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Abstract. In this paper we study a class of contracting flows of closed, convex hyper-
surfaces in the Euclidean space Rn+1 with speed rασk, where σk is the k-th elementary
symmetric polynomial of the principal curvatures, α ∈ R1, and r is the distance from
the hypersurface to the origin. If α ≥ k + 1, we prove that the flow exists for all time,
preserves the convexity and converges smoothly after normalisation to a sphere centred
at the origin. If α < k + 1, a counterexample is given for the above convergence. In
the case k = 1 and α ≥ 2, we also prove that the flow converges to a round point if the
initial hypersurface is weakly mean-convex and star-shaped.

1. Introduction

Flows of convex hypersurfaces in the Euclidean space Rn+1 by functions of the prin-

cipal curvatures have been extensively studied in the past four decades. Well-known

examples include the mean curvature flow [25], and the Gauss curvature flow [12, 16].

Given a smooth and uniformly convex initial hypersurface, Huisken [25] proved that

the mean curvature flow contracts to a point in finite time, and after a time-dependent

rescaling, the flow converges smoothly to a sphere. This property was extended to other

geometric flows where the speed is a homogeneous of degree one function of the principal

curvatures [3, 13, 14]. For the Gauss curvature flow, Andrews [2] proved that the flow

deforms a uniformly convex hypersurface into a round point when n = 2. In higher

dimensions, this result was obtained recently by combining a soliton convergence result

[21] and a uniqueness result for the soliton [8].

There is a growing interest in the asymptotic behaviour of geometric flows in which

the speed is a more general curvature function, in particular the cases when the speed

is a homogeneous curvature function of degree not equal to 1. For examples, in [4, 6, 8]

the authors studied curvature flows where the speed is a power of the Gauss curvature;

and in [1, 5, 7, 11, 15, 17, 18, 32, 33, 36] the authors studied flows by different curvature

functions. In many of the above mentioned paper it was proved that the flow converges

to a round point in the limit, which is the most interesting property of curvature flows

of closed convex hypersurfaces.
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Let M0 be a smooth, closed and convex hypersurface in Rn+1 which encloses the

origin, n ≥ 1. In this paper we study the following geometric flow,

(1.1)


∂X

∂t
(x, t) = −rασk(x, t)ν,

X(x, 0) = X0(x),

where σk is the k-curvature, given by

σk(·, t) =
∑

i1<···<ik

κi1 · · ·κik ,

and κi = κi(·, t) are the principal curvatures of the hypersurface Mt, parametrized by

X(·, t) : Sn → Rn+1, and ν(·, t) is the unit outer normal of Mt at X(·, t). We denote

by r = |X(x, t)| the distance from the point X(x, t) to the origin. We shall call it the

radial function of Mt in this paper.

Flow with speed depending not only on the curvatures has recently begun to be

considered. For example, flows that deform hypersurfaces by their curvature and support

function were studied in [9, 26]. In this paper, our flow is driven by curvature and radial

function. The study of (1.1) is also motivated by its background in convex geometry. One

of the main problems in convex geometry is to characterise various geometric measures,

such as the area measures Sk introduced by Fenchel-Jessen and Aleksandrov and the

curvature measures Ck introduced by Federer [31]. Let Ω be a convex body containing

the origin in its interior. Assume ∂Ω is uniformly convex, namely ∂Ω is C2 with positive

principal curvatures. There is an interesting relation Ck(Ω, ·) = Sk(Ω,AΩ(·)), where AΩ

is the radial Gauss mapping of Ω [24]. More precisely we have for any k = 1, . . . , n,

(1.2) Ck(Ω, ω) =

ˆ
ω

σk(λΩ)dC0(Ω, ·), ∀ Borel set ω ⊂ Sn,

where λΩ = (λΩ,1, . . . , λΩ,n) are the principal radii of curvature of Ω. In [22, 23], the

Lp Christoffel-Minkowski problem was studied, which is to prescribe the k-th p-area

measure given by

Sk,p(Ω, ω) =

ˆ
ω

u1−p
Ω dSk(Ω, ·)

=

ˆ
ω

σn−k(κΩ)dS(p)(Ω, ·), ∀ Borel set ω ⊂ Sn,(1.3)

where uΩ denotes the support function of Ω, κΩ = (κΩ,1, . . . , κΩ,n) are the principal cur-

vatures of Ω, and S(p)(Ω, ·) is the Lp area measure introduced by Lutwak [30]. Analogous

to (1.2) and (1.3), it is interesting to consider the following measure

(1.4) Ck,q(Ω, ω) :=

ˆ
ω

σ−1
n−k(λΩ)dC̃q(Ω, ·), ∀ Borel set ω ⊂ Sn,
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where C̃q(Ω, ·) is the dual curvature measure introduced by Huang et al. [24]. In smooth

category, C̃q(Ω, ·) is absolutely continuous w.r.t. the standard spherical measure σSn , and

dC̃q(Ω, ·)/dσSn = rq−n−1u/K, where r, u,K are respectively the radial function, support

function and Gauss curvature of Ω. Given a measure dµ = fdσSn , with positive function

f ∈ C∞(Sn), the problem of prescribing Ck,q measure is to find a convex body Ω such

that Ck,q(Ω, ·) = µ. It is equivalent to solving the following equation

(1.5) rn+1−qσk(κΩ) =
u

f
(x), x ∈ Sn.

In particular, the dual Minkowski problem proposed in [24] is equivalently to solve (1.5)

with k = n. When f is a constant, equation (1.5) characterises the self-similar solutions

to our flow (1.1). Indeed it is not hard to see that if Ω is a convex body satisfying (1.5)

with constant f , then after a proper rescaling if necessary M = ∂Ω is steady under the

normalised flow (1.8) below with α = n+ 1− q.
In our previous paper [28], we studied the associated anisotropic version of (1.1) in

the case k = n, and proved that the flow converges to solutions to the Aleksandrov

problem and the dual Minkowski problem introduced in [24]. In the case k = n, the flow

(1.1) is a decent gradient flow of an associated functional, which implies the asymptotic

convergence of the normalised flow in [28] once the a priori estimates are established.

For the cases 1 ≤ k < n studied in this paper, we are unaware of the existence of

the functional, and so we only consider (1.1) without an anisotropic factor f . We are

mainly interested in the spherical asymptotic behaviour of the flow. We prove that,

when α ≥ k + 1, the solutionMt preserves the convexity, and converges smoothly after

normalisation to a sphere.

Theorem 1.1. Let M0 be a smooth, closed and uniformly convex hypersurface in Rn+1

enclosing the origin. If α ≥ k+1, then the flow (1.1) has a unique smooth and uniformly

convex solution Mt for all time t > 0, which converges to the origin. After a proper

rescaling X → φ−1(t)X, where

(1.6)
φ(t) = e−βt, if α = k + 1,

φ(t) = [1 + (α− k − 1)βt]
1

k+1−α , if α 6= k + 1,

and β = σk(1, · · · , 1), the hypersurface M̃t = φ−1(t)Mt converges exponentially to a

sphere centred at the origin in the C∞ topology.

