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1 Introduction

In these notes our aim is to survey recent (and not so recent) results regarding
the mathematical foundations of learning theory. The focus in this article is on
the theoretical side and not on the applicative one; hence, we shall not present
examples which may be interesting from the practical point of view but have little
theoretical significance. This survey is far from being complete and it focuses on
problems the author finds interesting (an opinion which is not necessarily shared
by the majority of the learning community). Relevant books which present a
more evenly balanced approach are, for example [1, 4, 34, 35]

The starting point of our discussion is the formulation of the learning prob-
lem. Consider a class G, consisting of real valued functions defined on a space Ω,
and assume that each g ∈ G maps Ω into [0, 1]. Let T be an unknown function,
T : Ω → [0, 1] and set µ to be an unknown probability measure on Ω.

The data one receives are a finite sample (Xi)n
i=1, where (Xi) are independent

random variables distributed according to µ, and the values of the unknown
function on the sample

(
T (Xi)

)n
i=1. The objective of the learner is to construct

a function in G which is almost the closest function to T in the set, with respect
to the L2(µ) norm. In other words, given ε > 0, one seeks a function g0 ∈ G
which satisfies that

Eµ|g0 − T |2 ≤ inf
g∈G

Eµ|g − T |2 + ε, (1)

where Eµ is the expectation with respect to the probability measure µ. Of course,
this function has to be constructed according to the data at hand.

A mapping L is a learning rule if it maps every sn =
(
(Xi)n

i=1,
(
T (Xi)

)n
i=1

)

to some Lsn ∈ G. The measure of the effectiveness of the learning rule is “how
much data” it needs in order to produce an almost optimal function in the sense
of (1).

The one learning rule which seems to be the most natural (and it is the one
we focus on throughout this article) is the loss minimization. For the sake of
simplicity, we assume that the L2(µ) minimal distance between T and members
of G is attained at a point we denote by PGT , and define a new function class,
which is based on G and T in the following manner; for every g ∈ G, let �(g) =
|g − T |2 − |PGT − T |2 and set L = {�(g)|g ∈ G}. L is called the 2-loss class
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2 S. Mendelson

associated with G and T , and there are obvious generalizations of this notion
when other norms are considered.

For every sample sn = (x1, ..., xn) and ε > 0, let g∗ ∈ G be any function for
which

1
n

n∑

i=1

(
g∗(xi) − T (xi)

)2 ≤ inf
g∈G

1
n

n∑

i=1

(
g(xi) − T (xi)

)2 + ε. (2)

Thus, any g∗ is an “almost minimizer” of the empirical distance between mem-
bers of G and the target T . To simplify the presentation, let us introduce a
notation we shall use throughout these notes. Given a set {x1, ..., xn}, let µn be
the empirical measure supported on the set. In other words, µn = n−1∑n

i=1 δxi

where δxi is the point evaluation functional on the set {xi}. The L2(µn) norm is
defined as ‖f‖2

L2(µn) = n−1∑n
i=1 f2(xi). Therefore, g∗ is defined as a function

which satisfies that

‖g∗ − T‖2
L2(µn) ≤ inf

g∈G
‖g − T‖2

L2(µn) + ε.

From the definition of the loss class it follows that Eµn�(g∗) ≤ ε. Indeed, the
second term in every loss function is the same — |T −PGT |2, hence the infimum
is determined only by the first term |g − T |2. Thus,

Eµn�(g∗) ≤ inf
f∈L

Eµnf + ε ≤ ε,

since inff∈L Eµn
f ≤ 0, simply by looking at f = �(PGT ).

The question we wish to address is when such a function �(g∗) will also be an
“almost minimizer” with respect to the original L2 norm. Since ‖g − T‖L2(µ) ≥
‖PGT − T‖L2(µ) it follows that for every g ∈ G, Eµ�(g) ≥ 0. Therefore, our
question is when

Eµ�(g∗) ≤ inf
g∈G

Eµ�(g) + ε = ε? (3)

Formally, we attempt to solve the following

Question 1. Fix ε > 0, let sn be a sample and set g∗ to be a function which
satisfies (2). Does it mean that Eµ�(g∗) ≤ 2ε?

Of course, it is too much to hope for that the answer is affirmative for any
given sample, or even for any “long enough” sample, because one can encounter
arbitrarily long samples that give misleading information on the behavior of
T . The hope is that an affirmative answer will be true with a relatively high
probability as the size of the sample increases. The tradeoff between the desired
accuracy ε, the high probability required and the size of the sample is the main
question we wish to address.

Any attempt to approximate T with respect to any measure other than the
measure according to which the sampling is made will not be successful. For
example, if one has two probability measures which are supported on disjoint
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sets, any data received by sampling according to one measure will be meaningless
when computing distances with respect to the other.

