\partial \Omega \) is \(C^1 \) at \(z_0 \), one infers that there exists a \(x_1 \in S^n \) so that

\[(2.6) \quad u_{z_0}(x_0, t) = (u_{z_0} + t\eta)(x_1) \quad \text{with} \quad x_t \to x_0 \quad \text{as} \quad t \to 0.\]

For this, as \(u_{z_0}(x_0, 0) = u_{z_0}(x_0) = 0 \), if \(x_{t_k} \to x_1 \) then \(u_{z_0}(x_1) = 0 \) and so \(x_1 \) is a unit outer normal at \(z_0 \). Hence \(x_1 \) must coincide with \(x_0 \). Therefore, by \(u_{z_0}(x_1) \geq 0 \),

\[(2.7) \quad \liminf_{t \to 0^+} \frac{u(x_0, t) - u(x_0, 0)}{t} = \liminf_{t \to 0^+} \frac{u_{z_0}(x_0, t) - u_{z_0}(x_0)}{t} = \liminf_{t \to 0^+} \frac{u_{z_0}(x_t) + t\eta(x_t)}{t} \geq \eta(x_0).\]

For \(t \to 0^- \), \((2.4) \) and \((2.6) \) give respectively

\[\liminf_{t \to 0^-} \frac{u(x_0, t) - u(x_0, 0)}{t} \geq \eta(x_0), \quad \text{and} \quad \limsup_{t \to 0^-} \frac{u(x_0, t) - u(x_0, 0)}{t} \leq \eta(x_0).\]

Hence \((2.2) \) follows.

Next we prove \((2.3) \). For this, let \(h(x) = (\eta/u)(x) \in C^0(S^n) \). By \((2.2) \), we have

\[(2.8) \quad u(x_0, t) = u(x_0) + t\eta(x_0) + o(t).\]

It follows that

\[0 = -\log r(\xi_0) + \log u(x_0) - \log(\xi_0 \cdot x_0)\]

\[= -\log r(\xi_0) + \log u(x_0, t) - \log(\xi_0 \cdot x_0) + \left(\log u(x_0) - \log u(x_0, t) \right)\]

\[(2.9) \quad \geq -\log r(\xi_0) + \log r(\xi_0, t) - th(x_0) + o(t).\]

On the other hand, since \(\partial \Omega \) is strictly convex at \(z_0 \), there is a \(\xi_t \in S^n \) such that

\[-\log r(\xi_t, t) = \log(\xi_t \cdot x_0) - \log u(x_0, t) \quad \text{with} \quad \xi_t \to \xi_0 \quad \text{as} \quad t \to 0.\]

This together with \((2.8) \) shows that

\[0 \leq -\log r(\xi_t) + \log u(x_0) - \log(\xi_t \cdot x_0)\]

\[= -\log r(\xi_t) + \log u(x_0) - \left(\log u(x_0, t) - \log r(\xi_t, t) \right)\]

\[(2.10) \quad = -\log r(\xi_0) + \log r(\xi_0, t) - th(x_0) + o(t).\]

We complete the proof by \((2.9) \) and \((2.10) \).
In the rest of this section, we always assume that u is uniformly convex. Then the radial Gauss mapping A and the reverse radial Gauss mapping A^*, defined by (1.1), are one-to-one mappings. Given $\omega \subset \mathbb{S}^n$, we consider the “cone-like” region inside Ω

$$\mathcal{C} := \{ z \in \mathbb{R}^{n+1} : z = \lambda \nu^{-1}(x), \, \lambda \in [0, 1], \, x \in \omega \},$$

where ν denotes the spherical image of Ω. It is well-known that the volume element of \mathcal{C} can be expressed by

$$d \text{Vol}(\mathcal{C}) = \frac{1}{n+1} \frac{u(x)}{K(\nu^{-1}(x))} d\sigma_{\mathbb{S}^n}(x) = \frac{1}{n+1} r^{n+1}(\xi) d\sigma_{\mathbb{S}^n}(\xi),$$

where $K(z)$ is the Gauss curvature of $\partial \Omega$ at z. It follows that the determinants of the Jacobian of the mappings A and A^* are given by

$$|\text{Jac} A^*|(x) = \frac{u(x)}{r^{n+1}(A^*(x))K(\nu^{-1}(x))},$$

$$|\text{Jac} A|(\xi) = \frac{r^{n+1}(\xi)K(\tilde{r}(\xi))}{u(A(\xi))}. \quad (2.11)$$

Let $\eta \in C^\infty(\mathbb{S}^n)$. By the uniform convexity of u, there is a small $\varepsilon > 0$ such that, for all $|t| < \varepsilon$, (i) Ω_t defined by (2.1) lies in K_0; (ii) $u(x,t) := u(x) + t\eta$ is the support function of Ω_t; and (iii) $u(x,t)$ is uniformly convex. Let us compute the first and second variations of functional (1.5).

Proposition 2.1. Let $\Omega \in K_0$ be a convex body whose support function u is uniformly convex. Given $\eta \in C^\infty(\mathbb{S}^n)$, let Ω_t be the convex bodies defined by (2.1). Let $d\mu = f d\sigma_{\mathbb{S}^n}$ and $d\mu^* = f^* d\sigma_{\mathbb{S}^n}$. Denote by $\alpha = n+1-q$, $\beta = p-1$. Then

$$\left. \frac{d}{dt} \right|_{t=0} J_{p,q,\mu,\mu^*}(\Omega_t) = \frac{1}{\int_{\mathbb{S}^n} r^{q} d\mu^*} \int_{\mathbb{S}^n} J_{p,q,\mu,\mu^*}(x)\eta(x) d\sigma_{\mathbb{S}^n}(x), \quad (2.12)$$

where

$$J_{p,q,\mu,\mu^*}(x) = \frac{f^* \circ A^*}{(r \circ A^*_{\Omega})^\alpha K} - \lambda u^\beta f(x), \quad \text{with} \quad \lambda = \frac{\int_{\mathbb{S}^n} r^q d\mu^*}{\int_{\mathbb{S}^n} u^\beta d\mu},$$

and K is the Gauss curvature of $\partial \Omega$ calculated at $\nu^{-1}_\Omega(x)$.\n
If \(\Omega \) is a convex body satisfying \(J_{p,q,\mu,\sigma_S^n} \equiv 0 \), then

\[
\frac{d^2}{dt^2} \bigg|_{t=0} J_{p,q,\mu,\sigma_S^n}(\Omega_t) = \frac{1}{\int_{S^n} u^p d\mu} \left\{ \int_{S^n} \left(\sum h^{ij} \eta_{ij} + H \eta \right) u^3 \eta d\mu - \alpha \int_{S^n} u^\beta u^n + \nabla u \cdot \nabla \eta \right\} + \frac{1}{\int_{S^n} w^q d\mu} \left\{ \int_{S^n} \left(\sum h^{ij} \eta_{ij} + H \eta \right) u^3 \eta d\mu - \alpha \int_{S^n} u^\beta u^n + \nabla u \cdot \nabla \eta \right\} - \beta \int_{S^n} u^{\beta - 1} \eta^2 d\mu + \frac{p - q}{\int_{S^n} w^q d\mu} \left(\int_{S^n} u^3 \eta d\mu \right) \}
\]

where \(\{h^{ij}\} \) is the inverse matrix of \(\{u_{ij} + u \delta_{ij}\} \), and \(H = \sum h^{ii} \) is the mean curvature of \(\partial \Omega \).

