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Rademacher Averages and Phase Transitions in
Glivenko–Cantelli Classes

Shahar Mendelson

Abstract—We introduce a new parameter which may replace
the fat-shattering dimension. Using this parameter we are able to
provide improved complexity estimates for the agnostic learning
problem with respect to any norm. Moreover, we show that if
fat ( ) = ( ) then displays a clear phase transition which
occurs at = 2. The phase transition appears in the sample com-
plexity estimates, covering numbers estimates, and in the growth
rate of the Rademacher averages associated with the class. As a
part of our discussion, we prove the best known estimates on the
covering numbers of a class when considered as a subset of
spaces. We also estimate the fat-shattering dimension of the convex
hull of a given class. Both these estimates are given in terms of the
fat-shattering dimension of the original class.

Index Terms—Fat-shattering dimension, Rademacher averages,
uniform Glivenko–Cantelli (GC) classes.

I. INTRODUCTION

CLASSES of functions that satisfy the law of large numbers
uniformly, i.e., the Glivenko–Cantelli classes, have been

thoroughly investigated in the last 30 years.
Formally, the question at hand is as follows: ifis a class

of functions on some set, when is it possible to have that for
every

(1.1)
where the supremum is taken with respect to all probability mea-
sures , are independently sampled according to, and
is the expectation with respect to.

Clearly, the “larger” is, the less likely it is that it satisfies
this uniform law of large numbers. In the sequel, we will al-
ways assume that the set consists of functions with a uniformly
bounded range.

The problem, besides being intriguing from the theoretical
point of view, has important applications in Statistics and in
Learning Theory. To demonstrate this, note that (1.1) may be
formulated in a “quantified” manner; namely, for every
and , there exists some integer, such that for every
probability measure and every

(1.2)
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For every and , the smallest possible integer
such that (1.2) is satisfied is called the Glivenko–Cantelli sample
complexity estimate associated with the pair, .

In a learning problem, one wishes to find the best approx-
imation of an unknown function by a member of a given set
of functions. This approximation is carried out with respect to
an norm, where is anunknownprobability measure. If
one knows that the set is a Glivenko–Cantelli class, then it is
possible to reduce the problem to a finite-dimensional approx-
imation problem. Indeed, if one uses a “large enough” sample,
and if one is able to find a member of the class which is “close”
to the unknown function on the sample points, then with high
probability it will also be close to that function in . Hence,
an “almost minimizer” of the empirical distances between
the unknown function and the members of the class will be,
with high probability, an “almost minimizer” with respect to the

norm. The terms “close,” “high probability,” and “large
enough” can be made precise using the learning parameters
and and the sample complexity, respectively.

The method normally used to obtain sample complexity
estimates (and proving that a set of functions is indeed a
Glivenko–Cantelli class) is to apply covering number esti-
mates. It is possible to show (see Section II or [7] for further
details) that the growth rates of the covering numbers of the
set in certain spaces characterizes whether or not it is a
Glivenko–Cantelli class. Moreover, it is possible to provide
sample complexity estimates in terms of the covering numbers.

Though it seems a hard task to estimate the covering numbers
of a given set of functions, it is possible to do so using com-
binatorial parameters, such as the Vapnik–Chervonenkis (VC)
dimension for -valued functions or the fat-shattering di-
mension in the real-valued case. Those parameters may be used
to bound the covering numbers of the class in appropriate
spaces, and it is possible to show [23], [2] that they are finite if
and only if the set is a Glivenko–Cantelli class.

The goal of this paper is to define another parameter which
may replace the combinatorial parameters and, in fact, by using
it, may enable one to obtain significantly improved complexity
estimates.

This parameter originates from the original proof of the
Glivenko–Cantelli theorem, which uses the idea of symmetry.
Recall (see, e.g., [10]) that if is a probability measure and if

are selected independently according to, then
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where are independent Rademacher random variables
on some probability space (that is, are

-valued independent symmetric random variables),
and is the product measure .

Moreover, the Rademacher averages control the rate of decay
of the expected deviation [9]. Indeed, given a measure, it is
possible to show that if is a class of functions into ,
then for every integer

In fact, one can show the following.

