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Rademacher Averages and Phase Transitions in
Glivenko—Cantelli Classes

Shahar Mendelson

Abstract—We introduce a new parameter which may replace For everye > 0 and0 < é < 1, the smallest possible integer
the fat-shattering dimension. Using this parameter we are able to sychthat (1.2) is satisfied is called the Glivenko—Cantelli sample
provide improved complexity estimates for the agnostic learning complexity estimate associated with the paif.

problem with respect to any L,, norm. Moreover, we show that if | | . bl ishes to find the best
fat.(F') = O(e~?) then F displays a clear phase transition which N alearning probiem one wishes 1o 1in € best approx-

occurs atp = 2. The phase transition appears in the sample com- imation of an unknown function by a member of a given set
plexity estimates, covering numbers estimates, and in the growth of functions. This approximation is carried out with respect to
rate of the Rademacher averages associated with the class. As an L, (1) norm, where. is anunknowrprobability measure. If

part of our discussion, we prove the best known estimates on the one knows that the set is a Glivenko—Cantelli class, then it is

covering numbers of a class when considered as a subset bf ible to red th blem to a finite-di ional
spaces. We also estimate the fat-shattering dimension of the convexP0SSIPI€ 10 réduce the problem 1o a finite-dimensional approx-

hull of a given class. Both these estimates are given in terms of the Imation problem. Indeed, if one uses a “large enough” sample,
fat-shattering dimension of the original class. and if one is able to find a member of the class which is “close”

Index Terms—Fat-shattering dimension, Rademacher averages, to the gpknown function on the sample 90'”_t5’ then with high
uniform Glivenko—Cantelli (GC) classes. probability it will also be close to that function i, (1:). Hence,
an “almost minimizer” of theL,, empirical distances between
the unknown function and the members of the class will be,
with high probability, an “almost minimizer” with respect to the

LASSES of functions that satisfy the law of large number5s,(;) norm. The terms “close,” “high probability,” and “large
uniformly, i.e., the Glivenko—Cantelli classes, have beegnough” can be made precise using the learning parameters
thoroughly investigated in the last 30 years. andé and the sample complexity, respectively.

Formally, the question at hand is as followsifis a class ~ The method normally used to obtain sample complexity
of functions on some sé&?, when is it possible to have that forestimates (and proving that a set of functions is indeed a
everye > 0 Glivenko—Cantelli class) is to apply covering number esti-

mates. It is possible to show (see Section Il or [7] for further

> 5} -0 details) that the growth rates of the covering humbers of the

- set in certainL,, spaces characterizes whether or not it is a

(1.1) Glivenko—Cantelli class. Moreover, it is possible to provide
where the supremum is taken with respect to all probability mesample complexity estimates in terms of the covering numbers.
suresy, X; are independently sampled according:#andE,, Though it seems a hard task to estimate the covering numbers

is the expectation with respect to of a given set of functions, it is possible to do so using com-

Clearly, the “larger”F is, the less likely it is that it satisfies binatorial parameters, such as the Vapnik—Chervonenkis (VC)
this uniform law of large numbers. In the sequel, we will aldimension for{0, 1}-valued functions or the fat-shattering di-
ways assume that the set consists of functions with a uniformtyension in the real-valued case. Those parameters may be used
bounded range. to bound the covering numbers of the class in appropiigte

The problem, besides being intriguing from the theoreticapaces, and it is possible to show [23], [2] that they are finite if
point of view, has important applications in Statistics and iand only if the set is a Glivenko—Cantelli class.

Learning Theory. To demonstrate this, note that (1.1) may beThe goal of this paper is to define another parameter which
formulated in a “quantified” manner; namely, for every> 0 may replace the combinatorial parameters and, in fact, by using
and0 < é < 1, there exists some integes, such that for every it, may enable one to obtain significantly improved complexity

I. INTRODUCTION

m

LS px) - E,f

m
=1

lim supp < sup sup
n—eo m>n fEF

probability measure. and everyn > ng estimates.
” This parameter originates from the original proof of the
14 sup 1 Z FX)—Euf| > et <6 (1.2) Glivenko—Cantelli theorem,_w_hich uses t_h_e idea of symmetry.
fer | Recall (see, e.g., [10]) that jf is a probability measure and if

X, are selected independently according:fahen
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where (r;) are independent Rademacher random variablesample, ifp < 2, the Rademacher averages are uniformly

on some probability spacéY, ¥/, v) (that is, (+;) are bounded, whereas jf > 2, they may grow at a rate of? 7,

{-1, 1}-valued independent symmetric random variablesind this bound is tight.

andr is the product measupe x 1. In Section IV, we define a new scale-sensitive parameter
Moreover, the Rademacher averages control the rate of deedyich measures the growth rate of the Rademacher averages,

of the expected deviation [9]. Indeed, given a meaguyri¢is called rav.(I"). We present upper and lower bounds on the

possible to show that if is a class of functions intg-M, M], fat-shattering dimension df in terms ofrav. (F'). This yields

then for every integen a sharper characterization of Glivenko—Cantelli classes than

1 that of Theorem 1.1. Then, we use the fact that the Rademacher
E, sup |~ Z f(Xs) —E.f averages remain unchanged if one takes the convex hull of the
fer|™ i class to establish the best known estimates on the fat-shattering
13 dimension of a convex hull. For example, we show that if
< 2E,sup |~ Y rif(X) fat.(F) = O(e7P) thenfat (conv(F)) = O(g~max{2p}),
rer | = Another application of our results is a new partial solution to a
- - uestion in the geometry of Banach spaces which was posed
= 2ME, fflclg % Z FX) =~ Euf| + B % Z Tl - gy Elton [8]. ’ g P P
=1 _ =t Finally, in Section V, we use one of Talagrand's results [21]
In fact, one can show the following. and prove complexity estimates with respect to dgynorm

Theorem 1.1 [9]: Let F be a class of uniformly boundedfor 1 < ¢ < co. We show that iffat. (/") = O(s7*) then the

functions. Thenf is a Glivenko—Cantelli class if and only if Glivenko—Cantelli sample complexity with respect to afy
norm isO(e~ ™27} up to a logarithmic factor in /e and

1/6. The complexity estimates we obtain are sharper than the
known estimates, and we show that they are optimalbif 2.

n

Z i f(Xi)

i=1

sup E,E, sup = o(n).
m

fCF

If {wy1, ..., wy} is @ sample, one can define the Rademacher Il. PRELIMINARIES

average associated with that sample by We begin with some definitions and notation. Given a Ba-

nach spaceX, the dual of X, denoted byX™*, consists of all
NG E fcgg the bounded linear functionals o, endowed with the norm
_ 3 l[2]| - = Sup)z =1 2" (2)]. Let B(X) be the unit ball ofX.
where ., is the empirical measure supported on the sgt) <, < o, let /7 beR™ with respect to the norm

n

Z 7i f (wi)

i=1

Ro(F /) = —=

{wi, ..., wy . In this paper, we examine the behavior of the .
supremum of all possible averagesmoélements as a function n »
of n. We define a parameter which measures the rate by which =l = <Z |-Ti|p>
those averages increase as a function ahd compare it to the i=1

fat-shattering dimension. and se?” to beR™ endowed with the sup norm.

