Empirical processes and unconditional log-concave measures

Shahar Mendelsona, Grigoris Paourisb

aDepartment of Mathematics, Technion, I.I.T, Haifa 32000, Israel.
bDepartment of Mathematics, Texas A&M University, College Station, TX 77843-3368, U.S.A.

Received ****; accepted after revision +++++

Presented by

Abstract

We show that if \(\mu \) is an unconditional, isotropic, log-concave measure on \(\mathbb{R}^n \), \(n \in \mathbb{N} \) and \(T \) is a symmetric subset of \(\mathbb{R}^n \), then \(\mathbb{E}\|\sum_{i=1}^{N} X_i\|_{T^\circ} \leq C \sqrt{N} E(T) \) and \(\mathbb{E}\sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 - |t|^2 \right| \leq C \left(d_2(T) \frac{E(T)}{\sqrt{N}} + E_2(T) \right) \), where \(C > 0 \) is an absolute constant, \(E(T) = \mathbb{E}\sup_{t \in T}(Z,t) \), \(Z = (z_1, \ldots, z_N) \), \(z_i \) are i.i.d. exponentials with variance 1 and \(d_2(T) = \sup_{t \in T} |t| \) is the Euclidean radius of \(T \).

Résumé

Nous montrons que si \(\mu \) est une mesure log-concave isotrope inconditionnelle sur \(\mathbb{R}^n \), \(n \in \mathbb{N} \) et \(T \) est un sous-ensemble symétrique de \(\mathbb{R}^n \), alors \(\mathbb{E}\|\sum_{i=1}^{N} X_i\|_{T^\circ} \leq C \sqrt{N} E(T) \) et \(\mathbb{E}\sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 - |t|^2 \right| \leq C \left(d_2(T) \frac{E(T)}{\sqrt{N}} + E_2(T) \right) \), où \(C > 0 \) est une constante absolue, \(E(T) = \mathbb{E}\sup_{t \in T}(Z,t) \), \(Z = (z_1, \ldots, z_N) \), \(z_i \) sont des variables aléatoires i.i.d exponentielles de variance 1 et \(d_2(T) = \sup_{t \in T} |t| \) est le rayon Euclidienne de \(T \).

1. Introduction

The goal of this note is to study several natural processes that are generated by independent random vectors distributed according to an isotropic, log-concave probability measure, that is assumed to be unconditional.

Definition 1.1 Let \(\mathbb{R}^n \) be endowed with a fixed, Euclidean structure \(\| \cdot \| \). A measure \(\mu \) on \(\mathbb{R}^n \) is isotropic if it is symmetric and if for every \(t \in \mathbb{R}^n \), \(\mathbb{E}(t, X)^2 = |t|^2 \). It is log-concave if for any two nonempty Borel measurable sets \(A, B \subset \mathbb{R}^n \), and every \(0 \leq \lambda \leq 1 \), \(\mu(\lambda A + (1 - \lambda)B) \geq \mu^\lambda(A) \cdot \mu^{1-\lambda}(B) \). If \(X = (x_1, \ldots, x_n) \) is distributed according to \(\mu \), then \(X \) is unconditional if it has the same distribution as \((\varepsilon_1 x_1, ..., \varepsilon_n x_n) \) for every choice of signs \((\varepsilon_i)_{i=1}^n \).

The study of isotropic, log-concave measures plays a central role in modern asymptotic geometric analysis, and we refer the reader to [4] and references therein for more information on this topic. The question we would like to focus on here is the following:

Question 1.2 Are there “natural” families of functionals \(\Phi_{N,n} \) and \(\Psi_{N,n} \) such that for every isotropic, log-concave measure \(\mu \) on \(\mathbb{R}^n \), every \(T \subset \mathbb{R}^n \), and every independent vectors \(X_1, ..., X_N \) distributed according to \(\mu \),

\[
\mathbb{E}\sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle \right| = \mathbb{E}\left| \sum_{i=1}^{N} X_i \right|_{T^\circ} \leq \Phi_{N,n}(T, \mu) \quad \text{and} \quad \mathbb{E}\sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 - |t|^2 \right| \leq \Psi_{N,n}(T, \mu) \tag{1}
\]

* Shahar Mendelson was partially supported by the Mathematical Sciences Institute – The Australian National University, The European Research Council (under ERC grant agreement n\textdegree203314), the Israel Science Foundation (under grant 900/10) and the Australian Research Council (under grant DP0986563). Grigoris Paouris was partially supported by NSF grant (DMS-0906150).

Email addresses: shahar@tx.technion.ac.il (Shahar Mendelson), grigoris@math.tamu.edu (Grigoris Paouris).

Preprint submitted to Elsevier Science January 15, 2011
Both parts of the question deal with uniform concentration of a sum of i.i.d random variables around their means, but it is clear that the second question is, in general, far more difficult than the first one, because of its non-linear nature and since higher powers of functions accentuate their “large part”, making concentration harder.