Theorem 1.1 [9]: Let be a class of uniformly bounded
functions. Then, is a Glivenko–Cantelli class if and only if

If is a sample, one can define the Rademacher
average associated with that sample by

where is the empirical measure supported on the set
. In this paper, we examine the behavior of the

supremum of all possible averages ofelements as a function
of . We define a parameter which measures the rate by which
those averages increase as a function ofand compare it to the
fat-shattering dimension.

The course of action we take is as follows. First, in Section III,
we investigate the behavior of the covering numbers of a class
when it is considered as a subset of for an empirical
measure which is supported on a set consisting of at most
elements. We improve the bound on the covering numbers of the
class in terms of its fat-shattering dimension. We prove that for
every there is a constant such that for any class of
functions into , any empirical measure , and every

, the covering numbers of in satisfy that

Note that the bound we establish is both dimension-free
(independent of ) and, up to a logarithmic factor, linear
in the fat-shattering dimension. From this we derive several
corollaries, the most important of which is an upper estimate
on the Rademacher averages associated with the class in terms
of the fat-shattering dimension, at least in cases where the
fat-shattering dimension is polynomial in .

The results we obtain indicate that if , then
the behavior of the class changes dramatically at . This
phase transition appears in the covering numbers estimates, as
well as in the growth rate of the Rademacher averages. For

example, if , the Rademacher averages are uniformly
bounded, whereas if , they may grow at a rate of ,
and this bound is tight.

In Section IV, we define a new scale-sensitive parameter
which measures the growth rate of the Rademacher averages,
called . We present upper and lower bounds on the
fat-shattering dimension of in terms of . This yields
a sharper characterization of Glivenko–Cantelli classes than
that of Theorem 1.1. Then, we use the fact that the Rademacher
averages remain unchanged if one takes the convex hull of the
class to establish the best known estimates on the fat-shattering
dimension of a convex hull. For example, we show that if

then .
Another application of our results is a new partial solution to a
question in the geometry of Banach spaces which was posed
by Elton [8].

Finally, in Section V, we use one of Talagrand’s results [21]
and prove complexity estimates with respect to anynorm
for . We show that if then the
Glivenko–Cantelli sample complexity with respect to any
norm is , up to a logarithmic factor in and

. The complexity estimates we obtain are sharper than the
known estimates, and we show that they are optimal if .

II. PRELIMINARIES

We begin with some definitions and notation. Given a Ba-
nach space , the dual of , denoted by , consists of all
the bounded linear functionals on, endowed with the norm

. Let be the unit ball of .
If , let be with respect to the norm

and set to be endowed with the sup norm.
If is a class of functions, denote by the set of all

bounded functions defined on. Given , set

For any probability measureon a measurable space ,
let denote the expectation with respect to. is the set
of functions which satisfy and set

. is the space of bounded functions on,
with respect to the norm . For every

, let be the point evaluation functional, that is, for
every function on , . We shall denote by an
empirical measure supported on a set ofpoints, hence,

. Given a set , let be its cardinality, set to be
its characteristic function, and denote by the complement of

. Throughout this paper, all absolute constants are assumed to
be positive and are denoted byor . Their values may change
from line to line or even within the same line.

Given a probability measure on , let be the infinite
product measure . Uniform Glivenko–Cantelli classes (de-
fined below) are classes of functions on, for which, with high
probability, random empirical measures approximate the mea-
sure uniformly on the elements of the class.
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Definition 2.1: Let be a measurable space. A family
of measurable functions on is called a Glivenko–Cantelli
class with respect to a family of measuresif, for every

where is the empirical measure supported on the first
coordinates of the sample. We say that is a uniform

Glivenko–Cantelli classif may be selected as the set of all
probability measures on .

In this paper, we shall refer to Uniform Glivenko–Cantelli
classes by the abbreviation “GC classes.”

Note that the randomness in Definition 2.1 is in the selection
of the empirical measure , since its atoms are the firstco-
ordinates of a randomly selected sample.

To avoid measurability problems that might be caused by the
supremum, one usually uses an outer measure in the defini-
tion of GC classes [6]. Actually, only a rather weak assump-
tion (called “image admissibility Suslin”) is needed to avoid the
measurability problem [7]. We assume henceforth that all the
classes we encounter satisfy this condition.