The course of action we take is as follows. First, in Section lll, If F is a class of functions, denote By, () the set of all
we investigate the behavior of the covering numbers of a classunded functions defined dn. Giveng ¢ Loo(F), set
when it is considered as a subsetlgf(:,,) for an empirical
measure.,, which is supported on a set consisting of at most 19llecry = ;‘Clg G-
elements. We improve the bound on the covering numbers of the
class in terms of its fat-shattering dimension. We prove that for For any probability measuyeon a measurable spa(@, ),
everyl < p < oo there is a constam}, such that for any class of letE,, denote the expectation with respecital,, () is the set
functionsF into [—1, 1], any empirical measure,, and every Of functions which satisfiE, | f|? < oo and set|f|., () =

e > 0, the covering numbers df in L,(;,) satisfy that (E,.|fIP)!/?. Loo(2) is the space of bounded functions G
with respect to the nornjf||.c = sup,cq |f(w)|. For every
2fat e (F) . . . .
log N(e, F, Ly(pn)) < cpfate (F) log? [ —=—2 ). w € Q, leté,, be the point evaluation functional, that is, for
° € every functionf on€2, 6,,(f) = f(w). We shall denote by, an

Note that the bound we establish is both dimension-freenpirical measure supported on a sehqdfoints, hencey,, =

(independent ofn) and, up to a logarithmic factor, Iinear%Z;”=1 8., . Givenasetd, let| A| be its cardinality, set 4 to be

in the fat-shattering dimension. From this we derive seveli#éd characteristic function, and denote Ay the complement of

corollaries, the most important of which is an upper estimat& Throughout this paper, all absolute constants are assumed to

on the Rademacher averages associated with the class in tdsmpositive and are denoted 6yor c. Their values may change

of the fat-shattering dimension, at least in cases where tinem line to line or even within the same line.

fat-shattering dimension is polynomial fa=1). Given a probability measurg on €2, let Pr be the infinite
The results we obtain indicate thatfift. (') < Ce™?, then product measurg>. Uniform Glivenko—Cantelli classes (de-

the behavior of the class changes dramatically at 2. This fined below) are classes of functions @nfor which, with high

phase transition appears in the covering numbers estimatesprabability, random empirical measures approximate the mea-

well as in the growth rate of the Rademacher averages. Burex uniformly on the elements of the class.
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Definition 2.1: Let (2, 3) be a measurable space. A familywhere the supremum is taken with respect to all empirical mea-
of measurable functiong on {2 is called a Glivenko—Cantelli sures supported on samples which consist of at mefgments.

class with respect to a family of measuresf, for everye > 0 Similarly, F' is a GC class if and only if for every > 0 and
1<p<oo
lim supPr< sup sup |E,.f — E >ey =0
2SR o e Fuf B 1 2 suplog N(e, F. Ly(p)) = o{n).

where u,,, is the empirical measure supported on the first e

m coordinates of the sample. We say thatis a uniform Other important parameters used to analyze GC classes are of a
Glivenko—Cantelli clas§ A may be selected as the set of altombinatorial nature. Such a parameter was first introduced by
probability measures off2, %). Vapnik and Chervonenkis for classed6f 1}-valued functions

23]. Later, this parameter was generalized in various fashions.

In this paper, we shal_l ref‘er 0 Un|forn”1 Glivenko-Cantell he parameter which we focus on is tfa-shattering dimen-
classes by the abbreviation “GC classes. sion

Note that the randomness in Definition 2.1 is in the selection

of the empirical measurg,,, since its atoms are the firatco- Definition 2.3: For everys >0, asetA={w1, ..., w, } CQ
ordinates of a randomly selected sample. is said to be-shattered by if there is some functios: A — R,
To avoid measurability problems that might be caused by tkach that for every C {1, ..., n} there is somef; € F' for

supremum, one usually uses an outer measure in the defimiich fr(w;) > s(w;) +eif ¢ € I, andfr(w;) < s(w;) — e if
tion of GC classes [6]. Actually, only a rather weak assump-¢ I. Let

tion (called “image admissibility Suslin”) is needed to avoid the . ‘ .

measurability problem [7]. We assume henceforth that all the fat-(F) = Sup{|A| A C 8, Alse-shattered b)F} )
classes we encounter satisfy this condition. fr is called the shattering function of the sétand the set

Given two functionsf, g and somel < ¢ < oo, let {s(w;)|w; € A} is called a witness to theshattering.

£L(f, 9. ¢) be theg-loss function associated withandg. Thus, 10 connection between GC classes and the combinatorial

— — q i i . . .
£(f, 9, 9) = |f —g|*. Givenaclasd’, a functiong, and some |, - eters defined above is the following fundamental result
1 < ¢ < o0, let theg-loss class associated withandg be 2]:

[’(Fv g9, (J) = {|f_g|’1|f € F}
For every functiory, e > 0,0 < 6 < 1, andl < ¢ < o0,
setS, (¢, 8, g) to be the GC sample complexity of the loss cla
L(F, g, q), that is, the smallest, such that for every. > ng

Theorem 2.4:Let F be a class of functions oft. If £ is
a class of uniformly bounded real-valued functions, then it is
a uniform GC class if and only if it has a finite fat-shattering
dimension for every > 0.

supPr{sup |[E.(f —9)? —E,..(f—9)>ep <6 The following result, which is also due to Alon, Ben-David,

" fEF . . .
LN o . Cesa-Bianchi, and Haussler [2], enables one to estimate the
O'_“e pOSSIgIth ;)Ihchalracte_;:zmg GC classes s througfe Loo(pn) covering numbers of GC classes in terms of the fat-
ering numberf the class inL,(,) spaces. shattering dimension.

Recall that if(X, d) is a metric space and ¥ C X, the
e-covering number of’, denoted byV (e, F, d),isthe minimal ~ Theorem 2.5:Let I be a class of functions frof into [0, 1]
number of open balls with radius > 0 (with respect to the and setd = fat_,4(#"). Then, for every empirical measure,
metric d) needed to coveF. A setA C X is said to be an on{2
e-cover of " if the union of open ball§J, . , B(a, ) contains 4\ dloslen/ (de))
F, whereB(a, ¢) is the open ball of radius centered at. In D(e, F, Loo(pn)) < 2 <E—2> :
cases where the metrétis clear, we shall denote the coverin
numbers off” by N (e, I).