For k = 1, we can also prove the convergence for weakly mean-convex and star-shaped

initial hypersurfaces. We say a hypersurface is weakly mean-convex if its mean curvature

is non-negative everywhere.
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Theorem 1.2. Let M0 be a smooth, closed and weakly mean-convex hypersurface in

Rn+1. Suppose that M0 is star-shaped with respect to the origin. If k = 1 and α ≥ 2,

then the mean curvature flow (1.1) has a unique smooth solution Mt for all time t > 0,

andMt converges to the origin. After a proper rescaling X → φ−1(t)X, where φ is given

by (1.6), the hypersurface M̃t = φ−1(t)Mt converges exponentially to a sphere centred

at the origin in the C∞ topology.

The study of the asymptotic behaviour of the flow (1.1) is equivalent to the long time

behaviour of the normalised flow. Let

(1.7) X̃(·, τ) = φ−1(t)X(·, t),

where

τ =


t if α = k + 1,

log[1 + (α− k − 1)βt]

(α− k − 1)β
if α 6= k + 1.

Then X̃(·, τ) satisfies the following normalised flow

(1.8)


∂X

∂t
(x, t) = −rασk(x, t)ν + βX(x, t),

X(·, 0) = X0.

For convenience we still use t instead of τ to denote the time variable and omit the

“tilde” if no confusions arise. In order to prove Theorems 1.1 & 1.2, we shall establish

the a priori estimates for the normalised flow (1.8), and show that if X(·, t) solves (1.8),

then |X| converges exponentially to a constant as t→∞.

When α < k + 1, we find that the hypersurface evolving by (1.1) may reach the

origin in finite time, before the hypersurface shrinks to a point. Hence the flow does not

converge to a round sphere centred at the origin in general.

Theorem 1.3. Suppose α < k + 1. There exists a smooth, closed, uniformly convex

hypersurface M0, such that under the flow (1.1),

(1.9) R(X(·, t)) :=
maxSn r(·, t)
minSn r(·, t)

→∞ as t→ T

for some T > 0.

This paper is organised as follows. In Section 2 we collect some properties of star-

shaped hypersurfaces, and show that the flow (1.8) can be reduced to a parabolic equa-

tion of the radial function, or a parabolic equation of the support function providedMt

is uniformly convex. We will also derive the evolution equations for various geometric

quantities in Section 2. In Section 3 we establish the needed a priori estimates, which

ensure the longtime existence of the normalised flow (1.8). Section 4 is devoted to the
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sphere convergence result. The proofs of Theorems 1.1 & 1.2 will be presented in this

section. Finally in Section 5 we prove Theorem 1.3.

2. Preliminaries

Let us recall some relevant geometric quantities of a smooth and star-shaped hyper-

surfaceM in Rn+1. Given ξ ∈ Sn, the ray {tξ : t ≥ 0} intersects withM at exactly one

point p(ξ). Hence M can be regarded as a spherical radial graph via the mapping

~r : ξ ∈ Sn 7→ p(ξ) ∈M.

Let r(ξ) = |p(ξ)| be the radial function, which is the distance from the origin to p(ξ). We

now give the expressions of the induced metric, second fundamental form, Weingarten

curvatures of M in terms of the radial function. These formulae can be found in a

number of papers, for example [20, 35].

Let e1, · · · , en be a smooth local orthonormal frame field on Sn, and let ∇ be the

covariant derivative on Sn. We denote by gij, g
ij, ν, hij the metric, the inverse of the

metric, the unit outer normal and the second fundamental form of M, respectively.

Then, in terms of r, we have

gij = r2δij +∇ir∇jr,

gij = r−2
(
δij −

∇ir∇jr

r2 + |∇r|2
)
,

ν =
rξ −∇r√
r2 + |∇r|2

,

hij =
1√

r2 + |∇r|2
(r2δij + 2∇ir∇jr − r∇

2

ijr).

(2.1)

The principal curvatures ofM are the eigenvalues of hij with respect to gij, namely the

solutions of

0 = det(gilhlj − κδij) = det(aij − κδij),

where the symmetric matrix {aij} is given by

(2.2) aij = (g−
1
2 )ilhlm(g−

1
2 )mj.

Here {(g− 1
2 )ij} is the square root of the matrix {gij} and is given explicitly by

(2.3) (g−
1
2 )ij = r−1

[
δij −

∇ir∇jr√
r2 + |∇r|2(r +

√
r2 + |∇r|2)

]
.
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We call {aij} the Weingarten matrix of M. Throughout this paper, we will use the

Einstein summation convention for convenience.

Suppose X(·, t) is an embedding of a time-dependent family of smooth, closed hyper-

surface Mt which is star-shaped with respect the origin. For a suitable diffeomorphism

ξ(·, t) : Sn → Sn, we have

X(x, t) = r(ξ(x, t), t)ξ(x, t),

where r(·, t) : Sn → R+ is the radial function of Mt. Then we have

∂tX =
( ∂r
∂ξi

∂ξi

∂t
+
∂r

∂t

)
ξ + r

∂ξ

∂t
.

Hence by (2.1)

〈∂tX, ν〉 = (r2 + |∇r|2)−
1
2

[ ∂r
∂ξi

∂ξi

∂t
r + r

∂r

∂t
− r
〈
∇r · ∂ξ

∂t

〉]
(2.4)

= r(r2 + |∇r|2)−
1
2
∂r

∂t
.

where 〈·, ·〉 denotes the standard inner product on Rn+1. If X(x, t) satisfies the nor-

malised flow (1.8), then by (2.1)

〈∂tX, ν〉 = −rασk + 〈βX, ν〉(2.5)

= −rασk + β
〈
rξ,

rξ −∇r√
r2 + |∇r|2

〉
= −rασk + βr2(r2 + |∇r|2)−

1
2 .

By (2.4) and (2.5), we conclude that the normalised flow (1.8) can be reduced to the

following scalar equation for r(·, t),

(2.6)


∂r

∂t
(ξ, t) = −(1 + |∇ log r|2)

1
2 rασk(ξ, t) + βr(ξ, t) on Sn × [0,∞),

r(·, 0) = r0,

where r0 is the radial function of M0, and σk(ξ, t) denotes the k-curvature at r(ξ, t)ξ ∈
Mt.

When k = 1, (2.6) is a quasi-linear parabolic equation. For k ≥ 2, the equation (2.6)

is parabolic, as long as Mt is k-convex. Namely

(2.7) (κ1(x, t), · · · , κn(x, t)) ∈ Γk := {κ ∈ Rn : σm(κ) > 0, ∀ m = 1, · · · , k},

where κi(x, t) are the principal curvatures of Mt at X(x, t). In what follows we shall

say that X(·, t) (respectively r(·, t)) is a uniformly convex solution of the flow (1.8)

(respectively the equation (2.6)), if for each t, Mt is uniformly convex. When Mt is

closed, this means the principal curvatures of Mt are positive everywhere.
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It is sometimes more convenient to study the equation for the quantity

(2.8) %(ξ, t) = log r(ξ, t).