Given two functions and some , let
be the -loss function associated withand . Thus,

. Given a class , a function , and some
, let the -loss class associated withand be

For every function , , , and ,
set to be the GC sample complexity of the loss class

, that is, the smallest such that for every

One possibility of characterizing GC classes is through thecov-
ering numbersof the class in spaces.

Recall that if is a metric space and if , the
-covering number of , denoted by , is the minimal

number of open balls with radius (with respect to the
metric ) needed to cover . A set is said to be an
-cover of if the union of open balls contains
, where is the open ball of radius centered at . In

cases where the metricis clear, we shall denote the covering
numbers of by .

A set is called -separated if the distance between any two
elements of the set is larger than. Set to be the max-
imal cardinality of an -separated set in . are called
the packing numbers of (with respect to the fixed metric).
It is easy to see that .

There are several results which connect the uniform GC con-
dition of a given class of functions to estimates on the covering
numbers of that class. All the results are stated for classes of
functions whose absolute value is bounded by. The results re-
main valid for classes of functions with a uniformly bounded
range—up to a constant which depends only on that bound.

The next result is due to Dudley, Giné, and Zinn [7].

Theorem 2.2:Let be a class of functions which mapinto
. Then, is a GC class if and only if for every

where the supremum is taken with respect to all empirical mea-
sures supported on samples which consist of at mostelements.

Similarly, is a GC class if and only if for every and

Other important parameters used to analyze GC classes are of a
combinatorial nature. Such a parameter was first introduced by
Vapnik and Chervonenkis for classes of -valued functions
[23]. Later, this parameter was generalized in various fashions.
The parameter which we focus on is thefat-shattering dimen-
sion.

Definition 2.3: For every , a set
is said to be -shattered by if there is some function: ,
such that for every there is some for
which if , and if

. Let

is -shattered by

is called the shattering function of the setand the set
is called a witness to the-shattering.

The connection between GC classes and the combinatorial
parameters defined above is the following fundamental result
[2]:

Theorem 2.4:Let be a class of functions on. If is
a class of uniformly bounded real-valued functions, then it is
a uniform GC class if and only if it has a finite fat-shattering
dimension for every .

The following result, which is also due to Alon, Ben-David,
Cesa-Bianchi, and Haussler [2], enables one to estimate the

covering numbers of GC classes in terms of the fat-
shattering dimension.

Theorem 2.5:Let be a class of functions from into
and set . Then, for every empirical measure
on

In particular, the same estimate holds in .

Note that although is almost linear in
, this estimate is not dimension-free.

It seems that the fat-shattering dimension governs the growth
rate of the covering numbers. Another indication in that direc-
tion is the fact that it is possible to provide a lower bound on the
covering numbers in empirical spaces [1].

Theorem 2.6:Let be a class of functions. Then, for any
,

for .

In the sequel, we require several definitions originating from
the theory of Banach spaces. For the basic definitions we refer
the reader to [18] or [22].
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Let be a real -dimensional inner product space. We de-
note the inner product by . Let be a bounded, convex sym-
metric subset of which has a nonempty interior. One can de-
fine a norm on whose unit ball is . This is done using the
Minkowski functional on , denoted by and given by

It is possible to show that if is a convex, symmetric set
with a nonempty interior then is indeed a norm and is
its unit ball. Set to be the dual norm to .

Definition 2.7: If is a bounded subset of , let

is called the polar of .

It is easy to see that is the unit ball of the norm ,
where is the symmetric convex hull of , denoted by

. Formally

Given a class and an empirical measure , we endow
with the Euclidean structure of , which is isometric to

. Let be the image of in under the inclusion
operator. Thus,

Since is an orthonormal basis of , then

where is an orthonormal basis in .
Note that if and if is the empirical measure

supported on the sample , then

Throughout this paper, given an empirical measure, we
denote by the orthonormal basis of given by

.
The main tools we use are probabilistic averaging techniques.

To that end, we define Gaussian and Rademacher averages of a
subset of .

Definition 2.8: For , let

(2.1)

and

(2.2)

where is an orthonormal basis of , are inde-
pendent standard Gaussian random variables, and are
independent Rademacher random variables.