A set is calleds-separated if the distance between any two Note that althoughiog D(e, F, L,(1,,)) is almost linear in
elements of the set is larger thanSetD(e, I) to be the max- fat. (F), this estimate is not dimension-free.
imal cardinality of ane-separated set ifi. D(e, ') are called It seems that the fat-shattering dimension governs the growth
the packing numbers df' (with respect to the fixed metri€). rate of the covering numbers. Another indication in that direc-
Itis easy to seethaV(e, F') < D(e, F) < N(g/2, F). tion is the fact that it is possible to provide a lower bound on the

There are several results which connect the uniform GC carevering numbers in empiricdl,, spaces [1].
dition of a given class of functions to estimates on the coverlng?.heorem 2.6:Let I be a class of functions. Then, for any
numbers of that class. All the results are stated for classes of
functions whose absolute value is bounded byhe results re- '
main valid for classes of functions with a uniformly bounded sup N(e, F, L1 (jn)) > efata(F)/3,
range—up to a constant which depends only on that bound. o

The next result is due to Dudley, Giné, and Zinn [7].

9 particular, the same estimate holdsZig s+, ).

for n > fatie. (F)
Theorem 2.2:Let F' be a class of functions which m&pinto
[-1, 1]. Then,F is a GC class if and only if for every > 0
suplog N(e, F, Leo(pin)) = o(n)
Hn

In the sequel, we require several definitions originating from
the theory of Banach spaces. For the basic definitions we refer
the reader to [18] or [22].
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Let £5 be a realn-dimensional inner product space. We de- In the sequel, we will be interested in sets of the fdrifj,,.
note the inner product by, ). Let K be a bounded, convex sym-Note that ify,, = & Z?_l ., then
metric subset oR™ which has a nonempty interior. One can de-
fine a norm orR™ whose unit ball isK'. This is done usingthe  ¢(F/u,,) =
Minkowski functional onK’, denoted by| || x and given by

i Ci

Fo

. — . _1 n
|z x = inf{t > 0]t~z € K}. “E sup Z
It is possible to show that K C £3 is a convex, symmetric set fEF/ el
with a nonempty interior thefj || is indeed a norm and is n
its unit ball. Set| || x- to be the dual norm tf) || . =E sup Flwie, > gies
fEF/py i=1
Definition 2.7: If £ is a bounded subset 6§, let
= Esup z 0:F ()
Fo={awety|swp|(f,z)|<1p. Vi geE
fer In a similar fashion

F* is called the polar of.

R(F/jun) = % Esup|> rifwi).

It is easy to see that® is the unit ball of the nornj| || -, FeF

where K is the symmetric convex hull of’, denoted by =t
absconv(F'). Formally Remark 2.9:1t is important to note that the Rademacher and
n n Gaussian averages do not change if one takes the convex hull of
absconv(F) = {Z a; filn €N, f; € F,Z la;| = 1} I'. Therefore,
i=1 i=1

_ . R(F) = R(absconv(F)) and £(F) = ((absconv(F)).

Given a clasg” and an empirical measugg,, we endowR™
with the Euclidean structure df2(,,), which is isometric to It is known that Gaussian and Rademacher averages are
2y Let /iy, be the image of " in La(y1,,) under the inclusion closely related, even in a much more general context than the

operator. Thus, one used here (for further details, see [22] or [13]). All we shall
n use is the following connection.
= ; . F .
Ffpin {; Hwi)xiwny| f € } Theorem 2.10:There is an absolute constaiitsuch that for

every integet. and everyF' C £3, CR(F) < 4(F).
Since(n'/?x(.,}), is an orthonormal basis df>(y,,), then ynted Y (F) < ()

" The following deep result provides a connection between the

Flin = n=% Z flweil feFy cem £-norm ofa_set and its coveri.ng numperﬁnThe upper bognd
P was established by Dudley in [5] while the lower bound is due

where(e; ) is an orthonormal basis ifg. to Sudakov [19]. A proof of both bounds may be found in [18].

Note that if f1, f> € F' and if 1, is the empirical measure  Theorem 2.11:There are absolute positive constaatand

supported on the samplevy, ..., wy, }, then C, such that for any™ C £
1y log? (N (e, F, £2
Lfa/tt = Fo/mallly = = 37 (fa(wi) = falwi))? csupelog? (N(e, £ 63)
i=1 oo L
i = Bl <UP)<C [ loh (Ve ) de

Throughout this paper, given an empirical measuge we
denote by(c;)™_, the orthonormal basis afs(s1,,) given by Hence, there are absolute constafitand ¢ such that for any

(n 1/2X{ }) class of uniformly bounded functio#s and any empirical mea-

The main tools we use are probabilistic averaging techmqué&'re’“‘"
To that end, we define Gaussian and Rademacher averages«oshmalog (N(e, F, La(p1n)))

subset ofy. e>0 -
Definition 2.8: For F C /3, let SUE/pn) < C/O log?(N(e, F, Ly(pin))) de.
Hr) =k Z gici (2.1) 1. THE COVERING THEOREM AND ITS APPLICATIONS
Fo
and The main result presented in this section is an estimate on the
. covering numbers of a GC class when considered as a subset
R(F)=E TiC; (2.2) of L,(u), for an arbitrary probability measuge The estimate
p
i Fo is based on the fat-shattering dimension of the class, and the

where(e; )7 ; is an orthonormal basis df, (¢;)7, are inde- goal is to produce a dimension-free estimate which is “almost”
pendent standard Gaussian random variables,(anfl., are linearinfat.(£"). Thus far, the only way to obtain such a result
independent Rademacher random variables. in everyL,, space was through tlie., estimates (Theorem 2.5).
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Unfortunately, those estimates may be applied only in the cd$® < 1, thereisasef C {wy, ..., w,} suchthat!| <t¢and
wherey is an empirical measure supported on alseind carry for everyi # j, || fi — f;llL.. (1) > €/2, as claimed. Thus, all it
a factor oflog? |I|. Hence, the estimate one obtains is not drequires is that
mension-free. There are dimension-free results similar to those
obtained here, but only with respect to the norm [3]. t>c¢p
The proof we present here is based on a result which is due
to Pajor [17]. First, we demonstrate thatif, is supported on wherec, is a constant which depends only pnand our claim
{wi, ..., wyr and if a set?F' C B(L..(2)) (that is, a subset follows. O
of the L. () unit ball) is well separated ifv2(12,, ), then there
is a “small” subsetl C {wi, ..., wy} such thatF is “well
separated” in...(I). The next step in the proof is to apply th
bound on the packing numbers bfin L..({) in terms of the

log d,
ep

Theorem 3.2:If F' C B(L..(2)) then for everyp > 1 there
é's some constant,, which depends only op, such that for
every empirical measune,, and every > 0

fat-shattering dimension @ . Our result is stronger than Pajor’s ) o [ 2fate (F)
because we use a sharper upper bound on the packing numberd98 D(&, I Lp(pn)) < cpfate (£7) log - :
Lemma 3.1:Let F' C B(L..(€2)) and suppose that, is the Proof: Fixe > 0. By Lemma 3.1 and Theorem 2.5, there
empirical measure supported dn= {w;, ..., w,}.Fixe >0 isasubsef C {wi, ..., w,} such that
andp > 1, setd, = D(e, F, Ly(1n)), and assume thaf, > 1. )
Then, there is a constarf that depends only om and a subset ] < ¢ log Dz, IZ’ Ly(ptn))
I C A, such that &
and
log dj,
1| < Cp P log D(e, F, LP(Nn))
£
<logD (=, F, Lo,(1
. <logD (5. F. Leu(D)
2 210gD(57 F7 LP(NN))
log D(. F\ Ly(jn)) < log D(e/2, F, Loo(D)). < et (o = |
Therefore,