By (2.1), (2.2) and (2.3), we find that

aij = e−%(1 + |∇%|2)−
1
2 ãij,

where

(2.9) ãij = γil(δlm +∇l%∇m%−∇
2

lm%)γmj,

and

(2.10) γij = δij −
∇i%∇j%

(1 + |∇%|2)
1
2 (1 + (1 + |∇%|2)

1
2 )
.

It then follows from (2.6) that

(2.11)


∂%

∂t
(ξ, t) = −(1 + |∇%|2)

1−k
2 e(α−k−1)%σk(ãij) + β on Sn × [0,∞),

%(·, 0) = log r0,

where

σk(ãij) =
∑

1≤i1<···<ik≤n

κ̃i1 · · · κ̃ik

and κ̃i are the eigenvalues of the matrix {ãij}.
If the hypersurfaceM is furthermore uniformly convex, then the geometry ofM can

be also characterised by its support function. Let ν−1 : Sn →M be the inverse Gauss

map, namely ν−1(x) is the point p(x) ∈ M such that the unit outer normal of M at

p(x) is equal to x. The support function u of M is function defined on the unit sphere

Sn, given by

(2.12) u(x) = 〈x, ν−1(x)〉.

For a parametrisation of Mt : x → X(x, t), in the following we may also use u(x, t) =

〈X(x, t), ν(x, t)〉 to denote the support function, if no confusion arises. It is easy to

verify that

(2.13) ν−1(x) = u(x)x+∇u(x).

and the principal radii of curvature of M at ν−1(x) are the eigenvalues of the matrix

(2.14) bij = ∇2

iju(x) + u(x)δij,

where the derivatives are taken with respect to an orthonormal frame on Sn. The

formulae (2.13) and (2.14) can be found in for example [3, 36].
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Let X(·, t) be a smooth and uniformly convex solution to the normalised flow (1.8)

and let u(·, t) be its support function. Let ϕ(·, t) : Sn → Sn be the diffeomorphism such

that the unit outer normal at X(ϕ(x, t), t) is x. Then

u(x, t) = 〈X(ϕ(x, t), t), x〉.

It follows that

∂u

∂t
=

〈∂X
∂ϕi

∂ϕi

∂t
+
∂X

∂t
, x
〉

=
〈
− |X(ϕ(x, t), t)|ασkx+ βX, x

〉
= −|X(ϕ(x, t), t)|ασk + βu,(2.15)

where σk is the k-curvature of Mt at X(ϕ(x, t), t). By (2.14), we have

σk =
∑

1≤i1<···<ik≤n

κi1 · · ·κik =
σn−k
σn

(∇2
u+ uI).

By (2.13) and (2.15), the normalised flow (1.8) can be described by the following scalar

equation of the support function u(·, t),

(2.16)


∂u

∂t
(x, t) = −rαQ−1

n,n−k(∇
2

iju+ uδij)(x, t) + βu(x, t) on Sn × [0,∞),

u(·, 0) = u0,

where u0 is the support function of the initial hypersurface M0, and

r =

√
u2 + |∇u|2(x, t), Qn,n−k =

σn
σn−k

.

We now derive some evolution equations for our normalised flow (1.8). Pick any local

coordinate chart {xi}ni=1 of Sn. Denote ∂i = ∂
∂xi

, Xi = ∂iX and Xij = ∂i∂jX − ΓkijXk,

where Γkij is the Christoffel symbol of the metric of Mt. Recall the following identities

(2.17)

Xij = −hijν, (Gauss formula)

νi = hijg
jlXl, (Weingarten equation)

hij,l = hil,j, (Codazzi formula)

Rijrs = hirhjs − hishjr, (Gauss equation)

where hij,l = ∇lhij, ∇ denotes the derivative with respect to the metric ofMt, and Rijkl

is the Riemannian curvature tensor. Making use of the Ricci identity to interchange

the order of the derivatives and employing the Codazzi formula and Gauss equation in

(2.17), we also obtain

∇s∇rhij = ∇j∇ihrs + (h2)ijhrs − (h2)ishjr + his(h
2)jr − hij(h2)rs,(2.18)

where (h2)ij = hilh
l
j, and hlj = glphpj. For convenience, the Einstein summation conven-

tion is used.
8



Lemma 2.1. Denote Φ = rαF k, and F = σ
1
k
k . Then under the normalised flow (1.8),

we have

(2.19) ∂tgij = −2Φhij + 2βgij,

(2.20) ∂tν = ∇Φ,

and

∂thij = kΦF−1F rs∇2
rshij − (k + 1)Φ(h2)ij + kΦhijF

−1F rs(h2)rs(2.21)

+kΦF−1F rs((h2)ishjr − his(h2)jr) + βhij

+kΦF−1F rs,pqhrs,ihpq,j + k(k − 1)Φ∇i logF∇j logF

+αkΦ(∇i log r∇j logF +∇j log r∇i logF )

+α(α− 1)Φ∇i log r∇j log r + αΦr−1∇2
ijr,

where F rs = ∂F
∂hrs

and F rs,pq = ∂F
∂hrs∂hpq

.

Proof. As 〈Xi, ν〉 = 0, by the Weingarten equation in (2.17),

∂tgij = ∂t〈∂iX, ∂jX〉
= 〈−∂i(Φν − βX), ∂jX〉+ 〈∂iX,−∂j(Φν − βX)〉
= −Φ

(
〈∂iν, ∂jX〉+ 〈∂iX, ∂jν〉

)
+ 2βgij

= −2Φhij + 2βgij.

This proves (2.19).

Since ν is a unit vector filed, ∂tν has only tangential part. Hence

∂tν = 〈∂tν, ∂iX〉gij∂jX
= −〈ν, ∂i(−Φν + βX)〉gij∂jX
= ∇Φ.

This verifies the second evolution equation in the lemma.

Using the Gauss formula in (2.17), we have

∂thij = ∂t〈∂i∂jX,−ν〉(2.22)

= 〈∂i∂j(Φν − βX), ν〉 − 〈Γkij∂kX − hijν, ∂tν〉
= ∂i∂jΦ + Φ〈∂i∂jν, ν〉+ βhij − ΓkijΦk

= ∇2
ijΦ + Φ〈∂i(hkj∂kX), ν〉+ βhij

= ∇2
ijΦ− Φhikh

k
j + βhij.
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By (2.18), it is readily seen that

∇2
ijΦ = kΦF−1(F rs∇2

ijhrs + F rs,pqhrs,ihpq,j) + k(k − 1)Φ∇i logF∇j logF

+αkΦ(∇i log r∇j logF +∇j log r∇i logF )

+α(α− 1)Φ∇i log r∇j log r + αΦr−1∇2
ijr

= kΦF−1F rs∇2
rshij − kΦ(h2)ij + kΦhijF

−1F rs(h2)rs

+kΦF−1F rs((h2)ishjr − his(h2)jr)

+kΦF−1F rs,pqhrs,ihpq,j + k(k − 1)Φ∇i logF∇j logF

+αkΦ(∇i log r∇j logF +∇j log r∇i logF )

+α(α− 1)Φ∇i log r∇j log r + αΦr−1∇2
ijr.