Another observation is that if the class G is “too large” it would be impos-
sible to construct any worthwhile approximating function using empirical data.
Indeed, assume that G consists of all the continuous functions on [0, 1] which
are bounded by 1, and for the sake of simplicity, assume that T is a Boolean
function and that µ is the Lebesgue measure on [0, 1]. By a standard density
argument, there are functions in G which are arbitrarily close to T with respect
to the L2(µ) distance, hence infg∈G Eµ|T − g|2 = 0. On the other hand, for any
sample

{
(xi),

(
T (xi)

)}
of T and every ε > 0 there is some g ∈ G which coincides

with T on the sample, but Eµ|T − g|2 ≥ 1 − ε.
The problem one encounters in this example occurs because the class in

question is too large; even if one receives as data an arbitrarily large sample,
there are still “too many” very different functions in the class which behave in a
similar way to (or even coincide with) T on the sample, but are very far apart.
In other words, if one wants an effective learning scheme, the structure of the
class should not be too rich, in the sense that additional empirical data (i.e. a
larger sample) decreases the number of class members which are “close” to the
target on the data. Hence, all the functions which the learning algorithm may
select become “closer” to the target as the size of the sample increases.

The two main approaches we focus on are outcomes of this line of reasoning.
Firstly, assume that one can ensure that when the sample size is large enough,
then with high probability, empirical means of members of L are uniformly close
to the actual means (that is, with high probability every f ∈ L satisfies that,
|Eµf − Eµnf | < ε). In particular, if Eµn�(g∗) < ε then Eµ�(g∗) < 2ε. This
naturally leads us to the definition of Glivenko-Cantelli classes.

Definition 1. We say that a F is a uniform Glivenko-Cantelli class if for every
ε > 0,

lim
n→∞ sup

µ
Pr
{

sup
f∈F

∣
∣
∣Eµf − 1

n

n∑

i=1

f(Xi)
∣
∣
∣ ≥ ε

}
= 0,

where (Xi)∞
i=1 are independent random variables distributed according to µ.

We use the term Glivenko-Cantelli classes and uniform Glivenko-Cantelli classes
interchangeably. The fact that the supremum is taken with respect to all prob-
ability measures µ is important because one does not have apriori information
on the probability measure according to which the data is sampled.

This definition has a quantified version. For every 0 < ε, δ < 1, let SF (ε, δ)
be the first integer n0 such that for every n ≥ n0 and any probability measure
µ,

Pr
{

sup
f∈F

|Eµf − Eµnf | ≥ ε
}

≤ δ, (4)

where µn is the random empirical measure n−1∑n
i=1 δXi .
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SF is called the Glivenko-Cantelli sample complexity of the class F with
accuracy ε and confidence δ.

Of course, the ability to control the means of every function within the class is
a very strong property, and is only a (loose!) sufficient condition which suffices to
ensure that g∗ is a “good approximation” of T . In fact, all that we are interested
in is that this type of a condition holds for a function like �(g∗) (i.e., an almost
minimizer of �(g) with respect to an empirical norm). Therefore, one would like
to estimate

sup
µ

Pr
{

∃f ∈ L, Eµnf < ε, Eµf ≥ 2ε
}

. (5)

Let CL(ε, δ) be the first integer such that for every n ≥ CL(ε, δ) the term in
(5) is smaller than δ. For such a value of n, there is a set of large probability on
which any function which is an “almost minimizer” of the empirical loss will be
an “almost minimizer” of the actual loss regardless of the underlying probability
measure, implying that our learning algorithm will be successful.

These notes are divided into two main parts. The first deals with Glivenko-
Cantelli classes, in which we present two different approaches to the analysis of
these classes. The first is based on a loose concentration result, and yields sub-
optimal complexity bounds, but is well known among members of the Machine
Learning community. The second is based on Talagrand’s concentration inequal-
ity for empirical processes, and using it we obtain sharp complexity bounds. All
our bounds are expressed in terms of parameters which measure the “richness”
or size of the given class. In particular, we focus on combinatorial parameters
(e.g. the VC dimension and the shattering dimension), the uniform entropy and
the random averages associated with the class, and investigate the connections
between the three notions of “size”. We show that the random averages capture
the “correct” notion of size, and lead to sharp complexity bounds.

In the second part of this article, we focus on (5) and show that under
mild structural conditions on the class G it is possible to improve the estimates
obtained using a Glivenko-Cantelli argument.

Notational conventions we shall use are that all absolute constants are de-
noted by c and C. Their values may change from line to line, or even within the
same line. If X and Y are random variables, Ef(X, Y ) denotes the expectation
with respect to both variables. The expectation with respect to X is denoted by
EXf(X, Y ) = E

(
f(X, Y )|Y ).

2 Glivenko-Cantelli Classes

In this section we study the properties of uniform Glivenko-Cantelli classes (uGC
classes for brevity), which are classes that satisfy (3) or (4). We examine various
characterization theorems for uGC classes. The results which are relevant to the
problem of sample complexity estimates are presented in full. We assume that
the reader has some knowledge of the basic definitions in probability theory and
empirical processes theory. One can turn to [5] for a more detailed introduction,
or to [33, 8] for a complete and rigorous analysis.
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We start this section with a presentation of the classical approach, using
which sample complexity estimates for uGC classes were established in the past
[36, 2]. This approach has its own merit, though the estimates one obtains using
this method are suboptimal.

2.1 The Classical Approach

Let F be a class of functions whose range is contained in [−1, 1]. We say that
(Zi)i∈I is a random process indexed by F if for every f ∈ F and every i ∈ I,
Zi(f) is a random variable. The process is called i.i.d. if the finite dimensional
marginal distributions

(
Zi(f1), ..., Zi(fk)

)
are independent random vectors1.