Proof: Fixanyinteger andp>1andlet{f1,..., fa,} C

F bee-separated il (14, ). Hence, for every # j log D(e, F, Ly(ji)) < c,fabe (F) log? <2fat§(F)>
» £ LplHn)) = Cpldbe f

1 n
e < = 3 filwr) = fiwn)l as claimed. O
k=1

Let (i, ) be the set of indexes on whih (ws) — f; ()] < A. Flrst.Phase 'Ijran.smon: Universal Cen.tral Limit Theorem
¢/2. Note that for every # j The first application of Theorem 3.2 is thatfiit.(F) =

O(e~P) for some0 < p < 2thenF is auniversal Donsker

» - » class that is, it satisfies the uniform central limit theorem for
ne’ < Z |filwi) = fi(wi)l every probability measure. We shall not present all the neces-
k=1 sary definitions, but rather, refer the reader to [6] or [9] for the
= Y fiwr) = filwn)l? required information.
ket d) Definition 3.3: Let /' € B(L.,()), setP to be a proba-
+ Z | filwr) = fi(wr)l? bility measure orf2, and assumé/> to be a Gaussian process
ke LG, j)° indexed byF which has meai and covariance

<11 )1 (5) + 220 = 116, D).

A straightforward computation shows that

EGr(1)Gr() = [ fodP— [ ap [ gap

A class F' is called a universal Donsker class if for any
o _ robability measureP the law Gp is tight in /..(F) and
i< (1- (25 ) )n it/ A ol

v v =nt2(P, — P) €, (F) converges in law t@p in £o,(F).

. . , It is possible to show that if” satisfies certain measurability
Let (X1)1<r<+ bet independent random variables, uniforml " . . . .
(Xe)1<rsr P Yeonditions (which we omit) and if is a universal Donsker class

distributed on{1, ..., n}. Clearly, for every pait < j, the then

probability that for everyi < k& < ¢, X, € L(i, j) is smaller

than(l — (£52)eP)*. Therefore, the probability that there is a ‘E - a
pair: < j such that for everyt < k& < ¢, Xy € L(4, j), is fclclg " B = Bul)| = ,Sflclg r(f)
smaller than

asn — oo, where the convergence is in distribution. Moreover,
dy(dp — 1) <1 B <2p - 1) €p>t _. 6 the universal Donsker property is connected to covering num-

9 4p bers estimates.
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Theorem 3.4 [6]: Let F' C B(L..(£2)). If Theorem 3.8:Let /' C B(L..(2)) and assume that there is

o0 logt Nl F L i somey > 1 such that for any > 0, fat.(F) < ve~P. Then,
/0 supsuplog® N(e, I, La(pin)) de < o0 there are absolute constaxts, which depend only op, such

nofn o
thenF is a universal Donsker class. On the other handl,ig a that for any empirical measuye,

Donsoker class then there is some consfasuch that for every Cp,ﬁ log 7, ifo<p<2
e >

UF/pn) £ § Ca(v*logy)log’n,  ifp=2

supsuplog N(e, F, Lo(in)) < Cortlognt=,  ifp>2.

no Hn

C
6_2.

Proof: Let yu,, be an empirical measure dh If p < 2,
The sufficient condition in the theorem above is calRal-  then by Theorem 3.2
lard’s entropy condition

R S
Lemma 3.5:Let F' C B(L..(2)) such thatfat.(f") = /0 log? N(e, F, Ly(pm)) de < Cpy® logy

—-p
O(e7) for some0 < p < 2and0 <e < 1. Then and the bound on thénorm follows from the upper bound in

/ supsuplog?/2 N(e, F, Ly(pn)) de < oo.  (3.1) Theorem 2.11.
0 1 Assume thap > 2 and lets;, and N be as in Lemma 3.7.

This Lemma follows immediately from Theorem 3.2. Select, = 27% andV = p~* logn. By (3.2)

Corollary 3.6: Let /' C B(L(2)). If there is some con-
stantC such thatfat.(F) < Ce 7 for0 < p < 2,thenFis a —
universal Donsker class. On the other hanthif (F) > Ce™? Zj\,
forp > 2thenF is not a universal Donsker class. < Cp,ﬁ log Z pokE—1) 4 onEr.
Proof: The first part of our claim follows by Lemma 3.5,

N
_p 2
UF i) < Cpy? 108"72% *log <;) +2eynt

=1
since I'' satisfies Pollard’s entropy condition. For the second . .
part, recall that by Theorem 2.6 ﬁp = 2, the geometric sum is bounded by
faty6- (F) C’p(fy% logv)N? < Cp('y% logv) log? n

SuplOgN(Ev F7 L2(Nn)) 2 ]
fi whereas ifp > 2, it is bounded by

provided thatr > fat¢. (F'). Therefore, for any > 0 ) o
supsuplog N(e, F, La(pen)) > c—f} Cp(y? logy)n="»
no pn € .
for p > 2. But, if I is a Donsker class then and our claim follows. -
supn suplog N(e, F, Ly(j1n)) = O(e?) Remark 3.9:1n Section 1V, we shall show that this bound is
o P tight forp > 2, in the sense that there is a constet ) > 0
arriving to a contradiction. O such that iffat.(F) > ~e®, then for every integen there is

. some empirical measuge, such

B. /-Norm Estimates P e
1
P

We now establish bounds on the empiriéalorms of func- UFpn) 2 c(p, y)n2 7.
tion classes, based on their fat-shattering dimension. The e$#iis result indicates a second phase transition. If
mates are established via an indirect route using the estimate on
the Ly (11,,) covering numbers proved in Theorem 3.2. ce™? < fat. (F7) < Ce™

We begin with the following lemma, which is based on th
proof of the upper bound in Theorem 2.11 (see [18]). Exact
the same argument was used in [14], so its details are omittqﬁ”c

e growth rate of(F'/u,,) changes ap = 2; if p < 2 then
= sup,, 4(F/n,)are uniformly bounded, andjf > 2 they
rease polynomially.