This together with (2.22) implies (2.21).

�

3. A priori estimates

In this section we establish the priori estimates and show that the normalised flow

exists for long time. We first derive the L∞-norm estimate for the radial function.

Lemma 3.1. Let r(·, t) be a positive, k-convex smooth solution to (2.6) on Sn × [0, T ).

If α ≥ k + 1, then there is a positive constant C depending only on maxSn r(·, 0) and

minSn r(·, 0) such that

(3.1) 1/C ≤ r(·, t) ≤ C ∀ t ∈ [0, T ).

Proof. First we consider the case α > k + 1. For the first equality of (3.1), let rmin(t) =

minx∈Sn r(x, t). By (2.1), (2.2) and (2.3), we infer that, at the point where r attains its

spatial minimum,

σk(aij) ≤
σk(1, · · · , 1)

rkmin

=
β

rkmin

.

From (2.6) it then follows that

(3.2)
d

dt
rmin ≥ −β(rα−k−1

min − 1)rmin.

Since α > k + 1, we may assume that rmin(t) < 1, otherwise we are through. Hence
d
dt
rmin ≥ 0. This implies

r(·, t) ≥ min
{

1,min
Sn

r(·, 0)
}
.

We obtain the first equality of (3.1). The second inequality can be proved similarly. In

fact one can verify, as above,

r(·, t) ≤ max
{

1,max
Sn

r(·, 0)
}
.

10



This proves (3.1) for the case α > k + 1.

If α = k + 1 , then (3.2) gives d
dt
rmin ≥ 0. Similarly we have d

dt
rmax ≤ 0. Therefore

min
Sn

r(·, 0) ≤ r(·, t) ≤ max
Sn

r(·, 0).

�

For convex hypersurface, the gradient estimate is a direct consequence of the L∞-norm

estimate.

Lemma 3.2. Let r(·, t) be a positive, smooth, uniformly convex solution to (2.6) on

Sn × [0, T ). We have the gradient estimate

(3.3) |∇r(·, t)| ≤ C ∀ t < T,

where C > 0 depends only on minSn×[0,T ) r and maxSn×[0,T ) r.

Proof. This lemma is due to the convexity. Given x ∈ Sn, by (2.13), we have

(3.4) X(x, t) = u(x, t)x+∇u(x, t),

where X(x, t) is the point at where the unit outer normal of Mt is x. Let ξ =

X(x, t)/|X(x, t)|. Then X(x, t) = r(ξ, t)ξ. Multiplying ξ to both sides of the third

formula in (2.1), and noting that ν = x in our current situation, one concludes that

(3.5)
r√

r2 + |∇r|2
= x · X

r
=
u

r

where (3.4) was used in the second equality. This implies

|∇r(ξ, t)| ≤ r2

u
≤

maxSn×[0,T ) r
2

minSn×[0,T ) r
.

Note that in the second inequality we have used the fact

(3.6) min
Sn

u(·, t) = min
Sn

r(·, t), and max
Sn

u(·, t) = max
Sn

r(·, t),

which can be easily derived from the formula

(3.7) |X| =
√
u2 + |∇u|2.

�

Similarly we have the estimates for the support function u(·, t).
11



Lemma 3.3. Let X(·, t) be a positive, smooth, uniformly convex solution to (2.16) on

Sn × [0, T ). Let u and r be its support function and radial function respectively. Then

for all t < T

(3.8) min
Sn×[0,T )

r ≤ u(·, t) ≤ max
Sn×[0,T )

r,

and

(3.9) |∇u(·, t)| ≤ max
Sn×[0,T )

r.

Proof. The estimates (3.8) and (3.9) follows from (3.6) and (3.7) respectivly. �

Next we show that under the normalised flow, the hypersurface Mt are “uniformly

star-shaped”.

Lemma 3.4. Let X(·, t) be a positive, smooth, uniformly convex hypersurface which

solves the normalised flow (2.16) on Sn × [0, T ), and encloses the origin. Then for any

t ∈ [0, T ) and p ∈Mt, and any unit tangential vector e(p) ∈ TpMt, we have

(3.10)
(〈
e(p),

p

|p|
〉)2 ≤ 1− δ0,

where δ0 > 0 is a small constant only depending on α,minSn×[0,T ) r and maxSn×[0,T ) r.

Proof. Let r(·, t) and u(·, t) be the radial function and support function of X(·, t) re-

spectively. For any t < T and ξ ∈ Sn, let x ∈ Sn be the unit outer normal of X(·, t) at

r(ξ, t)ξ. For (3.10), it suffices show

〈ξ, x〉 ≥
√
δ0.

This follows from (3.5), since

〈ξ, x〉 =
u(x, t)

r(ξ, t)
≥

minSn×[0,T ) r

maxSn×[0,T ) r
.

�

We next derive an upper bound for the k-curvature

σk = σk[κ] =
∑

1≤i1<···<ik≤n

κi1 · · ·κik ,

where κi = κi(x, t) are the principal curvatures of Mt at X(x, t).

Lemma 3.5. Let X(·, t) be a smooth, closed, uniformly convex solution to the normalised

flow (1.8) for t ∈ [0, T ), which encloses the origin. Then there is a positive constant C

depending only on α,M0,minSn×[0,T ) r,maxSn×[0,T ) r, such that

(3.11) σk(·, t) ≤ C, ∀ t ∈ [0, T ).
12



Proof. Consider the auxiliary function

G(x, t) =
−ut
u− ε0

=
rαQ−1

n,n−k(∇
2
u+ uI)− βu

u− ε0
,

where

ε0 =
1

2
min

Sn×[0,T )
u > 0.

We shall apply the maximum principle to G and show that G is bounded from above.

At the point where G attains its spatial maximum, we have

(3.12) 0 = ∇iG =
−uti
u− ε0

+
utui

(u− ε0)2
,

and

0 ≥ ∇2

ijG =
−utij
u− ε0

+
utiuj + utjui + utuij

(u− ε0)2
− 2utuiuj

(u− ε0)3
(3.13)

=
−utij
u− ε0

+
utuij

(u− ε0)2
,

where (3.12) was used in the second equality above, and ∇i,∇
2

ij are covariant derivatives

with respect to the standard metric of Sn.