Proof. Note that, for all \(|t| < \varepsilon \), \(\partial \Omega_t \) are \(C^2 \) and strictly convex, with uniformly convex support function \(u(x,t) = u(x) + t\eta \). Denote by \(r = r(\xi, t) \) the radial function of \(\Omega_t \). Hence, by (2.11) and Lemma 2.1 we compute the first variation of (1.5) as follows

\[
\frac{d}{dt} J_{p,q,\mu,\sigma_S^n}(\Omega_t) = -\frac{1}{\int_{S^n} u^p d\mu} \int_{S^n} u^3 \eta d\mu + \frac{1}{\int_{S^n} w^q d\mu} \int_{S^n} r^q \frac{\dot{r}}{r} d\mu^* = -\frac{1}{\int_{S^n} u^p d\mu} \int_{S^n} u^3 \eta d\mu + \frac{1}{\int_{S^n} w^q d\mu} \int_{S^n} \frac{f^* \circ \sigma^*_{\Omega_t}}{(r \circ \sigma^*_{\Omega_t})^\alpha K} \eta \sigma_S^n \]

(2.14)

where the geometric quantities above are of \(\Omega_t \). Taking \(t = 0 \), we get (2.12).

Note that \(r \circ \sigma^*_{\Omega_t} = \sqrt{u_{\Omega_t}^2 + |\nabla u_{\Omega_t}|^2} \). Letting \(\mu^* = \sigma_S^n \) in (2.14) and then differentiating (2.14) w.r.t. \(t \) again, we further calculate, by the assumption \(J_{p,q,\mu,\sigma_S^n} \equiv 0 \),

\[
\frac{d^2}{dt^2} \bigg|_{t=0} J_{p,q,\mu,\sigma_S^n}(\Omega_t) = \frac{1}{\int_{S^n} u^p d\mu} \left\{ \int_{S^n} \sum S^{ij}_{\eta,ij} \eta \frac{\eta}{(r \circ \sigma^*_{\Omega_t})^\alpha K} d\sigma_S^n \right\} - \alpha \int_{S^n} \frac{u^n + \nabla u \cdot \nabla \eta}{(r \circ \sigma^*_{\Omega_t})^\alpha K} d\sigma_S^n - \lambda \beta \int_{S^n} u^{\beta - 1} \eta^2 d\sigma_S^n - \frac{q}{\int_{S^n} u^p d\mu} \left\{ \int_{S^n} \sum h^{ij} \eta_{ij} + H \eta \right\} \eta d\mu - \alpha \int_{S^n} u^\beta u^n + \nabla u \cdot \nabla \eta \right\} - \beta \int_{S^n} u^{\beta - 1} \eta^2 d\mu + \frac{p - q}{\int_{S^n} u^p d\mu} \left(\int_{S^n} u^3 \eta d\mu \right) \}
\]

This finishes the proof.
By virtue of Proposition 2.1, we are able to prove Theorem 1.3.

Proof of Theorem 1.3. Let \(\eta \in C^\infty(S^n) \) be an even function. As the unit ball \(B_1 \) is uniformly convex, there is a small \(\varepsilon = \varepsilon_\eta > 0 \), depending on \(\eta \), such that, for all \(|t| < \varepsilon \), \(\Omega^\eta_t := \{ z \in \mathbb{R}^{n+1} : x \cdot z \leq 1 + t\eta(x), \ x \in S^n \} \) has support function \(u(x,t) = 1 + t\eta(x) \), which is positive and uniformly convex. Clearly \(\Omega^\eta_t \in \mathcal{K}^e_0 \).

By Proposition 2.1,

\[
\frac{d}{dt} \bigg|_{t=0} J_{p,q}(\Omega^\eta_t) = 0,
\]

and

\[
\frac{d^2}{dt^2} \bigg|_{t=0} J_{p,q}(\Omega^\eta_t) = \int_{S^n} (\eta \Delta \eta + (n - \alpha - \beta)\eta^2) d\sigma_{S^n} + (p - q) \left(\int_{S^n} \eta d\sigma_{S^n} \right)^2
\]

(2.17)

\[
= (q - p) \int_{S^n} (\eta - \bar{\eta})^2 d\sigma_{S^n} - \int_{S^n} |\nabla \eta|^2 d\sigma_{S^n},
\]

where \(\bar{\eta} := \int_{S^n} \eta d\sigma_{S^n} \) is the mean value of \(\eta \).

By (i) in Theorem 4.1 below, there is an \(\eta_0 \in C^\infty(S^n) \), with \(\bar{\eta}_0 = 0, \eta_0 \not\equiv 0 \), such that

\[
(2n + 2 + \frac{1}{2} \delta_{p,q}) \int_{S^n} \eta_0^2 d\sigma_{S^n} \geq \int_{S^n} |\nabla \eta_0|^2 d\sigma_{S^n},
\]

where

\[
\delta_{p,q} := q - p - 2n - 2 > 0.
\]

Then for \(\Omega_t := \Omega^\eta_0_t \), whose support function is \(1 + t\eta_0 \), one has by (2.17)

(2.18)

\[
\frac{d^2}{dt^2} \bigg|_{t=0} J_{p,q}(\Omega_t) \geq \frac{1}{2} \delta_{p,q} \int_{S^n} \eta_0^2 d\sigma_{S^n} > 0.
\]

For \(\varepsilon_0 = \varepsilon_{\eta_0} > 0 \) very small, one knows that \(\partial \Omega_t \) is smooth and uniformly convex for all \(|t| < \varepsilon_0 \). Hence by (2.17) and (2.18)

\[
J_{p,q}(\Omega_t) = J_{p,q}(B_1) + t \frac{d}{dt} \bigg|_{t=0} J_{p,q}(\Omega_t) + \frac{1}{2} t^2 \frac{d^2}{dt^2} \bigg|_{t=0} J_{p,q}(\Omega_t) + o(t^2)
\]

\[
> J_{p,q}(B_1), \text{ for } t \in (0, \varepsilon_0'),
\]

provided \(\varepsilon_0' \), depending on \(\eta_0 \), is sufficiently small.

\(\square \)

Remark 2.1. When \(p = 0 \) and \(q = n + 1 \), the second variation of the functional was obtained in [22].
3. Proof of Theorems 1.1 & 1.2

In this section, we first prove Theorem 1.2. This together with Theorem 1.3 shows Theorem 1.1.

Given $\Omega \in \mathcal{K}^e_0$, the polar set of Ω is defined as follows

$$\Omega^* = \{ y \in \mathbb{R}^{n+1} : y \cdot x \leq 1 \ \forall \ x \in \Omega \}.$$

The following generalised Blaschke-Santaló inequality was proved in [13].

Theorem 3.1 (Blaschke-Santaló type inequality [13]). Given $q > 0$, let $q^* > 0$ be the number given by (1.9). For $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a constant $C_{n,q,\gamma} > 0$ such that,

$$\left(\int_{S^n} r^q \sigma_{S^n} \right)^{\frac{1}{q}} \left(\int_{S^n} r^{\gamma q} \sigma_{S^n} \right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \ \forall \ \Omega \in \mathcal{K}^e_0. $$

Theorem 3.1 enables us to solve the optimisation problem (1.10).

Proposition 3.1. Under the assumptions of Theorem 1.2, there is a convex body $\Omega_0 \in \mathcal{K}^e_0$ solving the maximisation problem (1.10).

Proof. We prove Proposition 3.1 when either (B1) or (B2) holds. For the case (B3), we use a dual argument.