., I_Lemrga 3.7:dLet /ib,,, beooan temt;;)lrlcal meatsure 6h put” C 4o !N the sequel, we will be interested in sample complexity es-
( °<.’( )) and set(ex )iz, to be a monotone Sequence d&; . ates forg-loss classes. Hence, we will be interested to derive
creasing td such that, = 1. Then, there is an absolute con

; ‘a result similar to Theorem 3.8 for classes of the form
stantC such that for every intege¥

N |F'—g|® ={|f —g|*If € F}, 1<g<oo

UF /) < C —1log? N(ex, F, Lo(jin)) + 2enn.
(F/hn) < ;Ek log® Nex 2(jin)) + 2enm foranyg € B(L..(£2)). Note that the proof of Theorem 3.8 was

In particular, based only on covering number estimates; thus, our first order
N of business is to establish such bounds on the ¢fss g|?.

UE ) £ C ng—lfat%(F) log +2enn®. Lemma3.10:If F' C B(Lo.(£2)), thenforeveri < ¢ < oo
k=1 (3.2) there is a constan®,, which depends only og, such that for

everye >0, everyg € B(L..(£)) and any probability measure
The latter part of Lemma 3.7 follows from its first part and The-

orem 3.2. log N(e, |F — g|?, La(p)) <log N(Cye, F, La(p1)).

m
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In particular, if there is some > 1 andp such thatat. (') < The path usually taken at this point is to estimatgusing the

~ve~ P, then covering numbers of combined with Hoeffding’s inequality.
Instead, we shall provide direct estimates on the growth rate of
log N(e, |F — g|?, La(p)) < C(p, q, 7) <i log? 2) . the Rademacher averages and combine it with a different con-
&b £ centration inequality.

We start with the definition of the new learning parameter
The proof of the first part of the lemma is standard and isased on the growth rate of the Rademacher averages. Since
omitted. The second one follows from Theorem 3.2. we want to compare the known results and those obtained here,
Corollary 3.11: Assume tha#” andg are as in Lemma 3.10 We establish a lower bound on the fat-shattering dimension in
andG = |F — g|?. Then, there are constanfqp, ¢, ) such terms of Gaussian averages. This enables us to estimate the

that for every empirical measuye, fat-shattering dimension in terms of the growth rate of the
Rademacher averages. We present several additional applica-
C(p, ¢, 7)s ifo<p<2 tions of this bound. First, we improve the best known estimate
UG ) <4 C(2,q,7) log? n, if p=2 on the fat-shattering dimension of the convex hull of a class, at
11 ) least wherfat. (') = O(e~?) for some0 < p < oco. Second,
Clp, ¢, Y2, if p > 2. we prove a sharper characterization of GC classes in terms of
the empiricalé-norms. Finally, we present a partial solution to
C. General Covering Estimates a problem from the geometry of Banach spaces.

The final direct corollary we derive from Theorem 3.2 is

general estimate on thie, (1) covering numbers of the clags o -
with respect tany probability measurg. Definition 4.1: Let iz be a probability measure oi2. Let

R, =sup, R(F/p,)andR, , =FE,R(F/u,). Thus,

A. Averaging and Fat Shattering

Corollary 3.12: Let F' be a GC class of functions info, 1].
Then, for everyl < p < oo there is some constaét, such that . )
for every probability measurge R, ,=EE, supn~?
fCF

n

Z i f(X3)

i=1

where r;, are independent Rademacher random variables on

(Y, ») and(X;) are independent, distributed according;to
Proof: By a standard argument,if is a GC class then for Similarly, it is possible to definé,, and?,, ,, using Gaussian

everyl <p < oo, |F'— F|P is also a GC class. Thus, for everyaverages instead of the Rademacher averages.

e > 0 there exists some integerand an empirical measuye, The connections betweeR,, and R,, ,, are analogous to

£

log D(e, I, Ly(1r)) < Cpfat & (F7) log? <

such that those between the VC dimension and the VC entrdpyis a
sup [I1f = ol =l < opp “qust case” _parameter Whereﬁ,,y is an averaged versi(_)n,
5 gepF INL, () I,y | = ) which takes into account the particular measure according to
which one is sampling.
Let m = N(e, F, Ly(1n)). Therefore, there is a set The following is a definition of a parameter which may re-
{f1, -5 fm} C F which is a2e cover of I in Ly(1n). By place the fat-shattering dimension.

the selection of: it follows that this set is &27t1e?)/? cover

of I in L,(y). Hence Definition 4.2: Let F' C B(L,(2)). For everys > 0, let

N(de, F, Ly(1)) < N(e, F, Ly(jin)). rave (F) = sup{n € N|R,(F) > en? }.
Our claim follows by Theorem 3.2. O To see the connection betwetan, (') andrav. (F'), assume
that{wi, ..., w,} is e-shattered. Let

IV. AVERAGING TECHNIQUES

As stated in the Introduction, our aim is to connect the fat- (01, -, o) € {1, 1}
shattering dlmensmn a_nd the growth rate of the Rademac%%rd setl = {wi|oy = 1}. For everyJ C {wi, ..., wn}, let fs
averages associated with the class. 3 . ; : )
. .be fthe function shattering. Then, by the triangle inequality,
The Rademacher averages appear naturally in the analys%oOl settingf = f1, f' = fz-. it follows that
GC classes. Usually, the first step in estimating the deviation af AR S

the empirical means from the actual mean is to apply a sym- 1 . z": f(wi)
. . — Ssu O3 J\W;
metrization method [7], [23] N £
1 & 1 =
Pr< sup |— X;))—Ef|l>¢ > —— su o (flw) — f'(w;
{f£ - ;f( )—Ef } N ; (Flwr) = f( ))‘
= ne 1 =
<4PpP S XG> — = (%), > — i i) — Fre(w; > .
< r{fg;f( ) 4} ) s 30 e = o) 2 v
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Thus, if {wi, ..., w,} is e-shattered, then for every realizationChanging the integration variable to = en'/2/~! and by a
of the Rademacher random variables straightforward estimate of the integral, it follows that

. > /ne (*):E/Om log% <1+¢) du<2f ((27r)%a:)% . (4.2)

Z ri(8) f(ws)
=1
while rav.(I7) is determined by averaging such realizationg.et o = (327)=/2C;% andg = of/n'/2. Itis easy to see that
Hence ¢ < \/2/mn!/?, implying that3 < 1. SinceF C B(Loo(Q))
rav. (F) > fat. (F). and by Theorem 3.2 and (4.2)

1
n~ 2 sup
fer

CO/ IOg% N(Ev F7 LQ(Nn)) de
It is considerably more difficult to find an upper bound on 0

rav.(F)) in terms of the fat-shattering dimension. The first step
in that direction is to estimate the fat-shattering dimension of
the class in terms of the empiricéhorms.