One example the reader should have in mind is the following random pro-
cess: let µ be a probability measure on the domain Ω and let X1, ..., Xn be
independent random variables distributed according to µ. Set µn to be the
empirical measure supported on X1, ..., Xn — which is n−1∑n

i=1 δXi
. Hence,

µn is a random probability measure given by the average of point masses at
Xi. Let Zi(·) =

(
δXi − µ

)
(·), where the last equation should be interpreted as

Zi(f) = f(Xi) − Eµ(f) for every f ∈ F . Note that Z1, ..., Zn is an i.i.d. process
with 0 mean (since for every f ∈ F , EZi(f) = 0). Moreover,

sup
f∈F

|
n∑

i=1

Zi(f)| = sup
f∈F

|
n∑

i=1

(
f(Xi) − Eµf

)|,

which is exactly the random variable we are interested in.
Our strategy is based on the following idea, which, for the sake of simplicity, is

explained for the trivial class consisting of a single element. We wish to measure
“how close” empirical means are to the actual mean. If empirical means are
close to the actual one with high probability, then two random empirical means
should be “close” to each other. Thus, if (X ′

i) is an independent copy of (Xi),
then the probability that |∑n

i=1

(
f(Xi) − f(X ′

i)
)| ≥ x should be an indication

of the probability of deviation of the empirical means from the actual one. By
symmetry, for every i, Yi = f(Xi)−f(X ′

i) is distributed as −Yi. Hence, for every
selection of signs εi,

Pr
{∣
∣

n∑

i=1

f(Xi) − f(X ′
i)
∣
∣ ≥ x

}
= Pr

{∣
∣

n∑

i=1

εi

(
f(Xi) − f(X ′

i)
)∣∣ ≥ x

}
. (6)

Now, consider (εi)n
i=1 as independent Rademacher (that is, symmetric {−1, 1}-

valued) random variables, and (6) still holds, where Pr on the right hand side
now denotes the product measure generated by (Xi), (X ′

i) and (εi). By the
triangle inequality, and since Xi and X ′

i are identically distributed,

1 Throughout these notes we are going to omit all the measurability issues one should
address in a completely rigorous exposition.
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Pr
{∣∣

n∑

i=1

f(Xi) − f(X ′
i)
∣
∣ ≥ x

}

≤Pr
{∣∣

n∑

i=1

εif(Xi)
∣
∣ ≥ x

2
}

+ Pr
{∣∣

n∑

i=1

εif(X ′
i)
∣
∣ ≥ x

2
}

=2Pr
{∣∣

n∑

i=1

εif(Xi)
∣
∣ ≥ x

2
}

Thus, Pr{|∑n
i=1 εif(Xi)| ≥ x/2} could be the right quantity to control the

deviation we require.
Since this is far from being rigorous, one has to make the above reasoning

precise. There are two main issues that need to be resolved; firstly, can this kind
of a result be true for a “rich” class of functions, consisting of more than a single
function, and secondly, how can one control the probability of deviation even
after this “symmetrization” argument?

The symmetrization procedure. The following symmetrization argument,
due to Giné and Zinn [9], is the first step in the “classical” approach.

Theorem 1. Let (Zi)n
i=1 be an i.i.d. stochastic process which has 0 mean, and

for every 1 ≤ i ≤ n, set hi : F → R to be an arbitrary function. Then, for every
x > 0

(
1 − 4n

x2 sup
f∈F

var
(
Z1(f)

))
Pr
{

sup
f∈F

|
n∑

i=1

Zi(f)| > x
}

≤2Pr
{
sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − hi(f)

)| >
x

4

}
,

where (εi)n
i=1 are independent Rademacher random variables.

Before proving this theorem, let us consider its implications for “our” empirical
process. Fix a probability measure µ according to which the sampling is made.
Then, Zi(f) = f(Xi)−Eµf and put hi(f) = −Eµf . Also, set v2 = supf∈F var(f),
and note that if x ≥ 2

√
2
√

nv then 1 − 4n
x2 supf∈F var

(
Z1(f)

) ≥ 1/2. Therefore,
for such a value of x,

Pr
{

sup
f∈F

|
n∑

i=1

(
f(Xi) − Eµf

)| > x
}

≤ 4Pr
{

sup
f∈F

|
n∑

i=1

εif(Xi)| >
x

4

}
. (7)

Now, fix any ε > 0 and let x = nε. If n ≥ 8v2/ε2 then

Pr
{

sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf | > ε
}

≤ 4Pr
{

sup
f∈F

|
n∑

i=1

εif(Xi)| >
nε

4

}
. (8)

In particular, if each function in F maps Ω into [−1, 1] then v2 ≤ 1. Thus, (8)
holds for any n ≥ 8/ε2.
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Proof (Theorem 1). Let Wi be an independent copy of Zi and fix x > 0.
Denote by PZ (resp. PW ) the probability measure associated with the pro-
cess (Zi) (resp. (Wi)). Put β = inff∈F Pr{|∑n

i=1 Zi(f)| < x/2} and let
A = {supf∈F |∑n

i=1 Zi(f)| > x}. For every element in A there is a realization of
the process Zi and some f ∈ F such that |∑n

i=1 Zi(f)| > x. Fix this realization
and f and observe that by the triangle inequality, if |∑n

i=1 Wi(f)| < x/2 then∣
∣∑n

i=1

(
Zi(f) − Wi(f)

)∣∣ > x/2. Since (Wi)n
i=1 is a copy of (Zi)n

i=1 then

β ≤ PW

{
|

n∑

i=1

Wi(f)| <
x

2

}
≤ PW

{
|

n∑

i=1

Wi(f) −
n∑

i=1

Zi(f)| >
x

2

}

≤ PW

{
sup
f∈F

|
n∑

i=1

Wi(f) −
n∑

i=1

Zi(f)| >
x

2

}
.