Assume that either (B1) or (B2) is satisfied. We have $p \leq 0$ and $q > 0$. By the homogeneity (1.8), it suffices to show there is a $\Omega_0 \in \mathcal{K}^e_0$, with $\Psi_{q,\sigma_{S^n}}(\Omega_0) = 0$, such that

$$\tilde{\Phi}_{p,\mu}(\Omega_0) = \max_{\Omega \in \mathcal{K}^e_0} \left\{ \tilde{\Phi}_{p,\mu}(\Omega) : \Psi_{q,\sigma_{S^n}}(\Omega) = 0 \right\},$$

where

$$\tilde{\Phi}_{p,\mu}(\Omega) := \begin{cases} -\frac{1}{p} \int_{S^n} u^p \mu, & \text{if } p \neq 0, \\ - \int_{S^n} \log u \mu, & \text{if } p = 0. \end{cases}$$

For (3.2), let $\{\Omega_j\} \subset \mathcal{K}^e_0$, with $\Psi_{q,\sigma_{S^n}}(\Omega_j) = 0$, be a maximising sequence. We denote $u_j = u_{\Omega_j}$ and $r_j = r_{\Omega_j}$ for convenience. We claim

$$\max_{S^n} u_j \leq C,$$

for some $C > 0$, independent of j. We next prove (3.3) (under the assumption (B1) or (B2)) case by case: (i) $p < 0$; (ii) $p = 0$; (iii) $p > 0$.
Case I: \(p < 0 \). We follow an argument in [19]. Let \(\delta > 0 \) be a fixed small constant. Set \(S_1^j = \mathbb{S}^n \cap \{ u_j \leq \delta \} \), \(S_2^j = \mathbb{S}^n \cap \{ \delta < u_j < 1/\delta \} \) and \(S_3^j = \mathbb{S}^n \cap \{ u_j \geq 1/\delta \} \). Since \(\Omega_j \) is origin-symmetric, we conclude that

\[
|S_1^j| \to 0, \quad |S_2^j| \to 0, \quad \text{as } L_j := \max_{\mathbb{S}^n} u_j \to \infty.
\]

Let \(\Omega^* \) be the polar set of \(\Omega \), and \(r_j^* = r_{\Omega_j^*} \). It is well known that \(r_j^* = 1/u_j \), see e.g. [35]. Denote \(\gamma = -p > 0 \). By condition (B2), \(\gamma < q^* \). We have

\[
\tilde{\Phi}_{p,\mu}(\Omega_j) = \frac{1}{\gamma} \int_{S_1^j \cup S_2^j \cup S_3^j} u_j^{-\gamma} f d\sigma_{\mathbb{S}^n} \\
\leq C \int_{S_1^j} r_j^{*\gamma} d\sigma_{\mathbb{S}^n} + C\delta|S_2^j| + C\delta^\gamma \\
\leq C \left(\int_{\mathbb{S}^n} r_j^{*q'} d\sigma_{\mathbb{S}^n} \right)^{\frac{\gamma}{q'}} |S_1^j|^{1-\frac{\gamma}{q'}} + C\delta|S_2^j| + C\delta^\gamma,
\]

for any \(\gamma < q' < q^* \). Since \(\int_{\mathbb{S}^n} r_j^q d\sigma_{\mathbb{S}^n} = 1 \), if \(L_j \to \infty \), then by (3.1) and (3.4)

\[
\limsup_{j \to \infty} \tilde{\Phi}_{p,\mu}(\Omega_j) \leq C\delta^\gamma.
\]

As \(\tilde{\Phi}_{p,\mu}(\Omega_j) \geq \tilde{\Phi}_{p,\mu}(B_1) > 0 \), we arrive a contradiction by letting \(\delta \to 0 \).

Case II: \(p = 0 \). Let \(l_j = \min_{\mathbb{S}^n} r_j \) and \(L_j = \max_{\mathbb{S}^n} r_j \). By a rotation of coordinates we may assume that \(L_j = r_j(e_1) \). Since \(\Omega_j \) is origin-symmetric, the points \(\pm L_j e_1 \in \partial \Omega_j \). Hence

\[
u_j(x) = \max\{ z \cdot x : x \in \Omega_j \} \geq L_j |x \cdot e_1|, \quad \forall x \in \mathbb{S}^n.
\]

Therefore

\[
\tilde{\Phi}_{p,\mu}(\Omega_j) \leq - (\log L_j)/C - \int_{\mathbb{S}^n} \log |x \cdot e_1| f(x) d\sigma_{\mathbb{S}^n}(x) \\
\leq - (\log L_j)/C + C,
\]

which implies that \(\tilde{\Phi}_{p,\mu}(\Omega_j) \to -\infty \), if \(L_j \to \infty \). This cannot occur as \(\{ \Omega_j \} \) is a maximising sequence.

Case III: \(p > 0 \). Again let \(L_j = \max_{\mathbb{S}^n} r_j \). As in Case II, we have (3.5). Hence

\[
\tilde{\Phi}_{p,\mu}(\Omega_j) \leq - \frac{1}{p} \int_{\{ x \in \mathbb{S}^n : x \cdot e_1 \geq \frac{1}{L_j} \}} u_j^p d\mu \leq - L_j^p/C \to -\infty \quad \text{if } L_j \to \infty.
\]

Since \(\{ \Omega_j \} \) is a maximising sequence, one infers \(L_j \leq C \).

Combining Case I-III, we have proved (3.3) under the assumption (B1) or (B2).
Let \(w_j^+ = \max_{x \in \mathbb{S}^n} \left(u_j(x) + u_j(-x) \right) \) and \(w_j^- = \min_{x \in \mathbb{S}^n} \left(u_j(x) + u_j(-x) \right) \) be the maximum and the minimum of the width of \(\Omega_j \). We next show that

\[
(3.6) \quad w_j^- \geq 1/C,
\]

for some \(C > 0 \), independent of \(j \). This estimate together with (3.3) means that \(\Omega_j \) is of uniformly good shape.

For \(0 < q < n + 1 \), we have

\[
1 = \left(\int_{\mathbb{S}^n} r_j^q d\sigma_{\mathbb{S}^n} \right)^{\frac{n+1}{q}} \leq \int_{\mathbb{S}^n} r_j^{n+1} d\sigma_{\mathbb{S}^n} \leq C \text{Volume}(\Omega_j) \leq (w_j^+)^n w_j^-,
\]

which shows (3.6) by using (3.3).

For \(q \geq n + 1 \), we have

\[
1 = \int_{\mathbb{S}^n} r_j^q d\sigma_{\mathbb{S}^n} = (w_j^+)^q \int_{\mathbb{S}^n} \left(\frac{r_j}{w_j^+} \right)^q d\sigma_{\mathbb{S}^n} \leq C (w_j^+)^{q-n-1} \text{Volume}(\Omega_j) \leq C (w_j^+)^{q-1} w_j^-.
\]

Again, (3.6) follows from (3.3).

As above, \(l_j = \min_{\mathbb{S}^n} r_j \). Assume without loss of generality that \(l_j = r_j(e_1) \). By the symmetry of \(\Omega_j \),

\[
l_j \geq r_j(\xi)|\xi \cdot e_1|, \quad \forall \xi \in \mathbb{S}^n.
\]

For \(q = 0 \), we thus have

\[
0 = \int_{\mathbb{S}^n} \log r_j d\sigma_{\mathbb{S}^n} \leq \log l_j - \int_{\mathbb{S}^n} \log |\xi \cdot e_1| d\sigma_{\mathbb{S}^n} \leq \log l_j + C.
\]

This shows that \(l_j \geq \delta \) for some \(\delta > 0 \) uniformly, and so (3.6) follows.