By (3.12) and (3.13), we infer that

(3.14) − utij ≤ Guij,

By (3.7) and (3.12),

(3.15) rt =
uut +

∑
ukukt

r
=
ε0u− r2

r
G.

Making use of (2.16), (3.14) and (3.15), we obtain

∂tG =
−utt
u− ε0

+G2(3.16)

=
−rαQ−2

n,n−kQ
ij
n,n−k(uijt + utδij)

u− ε0
+ α

rα−1rtσk
u− ε0

+ βG+G2

≤
rαQ−2

n,n−kQ
ij
n,n−k(Guij − utδij)
u− ε0

+ α
rα−1rtσk
u− ε0

+ βG+G2

=
rασkG

u− ε0

(
k − ε0Q−1

n,n−k

∑
Qii
n,n−k

)
+ C(1 +G2),
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where σk = σk[κ] in (3.16) is the k-curvature. By Newton and Maclaurin’s inequalities,

we have

Q−1
n,n−k

∑
Qii
n,n−k =

∑
σiin
σn

(∇2
u+ uI)−

∑
σiin−k
σn−k

(∇2
u+ uI)(3.17)

=
σn−1

σn
(∇2

u+ uI)− (k + 1)
σn−k−1

σn−k
(∇2

u+ uI)

≥ k

n

σn−1

σn
(∇2

u+ uI) =
k

n
σ1[κ]

≥ k

(
n

k

)− 1
k

σ
1
k
k [κ].

Without loss of generality we assume that σk[κ] ≈ G � 1. Plugging (3.17) into (3.16),

we obtain

∂tG ≤ C0G
2(C1 − ε0G

1
k )

for some C0, C1 depending on α and the L∞-norm of u only. We therefore conclude that

G ≤ C. Our a priori bound (3.11) follows consequently. �

Next we prove that if M0 is uniformly convex, then along the normalised flow (1.8)

the principal curvatures of Mt remains uniformly positive. We will need the following

algebra lemma.

Lemma 3.6. Let F = σ
1
k
k (hij), and {h̃ij} be the inverse matrix of {hij}. Then

(3.18) (F ij,rs + 2F irh̃js)ηijηrs ≥ 2F−1(F ijηij)
2.

Proof. This lemma can be found in [36]. We include a proof here for reader’s convenience.

Let

F̃ (h̃ij) =
( σn
σn−k

(h̃ij)
) 1
k
.

Obviously,

F (hij) =
1

F̃ (h̃ij)
.

Therefore

(3.19) F ij = F̃−2F̃ pqh̃pih̃qj,

and

F ij,rs = −F̃−2F̃ pq(h̃prh̃ish̃qj + h̃pih̃qrh̃js)(3.20)

−F̃−2F̃ pq,lmh̃pih̃qjh̃lrh̃ms + 2F̃−3F̃ lmh̃lrh̃msF̃ pqh̃pih̃qj.
14



Multiplying ηijηrs to both sides of (3.20), and using (3.19) and the symmetry of F̃ pq, we

obtain

F ij,rsηijηrs = −2F irh̃jsηijηrs − F̃−2F̃ pq,lmh̃pih̃qjh̃lrh̃msηijηrs + 2F−1(F̃ ijηij)
2.

By the concavity of F̃ , we get (3.18) . �

Lemma 3.7. Let X(·, t) be a smooth, closed and uniformly convex solution to the nor-

malised flow (1.8) for t ∈ [0, T ), which encloses the origin. Assume α ≥ k + 1. Then

there is a positive constant C depending only on α,M0,minSn×[0,T ) r and maxSn×[0,T ) r

such that the principal curvatures of X(·, t) are bounded from below

(3.21) κi(·, t) ≥ 1/C, ∀ t ∈ [0, T ) and i = 1, · · · , n.

Proof. Let {h̃ij} be the inverse matrix of {hij}. The principal radii of curvatures ofMt

are the eigenvalues of {h̃ilglj}. To derive a positive lower bound of principal curvatures,

it suffices to prove that the eigenvalues of {h̃ilglj} are bounded from above. For this, we

consider the following quantity

W (x, t) = log Λ(x, t)− log u(x, t),

where

Λ(x, t) = max{h̃ij(x, t)ζiζj : gij(x, t)ζiζj = 1},

and u = 〈X, ν〉 is the support function of Mt.

Fix an arbitrary T ′ ∈ (0, T ) and assume that W attains its maximum on Sn × [0, T ′]

at P0 = (x0, t0) with t0 > 0 (otherwise W is bounded by its initial value and we are

done). We choose a local orthonormal frame e1, · · · , en on Mt such that ∇eiej = 0 at

X(x0, t0) for all i, j = 1, · · · , n, and {hij} is diagonal at this point. By a rotation, we

may also suppose that Λ(x0, t0) = h̃ij(x0, t0)ζiζj with ζ = (1, 0, · · · , 0).

Let

w(x, t) = log λ(x, t)− log u(x, t),

where λ(x, t) = h̃11/g11. Then maxSn×[0,T ′] W = maxSn×[0,T ′] w and so w achieves its

maximum at P0. In the following we prove an upper bound for w (independent of T ′).

This is sufficient for Lemma 3.7, as T ′ is arbitrary.

By virtue of Lemma 2.1, we have, at P0,

∂tλ = −(h̃11)2∂th11 + h̃11∂tg11

= −(h̃11)2 · kΦF−1F ij∇2
ijh11 + (k − 1)Φ + βh̃11 − kΦh̃11F−1F iih2

ii(3.22)

−(h̃11)2 · kΦF−1F ij,rshij,1hrs,1 − (h̃11)2Φ
[
k(k − 1)(∇1 logF )2

+2αk∇1 log r∇1 logF + α(α− 1)(∇1 log r)2
]
− αΦr−1∇2

11r · (h̃11)2.
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Note that

∇iλ = −(h̃11)2h11,i,(3.23)

∇2
ijλ = −∇j(h̃

1phpl,ih̃
1l) = −h̃1phpl,ijh̃

1l − 2∇jh̃
1phpl,ih̃

1l

= −(h̃11)2h11,ij + 2h̃1mh̃pqhmq,jhpl,ih̃
1l

= −(h̃11)2∇2
ijh11 + 2(h̃11)2h̃pqhip,1hqj,1.(3.24)

Plugging (3.24) into (3.22), and then employing (3.18), we obtain

∂tλ = kΦF−1F ij∇2
ijλ− (h̃11)2 · kΦF−1

(
F ij,rshij,1hrs,1 + 2F ijh̃pqhip,1hqj,1

)
+(k − 1)Φ + βh̃11 − kΦh̃11F−1F iih2

ii − Φ(h̃11)2
[
k(k − 1)(∇1 logF )2

+2αk∇1 log r∇1 logF + α(α− 1)(∇1 log r)2
]
− αΦr−1∇2

11r · (h̃11)2

≤ kΦF−1F ij∇2
ijλ+ (k − 1)Φ + βh̃11 − αΦr−1∇2

11r · (h̃11)2(3.25)

−Φ(h̃11)2
[
k(k + 1)(∇1 logF )2 + 2αk∇1 log r∇1 logF + α(α− 1)(∇1 log r)2

]
.