-8
=%/b§N@EMwmk
0

1
| +Co [ log? N(e. P Laun))de
Theorem 4.3:Let /' C B(L(£2)) and lety,, be an empir- 8

ical measure. Denote tthe/-norm of F'/ ., There are abso- Y, 1 fat s (F7)
lute constant€”, ¢ such thap = ¢//n'/? and <5+ Cfatfg(F) log | 2 8/3 .
¢ 2
a > . .
fat,(F) > C <1Ogn> (4.1) Thus,
. . . . . 1 Qfatﬁ(F)
The idea behind the proof of this result is due to Pajor [17]. ¢ < Cfat? (F)log | —=——
Our contribution is the application of the improved bound on B p
the L, covering numbers of’, which yields a better bound. implying that
Lemma4.4:Let F C La(uy,). Then, for everye > 0 0 \2
2/ 20 I\ fat_aFZC< ) O
maﬂmwm§<uiﬂ—ﬂl). 092\ iogm
Enz

Proof: Lete > 0 and setk’ = (I' + §B%). Note thatif ~ Corollary 4.5: Let ' C B(L.(2)). Then, there are abso-
A is ane-separated subset &fin La(p,,) and if B} is the unit  |ute constants andC such that for every > 0

ball in L»(1,,) thenA + £ BY C K. By comparing volumes at at
22 rav.(F) < C fat..(F) log? fat,. (F)
" e F L vol(K) €2 €
(5) (&) B} La(pn)) < vol(BYy)’ Proof: Assume thal,, is an empirical measure such that

1/2 Using the connections between Gaussian
Sete, = E(Y", |g;|2)¥/? and letdo (t) be the Haar measure (57 Hn) 2 en/. 9 ,
: (2 l9il") o (t) and Rademacher averages (Theorem 2.10), it follows that there

on S™~1, which is the unit sphere iR™. Using Uryson’s in- 1
L X at /2 -
equality and the standard connections between the Haar m'rée?-n absolute constatit such that(F/u.) > Cen™*. There

sure on the sphere and the Gaussian measuR® dsee, e.g., ore, by Theorem 4.3

/ 2
[18]) 1 fate: (F) > fateg,—1/2(F) > C <1 - )
1 ogn
WO < [ e dote) 2
(o AT
vol(By) ) = Jeui K >0 %
— log™n
£
= su 4+ —s,t)ydo(t
oo, (74550 @0 s
f( ce F f( ce F
SEJ’_@ ﬂSCrLtCQ( )10g2 at ()
2 Cn € €
Our claim follows since for every, ¢, > (2/7)Y/?n%/2. O implying thatrav, (F) satisfies the same inequality. |

Proof of Theorem 4.3:By the upper bound in Theo- It is interesting to note that ifat.(F) is polynomial in1/e
rem 2.11 thenrav. () andfat.(£") are equivalent for “large” exponents
o 1 H
1 (p > 2), but behave differently fop < 2. The latter follows
£<Go /0 log? N(e, I, Ln(pin)) de. since by its definitionyav. (F) = Q(e—2).

Applying Lemma 4.4, it follows that for evely < = < 1 Theorem 4.6:Let F C B(L..(Q)) and assume that

ot/nt? fat.(F) < ~ve~? for somey > 1 and every > 0. Then
log® N(e, F, La(1,)) d .
/0 og (e, I, La(pin)) de (v log2 7)572, ifo<p<?2

AR V2l F av.(F) < C, { ye~2log* 2 if p =2
< / n?log? | 1+ 77%1( ) de = (%). rave(F) < G ,YEP e o P
0 enz (v2loglvy)e™? ifp>2.

=
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Proof: The proof follows from the/-norm estimates Definition 4.10: Let X be a Banach space and{et)?_, C
proved in Section IlI-B. We shall present a complete proof onli(.X'). We say that the sét:; )7, is e-equivalent to ad7 unit-
in the casep < 2. By Theorem 3.8, it follows that for every vector basis, if, for every sét,; ), of scalars

empirical measurg,, n n n
R(F/ i) < CUF1im) < CpyM/? log . e > lal <> aswil| <3l
Hence, ifrav.(¥) > n, there is some empirical measyrg =t =t =t
such that Clearly, since the vector§e;) belong to B(.X), the upper
. bound is always true. Also, note that the gg)?_, C B(X)is
5 < R(F/un) < Cpy*?log —equi % Unit- isi i
enz = Hn) = Cp7y 2y g-equivalent to ad} unit-vector basis if and only if the operator

T: ¢ — Im(T) C X which maps each unit vectes, to x;
satisfies that|7—1|| < e1.

Using the bounds orav.(F) it is possible to bound Theorem 4.11:Let
fat.(absconv(F)). F C B(Loo(2)).
Corollary 4.7: Let F C B(Lao(Q). If fat.(F) = O(c ») I the set{wr, ..., wn} is e-shattered byl’, then the set
for somep # 2 then (n*/2e)t, C (F/pn)° is e-equivalent t?} unit-vector basis.
B — max{2, p} Proof: Let(a;)?, C R and setd = {i|a; > 0}. Denote
fat.(absconv(£)) = O(e )- by f.4 the shattering function of the setand f.4- is the shat-
Forp = 2, one has an additional logarithmic factor. In generalering function of its complement. By the triangle inequality
there are absolute constantandC' such that for every > 0 n
Z CLZ‘TL%CZ‘
=1

fat..(F fat..(F
fat. (absconv(F)) < C a °2( ) log? atec )
£ £
Proof: Since the Rademacher averages do not change
when one takes the symmetric convex hull, then > % sup
fTeR
rav.(F) = rav.(absconv(F)). _ ny &_
Selectingf = fa andf’ = f4- it follows that

implying thatn < C,(vlog® v)e~2 as claimed.
The other proofs follow using a similar argument. O

n

Z aif(wi)

=1

= sup
fCF

(F/Nn )n

> ai(flwi) - f’(wi))‘-

=1

Hence
rav. (F) = rav, (absconv(F)) > fat. (absconv(F)). (4.3) sup % Z ai(f(ws) — f(w)
Now, if fat. (F')=O(e~?) for somep+# 2, then by Theorem 4.6 BIER = izt
_ — max{2, 1
rav.(F) =0 (5 { p}) . > 3 <Z a;(fa(wi) — fac(wi))
icA

The casey=2 follows from a similar argument, while the gen-
eral inequality may be derived from Corollary 4.5 and (403).

o + Z ai(fA(wi)_fAc(wi))>
Remark 4.8:Theorem 4.6 and Corollary 4.7 indicate the iCA°
same phase transition which occurs whes 2. n
> e Z |- O
i=1

_ iy This result has a partial converse, namely, thée i 2¢;)7_,
lim £, /n"/" =0. is e-equivalent to ai? unit-vector basis, thefw,, ..., w,} is

n—oo

Note that in the converse direction, a weaker conditigiishattered by the symmetric convex hullof

is needed to imply GC. Indeed, it is possible to show that Thegrem 4.12:Assume that” B(Loo()) and p,, is an

sup,, R, , = 9(n1/2) if and c.)nly'ifF is a GC class [7]. Hence, gmpirical measure. Int/2e), C (F/u,)° is e-equivalent