Since the two extreme sides of this inequality are independent of the specific
selection of f , this inequality holds on the set A. Integrating with respect to Z
on A it follows that

βPZ

{
sup
f∈F

|
n∑

i=1

Zi(f)| > x
}

≤ PZPW

{
sup
f∈F

|
n∑

i=1

(
Zi(f) − Wi(f)

)| >
x

2

}
.

Clearly, Zi − Wi has the same distribution as Wi − Zi = −(Zi − Wi), implying
that for every selection of signs (εi)n

i=1 ∈ {−1, 1}n,
∑n

i=1(Zi −Wi) has the same
distribution as

∑n
i=1 εi(Zi − Wi). Hence,

PZPW

{
sup
f∈F

|
n∑

i=1

(
Zi(f) − Wi(f)

)| >
x

2

}

=PZPW

{
sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − Wi(f)

)| >
x

2

}

=EεPZPW

{
sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − Wi(f)

)| >
x

2

}
,

where Eε denotes the expectation with respect to the Rademacher random vari-
ables (εi)n

i=1. By the triangle inequality, for every selection of functions hi and
every fixed realization (εi)n

i=1,

PZPW

{
sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − Wi(f)

)| >
x

2

}

≤2PZ

{
sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − hi(f)

)| >
x

2

}
,

and by Fubini’s Theorem
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Eε

(
PZ

{
sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − hi(f)

)| >
x

2

}∣∣
∣(εi)n

i=1

)

= Pr
{

sup
f∈F

|
n∑

i=1

εi

(
Zi(f) − hi(f)

)| >
x

2

}
.

Finally, to estimate β, note that by Chebyshev’s inequality

Pr
{

|
n∑

i=1

Zi(f)| >
x

2

}
≤ 4n

x2 var
(
Z1(f)

)
,

for every f ∈ F , and thus, β ≥ 1 − (4n/x2) supf∈F var
(
Z1(f)

)
.

After establishing (8), the next step is to transform a very rich class to a trivial
class, consisting of a single function, and then estimate Pr

{∣∣∑n
i=1 εif(xi)

∣
∣ > x

}
.

We show that one can effectively replace the (possibly) infinite class F with a
finite set which approximates the original class in some sense. The “richness” of
the class F will be reflected by the cardinality of the finite approximating set.
This approximation scheme is commonly used in many areas of mathematics,
and the main notion behind it is called covering numbers.

Covering numbers and complexity estimates. Let (Y, d) be a metric space
and set F ⊂ Y . For every ε > 0, denote by N(ε, F, d) the minimum number
of open balls (with respect to the metric d) needed to cover F . That is, the
minimum cardinality of a set {y1, ..., ym} ⊂ Y with the property that every
f ∈ F has is some yi such that d(f, yi) < ε. The set {y1, ..., ym} is called an
ε-cover of F . The logarithm of the covering number is called the entropy of the
set.

We investigate metrics endowed by samples; for every sample {x1, ..., xn}
let µn be the empirical measure supported on that sample. For 1 ≤ p < ∞
and a function f , put ‖f‖Lp(µn) =

(
n−1∑n

i=1 |f(xi)|p
)1/p and set ‖f‖∞ =

max1≤i≤n |f(xi)|. Recall that N
(
ε, F, Lp(µn)

)
is the covering number of F at

scale ε with respect to the Lp(µn) norm.
Two observations we require are the following. Firstly, if n−1|∑n

i=1 f(xi)| > t
and if ‖f − g‖L1(µn) < t/2 then

1
n

|
n∑

i=1

g(xi)| ≥ 1
n

|
n∑

i=1

f(xi)| − 1
n

n∑

i=1

|f(xi) − g(xi)| >
t

2
.

Secondly, for every empirical measure µn and every 1 ≤ p ≤ ∞, ‖f‖L1(µn) ≤
‖f‖Lp(µn) ≤ ‖f‖L∞(µn). Hence,

N
(
ε, F, L1(µn)

) ≤ N
(
ε, F, Lp(µn)

) ≤ N
(
ε, F, L∞(µn)

)
.

In a similar fashion to the notion of covering numbers one can define the packing
numbers of a class. Roughly speaking, a packing number is the maximal cardi-
nality of a subset of F with the property that the distance between any two of
its members is “large”.
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Definition 2. Let (X, d) be a metric space. We say that K ⊂ X is ε-separated
with respect to the metric d if for every k1, k2 ∈ K, d(k1, k2) ≥ ε.

Given a set F ⊂ X, define its ε-packing number as the maximal cardinality of a
subset of F which is ε-separated, and denote it by D(ε, F, d).