In the sequel, we will be interested in sets of the form .
Note that if then

In a similar fashion

Remark 2.9: It is important to note that the Rademacher and
Gaussian averages do not change if one takes the convex hull of

. Therefore,

and

It is known that Gaussian and Rademacher averages are
closely related, even in a much more general context than the
one used here (for further details, see [22] or [13]). All we shall
use is the following connection.

Theorem 2.10:There is an absolute constantsuch that for
every integer and every , .

The following deep result provides a connection between the
-norm of a set and its covering numbers in. The upper bound

was established by Dudley in [5] while the lower bound is due
to Sudakov [19]. A proof of both bounds may be found in [18].

Theorem 2.11:There are absolute positive constantsand
, such that for any

Hence, there are absolute constantsand such that for any
class of uniformly bounded functionsand any empirical mea-
sure

III. T HE COVERING THEOREM AND ITS APPLICATIONS

The main result presented in this section is an estimate on the
covering numbers of a GC class when considered as a subset
of , for an arbitrary probability measure. The estimate
is based on the fat-shattering dimension of the class, and the
goal is to produce a dimension-free estimate which is “almost”
linear in . Thus far, the only way to obtain such a result
in every space was through the estimates (Theorem 2.5).
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Unfortunately, those estimates may be applied only in the case
where is an empirical measure supported on a set, and carry
a factor of . Hence, the estimate one obtains is not di-
mension-free. There are dimension-free results similar to those
obtained here, but only with respect to thenorm [3].

The proof we present here is based on a result which is due
to Pajor [17]. First, we demonstrate that if is supported on

and if a set (that is, a subset
of the unit ball) is well separated in , then there
is a “small” subset such that is “well
separated” in . The next step in the proof is to apply the
bound on the packing numbers of in in terms of the
fat-shattering dimension of. Our result is stronger than Pajor’s
because we use a sharper upper bound on the packing numbers.

Lemma 3.1:Let and suppose that is the
empirical measure supported on . Fix
and , set , and assume that .
Then, there is a constant that depends only on, and a subset

, such that

and

Proof: Fix any integer and and let
be -separated in . Hence, for every

Let be the set of indexes on which
. Note that for every

A straightforward computation shows that

Let be independent random variables, uniformly
distributed on . Clearly, for every pair , the
probability that for every , is smaller
than . Therefore, the probability that there is a
pair such that for every , , is
smaller than

If , there is a set such that and
for every , , as claimed. Thus, all it
requires is that

where is a constant which depends only on, and our claim
follows.

Theorem 3.2:If then for every there
is some constant , which depends only on, such that for
every empirical measure and every

Proof: Fix . By Lemma 3.1 and Theorem 2.5, there
is a subset such that

and

Therefore,

as claimed.

A. First Phase Transition: Universal Central Limit Theorem

The first application of Theorem 3.2 is that if
for some then is a universal Donsker

class, that is, it satisfies the uniform central limit theorem for
every probability measure. We shall not present all the neces-
sary definitions, but rather, refer the reader to [6] or [9] for the
required information.

Definition 3.3: Let , set to be a proba-
bility measure on , and assume to be a Gaussian process
indexed by which has mean and covariance

A class is called a universal Donsker class if for any
probability measure the law is tight in and

converges in law to in .

It is possible to show that if satisfies certain measurability
conditions (which we omit) and if is a universal Donsker class
then

as , where the convergence is in distribution. Moreover,
the universal Donsker property is connected to covering num-
bers estimates.
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Theorem 3.4 [6]: Let . If

then is a universal Donsker class. On the other hand, ifis a
Donsker class then there is some constantsuch that for every

The sufficient condition in the theorem above is calledPol-
lard’s entropy condition.

Lemma 3.5:Let such that
for some and . Then

(3.1)

This Lemma follows immediately from Theorem 3.2.

Corollary 3.6: Let . If there is some con-
stant such that for , then is a
universal Donsker class. On the other hand, if
for then is not a universal Donsker class.

Proof: The first part of our claim follows by Lemma 3.5,
since satisfies Pollard’s entropy condition. For the second
part, recall that by Theorem 2.6

provided that . Therefore, for any

for . But, if is a Donsker class then

arriving to a contradiction.