Theorem 4.3 is a characterization of GC classes. _ to an/} unit-vector basis, thefws, ..., w,} is e-shattered by
Proof: If ¢,/n'/? does not converge 10, there is a se- absconv(F).

quenceny — oo and some= > 0 such that for everyy, Proof: Let (v;)7, be the unit vectors id7. By our as-
£n, /0" = €. By Theorem 4.3, there is some const@hsuch  symption, the operatdf: £ — (F/u,)° defined byT'(v;) =
that for everyn;, nt/2¢; is such thaf|T—!|| < e~!. LetI C {1,...,n} and
Y, 2 1/2\?  selectw* € B(¢") (which is the unit ball of the dual space of
el ()

Using theorem 4.3 we can prove the following result.
Theorem 4.9:Let F' C B(L..(2)). If F'is a GC class then

ETYy,

i £7) such that*(v;) = 1if ¢ € I andv*(v;) = —1 otherwise.
_ If (1) is the dual operator t&"~!, and ifu = (771)*(v*)
Thus,fatc.(F) = oo, andF'is not a GC class. U theneu € (F/pu,)?° = absconv(F). Also, for everyi € I

fatc. (F) > fat,,,

k' k 10g ng 10g N

1 S N 1 %
B. A Geometric Interpretation of the Fat-Shattering Dimensioreu(wi) = e{u, n2¢;) = ¢ <(T Y v, n? €i> =ev'(v) =¢

We begin by exploring the connections between the fat-shafd, similarly, ifi € I¢ thensu(w;) = —e. Since that sef is
tering dimension off” and the fact that™® contains a copy of an arbitrary subset ofw, ..., w,}, the set{w;, ..., w,} is
7. e-shattered bybsconv(F). O



260 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 1, JANUARY 2002

Using Theorem 4.11 we can show that the bounds obtainetiich isC'E /n equivalent to adf* unit-vector basis, wher€
for p > 2 in Theorem 3.8 are tight. is an absolute constant.

Proof: LetQ = {1, ..., z,} and setF' = B(X*), im-
plying thatF" C B(Loo(£2)). Moreover ifl C Q,|I] =m,and
it 1S the empirical measure supported frthen for every set
of scalars(a;)*;

Corollary 4.13: Let F' C B(L..(£2)) and suppose that there
is somey > 1 such that for every > 0, fat.(F) > v ?.
Then, there is an absolute constéhgéuch that for every integer
n and all empirical measures,

2\ * L 11 a;xil| = sup a;x*(x;)
UF/pn) 2 <;) yrnz o ; < mEB(X);
Proof: Sincefat.(F) > v, then for every integen _ VL«
thereisasef C Q2 suchthatl| > nand! is(y/n)/? shattered - ms;g() m Zx (zi)ei, Zazm Ci

by F. Let 1, be the empirical measure supported on the first m
elements ofl. By Theorem 4.11, the set Z a;mie;
(n'ei)iy C (F/pn)° i=1 (F/pum)e
is (v/n)'/P-equivalent to a7 unit-vector basis. Therefore, ~Thus, the setm?/?e;)™, C (F/uu)° is e-equivalent to ady®
n unit-vector basis, if and only if ¢ X is alsoe-equivalent.
Z gm%ei If u, is the empirical measure supported on the set

U(F/py) =n"7E

i=1 (F/pn)® {z1, ..., zn}, then
1
> in— (3 )Z[EL% UF/pn)=n"2E.
P By Theorem 4.3
111 2
:(IE|91|)7P”2 P fatCE/n(F) ZO 1 P
as claimed. nlog n
hence, by Theorem 4.11, there is a sutBet {z1, ..., T, }
C. The Elton—Pajor Theorem such that
Theorem 4.3 has an application in the theory of Banach E?
. . ] . m=|B|>C
spaces. The question at hand is as follows: consider a set nlog®n
A={x1, ..., z,} of vectors in some Banach spa&e Let _ L _
n n andB is CE/n-shattered by. Therefore, ifus,,, is the empir-
R=E Z“xz and E=E ng ical measure supported d, then{m'/2¢;}2, C (F/pm)°
— < P < is CE/n equivalent to an{” unit-vector basis, and our claim
If Ror E are large, is there a large subsetioivhich is “almost”  follows. -
equivalent to anf{” unit-vector basis (See Definition 410)7 Now, we can derive a similar result to that of Pajor:

This question was first tackled by Elton [8] who showed that
if R > en, there is a sef C A, such thatl| > ¢(e)n whichis ~ Corollary 4.16: Let A = {wy, ..., zn} C B(X). If
K(¢) equivalent to anf!{' unit-vector basis, wher& — 1 and .
¢ — 1/2 ase — 1. This result was improved by Pajor [17] who Zuxz
showed thatitis possible to selet) = Ce? andK (¢) = Ce? =t X

for some absolute constafit Talagrand [20] was able to showthen there is a subsgtC 4, such t?at

E

>en

the following result. 1] > Cl
O, n
Theorem 4.14:There is some absolute constdtsuch that I g
for every setd = {x1, ..., zn} C B(X), there is a subset, which isCe-equivalent to adf;”' unit-vector basis for some ab-
such thatZ| > E2/Kn which is solute constant’.
-1 -K
<@ |—7|) <10g <@ |I|>> V. COMPLEXITY ESTIMATES
E? E? . . . .
_ o _ In this section, we prove sample complexity estimates for an
equivalent to adf;" ' unit-vector basis. agnostic learning problem with respect to apjoss function.

We use a concentration result which yields an estimate on the
deviation of the empirical means from the actual mean in terms

Theorem 4.15:Let A = {z1, ..., z,} C B(X),andset  of the Rademacher averages. We then apply the estimates on
those averages in terms of the fat-shattering dimension obtained

We can derive a similar result using Theorem 4.3:

E=E ng is Section I11-B and improve the known complexity estimates.
i=1 x It turns out thatrav. (') measures precisely the sample com-

Then, there is a subsétC A, such that plexity.
E? We begin with the following result which is due to Talagrand

I|>C
= nlog?n [21].
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Theorem 5.1:There are two absolute constadfsanda < where the last inequality is valid provided that >
1 with the following property: consider a class of functiafis Ce~2log % O

whose range is a subset{of 1], such that Corollary 5.4: Let G be a class of functions whose range is

sup E(f —Ef)? < a. contained inf0, 1], such thafat. (G) < ve~* for somep > 0.
fer Then, for everyl < ¢ < oo there are constant(p, ¢, ) such
If 14 is any probability measure dn and that for anyg: © — [0, 1]
. _ _
n2 ZKRN,H MZKRN,H }zlog%, If0<p<2
then Sq(e,6,9)<Cp, q,7) S & (log* L+logl), if p=2
1 21 H
Pr{supHE,Lnf—[Euﬂ ZMn_%} < K exp(—11M?). = log s, if p>2.
feF

Proof: We shall prove the claim fgs > 2. The assertion
in the other two cases follows in a similar fashion.