It is easy to see that the covering numbers and the packing numbers are
closely related. Indeed, assume that K ⊂ F is a maximal ε-separated subset.
By the maximality, for every f ∈ F there is some k ∈ K for which d(x, k) < ε,
which shows that N(ε, F, d) ≤ D(ε, F, d). On the other hand, let {y1, ..., ym} be
an ε/2 cover of F and assume that f1, ..., fk is a maximal ε-separated subset
of F . In every ball {y|d(y, yi) < ε/2} there is at most a single element of the
packing (by the triangle inequality, the diameter of this ball is smaller than ε).
Since this is true for any cover of F then D(ε, F, d) ≤ N(ε/2, F, d).

Our discussion will rely heavily on covering and packing numbers. We can
now combine the symmetrization argument with the notion of covering numbers
and obtain the required complexity estimates.

Theorem 2. Let F be a class of functions which map Ω into [−1, 1] and set µ
to be a probability measure on Ω. Let (Xi)∞

i=1 be independent random variables
distributed according to µ. For every ε > 0 and any n ≥ 8/ε2,

Pr
{

sup
f∈F

| 1
n

∑

i=1

f(Xi) − Eµf | > ε
}

≤ 4Eµ

[
N
(ε
8
, F, L1(µn)

)]
e− nε2

128 ,

where µn is the (random) empirical measure supported on {X1, ..., Xn}.
One additional preliminary result we need before proceeding with the proof will
enable us to handle the “trivial” case of classes consisting of a single function.
This case follows from Hoeffding’s inequality [11, 33]

Theorem 3. Let (ai)n
i=1 ∈ R

n and let (εi)n
i=1 be independent Rademacher ran-

dom variables (that is, symmetric {−1, 1}-valued). Then,

Pr
{∣
∣

n∑

i=1

εiai

∣
∣ > x

}
≤ 2e− 1

2 x2/‖a‖2
2 ,

where ‖a‖2 =
(∑n

i=1 a2
i

)1/2.

In our case, (ai)n
i=1 is going to be the values of the function f on a fixed sample

{x1, ..., xn}.

Proof (Theorem 2). Let A =
{
supf∈F |∑n

i=1 εif(Xi)| > nε
4

}
, and denote by χA

the characteristic function of A. By Fubini’s Theorem,

Pr(A) = Eµ

(
EεχA|X1, ..., Xn

)
= Eµ

(
Pr
{
sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ >

nε

4
}|X1, ..., Xn

)
.

(9)
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Fix a realization of X1, ..., Xn and let µn be the empirical measure supported
on that realization. Set G to be an ε/8 cover of F with respect to the L1(µn)
norm. Since F consists of functions which are bounded by 1, we can assume that
the same holds for every g ∈ G. If supf∈F |∑n

i=1 εif(Xi)| > nε/4, there is some
f ∈ F for which this inequality holds. G is an ε/8-cover of F with respect to
the L1(µn), hence, there is some g ∈ G which satisfies that n−1∑n

i=1 |f(Xi) −
g(Xi)| < ε/8. Therefore, supg∈G |∑n

i=1 εig(Xi)| > nε/8, implying that for that
realization of (Xi),

Pr
{
sup
f∈F

|
n∑

i=1

εif(Xi)| >
nε

4
} ≤ Pr

{
sup
g∈G

|
n∑

i=1

εig(Xi)| >
nε

8
}
.

Applying the union bound, Hoeffding’s inequality and the fact that for every
g ∈ G,

∑n
i=1 g(xi)2 ≤ n,

Pr
{
sup
g∈G

|
n∑

i=1

εig(Xi)| >
nε

8
} ≤ |G|Pr

{|
n∑

i=1

εig(Xi)| >
nε

8
}

≤ N
(ε
8
, F, L1(µn)

)
e− nε2

128 .

Finally, our claim follows from (9) and (8).

Unfortunately, it might be very difficult to compute the expectation of the cov-
ering numbers. Thus, one natural thing to do is to introduce uniform entropy
numbers.

Definition 3. For every class F , 1 ≤ p ≤ ∞ and ε > 0, let

Np

(
ε, F, n) = sup

µn

N
(
ε, F, Lp(µn)

)
,

and

Np

(
ε, F ) = sup

n
sup
µn

N
(
ε, F, Lp(µn)

)
.

We call log Np(ε, F ) the uniform entropy numbers of F with respect to the
Lp(µn).

The only hope for establishing non-trivial uniform entropy bounds is when
the covering numbers do not depend on the cardinality of the set on which
the empirical measure is supported. In some sense, this implies that classes for
which one can obtain uniform entropy bounds must be “small”. As we will show
in sections to come, one can establish such dimension-free bounds in terms of
the combinatorial parameters which are used to “measure” the size of a class of
functions.

The following result seems to be a weaker version of the theorem, but in the
sequel we prove that it is a necessary condition for the uniform GC property as
well.
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Theorem 4. Assume that F is a class of functions which are all bounded by 1.
If there is some 1 ≤ p ≤ ∞ such that for every ε > 0 the entropy numbers satisfy

lim
n→∞

log Np(ε, F, n)
n

= 0,

then F is a uniform Glivenko-Cantelli class.

An easy observation is that it is possible to bound the Glivenko-Cantelli
sample complexity using the uniform entropy numbers of the class.