B. -Norm Estimates

We now establish bounds on the empirical-norms of func-
tion classes, based on their fat-shattering dimension. The esti-
mates are established via an indirect route using the estimate on
the covering numbers proved in Theorem 3.2.

We begin with the following lemma, which is based on the
proof of the upper bound in Theorem 2.11 (see [18]). Exactly
the same argument was used in [14], so its details are omitted.

Lemma 3.7:Let be an empirical measure on, put
and set to be a monotone sequence de-

creasing to such that . Then, there is an absolute con-
stant such that for every integer

In particular,

(3.2)

The latter part of Lemma 3.7 follows from its first part and The-
orem 3.2.

Theorem 3.8:Let and assume that there is
some such that for any , . Then,
there are absolute constants, which depend only on, such
that for any empirical measure

if

if

if

Proof: Let be an empirical measure on. If ,
then by Theorem 3.2

and the bound on the-norm follows from the upper bound in
Theorem 2.11.

Assume that and let and be as in Lemma 3.7.
Select and . By (3.2)

If , the geometric sum is bounded by

whereas if , it is bounded by

and our claim follows.

Remark 3.9: In Section IV, we shall show that this bound is
tight for , in the sense that there is a constant
such that if , then for every integer there is
some empirical measure such

This result indicates a second phase transition. If

the growth rate of changes at ; if then
are uniformly bounded, and if they

increase polynomially.

In the sequel, we will be interested in sample complexity es-
timates for -loss classes. Hence, we will be interested to derive
a result similar to Theorem 3.8 for classes of the form

for any . Note that the proof of Theorem 3.8 was
based only on covering number estimates; thus, our first order
of business is to establish such bounds on the class .

Lemma 3.10:If , then for every
there is a constant , which depends only on, such that for
every , every and any probability measure
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In particular, if there is some and such that
, then

The proof of the first part of the lemma is standard and is
omitted. The second one follows from Theorem 3.2.

Corollary 3.11: Assume that and are as in Lemma 3.10
and . Then, there are constants such
that for every empirical measure

if

if

if

C. General Covering Estimates

The final direct corollary we derive from Theorem 3.2 is a
general estimate on the covering numbers of the class
with respect toanyprobability measure .

Corollary 3.12: Let be a GC class of functions into .
Then, for every there is some constant such that
for every probability measure

Proof: By a standard argument, if is a GC class then for
every , is also a GC class. Thus, for every

there exists some integerand an empirical measure
such that

Let . Therefore, there is a set
which is a cover of in . By

the selection of it follows that this set is a cover
of in . Hence

Our claim follows by Theorem 3.2.

IV. A VERAGING TECHNIQUES

As stated in the Introduction, our aim is to connect the fat-
shattering dimension and the growth rate of the Rademacher
averages associated with the class.

The Rademacher averages appear naturally in the analysis of
GC classes. Usually, the first step in estimating the deviation of
the empirical means from the actual mean is to apply a sym-
metrization method [7], [23]

The path usually taken at this point is to estimateusing the
covering numbers of combined with Hoeffding’s inequality.
Instead, we shall provide direct estimates on the growth rate of
the Rademacher averages and combine it with a different con-
centration inequality.

We start with the definition of the new learning parameter
based on the growth rate of the Rademacher averages. Since
we want to compare the known results and those obtained here,
we establish a lower bound on the fat-shattering dimension in
terms of Gaussian averages. This enables us to estimate the
fat-shattering dimension in terms of the growth rate of the
Rademacher averages. We present several additional applica-
tions of this bound. First, we improve the best known estimate
on the fat-shattering dimension of the convex hull of a class, at
least when for some . Second,
we prove a sharper characterization of GC classes in terms of
the empirical -norms. Finally, we present a partial solution to
a problem from the geometry of Banach spaces.

A. Averaging and Fat Shattering

Definition 4.1: Let be a probability measure on. Let
and . Thus,

where are independent Rademacher random variables on
and are independent, distributed according to.

Similarly, it is possible to define and using Gaussian
averages instead of the Rademacher averages.

The connections between and are analogous to
those between the VC dimension and the VC entropy;is a
“worst case” parameter whereas is an averaged version,
which takes into account the particular measure according to
which one is sampling.