In virtue of (3.3) and (3.6), we conclude by the Blaschke selection theorem that \(\Omega_j \), after passing to a subsequence, converges to a \(\Omega_0 \in \mathcal{K}_0^e \) in Hausdorff distance, thus completing the proof under the assumption (B1) or (B2).

For case (B3), let \(\{\Omega_j\} \subset \mathcal{K}_0^e \) be a maximising sequence of functional \(J_{p,q,\mu} \). Let \(p' = -q \) and \(q' = -p \), and \(\Omega_j^* \) be the polar set of \(\Omega_j \). One easily sees that

\[
(3.7) \quad J_{p,q,\mu,\sigma_{\mathbb{S}^n}}(\Omega) = J_{p',q',\sigma_{\mathbb{S}^n},\mu}(\Omega^*) \quad \forall \Omega \in \mathcal{K}_0^e.
\]

It then follows that \(\{\Omega_j^*\} \) is a maximising sequence of \(J_{p',q',\sigma_{\mathbb{S}^n},\mu} \). Observe that if \(p, q \) satisfy (B3), then \(p', q' \) satisfy (B1). Hence, by our previous argument for (B1), it is not hard to conclude that, after a proper rescaling, \(t_j \Omega_j^* \) converges to a \(\Omega_0^* \in \mathcal{K}_0^e \) such that

\[
J_{p',q',\sigma_{\mathbb{S}^n},\mu}(\Omega_0^*) = \max \{ J_{p',q',\sigma_{\mathbb{S}^n},\mu}(\Omega) : \Omega \in \mathcal{K}_0^e \}
\]
By (3.7), we conclude that $\Omega_0 = \Omega_0^*$ satisfies (1.10). Note that if p', q' satisfy (B2), then p, q also satisfy (B2). Hence we would not get more by applying the above dual argument to (B2).

We then show that, after a dilation, the maximiser Ω_0 obtained in Proposition 3.1 is a solution to the L_p dual Minkowski problem, under an additional assumption: $\partial \Omega_0$ is C^1 and strictly convex.

Proposition 3.2. If $\partial \Omega_0$ is C^1 and strictly convex, then Ω_0 satisfies (1.11).

Proof. Let u and r be respectively the support function and radial function of Ω_0. For any even function $\eta \in C^0(S^n)$, let $\Omega_t \in K_e^c$ be the convex bodies given by (2.1), with u replaced by u_t. Denote by $u(x, t)$ and $r(x, t)$ the support function and radial function of Ω_t. By Lemma 2.1, we have as in proof of Proposition 2.1
\[
\frac{d}{dt} \bigg|_{t=0} J_{p,q,\mu}(\Omega_t) = \frac{1}{\int_{S^n} r^q d\sigma_{S^n}} \left(-\lambda_{\Omega_0} \int_{S^n} u^{p-1} \eta d\mu + \int_{S^n} r^q \eta \circ \nu_{\Omega_0} d\sigma_{S^n} \right).
\]
By [33, Lemma 5.1], we further calculate
\[
(3.8) \quad \frac{d}{dt} \bigg|_{t=0} J_{p,q,\mu}(\Omega_t) = \frac{1}{\int_{S^n} r^q d\sigma_{S^n}} \left(-\lambda_{\Omega_0} \int_{S^n} u^{p-1} \eta d\mu + \int_{S^n} u^{p-1} \eta d\tilde{C}_{p,q}(\Omega_0, \cdot) \right).
\]
Since Ω_0 is the maximiser and η is arbitrary, we deduce that
\[
\int_{S^n} g d\tilde{C}_{p,q}(\Omega_0, \cdot) = \lambda_{\Omega_0} \int_{S^n} g d\mu, \quad \forall \text{ even function } g \in C^0(S^n),
\]
thus completing the proof by the evenness of f.

\[\square\]

Proposition 3.3. Let Ω_0 be the maximiser obtained in Proposition 3.1. Then $\partial \Omega_0$ is strictly convex and is $C^{1, \gamma}$ for some $\gamma \in (0, 1)$.

Proof. Let u be the support function of Ω_0 and $\bar{u} = \bar{u}_{\Omega_0}$ be its homogeneous degree one extension, namely $\bar{u} : \mathbb{R}^{n+1} \to \mathbb{R}$, defined by
\[
\bar{u}(Y) = \sup_{Z \in \Omega_0} Y \cdot Z.
\]
The face of Ω_0 with outer normal $Y \in \mathbb{R}^{n+1}$ is then given by
\[
F_{\Omega_0}(Y) = \{ Z \in \Omega_0 : \bar{u}(Y) = Y \cdot Z \},
\]
which lies in \(\partial \Omega_0 \) provided \(Y \neq 0 \), and

\[
(3.9) \quad \partial \bar{u}(Y) = F_{\Omega_0}(Y),
\]

where \(\partial \bar{u}(Y) := \{ X \in \mathbb{R}^{n+1} : \bar{u}(Z) \geq \bar{u}(Y) + \langle X, Z - Y \rangle, \forall Z \in \mathbb{R}^{n+1} \} \) is the subgradient of \(\bar{u} \) at \(Y \). See Schneider’s book [35] for all this.

For \(e \in \mathbb{S}^n \), let \(L_e \) be the hyperplane in \(\mathbb{R}^{n+1} \) which is tangential to \(\mathbb{S}^n \) at \(e \). Denote by \(\pi = \pi_e : \mathbb{R}^n \to \mathbb{S}^n \) the radial projection from \(L_e \) to \(\mathbb{S}^n \),

\[
\pi(y) = \frac{y + e}{\sqrt{1 + |y|^2}}.
\]

Let \(v = v_e : \mathbb{R}^n \to \mathbb{R} \) be the restriction of \(\bar{u} \) on \(L_e \), that is

\[
(3.10) \quad v(y) = \bar{u}(y + e) = \sqrt{1 + |y|^2} u(\pi(y)).
\]

It is not hard to check by (3.9) and (3.10) that

\[
(3.11) \quad \partial v(y) = \{ X - (X \cdot e)e : X \in \partial \bar{u}(y + e) \}.
\]

Let \(\mathcal{H}^n \) denotes the \(n \)-dimensional Hausdorff measure. Recall that the surface area measure \(\mathcal{S}(\Omega_0, \cdot) \) is defined as

\[
(3.12) \quad \mathcal{S}(\Omega_0, \omega) = \mathcal{H}^n(\nu_{\Omega_0}^{-1}(\omega)), \quad \text{for Borel set } \omega \subset \mathbb{S}^n.
\]

It follows from (3.9)-(3.11) that for any \(D \subset \mathbb{R}^n \)

\[
(3.13) \quad \mathcal{M}_v(D) = \int_{\pi(D)} \langle x, e \rangle \, d\mathcal{S}(\Omega_0, x),
\]

where \(\mathcal{M}_v(D) := \mathcal{H}^n(\partial v(D)) \) is the Monge-Ampère measure associated to \(v \). We claim that, \(\mathcal{S}(\Omega_0, \cdot) \) is absolutely continuous w.r.t. \(\sigma_{\mathbb{S}^n} \), and there is a \(C > 0 \), such that

\[
(3.14) \quad \frac{1}{C} \leq \varrho_{\Omega_0} := \frac{d\mathcal{S}(\Omega_0, \cdot)}{d\sigma_{\mathbb{S}^n}} \leq C.
\]