To get a clearer picture of what one might hope for in Question 1.2, let us consider the linear case for $N = 1$. In other words, one has to find a natural functional which bounds $E\|X\|_{T^*} = E\sup_{t \in T} \langle X, t \rangle$ for every $T \subset \mathbb{R}^n$. A possible candidate is $E\sup_{t \in T} \langle Z, t \rangle$, if Z is a random vector that weakly-dominates X, in the following sense:

Definition 1.3 A random vector Z on \mathbb{R}^n weakly dominates X if for every $u \geq 1$ and every $t \in \mathbb{R}^n$, $Pr(|\langle X, t \rangle| \geq u|t|) \leq Pr(|\langle Z, t \rangle| \geq u|t|)$.

One natural example in this context is L-subgaussian vectors; that is, isotropic vectors X which satisfy that for every $u \geq 1$ and any $t \in \mathbb{R}^n$, $Pr(|\langle X, t \rangle| \geq uL|t|) \leq 2 \exp(-u^2/2)$. Hence, these random variables are dominated by cLG, for an isotropic, standard Gaussian vector G and a suitable absolute constant c.

The expectation of the supremum of the (isonormal) Gaussian process $E\sup_{t \in T} \langle G, t \rangle$ indexed by a set T has been extensively studied (see, e.g. the books [2,10]) and is determined by the metric structure of T via the γ_2 functionals.

Definition 1.4 Let (T, d) be a metric space. A collection of subsets of T, $(T_s)_{s=0}^\infty$, is an admissible sequence if $|T_0| = 1$ and $|T_s| \leq 2^s$ for $s \geq 1$. For $\alpha = 1, 2$ let $\gamma_\alpha(T, d) = \inf_{T_s} \sum_{s=0}^\infty 2^\alpha/s \alpha d(t, \pi_s(t))$, where $\pi_s(t)$ is a nearest point to t in T_s, and the infimum is taken with respect to all admissible sequences of T.

The fundamental property of isotropic Gaussian processes indexed by $T \subset \mathbb{R}^n$ is that $c_1\gamma_2(T, \cdot | \cdot) \leq E\sup_{t \in T} \langle G, t \rangle \leq c_2\gamma_2(T, \cdot | \cdot)$ for absolute constants c_1 and c_2. The upper bound is due to Fernique [3] while the lower one is Talagrand’s majorizing measures theorem [8]. The proof of both parts can be found in [10]. From here on we will denote $\ell(T) = E\sup_{t \in T} \langle G, t \rangle$.

For a subgaussian vector one has the following:

Theorem 1.5 There exist absolute constant c and C such that for every $T \subset \mathbb{R}^n$ and any L-subgaussian vector X, $E\sup_{t \in T} \langle X, t \rangle \leq L\gamma_2(T, \cdot | \cdot) \leq CL\ell(T)$.

In light of the majorizing measures theorem, Theorem 1.5 follows from a chaining argument and since $\gamma_2(T, \psi_2(\mu)) \leq CL\gamma_2(T, \cdot | \cdot)$ (where we identify T with the class of linear functionals $\{\langle t, \cdot \rangle : t \in T\}$, and thus $\|t\|_{\psi_2(\mu)} \sim C_{\psi_2(\mu)}$ as $p \to 2$).

With Theorem 1.5 in mind, it seems natural to conjecture that for a subgaussian vector, $\Phi_{N,n}(T, \mu)$ and $\Psi_{N,n}(T, \mu)$ will depend on $\ell(T)$. And, indeed, under a subgaussian assumption Question 1.2 does have a satisfactory answer, which follows from a general result in empirical processes theory.

Theorem 1.6 There exist an absolute constant C for which the following holds. Let X be an isotropic vector on \mathbb{R}^n. Then for every integer N and every $T \subset \mathbb{R}^n$ which is symmetric (i.e., if $t \in T$ then $-t \in T$), $E\| X \|_{T^*} \leq C\sqrt{N} \gamma_2(T, \psi_2)$ and

$$E\sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 - |t|^2 \right| \leq C \left(d_{\psi_2}(T, \psi_2) \right)^2 + \frac{\gamma_2(T, \psi_2)}{N},$$

where $d_{\psi_2}(T) = \sup_{t \in T} \|\langle X, t \rangle\|_{\psi_2}$. In particular, if X is L-subgaussian then one can take $\Phi_{N,n}(T, \mu) \leq CL\sqrt{N} \ell(T)$, and $\Psi_{N,n}(T, \mu) \leq CL^2 \left(d_2(T) \frac{\sqrt{N}}{N} + \frac{\ell(T)}{N} \right)$, where $d_2(T) = \sup_{t \in T} |t|$.