Clearly

(3.26) − 2αk∇1 log r∇1 logF ≤ k(k + 1)(∇1 logF )2 +
α2k

k + 1
(∇1 log r)2.

Direct computation gives

∇1r = r−1〈X1, X〉,

and

∇2
11r = r−1(〈X11, X〉+ g11 − (∇1r)

2)

= r−1(−uh11 + g11 − (∇1r)
2).

At the point P0, r−1X and X1 are two unit vectors, and X1 is tangential, so we infer by

Lemma 3.4 that

g11 − (∇1r)
2 = 1−

(
〈X1,

X

r
〉
)2 ≥ δ0

for some δ0 > 0. Hence

(3.27) ∇2
11r ≥ −

u

r
h11 + δ0r

−1.

By (3.26) and (3.27), we can estimate (3.25) as

∂tλ ≤ kΦF−1F ij∇2
ijλ+ (k − 1)Φ +

(
β + α

u

r2
Φ
)
h̃11 − αδ0

Φ

r2
(h̃11)2

−α(α− k − 1)

k + 1
Φ(h̃11)2(∇1 log r)2.
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Since α ≥ k + 1, we conclude that

∂t log λ

Φ
≤ kF−1F ij∇2

ij log λ+ kF−1F ii(∇i log λ)2 − αδ0

r2
h̃11 +

β

Φ
+ C.(3.28)

By using (2.17), we find that

∇2
iju = ∇j〈X, hliXl〉

= hij,mg
ml〈X,Xl〉 − hlihlju+ hij.(3.29)

This together with (2.20) implies

∂tu = 〈X,∇Φ〉+ 〈−Φν + βX, ν〉
= kΦF−1F ijhij,l〈Xl, X〉+ αΦgij〈Xi, X/|X|〉〈Xj, X/|X|〉 − Φ + βu

≥ kΦF−1F ij∇2
iju− (k + 1)Φ + βu.

Consequently

(3.30)
∂t log u

Φ
≥ kF−1F ij∇2

ij log u+ kF−1F ii(∇i log u)2 − k + 1

u
+
β

Φ
.

Note that, at P0,

∇i log λ = ∇i log u, ∀ i = 1, · · · , n,

and

0 ≥ ∇2
ij(log λ− log u).

Combining (3.28) and (3.30), we conclude that, at P0,

0 ≤ ∂tw

Φ
=
∂t log λ− ∂t log u

Φ

≤ −αδ0

r2
h̃11 + C.

Hence h̃11 is bounded. This completes the proof. �

As a consequence of Lemma 3.5 and Lemma 3.7, we obtain the corollary below.

Corollary 3.1. Let X(·, t) be a smooth, closed, uniformly convex solution to the nor-

malised flow (1.8) for t ∈ [0, T ), which encloses the origin. Assume α ≥ k + 1. Then

there is a constant C depending only on α,M0,minSn×[0,T ) r and maxSn×[0,T ) r such that

the principal curvatures of X(·, t) are bounded from above and below

(3.31) C−1 ≤ κi(·, t) ≤ C, ∀ t ∈ [0, T ) and i = 1, · · · , n.

The estimates obtained in Lemma 3.1, Lemma 3.2 and Corollary 3.1 depend only on

n, α, and the geometry of the initial data M0. They are independent of T . By (3.1),

(3.3) and (3.31), we conclude that the equation (2.6) is uniformly parabolic. By applying
17



the Krylov-Safonov’s Harnack inequality [27] to the linearised equation satisfied by rt,

we obtain the space-time Hölder estimates for ∂tr. We then apply the Evans-Krylov

theorem (e.g., see [10, 19]) to the uniformly elliptic equation (as a PDE of −r)

σ
1
k
k =

( βr − rt

rα
√

1 + |∇ log r|2

) 1
k

by taking exponent 1
k

to the equation (2.6), which implies a space Hölder estimate

for ∇2
r(·, t) for each t. The Hölder estimate for ∇2

r in t can be obtained as in [34].

Estimates for higher order derivatives then follow from the bootstrap argument using

the Schauder estimates. See also [12] for the regularity theory. Hence we obtain the

long time existence and C∞-smoothness of solutions for the normalised flow (1.8). The

uniqueness of smooth solutions also follows from the parabolic theory. In summary, we

have proved the following theorem.

Theorem 3.1. Let M0 be a smooth, closed, uniformly convex hypersurface in Rn+1,

n ≥ 1, which encloses the origin. If α ≥ k + 1, then the normalised flow (1.8) has a

unique smooth, closed and uniformly convex solution Mt for all time t ≥ 0. Moreover,

the radial function of Mt satisfies the a priori estimates

‖r‖
Ck,β
(
Sn×[0,∞)

) ≤ C,

where the constant C > 0 depends only on n, k, β, α and the geometry of M0.

4. Proofs of Theorems 1.1 - 1.2

In this section we prove the asymptotical convergence of solutions to the normalised

flow (1.8). By Theorem 3.1, it is known that the flow (1.8) exists for all time t > 0 and

remains smooth and uniformly convex, provided M0 is smooth, uniformly convex and

encloses the origin. We need the following lemma.

Lemma 4.1. Let r(·, t) be a smooth and uniformly convex solution to (2.6). If α ≥ k+1,

then there exist positive constants C and γ, depending only on n, α and the geometry of

M0, such that

(4.1) max
Sn
|∇r(·, t)|
r(·, t)

≤ Ce−γt, ∀ t > 0.

Proof. Consider the auxiliary function

G =
1

2
|∇%|2,

where % = log r as in (2.8). At the point where G attains its spatial maximum, we have

(4.2) 0 = ∇iG =
∑

%l%li,
18



and

(4.3) 0 ≥ ∇2
ijG =

∑
%l%lij +

∑
%il%lj.

By differentiating (2.11) and using (4.2), we obtain at this point

∂tG =
∑

%l%lt

= −(1 + |∇%|2)
1−k
2 e(α−k−1)%

[
(α− k − 1)|∇%|2σk +

∑
σijk ∇lãij%l

]
.(4.4)

Note that by (4.2), ∑
%r∇rãij = −

∑
γil%r∇r%lmγmj.

By the Ricci identity, we have

∇r%lm = ∇m%lr + δlr%m − δlm%r.