Note that \(\varrho_{\Omega_0} \) is the reciprocal Gauss curvature if \(\Omega_0 \) is \(C^2 \) smooth. Once (3.14) is proved, we deduce by (3.13) and \(\det D\pi(y) = (1 + |y|^2)^{-\frac{n+1}{2}} \) that

\[
(3.15) \quad d\mathcal{M}_v = \frac{\varrho_{\Omega_0} \circ \pi}{(1 + |y|^2)^{\frac{n+1}{2}}} dy.
\]

For (3.15), one may consult [18, 35] for a full discussion. By (3.14) and (3.15), the density of the Monge-Ampère measure of \(v \) in a compact set is bounded between two constants. For a given \(y_0 \in \mathbb{R}^n \), let \(\ell_{y_0} \) be the support function of \(v(y) \) at \(y_0 \). In view of (3.11), the contact set \(C_{y_0} := \{ y \in \mathbb{R}^n : v(y) = \ell_{y_0}(y) \} \) cannot contain a straight line in \(\mathbb{R}^n \). Hence we conclude by [9, 11] that \(v \) is strictly convex and \(C^{1,\gamma'}_{\text{loc}} \) for some
γ′ ∈ (0, 1). See also [19]. This implies that ∂Ω_0 is strictly convex. Let φ : D′ → ℝ be the convex function such that \{(x, φ(x)) : x ∈ D′\} ⊆ ∂Ω_0, where D′ is a closed convex domain, containing the origin, lying in Ω_0 ∩ \{X ∈ ℝ^{n+1} : X · e = 0\}. One can check that φ is exactly the Legendre transform of v. Therefore, by (3.14) and (3.15), dM_φ/dx is bounded between two positive constants. By [9, 11], φ is C^{1,γ} for some γ ∈ (0, 1).

It remains to show (3.14). For η ∈ C_0(S^n), consider

\[Ω_t = \{ z ∈ ℝ^{n+1} : z · x ≤ e^{tη(x)}u(x), \ ∀ x ∈ S^n \}, \]

which is a perturbation of Ω_0. Denote by u^t = u(x,t) and r^t = r(ξ,t) the support and radial functions of Ω_t. It follows from [33, Theorem 6.4] that

\[\frac{d}{dt}\left|_{t=0}\right. Ψ_q(r^t) = \frac{1}{\int_{S^n} r^q dσ_{S^n}} \int_{S^n} η dC_q(Ω_0, ·). \]

Since u^t ≤ e^{tη}u, one has

\[\lim_{t→0^+} \frac{u^t(x) - u(x)}{t} ≤ ηu(x). \]

By (3.16) and (3.17), we obtain

\[0 ≥ \lim_{t→0^+} \frac{J_{p,q}(Ω_t) - J_{p,q}(Ω_0)}{t} \]

\[≥ \frac{1}{\int_{S^n} r^q dσ_{S^n}} \left\{ -λΩ_0 \int_{S^n} u^p η dμ + \int_{S^n} η dC_q(Ω_0, ·) \right\} \]

\[= \frac{1}{\int_{S^n} r^q dσ_{S^n}} \left\{ -λΩ_0 \int_{S^n} u^p f η dσ_{S^n} + \int_{S^n} (r ∘ s^*_{Ω_0}) q-n-1 u η dS(Ω_0, ·) \right\}, \]

where λΩ_0 is given by (1.12), and the last equality is due to [25, Lemma 3.7]. Since η is arbitrary, u and r are bounded between two positive constants, we get

\[Ω_0 ≤ C. \]

Let Ω_0* be the polar set of Ω_0. Then r^* = 1/u, see e.g. [35]. For η ∈ C_0(S^n), consider

\[Ω_t^* = \text{conv}\{e^{tη(x)}r^*(x) : x ∈ S^n\}, \]

and Ω_t = (Ω_t^*)*. Denote by u^{st} = u^*(ξ,t) and r^{st} = r^*(x,t) the support and radial function of Ω_t^*, by u^t = u(x,t) and r^t = r(ξ,t) the support and radial function of Ω_t. Since r^{st} ≥ e^{tη}r^*, one gets u^t ≤ e^{-tη}u. Therefore

\[\lim_{t→0^+} \frac{u^t(x) - u(x)}{t} ≤ -ηu(x). \]
By [33, Theorem 6.1],

\[(3.19) \quad \frac{d}{dt} \bigg|_{t=0} \Psi_q(r^t) = -\frac{1}{\int_{S^n} r^q d\sigma_{S^n}} \int_{S^n} \eta d\tilde{C}_q(\Omega_0, \cdot). \]

It follows by (3.18) and (3.19)

\[0 \geq \lim_{t \to 0^+} \frac{\mathcal{J}_{p,q}(\Omega_t) - \mathcal{J}_{p,q}(\Omega_0)}{t} \geq \frac{1}{\int_{S^n} r^q d\sigma_{S^n}} \left\{ \lambda_{\Omega_0} \int_{S^n} u^p f \eta d\sigma_{S^n} - \int_{S^n} (r \circ \mathcal{A}_{\Omega_0}^*)^{q-n-1} u \eta dS(\Omega_0, \cdot) \right\}, \]

which shows that

\[\varrho_{\Omega_0} \geq \frac{1}{C}. \]

This completes the proof. \qed

Remark 3.1. To see the maximiser of the optimisation problem (1.10) is a solution to the \(L_p\) dual Minkowski problem (1.11), one can also follow the argument in [25, Lemma 3.7].

We are at the position to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. By Proposition 3.1-3.3, it remains to show \(u = u_{\Omega_0}\) is smooth and uniformly convex. Note that for \(p \neq q\), it is not hard to see \(\tilde{\Omega}_0 := \lambda_{\Omega_0}^{\frac{1}{p-q}}\Omega_0\) satisfies (1.13), and \(u_{\tilde{\Omega}_0}\) solves (1.3). By the homogeneity (1.8), \(\tilde{\Omega}_0\) is also a maximiser for (1.10).

By [25, Lemma 3.7] and [33, Proposition 5.4], it follows from (3.8) that, \(\forall \eta \in C^0(S^n),\)

\[\frac{d}{dt} \bigg|_{t=0} \mathcal{J}_{p,q,\mu}(\Omega_t) = \frac{1}{\int_{S^n} r^q d\sigma_{S^n}} \left\{ -\lambda_{\Omega_0} \int_{S^n} u^{p-1} \eta f d\sigma_{S^n} + \int_{S^n} (r \circ \mathcal{A}_{\Omega_0}^*)^{q-n-1} u \eta dS(\Omega_0, \cdot) \right\}. \]

Since \(\Omega_0\) is the maximiser of (1.10), we obtain

\[(3.20) \quad \frac{dS(\Omega_0, \cdot)}{d\sigma_{S^n}} = \lambda_{\Omega_0} (r \circ \mathcal{A}_{\Omega_0}^*)^{n+1-q} u^{p-1} f. \]

Given any \(e \in S^n\), let \(v\) and \(\varphi = v^*\) (the Legendre transform of \(v\)) be as in Proposition 3.3. Then

\[(3.21) \quad \det D^2 v = \lambda_{\Omega_0} (1 + |y|^2)^{-\frac{n+1}{2}} v^{p-1} (|Dv|^2 + (Dv \cdot y - v)^2)^{-\frac{n+1-q}{2}} f \circ \pi, \]
and
\begin{equation}
\det D^2 \varphi = \lambda_{\Omega_0}^{-1}(1 + |D \varphi|^2)^{\frac{n+1}{2}}(D \varphi \cdot x - \varphi)^{1-p}(|x|^2 + \varphi^2)^{-\frac{n+1}{2}} / f\left(\frac{D \varphi, -1}{\sqrt{1 + |D \varphi|^2}}\right),
\end{equation}
in the Aleksandrov sense. By Proposition 3.3, \(v\) and \(\varphi\) are strictly convex and are \(C^{1,\gamma}\) for some \(\gamma \in (0, 1)\).