Theorem 1.6 was established in [6] for $T \subset S^{n-1}$, and in [7] for a general subset of \mathbb{R}^n. It is optimal in the realm of subgaussian vectors (with the extreme case is when μ is the standard gaussian vector).

When trying to extend Theorem 1.6 to an arbitrary isotropic, log-concave vector, one encounters several problems. The biggest stumbling block is that if μ is an isotropic, log-concave measure, the tails of linear functionals $\langle t, \cdot \rangle$ are sub-exponential rather than subgaussian. That is, $\|\langle t, \cdot \rangle\|_{\psi_1(\mu)} \leq c_1\|\langle t, \cdot \rangle\|_{L_2(\mu)}$ for a suitable absolute constant c, while $\|\langle t, \cdot \rangle\|_{\psi_2(\mu)}$ might be much larger, or even infinite. Thus, a direct
application of the second part of Theorem 1.6 will often result in a trivial bound, because \(d_{\psi_2}(T) \) is simply too large. Moreover, even if the measure is \(L \)-subgaussian, but \(L \) is very large, the resulting bounds will be clearly loose.

This gap has been partially closed in the main result in [7], where it was shown that for a general, isotropic log-concave measure \(\mu \),

\[
\mathbb{E} \sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 - |t|^2 \right| \leq C \left(\frac{d_{\psi_2}(T) \gamma_2(T, \psi_2(\mu))}{\sqrt{N}} + \frac{\gamma_2^2(T, \psi_2(\mu))}{N} \right),
\]

which leads to a better general upper bound on \(\Psi_{N,n} \).

Although the estimates mentioned above are optimal in the sense that it is impossible to replace \(\gamma_2(T, \psi_2(\mu)) \) by any other \(\gamma_2(T, \psi_2(\mu)) \) for any \(\alpha < 2 \), these bounds are still far from satisfactory. Indeed, except for subgaussian vectors and a few other special cases (e.g. \(T = B_2^n \) under additional assumptions on the measure \(\mu \)), reasonable bounds on \(\gamma_2(T, \psi_2(\mu)) \) are not known. Moreover, because of the possible large gap between \(\| \langle t, \cdot \rangle \|_{\psi_2(\mu)} \sim |t| \), and \(\| \langle t, \cdot \rangle \|_{\psi_2(\mu)} \gamma_2(T, \psi_2(\mu)) \) seems to be “too large” to capture the desired concentration properties.

Our main result is a sharp answer to Question 1.2 if \(\mu \) is unconditional.

The class of unconditional measures has a similar feature to the class of subgaussian measures – it too has a natural “dominating” measure. Indeed, by the Bobkov-Nazarov Theorem [1], if \(X \) is isotropic, log-concave and unconditional, and if we set \(Z = (z_1, \ldots, z_n) \), where \(z_i \) are i.i.d exponentials with variance 1 (i.e., with density \(2^{-1/2} \exp(-\sqrt{2} |z|) \)), then \(Z \) is dominated by \(c Z \) for a suitable absolute constant \(c \).

Recently, Latała showed in [5] that for every \(T \subset \mathbb{R}^n \), \(\mathbb{E} \sup_{t \in T} \langle X, t \rangle \leq c_1 \mathbb{E} \sup_{t \in T} \langle Z, t \rangle \), which answers Question 1.2 for \(N = 1 \) in this case.

Let us first present a minor extension to Latała’s result (with a completely different proof). We present it solely to give a flavor of the more involved arguments that are needed to resolve Question 1.2 in the unconditional case. To formulate it, let \(Z \) a vector with i.i.d. exponential components as above, and set \(E(T) = \mathbb{E} \sup_{t \in T} \langle Z, t \rangle \).

Theorem 1.7 There exist absolute constants \(c_1 \) and \(c_2 \) for which the following holds. Let \(X \) be an isotropic, unconditional, log-concave measure on \(\mathbb{R}^n \). Then, for every symmetric \(T \subset \mathbb{R}^n \),

\[
c_1 \mathbb{E} \sup_{t \in T} \langle t, X \rangle \leq \gamma_2(T, \| \cdot \|_1) + \gamma_1(T, \ell_\infty) \leq c_2 E(T).
\]