Theorem 5. Let F be a class of functions which map Ω into [−1, 1]. Then for
every 0 < ε, δ < 1,

sup
µ

Pr
{

sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf | ≥ ε
}

≤ δ,

provided that n ≥ C
ε2

(
log N1(ε, F ) + log(2/δ)

)
, where C is an absolute constant.

In particular, if the uniform entropy is of power type q (that is, log N1(ε, F ) =
O(ε−q)), then the uGC sample complexity is (up to logarithmic factors in δ−1)
O(ε−(2+q)).

As an example, assume that F is the 2-loss class associated with G and T .
In this case, the Lp entropy numbers of the loss class can be controlled by those
of G.

Lemma 1. Let G be a class of functions whose range is contained in [0, 1] and
assume that the same holds for T . If L is the 2-loss class associated with G and
T , then for every ε > 0, every 1 ≤ p ≤ ∞ and every probability measure µ,

N
(
ε, L, Lp(µ)

) ≤ N
(ε
4
, G, Lp(µ)

)
.

Proof. Since L is a shift of the class (G − T )2, and since covering numbers of a
shifted class are the same as those of the original one (a shift is an isometry with
respect to the Lp norm), it is enough to estimate the covering numbers of the
class (G−T )2. Let {y1, ..., ym} be an ε-cover of G in Lp(µ). If ‖g − yi‖Lp(µ) < ε,
then pointwise

|g − T |2 − |yi − T |2 = |g − yi| · |g + yi − 2T | ≤ 4|g − yi|.
Hence, ‖|g − T |2 − |yi − T |2‖Lp(µ) ≤ 4‖g − yi‖Lp(µ) < 4ε.

Corollary 1. Using the notation of the previous theorem, for every 0 < ε, δ < 1,

SL(ε, δ) ≤ 128
ε2

(
log N1

(
ε/4, G

)
+ log(8/δ)

)

The natural question which comes to mind is how to estimate the uniform
entropy numbers of a class. Historically, this was the reason for the introduction
of several combinatorial parameters. We will show that by using them one can
control the uniform entropy.
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2.2 Combinatorial Parameters and Covering Numbers

The first combinatorial parameter was introduced by Vapnik and Chervonenkis
[36] to control the empirical L∞ entropy of Boolean classes of functions.

Definition 4. Let F be a class of {0, 1}-valued functions on a space Ω. We say
that F shatters {x1, ..., xn} ⊂ Ω, if for every I ⊂ {1, ..., n} there is a function
fI ∈ F for which fI(xi) = 1 if i ∈ I and fI(xi) = 0 if i 
∈ I. Let

V C(F, Ω) = sup
{

|A|
∣
∣
∣A ⊂ Ω, A is shattered by F

}
.

V C(F, Ω) is called the VC dimension of F , but when the underlying space is
clear we denote it by V C(F ).

The VC dimension has a geometric interpretation. A set sn = {x1, .., xn} is
shattered if the set {(f(x1), ..., f(xn)

)|f ∈ F} is the combinatorial cube {0, 1}n.
For every sample σ denote by PσF the coordinate projection of F ,

PσF = {(f(xi)
)
xi∈σ

∣
∣ f ∈ F}.

Hence, the VC dimension is the largest cardinality of σ ⊂ Ω such that PσF is
the combinatorial cube of dimension |σ|.

Next, we present bounds on the empirical L∞ and L2 uniform entropy esti-
mate using the VC dimension.

Uniform entropy and the VC dimension. We begin with the L∞ estimates
mainly for historical reasons. The following lemma, known as the Sauer-Shelah
Lemma, was proved independently at least three times, by Sauer [28], Shelah
[29] and Vapnik and Chervonenkis [36].

Lemma 2. Let F be a class of Boolean functions and set d = V C(F ). Then,
for every finite subset σ ⊂ Ω of cardinality n ≥ d,

|PσF | ≤
(en

d

)d

.

In particular, for every ε > 0, N
(
ε, F, L∞(σ)

) ≤ |PσF | ≤ (en/d
)d.

Using the Sauer-Shelah Lemma, one can characterize the uniform Glivenko-
Cantelli property of a class of Boolean functions in terms of the VC dimension.

Theorem 6. Let F be a class of Boolean functions. Then F is a uniform
Glivenko-Cantelli class if and only if it has a finite VC dimension.

Proof. Assume that VC(F ) = ∞ and fix an integer d ≥ 2. There is a set σ ⊂ Ω,
|σ| = d such that PσF = {0, 1}d, and let µ be the uniform measure on σ (assigns
a weight of 1/d to every point). For any A ⊂ σ of cardinality n ≤ d/2, let µA

n

be the empirical measure supported on A. Since there is some fA ∈ F which is



A Few Notes on Statistical Learning Theory 13

1 on A and vanishes on σ\A then |EµfA − EµA
n
fA| = |1 − n/d| ≥ 1/2. Hence,

supf∈F |EµA
n
f − Eµf | ≥ 1/2. Therefore, Pr

{
supf∈F |Eµn

f − Eµf | ≥ 1/2
}

= 1
for any n ≤ d/2, and since d can be made arbitrarily large, F is not a uniform
GC class.