The following is a definition of a parameter which may re-
place the fat-shattering dimension.

Definition 4.2: Let . For every , let

To see the connection between and , assume
that is -shattered. Let

and set . For every , let
be the function shattering. Then, by the triangle inequality,
and setting , , it follows that
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Thus, if is -shattered, then for every realization
of the Rademacher random variables

while is determined by averaging such realizations.
Hence

It is considerably more difficult to find an upper bound on
in terms of the fat-shattering dimension. The first step

in that direction is to estimate the fat-shattering dimension of
the class in terms of the empirical-norms.

Theorem 4.3:Let and let be an empir-
ical measure. Denote bythe -norm of . There are abso-
lute constants such that and

(4.1)

The idea behind the proof of this result is due to Pajor [17].
Our contribution is the application of the improved bound on
the covering numbers of , which yields a better bound.

Lemma 4.4:Let . Then, for every

Proof: Let and set . Note that if
is an -separated subset of in and if is the unit

ball in then . By comparing volumes

Set and let be the Haar measure
on , which is the unit sphere in . Using Uryson’s in-
equality and the standard connections between the Haar mea-
sure on the sphere and the Gaussian measure on(see, e.g.,
[18])

Our claim follows since for every, .

Proof of Theorem 4.3:By the upper bound in Theo-
rem 2.11

Applying Lemma 4.4, it follows that for every

Changing the integration variable to and by a
straightforward estimate of the integral, it follows that

(4.2)

Let and . It is easy to see that
, implying that . Since

and by Theorem 3.2 and (4.2)

Thus,

implying that

Corollary 4.5: Let . Then, there are abso-
lute constants and such that for every

Proof: Assume that is an empirical measure such that
. Using the connections between Gaussian

and Rademacher averages (Theorem 2.10), it follows that there
is an absolute constant such that . There-
fore, by Theorem 4.3

Thus,

implying that satisfies the same inequality.

It is interesting to note that if is polynomial in
then and are equivalent for “large” exponents

, but behave differently for . The latter follows
since by its definition, .

Theorem 4.6:Let and assume that
for some and every . Then

if

if

if .
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Proof: The proof follows from the -norm estimates
proved in Section III-B. We shall present a complete proof only
in the case . By Theorem 3.8, it follows that for every
empirical measure

Hence, if , there is some empirical measure
such that

implying that as claimed.
The other proofs follow using a similar argument.

Using the bounds on it is possible to bound
.

Corollary 4.7: Let . If
for some then

For , one has an additional logarithmic factor. In general,
there are absolute constantsand such that for every

Proof: Since the Rademacher averages do not change
when one takes the symmetric convex hull, then

Hence

(4.3)

Now, if for some , then by Theorem 4.6

The case follows from a similar argument, while the gen-
eral inequality may be derived from Corollary 4.5 and (4.3).

Remark 4.8:Theorem 4.6 and Corollary 4.7 indicate the
same phase transition which occurs when .

Using theorem 4.3 we can prove the following result.

Theorem 4.9:Let . If is a GC class then

Note that in the converse direction, a weaker condition
is needed to imply GC. Indeed, it is possible to show that

if and only if is a GC class [7]. Hence,
Theorem 4.3 is a characterization of GC classes.

Proof: If does not converge to, there is a se-
quence and some such that for every ,

. By Theorem 4.3, there is some constantsuch
that for every

Thus, , and is not a GC class.

B. A Geometric Interpretation of the Fat-Shattering Dimension

We begin by exploring the connections between the fat-shat-
tering dimension of and the fact that contains a copy of

.

Definition 4.10: Let be a Banach space and let
. We say that the set is -equivalent to an unit-

vector basis, if, for every set of scalars

Clearly, since the vectors belong to , the upper
bound is always true. Also, note that the set is
-equivalent to an unit-vector basis if and only if the operator
: which maps each unit vector to

satisfies that .

Theorem 4.11:Let

If the set is -shattered by , then the set
is -equivalent to unit-vector basis.

Proof: Let and set . Denote
by the shattering function of the set and is the shat-
tering function of its complement. By the triangle inequality

Selecting and it follows that

This result has a partial converse, namely, that if
is -equivalent to an unit-vector basis, then is
-shattered by the symmetric convex hull of.