Hence ∑
%r∇rãij = −

∑
γil(%r%rlm + %l%m − δlm|∇%|2)γmj(4.5)

≥ −
∑

γil(−%lr%rm + %l%m − δlm|∇%|2)γmj,

where we have used (4.3) in (4.5). Plugging (4.5) into (4.4), we deduce that

(4.6) ∂tG ≤ (1 + |∇%|2)
1−k
2 e(α−k−1)%

(
(k + 1− α)|∇%|2σk +

∑
Alm%l%m −A|∇%|2

)
,

where A =
∑
Aii and {Alm} is the positive definition symmetric matrix given by

Alm = σijk γilγjm.

If n ≥ 2, by Corollary 3.1, we infer that

max
i
Aii −A ≤ −C.

It then follows by (4.6) and using the assumption α ≥ k + 1 that

(4.7) ∂tG ≤ −γG,

for some positive constant γ. This proves (4.1).

For n = 1 (hence k = 1), when α > k + 1 = 2, we still have (4.7) by using (4.6) and

Corollary 3.1 (which gives a positive lower bound for σk). Hence it suffices to consider

the case α = k + 1 = 2. Then the equation (2.11) becomes quasi-linear

(4.8) %t =
%xx

1 + %2
x

on S1 × [0,∞).

Let

%̄ :=
1

2π

ˆ
S1
%(x, t)dx
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be the average of %. By the divergence theorem,

d

dt
%̄ =

1

2π

ˆ
S1

(arctan(%x))xdx = 0.

Hence %̄ is a constant. Then it is simple to calculate

d

dt

(1

2

ˆ
S1

(%− %̄)2
)

=

ˆ
S1

(%− %̄)(arctan %x)xdx

= −
ˆ
S1
%x arctan %xdx.

Note that, %x arctan %x ≥ δ0%
2
x for some δ0 > 0 depending only on the upper bound of

|%x|. We deduce that, by the Poincaré inequality,

d

dt

(1

2

ˆ
S1

(%− %̄)2
)
≤ −δ0

ˆ
S1
%2
xdx ≤ −C

ˆ
S1

(%− %̄)2.

This implies % exponentially converges to a constant in L2-norm as t → ∞. The expo-

nential decay of |∇%| now follows from the interpolation. �

Remark 4.1. In the above argument, we have actually proved the following gradient

estimate. Let r(·, t) be a positive, k-convex solution of (2.6) on Sn× [0, T ). If α ≥ k+1,

then

(4.9) max
Sn
|∇r(·, t)|
r(·, t)

≤ max
Sn
|∇r(·, 0)|
r(·, 0)

, ∀ t < T.

In fact, maxSn G(·, t) is non-increasing in t. This can be seen from (4.6) and by noticing∑
Alm%l%m ≤ A|∇%|2.

From estimate (4.9) and Lemma 3.1, we infer that maxSn |∇r(·, t)| ≤ C for all t <

T . When r(·, t) is a convex solution, this gradient bound follows immediately from the

convexity as shown in Lemma 3.2.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Case (i): α > k + 1.

Let r(·, t) be the solution to (2.6). By making a rescaling ofM0 if necessary, we may

assume

a := min
Sn

r(·, 0) ≤ 1 ≤ max
Sn

r(·, 0) =: b.

Let us introduce two time-dependent functions

r1 = [1− (1− aq)eqβt]1/q,
r2 = [1− (1− bq)eqβt]1/q,
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where q = k + 1− α < 0. It is easy to check that both r1 and r2 satisfy equation (2.6),

and the spheres of radii r1 and r2 are solutions of (1.8). By the comparison principle,

r1(t) ≤ r(·, t) ≤ r2(t). Hence

(bq − 1)eqβt ≤ rq − 1 ≤ (aq − 1)eqβt.

Thus r converges to 1 exponentially.

By the interpolation and the a priori estimates established in Section 3, we see that

‖r(·, t)−1‖Ck(Sn) → 0 exponentially for all integers k ≥ 1. This shows thatMt converges

to the unit sphere centred at the origin.

Case (ii): α = k + 1. We see from (4.1) that |∇r| → 0 exponentially as t → ∞.

Hence by the interpolation and the a priori estimates in Section 3 we conclude that r

converges exponentially to a constant in the C∞ topology as t → ∞. This completes

the proof. �

In the rest of this section, we shall prove Theorem 1.2. We first show that the mean-

convexity is preserved.

Lemma 4.2. LetM0 be a smooth, closed and weakly mean-convex hypersurface in Rn+1,

n ≥ 1. Suppose thatM0 is star-shaped with respect to the origin. LetMt be a solution of

(1.8) on Sn× [0, T ). Then for all t ∈ [0, T ), the hypersurfaceMt is weakly mean-convex.

Proof. By Lemma 2.1, we obtain

∂tH = gij∂thij − gikgjl∂tgklhij
= ∆Φ + Φ|A|2 − nH
= rα∆H + 2〈∇rα,∇H〉+ (∆rα + rα|A|2 − n)H.

This implies that minSn H(·, t) ≥ 0 for all t < T . �

Proof of Theorem 1.2. When k = 1, by (2.1), equation (2.6) becomes

(4.10)
∂r

∂t
= rα−2

(
δij −

rirj

r2 + |∇r|2
)
∇2

ijr − rα−1
[
n+

|∇r|2

r2 + |∇r|2
]

+ nr on Sn × [0,∞),

r(·, 0) = r0,

This is a quasi-linear parabolic equation. From the proof of Lemma 3.1, we infer that

1/C < r(·, t) < C,

as long as the flow exists, where C is a constant depending only on the geometry ofM0.

By Lemma 4.2, r(·, t) remains weakly mean-convex. We have the following estimate, if

either (i) n > 1 & α ≥ k + 1 = 2 or (ii) n = 1 & α = k + 1 = 2,

(4.11) |∇r| ≤ Ce−γt.
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This can be seen from (4.6) in the proof of Lemma 4.1. Indeed, when k = 1 and

α ≥ k + 1 = 2, by the weak mean-convexity, the differential inequality (4.6) gives

(4.12) ∂t

(1

2

|∇r|2

r2

)
≤ −(n− 1)rα−2 |∇r|2

r2
.

This gives (4.11) for n > 1. When n = 1 and α = 2, (4.11) follows from the 1D parabolic

equation (4.8), as in the proof of Lemma 4.1. Inequality (4.12) also implies, for all n ≥ 1,

maxSn |∇r(·, t)|/r(·, t) is non-increasing in t, and therefore

(4.13) |∇r| ≤ C0

for some C0 > 0 depending on the initial dataM0. HenceMt are uniformly star-shaped

as long as the flow exists. Indeed, by (3.4),

X

r
· x =

r√
r2 + |∇r|2

≥ δ0, ∀ t > 0,

where δ0 > 0 is a small constant only depending on α and the initial data M0.

By (4.13), we infer that (4.10) is uniformly parabolic. It follows from (3.1), (4.13), and

the regularity theory of quasi-linear uniformly parabolic equations (see e.g. Theorem 12.3

in [29]) that ∇r is uniformly Hölder continuous in space-time. Therefore the coefficients

of (4.10) are uniformly Hölder continuous, and we can apply the standard Schauder

estimates (see e.g. Theorem 4.9 in [29]) to conclude the C2,α-estimates of r. Higher

order a priori estimates follow from the standard bootstrap argument. Hence we obtain

the long time existence and C∞ regularity for the normalised flow (1.8).