To prove the converse, recall that for every 0 < ε < 1 and every empir-
ical measure µn supported on the sample sn, N

(
ε, F, L∞(sn)

) ≤ |PsnF | ≤
(
en/d

)d. Since the empirical L1 entropy is bounded by the empirical L∞ one,
log N1(ε, F, n) ≤ d log(en/d). Thus, for every ε > 0, log N1(ε, F, n) = o(n), im-
plying that F is a uniform GC class.

In a similar fashion one can characterize the uGC property for Boolean classes
using the Lp entropy numbers.

Corollary 2. Let F be a class of Boolean functions. Then, F is a uniform
Glivenko-Cantelli class if and only if for every 1 ≤ p ≤ ∞ and every ε > 0,
log Np(ε, F, n) = o(n).

Proof. Fix any 1 ≤ p ≤ ∞. If for every ε > 0 log Np(ε, F, n) = o(n), then by
Theorem 2, F is a uGC class. Conversely, if F is a uGC class then it has a finite
VC dimension. Denote V C(F ) = d, let σ be a sample of cardinality n and set
µn to be the empirical measure supported on σ. For every ε > 0 and 1 ≤ p < ∞

log N
(
ε, F, Lp(µn)

) ≤ log N
(
ε, F, L∞(σ)

) ≤ log |PσF | ≤ d log
(en

d

)
= o(n).

There is some hope that with respect to a “weaker” norm, one will be able to
obtain uniform entropy estimates (which can not be derived from the L∞ bounds
presented here), that would lead to improved complexity bounds. Although the
uGC property is characterized by the entropy with respect to any Lp norm (and
in that sense, the L∞ one is as good as any other Lp norm), from the quantitative
point of view, it is much more desirable to obtain L1 or L2 entropy estimates,
which will prove to be considerably smaller than the L∞ ones.

Therefore, the next order of business is to estimate the uniform entropy of
a VC class with respect to empirical Lp norms. This result is due to Dudley [7]
and it is based on a combination of an extraction principle and the Sauer-Shelah
Lemma. The probabilistic extraction argument simply states that if K ⊂ F is
“well separated” in L1(µn) in the sense that every two points are different on a
number of coordinated which is proportional to n, one can find a much smaller
set of coordinates (which depends of the cardinality of K) on which every two
points in K are different on at least one coordinate.

Theorem 7. There is an absolute constant C such that the following holds. Let
F be a class of Boolean functions and assume that V C(F ) = d. Then, for every
1 ≤ p < ∞, and every 0 < ε < 1,

Np(ε, F ) ≤
(
(Cp) log

2
ε

)d(1
ε

)pd

.
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Proof. Since the functions in F are {0, 1}-valued, it is enough to prove the claim
for p = 1. The general case follows since for any f, g ∈ F and any probability
measure µ, ‖f − g‖p

Lp(µ) = ‖f − g‖L1(µ).
Let µn = n−1∑n

i=1 δxi and fix 0 < ε < 1. Set Kε to be any ε-separated
subset of F with respect to the L1(µn) norm and denote its cardinality by D.

If V = {fi − fj |fi 
= fj ∈ Kε} then every v ∈ V has at least nε coordinates
which belong to {−1, 1}. Indeed, since Kε is ε-separated then for any v ∈ V

ε ≤ ‖v‖L1(µn) = ‖fi − fj‖L1(µn) =
1
n

n∑

l=1

|fi(xl) − fj(xl)| =
1
n

n∑

l=1

|v(xl)|,

and for every 1 ≤ l ≤ n, |v(xl)| = |fi(xl)−fj(xl)| ∈ {0, 1}. In addition, it is easy
to see that |V | ≤ D2.

Take (Xi)t
i=1 to be independent {x1, ..., xn}-valued random variables, such

that for every 1 ≤ i ≤ t and 1 ≤ j ≤ n, Pr(Xi = xj) = 1/n. It follows that for
any v ∈ V ,

Pr
{

∀i, v(Xi) = 0
}

=
t∏

i=1

Pr
{
v(Xi) = 0

} ≤ (1 − ε)t.

Hence,

Pr
{

∃v ∈ V, ∀i, v(Xi) = 0
}

≤ |V | (1 − ε)t ≤ D2(1 − ε)t.

Therefore,

Pr
{

∀v ∈ V, ∃i, 1 ≤ i ≤ t |v(Xi)| = 1
}

≥ 1 − D2(1 − ε)t,

and if the latter is greater than 0, there is a set of σ ⊂ {1, ..., n} such that |σ| = t
and

|PσKε| =
∣
∣{(f(xi)

)
i∈σ

∣
∣f ∈ Kε

}∣∣ = D.

Select t = 2 log D
ε which suffices to ensure the existence of such a set σ. Clearly,

we can assume that t ≥ d, otherwise, our claim follows immediately. By the
Sauer-Shelah Lemma,

D = |PσKε| ≤ |PσF | ≤ (e|σ|
d

)d =
(2e log D

dε

)d
. (10)

It is easy to see that if α ≥ 1 and α log−1 α ≤ β then

α ≤ β log(eβ log β).

Applying this to (10),

log D ≤ d log
(2e2

ε
log(

2e

ε
)
)
,

as claimed.
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This result was strengthened by Haussler in [10] in a very difficult proof, which
removed the superfluous logarithmic factor.