Let G be a class of functions whose range is a subsjét df],
Let FF = |G — ¢|?. By Theorem 3.11, there are constants

let ¢ be some function whose range is a subsé6pt] and fix i i
someyg, such thatl < g < co. If F = |G — g|? thenF is also C = C(p, q, ) such that for every integer and every empir-

a class of function whose range is a subsdool]. Leta be as €8l measurgu,, K, < Cn*/271/7. Hence, for every > 0,
in Theorem 5.1 and denote B = {\/af|f € F}. Therefore, rav.(F') < Ce™P. Our result follows from Theorem 5.3. O

supepa E(f —Ef)? < a. Remark 5.5:Using a simple scaling argument, if

Lemma 5.2: Let ¥ and ' be as in the above paragraph. IfuPscr /| < M then sample complexity will be bounded by
e > 0 andn are such that

M2 1
. > Ka*%sflﬁnyu (5.1) Cmax { ravee /., 5—210g5 .
then
Corollary 5.6: Let FF C B(L(2)), such thatfat.(F) <
Pr {Sup |E..f—E.f| > 5} < K exp(—1lane?). ~e~P for somep > 0. Then, for everyl < ¢ < oo and every
fer M > 0 there are constantS(p, q, M, ), such that for every
Proof: Clearly, 0<e b6<1
sup S,(e, 6,
o {,Sfug B ~Eutl 2 5} lollo 201 (& 5,9)
C
Llogt, ifo<p<?2
:Pr{ sup |E,,. f—E.f| > \/55} . <Clp, g, M,v)< & (108;4%"‘103;%) L ifp=2
fCFe [ £
Llog 1, if p> 2.

Let M = a'/2n!/2¢. Sincea, ¢ < 1 then if n satisfies (5.1),

both conditions of Theorem 5.1 are automatically satisfied. TfAe e e lexity Vi L ing C lexi
assertion follows directly from that theorem. O ' omplexity Versus Learning Complexity

. . The term “sample complexity” is often used in a slightly dif-
We can _apply Lemma =-2 and obtain the desired s_ample_ Coent way than the one we use here. Normally, when one talks
plexity estimate. We first present a general complexity estim

; a&%out the sample complexity of a learning problem, the meaning

in terms of the parameteay. (7). is the following, more general setup. For evérg g < oo, let
Theorem 5.3:Let F be a class of functions in{®, 1]. Then, £/(z, y) = |f(z) — y|?. Let Y be a bounded subset &. A

there is an absolute constaisuch that foreverg < ¢, § < 1, learning ruleis a mapping which assigns to each sample of ar-

and every probability measuge bitrary lengthz,, = (x;, v;)?,, somef € F. For every clasg’
and) C R, let thelearning sample complexitye the smallest
Prisup|E,, f—E.f|>ep <6 integerng such that for every, > ng the following holds: there
fer exists a learning rulet such that for every probability measure
provided that PonQxy
1 1 .
n > C'max {ravCE(F), = log 5} . Pr {[E|Azn -Y|?> }13}.2 [EK(J;(X, Y)+ 6} <6

Proof: LetC; = 2Ka™" andM as in Lemma 5.2. Note \yhere z,, aren independent samples ¢K, ), sampled ac-
thatin orderto ensure that/> > 2Ka~'e ™' R,, ,, itisenough cording toP. We denote the learning sample complexity asso-
that R, < Cen'/?. This will hold if n > ravc. (F). Thus, by ciated with the rang@’ and the clas#” by C,(c, 6, Y, F).
Lemma 5.2 It is possible to show that € [-M, M] then

Pr {sup |E.. f—ELf| > 5} < Kexp(—llMQ) <6 Cy(e, 6, Y, ) < sup Sie, 6, g, F).
fCF llgllee <M
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Note thatS, is monotone with respect to inclusion:if C G 3.2 seems to strengthen this opinion. However, when it comes

then for every, 6, ¢, andg to complexity estimates and other geometric properties, the fact
that the covering numbers change “smoothly” with the fat-shat-
Sq(e, 6, g, I') < Sy(e, 6, g, G). tering dimension hides a phase transition which occurs on the

] . polynomial scale whetfat.(F') = O(e™?) atp = 2. This
On the other hand, the same does not holdfosince learning  phase transition is evident, for example, when considering the
rules may use particular geometric features of the dasSor Rzdemacher averages (resbnorms). Indeed, whep < 2
example, improved learning complexity estimates for convgxe averages are uniformly bounded, and when 2, they are

classes are indicated in the next result. polynomial inn. As for GC complexity estimates, the smooth
Theorem 5.7:Let F' be a convex class of functionsirfty 1]. change which appears in Theorem 5.8 is due to a loose upper
1) For everyM > 0 there is a constar{ M) such that for ?hoeuggézzetrg?]tsl:gs:e; u<It \;Vhtlﬁz \gsetivr\rlsarti?g(esg())bﬁ:g ]rcs\r/eals
every0 < e, 6 < 1 and everyy C [-M, M] p > 2 itis O(e ).
c(M) 1 These facts seem to indicate that the “correct” parameter
Cale, 6,7, F) < e <fatCE(F) +log 5) which measures the GC sample complexitysis. ( F) arrl)d not
the fat-shattering dimension.
Other advantages in usingv.(F) are the following: first,
the Rademacher and Gaussian averages remain unchanged
when passing to the convex hull of the class. This may be
exploited because it implies that in many cases one may solve
the learning problem within the convex hull of the original
class rather than in the class itself, without having to pay a
)- significant price. Second, in many cases one may compute
Sup ser | 2 sey 7if(wi)| for a realization of(r;). Since this
The first part of the claim is due to Lee, Bartlett, andandom variable is concentrated near its mean, it is possible
Williamson [11], [12], while the second is presented in [15]. t0 estimate Rademacher averages by sampling. Finally, and
It is worthwhile to compare the estimates obtained in CordR our opinion most importantly, Rademacher and Gaussian
lary 5.4 with previous GC sample complexity estimates. THverages are closely linked to the geometric structure of the
following result is due to Bartlett and Long [4]. class. They can be used to estimate not only covering numbers
, ) but approximation numbers as well (see, for example, [16]),
Theorem 5.8:Let I” be a class of functions inti9, 1]. AS- \yhich serves as a good indication of the size of the class and

sume that for every > 0, fat. (£7) < co. Then, there is SOMe 5y he ysed to formulate alternative learning procedures.
0 < 7 < 1/4 such that for evend > 0 and every0 < &,

wherec is some absolute constant.

2) If there is a constant’ such thatfat. (F) < Ce™? for
somel < p < 2, then for everyM > 0 there is a
constante(M) such that for every) < ¢, § < 1, and
everyY C [-M, M]

(M) 92 2
Cale, 6, Y, F) < e <10g - —I—logg

o<1
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