If \(f\) is Hölder, then the right hand sides of (3.21) and (3.22) are both Hölder continuous. By [10], \(v\) and \(\varphi\) are both \(C^{2,\gamma'}\) for some \(\gamma' \in (0, 1)\). Smoothness of \(v\) and \(v \varphi\) then follows from the standard theory of uniformly elliptic equations, provided \(f \in C^\infty(S^n)\).

Hence \(\partial \Omega_0\) is smooth. By (3.20), \(u \in C^\infty(S^n)\) solves (1.3) with \(f\) replaced by \(\lambda_{\Omega_0} f\).

\[\]

The following result improves Theorem 1.2 under condition (B2).

Theorem 3.2. Let \(p, q\) satisfy condition (B2) in Theorem 1.2 and \(d\mu = f d\sigma_{S^n}\), where \(f\) is an even, non-negative function and \(\int_{S^n} f d\sigma_{S^n} > 0\). Assume that \(f \in L^{q^*/(q^* + p)}(S^n)\) if \(q^* \neq +\infty\), or \(f \in L^s(S^n)\) for some \(s > 1\) if \(q^* = +\infty\). Then there is a convex body \(\Omega \in K_0^e\) such that \(\tilde{C}_{p,q}(\Omega, \omega) = \mu(\omega)\) for all Borel set \(\omega \subseteq S^n\).

Proof. We use an approximation argument similar to [4]. For positive integers \(j\), let \(d\mu_j = f_j d\sigma_{S^n}\) be a sequence of measures, where \(f_j\) is a truncation of \(f\);

\[f_j(x) = \begin{cases}
\frac{1}{j} & \text{if } f(x) \geq j, \\
\frac{1}{j} & \text{if } 1/j < f(x) < j, \\
1/j & \text{if } f(x) \leq 1/j.
\end{cases} \]

Recall that \(J_{\mu, \mu_j}\) satisfies (1.8). Hence by Theorem 1.2 there is a \(\tilde{\Omega}_j \in K_0^e\) such that

\[\tilde{C}_{p,q}(\tilde{\Omega}_j, \omega) = \mu_j(\omega), \text{ for any Borel set } \omega \subseteq S^n, \]

and if \(\tilde{r}_j = r_{\tilde{\Omega}_j}\) and \(\tilde{u}_j = u_{\tilde{\Omega}_j}\), then

\begin{equation}
\left(\int_{S^n} \tilde{u}_j^p \, d\mu_j \right)^{\frac{1}{p}} \left(\int_{S^n} \tilde{r}_j^q d\sigma_{S^n} \right)^{\frac{1}{q}} = \exp J_{\mu, \mu_j}(\tilde{\Omega}_j) \geq \exp J_{\mu, \mu_j}(B_1) \geq 1/C_{f,n,p},
\end{equation}

for a positive constant \(C_{f,n,p} > 0\), independent of \(j\).

Let \(\Omega_j = \lambda_j \tilde{\Omega}_j\), where \(\lambda_j = \left(\int_{S^n} \tilde{r}_j^q d\sigma_{S^n} \right)^{-\frac{1}{q}}\) so that

\begin{equation}
\int_{S^n} \tilde{r}_j^q d\sigma_{S^n} = 1.
\end{equation}
Let $u_j = u_{\Omega_j}$, $r_j = r_{\Omega_j}$ and $L_j := \max_{S^n} u_j$. As in the proof of Proposition 3.1 for a small constant $\delta > 0$, let $S_1^j = S^n \cap \{u_j \leq \delta\}$, $S_2^j = S^n \cap \{\delta < u_j < 1/\delta\}$ and $S_3^j = S^n \cap \{u_j \geq 1/\delta\}$. It is not hard to see that

\[(3.26) \quad |S_1^j| \to 0 \text{ and } |S_2^j| \to 0, \quad \text{if } L_j \to \infty.\]

First let us consider the case $q^* \neq \infty$. Denote $\gamma = -p > 0$ and $r_j^* = r_{\Omega^*_j}$, the radial function of Ω^*_j (the polar set of Ω_j). We have

\[
\int_{S^n} u_j^q d\mu_j = \int_{S_1^j \cup S_2^j \cup S_3^j} u_j^{-\gamma} f_j d\sigma_{S^n}
\]

\[
\leq C \left(\int_{S^n} r_j^{*q^*} d\sigma_{S^n} \right)^{\frac{\gamma}{q^*}} \left(\int_{S_1^j} f_j r_j^{-\gamma} d\sigma_{S^n} \right)^{\frac{q^* - \gamma}{q^*}} + C_\delta \int_{S_2^j} f_j d\sigma_{S^n} + C\delta^\gamma
\]

\[(3.28) \quad \to C\delta^\gamma, \quad \text{if } L_j \to \infty,
\]

where $f \in L^{q^*/(p+\gamma)}(S^n)$, (3.1), (3.25) and (3.26) are used for the last line. As the LHS of (3.24) is rescaling invariant, its value is unchanged if \tilde{u}_j, \tilde{r}_j are replaced by u_j, r_j. We conclude that L_j are uniformly bounded, by (3.25), (3.28) and sending $\delta \to 0$. As in the proof of Proposition 3.1 we also deduce from (3.25) that $l_j := \min_{S^n} u_j$ stay uniformly away from zero.

In view of (3.23), for $q^* \neq +\infty$.

\[(3.29) \quad \int_{S^n} \tilde{r}_j^q d\sigma_{S^n} = \int_{S^n} \tilde{u}_j^q d\mu_j = \int_{S^n} \tilde{r}_j^{*q^*} f_j d\sigma_{S^n} \leq \left(\int_{S^n} \tilde{r}_j^{*q^*} d\sigma_{S^n} \right)^{\frac{q^*}{q^*}} \left(\int_{S^n} f_j \tilde{r}_j^{-\gamma} d\sigma_{S^n} \right)^{\frac{q^* - \gamma}{q^*}}.
\]

The first equality in (3.29) together with (3.24) shows that

\[
\int_{S^n} \tilde{r}_j^q d\sigma_{S^n} \geq 1/C_{f,n,p,q} > 0.
\]

While the inequality in (3.29), (3.1) and $f \in L^{q^*/(p+\gamma)}(S^n)$ give

\[
\int_{S^n} \tilde{r}_j^q d\sigma_{S^n} \leq C_{f,n,p,q}.
\]

Hence $1/C_{f,n,p,q} \leq \lambda_j \leq C_{f,n,p,q}$, for a constant $C_{f,n,p,q} > 0$ only depending on f, n, p, q.

The above estimates for L_j, l_j, λ_j imply $\max_{S^n} u_{\tilde{\Omega}_j}$ and $\min_{S^n} u_{\tilde{\Omega}_j}$ are uniformly bounded from above and below. By the Blaschke selection theorem, $\tilde{\Omega}_j$ converges, after passing to a subsequence, to a $\Omega \in K^n_0$ in Hausdorff distance. By the weak convergence of L_p dual curvature measures [33, Proposition 5.2], it follows from (3.23) that $\tilde{C}_{p,q}(\Omega, \omega) = \mu(\omega)$, thus completing the proof for $q^* \neq +\infty$.