Theorem 4.12:Assume that and is an
empirical measure. If is -equivalent
to an unit-vector basis, then is -shattered by

.
Proof: Let be the unit vectors in . By our as-

sumption, the operator: defined by
is such that . Let and

select (which is the unit ball of the dual space of
) such that if and otherwise.

If is the dual operator to , and if
then . Also, for every

and, similarly, if then . Since that set is
an arbitrary subset of , the set is
-shattered by .



260 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 1, JANUARY 2002

Using Theorem 4.11 we can show that the bounds obtained
for in Theorem 3.8 are tight.

Corollary 4.13: Let and suppose that there
is some such that for every , .
Then, there is an absolute constantsuch that for every integer

and all empirical measures

Proof: Since , then for every integer
there is a set such that and is shattered
by . Let be the empirical measure supported on the first
elements of . By Theorem 4.11, the set

is -equivalent to an unit-vector basis. Therefore,

as claimed.

C. The Elton–Pajor Theorem

Theorem 4.3 has an application in the theory of Banach
spaces. The question at hand is as follows: consider a set

of vectors in some Banach space. Let

and

If or are large, is there a large subset ofwhich is “almost”
equivalent to an unit-vector basis (see Definition 4.10)?

This question was first tackled by Elton [8] who showed that
if , there is a set , such that which is

equivalent to an unit-vector basis, where and
as . This result was improved by Pajor [17] who

showed that it is possible to select and
for some absolute constant. Talagrand [20] was able to show
the following result.

Theorem 4.14:There is some absolute constantsuch that
for every set , there is a subset,
such that which is

equivalent to an unit-vector basis.

We can derive a similar result using Theorem 4.3:

Theorem 4.15:Let , and set

Then, there is a subset , such that

which is equivalent to an unit-vector basis, where
is an absolute constant.

Proof: Let and set , im-
plying that . Moreover, if , , and

is the empirical measure supported on, then for every set
of scalars

Thus, the set is -equivalent to an
unit-vector basis, if and only if is also -equivalent.

If is the empirical measure supported on the set
, then

By Theorem 4.3

hence, by Theorem 4.11, there is a subset
such that

and is -shattered by . Therefore, if is the empir-
ical measure supported on, then
is equivalent to an unit-vector basis, and our claim
follows.

Now, we can derive a similar result to that of Pajor:

Corollary 4.16: Let . If

then there is a subset , such that

which is -equivalent to an unit-vector basis for some ab-
solute constant .

V. COMPLEXITY ESTIMATES

In this section, we prove sample complexity estimates for an
agnostic learning problem with respect to any-loss function.
We use a concentration result which yields an estimate on the
deviation of the empirical means from the actual mean in terms
of the Rademacher averages. We then apply the estimates on
those averages in terms of the fat-shattering dimension obtained
is Section III-B and improve the known complexity estimates.
It turns out that measures precisely the sample com-
plexity.

We begin with the following result which is due to Talagrand
[21].
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Theorem 5.1:There are two absolute constantsand
with the following property: consider a class of functions

whose range is a subset of , such that

If is any probability measure on and

then

Let be a class of functions whose range is a subset of ,
let be some function whose range is a subset of and fix
some , such that . If then is also
a class of function whose range is a subset of . Let be as
in Theorem 5.1 and denote by . Therefore,

.

Lemma 5.2:Let and be as in the above paragraph. If
and are such that

(5.1)

then

Proof: Clearly,

Let . Since then if satisfies (5.1),
both conditions of Theorem 5.1 are automatically satisfied. The
assertion follows directly from that theorem.

We can apply Lemma 5.2 and obtain the desired sample com-
plexity estimate. We first present a general complexity estimate
in terms of the parameter .

Theorem 5.3:Let be a class of functions into . Then,
there is an absolute constantsuch that for every ,
and every probability measure

provided that

Proof: Let and as in Lemma 5.2. Note
that in order to ensure that , it is enough
that . This will hold if . Thus, by
Lemma 5.2

where the last inequality is valid provided that
.

Corollary 5.4: Let be a class of functions whose range is
contained in , such that for some .
Then, for every there are constants such
that for any :

if

if

if .