Sketch of Proof. Note that \(Pr(\| \langle X, t \rangle \|e \geq \| \langle X, t \rangle \|_\ell_\infty) \leq \exp(-p) \). Hence, if \((T_s)_{s \geq 0} \) is an admissible sequence of \(T \) and \(\Delta_s(t) = \pi_{s+1}(t) - \pi_s(t) \), then by a chaining argument, for every \(u > c_1 \), \(\sup_{t \in T} \| \langle X, t - \pi_0(t) \rangle \|_{\ell_\infty} \leq \sum_{s=0}^{\infty} \| \Delta_s(t) \|_{\ell_\infty} \) with probability at least \(1 - 2 \exp(-cw) \). Next, one has to use the weak domination of \(X \) by \(c_3 Z \) to obtain that for every \(p \geq 1 \) and every \(x \in \mathbb{R}^n \), \(\| \langle X, x \rangle \|_{L_p} \leq c_4 \| \langle Z, x \rangle \|_{L_p} \). Moreover, if \((x_i^*)_{i=1}^n \) is a monotone ordering of \((|x_i|)_{i=1}^n \) then for \(p \leq 1 \), \(\| \langle Z, x \rangle \|_{L_p} \sim px_1^* + \sqrt{p} \left(\sum_{i=1}^n (x_i^*)^2 \right)^{1/2} \), and one has a similar control for \(p \geq n \). A correct choice of the admissible sequence gives the first inequality. The second one is a deep result due to Talagrand [9,10].

The main idea of this proof is to use the \(L_p \) norms of increments in the chaining process, which is “local” information, rather than the “global” \(\psi_2 \) structure that has been used in the proof of (2). This simple idea leads to our main result, first by showing that \(\gamma_2(T, \psi_2(\mu)) \) can be replaced by a “local” functional, and then by bounding this functional using \(E(T) \).

Theorem 1.8 There exist an absolute constant \(C \) for which the following holds. Let \(\mu \) be an unconditional, isotropic, log-concave measure on \(\mathbb{R}^n \). Then for every integer \(N \) and every symmetric \(T \subset \mathbb{R}^n \),

\[\mathbb{E}\left\| \sum_{i=1}^{N} X_i \right\|_{T^\circ} \leq C \sqrt{N} E(T), \quad \text{and} \quad \mathbb{E} \sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 - |t|^2 \right| \leq C \left(d_2(T) \frac{E(T)}{\sqrt{N}} + \frac{E^2(T)}{N} \right). \]

Moreover, similar bounds hold with high probability.

A part of the proof of Theorem 1.8 is accurate information on the structure of \(P_\mu T = \{(\langle X_i, t \rangle)_{i=1}^{N} : t \in T\} \) which is of independent interest.

Theorem 1.9 There exist absolute constants \(c_1, c_2 \) and \(c_3 \) for which the following holds. Let \(\mu \) be an unconditional, isotropic, log-concave measure on \(\mathbb{R}^n \) and let \(T \subset \mathbb{R}^n \) be a symmetric set. Then, for every \(u > c_1 \), with probability at least \(1 - 2 \exp(-c_2 u \log N) \), for every \(I \subset \{1, \ldots, N\} \) and every \(t \in T \),

\[\left(\sum_{i \in I} \langle t, X_i \rangle^2 \right)^{1/2} \leq c_3 u \left(E(T) + d_2(T) \sqrt{|I| \log(eN/|I|)} \right). \]

Observe that Theorem 1.9 gives the following sharp maximal inequality – that with high probability and in expectation, for every \(I \subset \{1, \ldots, N\} \), \(\| \sum_{i \in I} X_i \|_{T^\circ} \leq E(T) \sqrt{|I|} + d_2(T) |I| \log(eN/|I|) \). Indeed, this follows from Theorem 1.9 by noting that for every \(v \in \mathbb{R}^N \) and every \(I \subset \{1, \ldots, N\} \), \(\sum_{i \in I} |v_i| \leq \sqrt{|I|}(\sum_{i \in I} v_i^2)^{1/2} \).

Finally, let us give two applications (out of many) of Theorem 1.8.

Let \(X \) be an isotropic, unconditional, log concave vector and let \(\Gamma = N^{-1/2} \sum_{i=1}^{N} \langle X_i, \cdot \rangle e_i \) be a random matrix with the independent rows \((X_i)_{i=1}^{N} \) distributed as \(X \). Then, for every \(N \geq c_1 n \), all the singular values of \(\Gamma \) belong to the interval \([1 - c_2 \sqrt{n/N}, 1 + c_2 \sqrt{n/N}]\). Note that this is the situation for the gaussian ensemble.

The next application is more geometric in nature. If \(T \) is convex and symmetric then with high probability, \(\text{diam}(T \cap \ker \Gamma, \cdot) \leq r_N \), where \(r_N = \inf\{r > 0 : E(T \cap r S^{n-1}) \leq c \sqrt{N} r\} \) for a well chosen absolute constant \(c \). In particular, for any such \(T \), \(\text{diam}(T \cap \ker \Gamma, |\cdot|) \leq c_1 E(T)/\sqrt{N} \), and for \(T = B_1^\circ \), the unit ball of \(\ell_1^\circ \), one has \(\text{diam}(T \cap \ker \Gamma, |\cdot|) \leq c_2 (\log(en/N))/\sqrt{N} \).

References