19
When \(q^* = +\infty \), (3.27) and (3.29) still hold if \(q^* \) is replaced by \(\alpha = \frac{s\gamma}{s-1} \). Hence we can finish the proof by the same discussion as above.

Next we prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 1.2 and by the homogeneity (1.8), there is a \(\Omega_0 \in K_0^e \) such that \(u_{\Omega_0} \) is a solution to the equation (1.3) with \(f \equiv 1 \) and \(J_{p,q}(\Omega_0) = \max\{J_{p,q}(\Omega) : \Omega \in K_0^e\} \). We deduce from Theorem 1.3 that \(J_{p,q}(B_1) < J_{p,q}(\Omega_0) \).

Therefore \(u_{\Omega_0} \neq u_{B_1} \). While \(u_{B_1} \equiv 1 \) and \(u_{\Omega_0} \) both solve (1.3) when \(f \equiv 1 \).

\(\square \)

4. Sharp Poincaré inequality on \(S^n \)

This section is devoted to the Poincaré inequality on \(S^n \). This inequality is well-known and has many applications. It can be proved by studying the eigenvalues of the spherical Laplace operator [36]. We prove it by the stability of the unit ball \(B_1 \) under the functional (1.5) and the uniqueness of the self-similar solution to the powered Gauss curvature flow (1.4).

Theorem 4.1. We have

(i) \[
\inf \left\{ \frac{\int_{S^n} |\nabla \eta|^2 d\sigma_{S^n}}{\int_{S^n} \eta^2 d\sigma_{S^n}} : \eta \in C^\infty(S^n) \text{ is even, } \int_{S^n} \eta d\sigma_{S^n} = 0, \eta \not\equiv 0 \right\} = 2n + 2;
\]

(ii) \[
\inf \left\{ \frac{\int_{S^n} |\nabla \eta|^2 d\sigma_{S^n}}{\int_{S^n} \eta^2 d\sigma_{S^n}} : \eta \in C^\infty(S^n), \int_{S^n} \eta d\sigma_{S^n} = 0, \eta \not\equiv 0 \right\} = n.
\]

Remark 4.1. By approximation, Theorem 4.1 holds for \(\eta \in W^{1,2}(S^n) \).

Proof of (i) in Theorem 4.1. Let \(\Omega_t = \{z \in \mathbb{R}^{n+1} : z \cdot x \leq 1 + t\eta(x)\} \in K_0^e \). Consider

\[
J_{p}(\Omega_t) := J_{p,n+1}(\Omega_t).
\]
By Proposition 2.1, or more precisely by letting $q = n + 1$ in (2.17), we have

$$d^2 |_{t=0} J_p(\Omega) = (n + 1 - p) \int_{\mathbb{S}^n} (\eta - \bar{\eta})^2 d\sigma_{\mathbb{S}^n} - \int_{\mathbb{S}^n} |\nabla \eta|^2 d\sigma_{\mathbb{S}^n}. \tag{4.1}$$

When $f \equiv 1$ and $q = n + 1$, (1.3) is the equation of the self-similar solutions to the flow (1.4) with $p = 1 - 1/\alpha$. By [1, 2, 8], $u \equiv 1$ is the only solution for $p \in (-n - 1, 1)$. By [3, 19], the equation (1.3) with $p > -n - 1$ and $q = n + 1$ admits a solution which maximises the functional J_p. We therefore conclude that

$$d^2 |_{t=0} J_p(\bar{\Omega}) = 0, \forall p > -n - 1.$$

This together with (4.1) implies, by letting $p \to -n - 1$,

$$\int_{\mathbb{S}^n} (\eta - \bar{\eta})^2 d\sigma_{\mathbb{S}^n} \leq \frac{1}{2n + 2} \int_{\mathbb{S}^n} |\nabla \eta|^2 d\sigma_{\mathbb{S}^n}. \tag{4.2}$$

We next show (4.2) is sharp. Assume not, then for sufficiently small $\varepsilon > 0$, there is an even $\eta_\varepsilon \neq 0$, $\bar{\eta}_\varepsilon = 0$, such that

$$\int_{\mathbb{S}^n} |\nabla \eta_\varepsilon|^2 d\sigma_{\mathbb{S}^n} = (2n + 2 - 2\varepsilon) \int_{\mathbb{S}^n} \eta_\varepsilon^2 d\sigma_{\mathbb{S}^n}.$$

Let $\Omega^\varepsilon_t = \{ z \in \mathbb{R}^{n+1} : z \cdot x \leq 1 + t\eta_\varepsilon \}$. Then for $p = -n - 1 + \varepsilon$ we have by (4.1),

$$\frac{d^2}{dt^2} |_{t=0} J_{-n-1+\varepsilon}(\Omega^\varepsilon_t) = \varepsilon \int_{\mathbb{S}^n} \eta_\varepsilon^2 d\sigma_{\mathbb{S}^n} > 0.$$

This means, by virtue of [3, 19], there is another convex body $\Omega' \neq B_1$ maximising $J_{-n-1+\varepsilon}$ among K_0, and $u_{\Omega'}$ solves (1.3) with $f \equiv 1$, $p = -n - 1 + \varepsilon$, and $q = n + 1$, contradicting with the uniqueness of the solution.

\[\Box\]

Proof of (ii) in Theorem 4.1. Consider the functional

$$\tilde{J}_p(\Omega, z) = -\frac{1}{p} \log \int_{\mathbb{S}^n} u_z^p d\sigma_{\mathbb{S}^n} + \frac{1}{n+1} \log \int_{\mathbb{S}^n} r_z^{n+1} d\sigma_{\mathbb{S}^n}, \tag{4.3}$$

where $z \in \text{Int} \ \Omega$ and u_z, r_z are the support and radial function of Ω w.r.t. the centre z, namely $u_z(x) = \max \{(y - z) \cdot x : y \in \Omega \}$ and $r_z(\xi) = \max \{ \lambda : \lambda \xi + z \in \Omega \}$. This functional was used by Andrews-Guan-Ni [3] in the study of the flow (1.4) with $\alpha = (1 - p)^{-1}$. Note that the second term on the RHS of (4.3) is independent of z, as

$$\frac{1}{n+1} \int_{\mathbb{S}^n} r_z^{n+1} d\sigma_{\mathbb{S}^n} = \text{Volume}(\Omega).$$

In fact $u \equiv 1$ is also the unique solution for $p > 1$ and $p \neq n + 1$, see e.g. [32].
Given Ω, let $z_\varepsilon = z_\varepsilon(\Omega)$ be the entropy point of Ω, namely z_ε minimises

$$z \mapsto \mathcal{J}_p(\Omega, z),$$

among all $z \in \text{Int} \Omega$.