Proof: We shall prove the claim for . The assertion
in the other two cases follows in a similar fashion.

Let . By Theorem 3.11, there are constants
such that for every integer and every empir-

ical measure , . Hence, for every ,
. Our result follows from Theorem 5.3.

Remark 5.5:Using a simple scaling argument, if
then sample complexity will be bounded by

Corollary 5.6: Let , such that
for some . Then, for every and every

there are constants , such that for every

if

if

if

A. GC Complexity Versus Learning Complexity

The term “sample complexity” is often used in a slightly dif-
ferent way than the one we use here. Normally, when one talks
about the sample complexity of a learning problem, the meaning
is the following, more general setup. For every , let

. Let be a bounded subset of. A
learning ruleis a mapping which assigns to each sample of ar-
bitrary length , some . For every class
and , let thelearning sample complexitybe the smallest
integer such that for every the following holds: there
exists a learning rule such that for every probability measure

on

where are independent samples of , sampled ac-
cording to . We denote the learning sample complexity asso-
ciated with the range and the class by .

It is possible to show that if then
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Note that is monotone with respect to inclusion: if
then for every and

On the other hand, the same does not hold for, since learning
rules may use particular geometric features of the class. For
example, improved learning complexity estimates for convex
classes are indicated in the next result.

Theorem 5.7:Let be a convex class of functions into .

1) For every there is a constant such that for
every and every

where is some absolute constant.

2) If there is a constant such that for
some , then for every there is a
constant such that for every and
every

The first part of the claim is due to Lee, Bartlett, and
Williamson [11], [12], while the second is presented in [15].

It is worthwhile to compare the estimates obtained in Corol-
lary 5.4 with previous GC sample complexity estimates. The
following result is due to Bartlett and Long [4].

Theorem 5.8:Let be a class of functions into . As-
sume that for every , . Then, there is some

such that for every and every

where and is a constant which depends
only on .

Thus, if then the bound which follows
from Corollary 5.4 is considerably better. The general bound,
obtained by combining Corollary 4.5 and Theorem 5.3 is essen-
tially the same as in Theorem 5.8.

On the polynomial scale, the GC sample complexity results
we obtain are optimal (with respect to rates), at least for
quadratic loss and . Indeed, note that the GC complexity
estimates remain true even if is not bounded by ,
but rather by some other constant. Hence, the asymptotics of
these estimates hold even ifis not into . It is possible to
show [1] that if the range of exceeds (for example, may
be taken to be ), then the learning sample complexity
is . Therefore, the bound found in Corollary 5.4 is
optimal.

VI. CONCLUSION

The common view is that the fat-shattering dimension is the
“correct” way of measuring certain properties of the given class,
mainly its covering numbers in empirical spaces. Theorem

3.2 seems to strengthen this opinion. However, when it comes
to complexity estimates and other geometric properties, the fact
that the covering numbers change “smoothly” with the fat-shat-
tering dimension hides a phase transition which occurs on the
polynomial scale when at . This
phase transition is evident, for example, when considering the
Rademacher averages (resp.,-norms). Indeed, when ,
the averages are uniformly bounded, and when , they are
polynomial in . As for GC complexity estimates, the smooth
change which appears in Theorem 5.8 is due to a loose upper
bound. The optimal result which we were able to obtain reveals
the phase transition: if , the estimate is , and for

, it is .
These facts seem to indicate that the “correct” parameter

which measures the GC sample complexity is and not
the fat-shattering dimension.

Other advantages in using are the following: first,
the Rademacher and Gaussian averages remain unchanged
when passing to the convex hull of the class. This may be
exploited because it implies that in many cases one may solve
the learning problem within the convex hull of the original
class rather than in the class itself, without having to pay a
significant price. Second, in many cases one may compute

for a realization of . Since this
random variable is concentrated near its mean, it is possible
to estimate Rademacher averages by sampling. Finally, and
in our opinion most importantly, Rademacher and Gaussian
averages are closely linked to the geometric structure of the
class. They can be used to estimate not only covering numbers
but approximation numbers as well (see, for example, [16]),
which serves as a good indication of the size of the class and
may be used to formulate alternative learning procedures.
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