Arguing as in the proof of Theorem 1.1, we deduce that r converges exponentially to

a constant in the C∞ topology as t→∞. Note that estimate (4.11) is used for the case

α = k + 1 = 2. �

5. Proof of Theorem 1.3

In this section we show that if α < k + 1 then the flow (1.1) may have unbounded

ratio of radii, namely

(5.1) R(X(·, t)) =
maxSn r(·, t)
minSn r(·, t)

→∞ as t→ T

for some T > 0. Our idea is to show that minSn r(·, t) → 0 in finite time while

maxSn r(·, t) remains positive. The argument below is similar to that in our previous

paper [28], with some necessary modifications. In [28], the result was proved for the case

k = n.
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Let X(·, t) be a convex solution to (1.1). Then its radial function r satisfies the

equation

(5.2)


∂r

∂t
(x, t) = −rασk(κ[r]),

r(·, 0) = r0,

where κ[r] = (κ1, · · · , κn), and κi are the principal curvatures of the hypersurface whose

radial function is r(·, t), namely the eigenvalues to the matrix aij defined in (2.2). Given

a smooth, closed, uniformly convex hypersurface M0, our a priori estimates in Section

3 imply the existence of a smooth, closed, uniformly convex solution to the flow (1.1)

for small t > 0.

Definition 5.1. A time dependent family of convex hypersurfaces Y (·, t) is a sub-solution

to (1.1) if its radial function w satisfies

(5.3)


∂w

∂t
≥ −rασk(κ[w]),

w(·, 0) = w0.

By definition, the hypersurface M0 (independent of t), whose radial function is r0, is

a sub-solution to (5.2). We will use the following comparison principle.

Lemma 5.1. Let X(·, t) be a solution to (1.1) and Y (·, t) a sub-solution. Suppose X(·, 0)

is contained in the interior Y (·, 0). Then X(·, t) is contained in the interior Y (·, t) for

all t > 0, as long as the solutions exist.

We omit the proof of Lemma 5.1 here, as a comparison principle like this is well

known in geometric analysis. Note that in Lemma 5.1, we do not require that Y (·, t) is

shrinking. Moreover, it suffices to assume that Y (·, t) is a sub-solution in the viscosity

sense. In particular Lemma 5.1 applies if Y (·, t) is C1,1 smooth.

To prove Theorem 1.3, by the comparison principle (Lemma 5.1), it suffices to con-

struct a sub-solution Y (·, t) such that minSn w(·, t) → 0 but maxSn r(·, t) remains posi-

tive, as t→ T for some finite time T > 0. By a translation of time, we show below that

there is a sub-solution Y (·, t) for t ∈ (−1, 0) such that (5.1) holds as t↗ 0.

Lemma 5.2. There is a sub-solution Y (·, t), where t ∈ (−1, 0), to

(5.4)


∂r

∂t
= −arασk(κ[r]),

r(·, 0) = r0.

for a sufficiently large constant a > 0, such that minSn w(·, t) → 0 but maxSn w(·, t)
remains positive, as t↗ 0.
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Proof. The sub-solution we constructed is a family of closed convex hypersurfaces M̂t :=

Y (Sn, t). First note that it suffices to prove Lemma 5.2 when

q = k + 1− α > 0

is very small. Indeed, if Y (Sn, t) is a sub-solution to (5.4) for some α, it is also a sub-

solution to (5.4) for α′ < α, provided we replace a by a sup{|p|α−α′ ; p ∈ M̂t, t ∈ (−1, 0)}.
Let M̂t be the graph of the function

(5.5) φ(ρ, t) =


− |t|θ + |t|−θ+σθρ2, if ρ < |t|θ,

− |t|θ − 1− σ
1 + σ

|t|θ(1+σ) +
2

1 + σ
ρ1+σ, if |t|θ ≤ ρ ≤ 1,

where x ∈ Rn, ρ = |x|, and σ = qθ−1
kθ

and θ > 1
q

is a constant. It is easy to verify that φ

is strictly convex, and φ ∈ C1,1(B1(0)).

By direct computation, we have,

(i) if 0 ≤ ρ ≤ |t|θ, then

(5.6)
rασk ≥ C|t|αθ|t|kθ(σ−1) = C|t|θ−1,

| ∂
∂t
Y (p, t)| ≤ θ|t|θ−1.

where p = (x, φ(|x|, t)) is a point on the graph of φ and σk is the k-curvature of

the graph of φ at p.

(ii) if |t|θ ≤ ρ ≤ 1, then

(5.7)
rασk ≥ ρασk ≥ Cραρ(σ−1)k = Cρ1− 1

θ ≥ C|t|θ−1,

| ∂
∂t
Y (p, t)| ≤ θ|t|θ−1.

Hence the graph of φ(·, t) is a sub-solution to (5.4), provided a is sufficiently large.

Next we extend the graph of φ to a closed convex hypersurface M̂t, such that it

is C1,1 smooth, uniformly convex, rotationally symmetric, and depends smoothly on t.

Moreover we may assume that the ball B1(z) is contained in the interior of M̂t, for

all t ∈ (−1, 0), where z = (0, · · · , 0, 10) is a point on the xn+1-axis. Then M̂t is a

sub-solution to (5.4), for sufficiently large a. �

We are in position to prove Theorem 1.3. For a given τ ∈ (−1, 0), letM0 be a smooth,

closed, uniformly convex hypersurface inside M̂τ and enclosing the ball B1(z). Let Mt

be the solution to the flow (5.4) with initial data M0. By Lemma 5.1, Mt touches the

origin at t = t0, for some t0 ∈ (τ, 0). We choose τ very close to 0, so that t0 is sufficiently

small.
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On the other hand, let X̃(·, t) be the solution to

(5.8)
∂X

∂t
= −bar̃ασkν,

with initial condition X̃(·, τ) = ∂B1(z), where b = 2α sup{|p|α : p ∈ Mt, τ < t < t0},
and r̃ = |X − z| is the distance from z to X. We can choose τ so small that the ball

B1/2(z) is contained in the interior of X̃(·, t) for all t ∈ (τ, t0). By the comparison

principle (Lemma 5.1), we see that the ball B1/2(z) is contained in the interior of Mt

for all t ∈ (τ, t0). Hence as t ↗ t0, we have min r(·, t) → 0 and max r(·, t) > |z| = 10.

Hence (5.1) is proved for Mt.

We have proved Theorem 1.3 when rασ is replaced by arασ, for large constant a > 0.

Making the rescaling M̃t = a−1/qMt, one easily verifies that M̃t solves the flow (1.1) .

Theorem 1.3 is proved.
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