For $p < 1$, it was proved in [3] that for each bounded convex Ω with $\text{Int} \Omega \neq \emptyset$, there exists a unique entropy point $z_\varepsilon \in \text{Int} \Omega$, and one readily sees

$$\int_{S^n} \frac{x}{u_{-p}^z(x)} d\sigma_{S^n}(x) = 0. \quad (4.4)$$

Let $\Omega_t = \{z \in \mathbb{R}^{n+1} : z \cdot x \leq 1 + t\eta \} \in \mathcal{K}_0$. Denote by $z(t) = z_\varepsilon(\Omega_t)$, the entropy point of Ω_t. By Lemma 2.1, we compute, for $|t|$ very small,

$$\frac{d}{dt} \mathcal{J}_p(\Omega_t, z(t)) = \frac{1}{\int_{S^n} r_z^{n+1} d\sigma_{S^n}} \left(\int_{S^n} \eta K d\sigma_{S^n} - \int_{S^n} r_z^{n+1} d\sigma_{S^n} \int_{S^n} u_z^{p-1}(\eta - \dot{z} \cdot x) d\sigma_{S^n} \right), \quad (4.5)$$

where u_z, r_z are support and radial function of Ω_t w.r.t. $z = z(t)$, and K is the Gauss curvature of Ω_t. Differentiating (4.5) again, we obtain

$$\frac{d^2}{dt^2} \mathcal{J}_p(\Omega_t, z(t))$$

$$= \frac{1}{\int_{S^n} r_z^{n+1} d\sigma_{S^n}} \left\{ \int_{S^n} h^{ij}(\eta_{ij} + \eta \delta_{ij}) \eta d\sigma_{S^n} - \beta \int_{S^n} r_z^{n+1} d\sigma_{S^n} \int_{S^n} u_z^{p-2}(\eta - \dot{z} \cdot x) d\sigma_{S^n} \right. $$

$$- \frac{n + 1}{\int_{S^n} u_z^p d\sigma_{S^n}} \int_{S^n} \eta K d\sigma_{S^n} \int_{S^n} u_z^{p-1} \eta d\sigma_{S^n} + p \frac{\int_{S^n} r_z^{n+1} d\sigma_{S^n}}{\left(\int_{S^n} u_z^p d\sigma_{S^n}\right)^2} \left(\int_{S^n} u_z^{p-1} \eta d\sigma_{S^n} \right)^2 \left\}, \quad (4.6)$$

where $\beta = p - 1$ and h^{ij} is the inverse matrix of $u_{ij} + u \delta_{ij}$. By (4.4), one has

$$\int_{S^n} u_z^{p-1} \dot{z} \cdot x d\sigma_{S^n} = 0, \quad \forall \ t.$$

Differentiate this identity w.r.t. t to get

$$\int_{S^n} u_z^{p-2} \eta \dot{z} \cdot x d\sigma_{S^n} = \int_{S^n} u_z^{p-2}(\dot{\eta} \cdot x)^2 d\sigma_{S^n}. \quad (4.7)$$

Hence one infers by plugging (4.7) in (4.6) and by $\Omega_0 = B_1, z(0) = 0$,

$$\frac{d^2}{dt^2} \bigg|_{t=0} \mathcal{J}_p(\Omega_t, z(t)) = \int_{S^n} (\Delta \eta + n \eta) \eta d\sigma_{S^n} - \beta \int_{S^n} \eta^2 d\sigma_{S^n} + \beta \int_{S^n} (\dot{\eta} \cdot x) \eta d\sigma_{S^n}$$

$$- (n + 1 - p) \left(\int_{S^n} \eta d\sigma_{S^n} \right)^2$$

$$= - \int_{S^n} |\nabla \eta|^2 d\sigma_{S^n} + (n + 1 - p) \int_{S^n} (\eta - \bar{\eta})^2 d\sigma_{S^n} + \beta \int_{S^n} (\dot{\eta} \cdot x)^2 d\sigma_{S^n}. \quad (4.8)$$
It is straightforward to see
\[(4.9) \quad \int_{S^n} (\dot{z} \cdot x)^2 d\sigma_{S^n} = |\dot{z}|^2 \int_{S^n} (\dot{\zeta} / |\dot{\zeta}| \cdot x)^2 d\sigma_{S^n} = |\dot{z}|^2 \int_{S^n} x_1^2 d\sigma_{S^n}. \]

Since \(z(t) \) is determined by (4.4), hence depends on \(p \). For clarification, let us denote it by \(z_p(t) \). Then we have by differentiating (4.4)
\[
0 = (p - 1) \int_{S^n} u_{z_p(t)}^{p-2} (\eta - \dot{z}_p \cdot x) x d\sigma_{S^n}, \quad \text{for all } p < 1.
\]

Sending \(t = 0 \), we have
\[
\int_{S^n} \eta x d\sigma_{S^n} = \int_{S^n} (\dot{z}_p(0) \cdot x) x d\sigma_{S^n} = |\dot{z}_p(0)| \int_{S^n} (e_p \cdot x) x d\sigma_{S^n},
\]
where \(e_p = \dot{z}_p(0)/|\dot{z}_p(0)| \). Multiplying \(e_p \) at both sides one deduces
\[(4.10) \quad |\dot{z}_p(0)| = \left(\int_{S^n} x_1^2 d\sigma_{S^n} \right)^{-1} \int_{S^n} (x \cdot e_p) \eta d\sigma_{S^n} \leq C|\eta|_{L^1(S^n)}, \quad \text{for all } p < 1. \]

As \(B_1 \) maximises \(\tilde{J}_p \) among all \(\Omega \in \mathcal{K}_0 \{1, 2, 3, 8\} \), we have by plugging (4.9) in (4.8)
\[
0 \geq -\int_{S^n} |\nabla \eta|^2 d\sigma_{S^n} + (n + 1 - p) \int_{S^n} (\eta - \bar{\eta})^2 d\sigma_{S^n} + (p - 1) |\dot{z}_p(0)|^2 \int_{S^n} x_1^2 d\sigma_{S^n}.
\]

Sending \(p \to 1 \), we get by (4.10)
\[(4.11) \quad \int_{S^n} (\eta - \bar{\eta})^2 d\sigma_{S^n} \leq \frac{1}{n} \int_{S^n} |\nabla \eta|^2 d\sigma_{S^n}. \]

It remains to show (4.11) is sharp. If not, then for sufficiently small \(\varepsilon > 0 \), there is an \(\eta_{\varepsilon} \neq 0, \bar{\eta}_\varepsilon = 0 \), such that
\[
\int_{S^n} |\nabla \eta_{\varepsilon}|^2 d\sigma_{S^n} = (n - \sqrt{\varepsilon}) \int_{S^n} \eta_{\varepsilon}^2 d\sigma_{S^n}.
\]

Let \(\Omega_{t}^{\eta_{\varepsilon}} = \{ z \in \mathbb{R}^{n+1} : z \cdot x \leq 1 + t \eta_{\varepsilon} \} \). Then for \(p = 1 - \varepsilon \), by (4.8) and (4.10)
\[
\frac{d^2}{dt^2}_{t=0} \tilde{J}_{1-\varepsilon}(\Omega_{t}^{\eta_{\varepsilon}}, z(t)) = (\sqrt{\varepsilon} + \varepsilon) \int_{S^n} \eta_{\varepsilon}^2 d\sigma_{S^n} - \varepsilon |\dot{z}_{1-\varepsilon}(0)|^2 \int_{S^n} x_1^2 d\sigma_{S^n}
\geq C^{-1} \sqrt{\varepsilon} |\eta_{\varepsilon}|_{L^1(S^n)} - C\varepsilon |\eta_{\varepsilon}|_{L^1(S^n)}^2

> 0,
\]
provided \(\varepsilon \) sufficiently small. This implies that \(B_1 \) is not a maximiser of \(\tilde{J}_p \), thus arriving a contradiction.

\[\square \]
References

Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 2601, Australia.

E-mail address: haodi.chen@anu.edu.au

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China.

E-mail address: chenshib@ustc.edu.cn

Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 2601, Australia.

E-mail address: qi-rui.li@anu.edu.au