Theorem 8. There is an absolute constant C such that for every Boolean class
F , any 1 ≤ p < ∞ and every ε > 0, Np(ε, F ) ≤ Cd(4e)dε−pd, where VC(F ) = d.

The significance of Theorem 7 and Theorem 8 is that they provide uniform Lp

entropy estimates for VC classes, while the L∞ estimates are not dimension-free.
These uniform entropy bounds play a very important role in our discussion. In
particular, they can be used to obtain uGC complexity estimated for VC classes,
using Theorem 2.

Theorem 9. There is an absolute constant C for which the following holds. Let
F be a class of Boolean functions which has a finite VC dimension d. Then, for
every 0 < ε, δ < 1,

sup
µ

Pr
{

sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf | ≥ ε
}

≤ δ,

provided that n ≥ C
ε2

(
d log(2/ε) + log(2/δ)

)
.

Using the same reasoning and by Lemma 1 it is possible to prove analogous
results when F is the 2-loss class associated with a VC class and an arbitrary
target T which maps Ω into [0, 1].

Generalized combinatorial parameters. After obtaining covering results
(and generalization bounds) in the Boolean case, we attempt to extend our
analysis to classes of real-valued functions. We focus on classes which consist of
uniformly bounded functions, though it is possible to obtain some results in a
slightly more general scenario [33]. Hence, throughout this section F will denote
a class of functions which map Ω into [−1, 1].

The path we take here is very similar to the one we used for VC classes.
Firstly, one has to define a combinatorial parameter which measures the “size”
of the class.

Definition 5. For every ε > 0, a set σ = {x1, ..., xn} ⊂ Ω is said to be ε-
shattered by F if there is some function s : σ → R, such that for every I ⊂
{1, ..., n} there is some fI ∈ F for which fI(xi) ≥ s(xi) + ε if i ∈ I, and
fI(xi) ≤ s(xi) − ε if i 
∈ I. Let

fatε(F ) = sup
{

|σ|
∣
∣
∣σ ⊂ Ω, σ is ε−shattered by F

}
.

fI is called the shattering function of the set I and the set
{
s(xi)|xi ∈ σ

}
is

called a witness to the ε-shattering.

The first bounds on the empirical L∞ covering numbers in terms of the fat-
shattering dimension was established in [2], where is was shown that F is a uGC
class if and only if it has a finite fat-shattering dimension for every ε. The proof
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that if F is a uGC it has a finite fat-shattering dimension for every ε follows from
a similar argument to the one used in the VC case. For the converse one requires
empirical L∞ entropy estimates combined with Theorem 4. Dimension-free Lp

entropy results for 1 ≤ p < ∞ in terms of the fat-shattering dimension were first
proved in [18]. Both these results were improved in [21] and then in [22]. The
proofs of all the results mentioned here are very difficult, and go beyond the
scope of these notes. The second part of the following claim is due to Vershynin
(still unpublished). Let us denote by B

(
L∞(Ω)

)
the unit ball in L∞(Ω).

Theorem 10. There are absolute constants K and c and constants Kp, cp which
depend only on p for which the following holds: for every F ⊂ B

(
L∞(Ω)

)
, every

sample sn, every 1 ≤ p < ∞ and any 0 < ε < 1,

N
(
ε, F, Lp(µ)

) ≤
(2

ε

)Kpfatcpε(F )
,

and, for any 0 < δ < 1,

log N
(
ε, F, L∞(sn)

) ≤ K · fatcδε(F ) log1+δ
( n

δε

)
,

The significance of these entropy estimates goes far beyond learning theory. They
are essential in solving highly non-trivial problems in convex geometry and in
empirical processes [22, 25, 31, 32].

Using the bounds on the uniform entropy numbers and Theorem 2, one can
establish the following sample complexity estimates.

Theorem 11. There is an absolute constant C such that for every class F ⊂
B
(
L∞(Ω)

)
and every 0 < ε, δ < 1,

sup
µ

Pr
{

sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf | ≥ ε
}

≤ δ,

provided that

n ≥ C

ε2

(
fatε/8(F ) · log

(2
ε

)
+ log

(8
δ

))
.

Unfortunately, the VC dimension and the fat-shattering dimension have be-
come the central issue in machine learning literature. One must remember that
the combinatorial parameters were introduced as a way to estimate the uniform
entropy numbers. In fact, they seem to be the wrong parameters to measure the
complexity of learning problems. Ironically, they have a considerable geometric
significance as many results indicate.

To sum-up the results we have presented so far, it is possible to obtain uGC
sample complexity estimates via symmetrization, a covering argument and Ho-
effding’s inequality. The combinatorial parameters are used only to estimate
the covering numbers one needs. One point in which a slight improvement can
be made, is by replacing Hoeffding’s inequality with inequalities of a similar
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nature, (e.g. Bernstein’s inequality or Bennett’s inequality [33]) in which addi-
tional data on the moments of the random variables is used to obtain tighter
deviation bounds. However, this does not resolve the main problem in this line
of argumentation - that passing to an ε-cover and applying the union bound is
horribly loose. To solve this problem one needs a stronger deviation inequal-
ity for a supremum over a family of functions and not just a single one. This
“functional” inequality is the subject of the next section and we show it yields
tighter complexity bounds.

2.3 Talagrand’s Inequality

Let us begin by recalling Bernstein’s inequality [17, 33].

Theorem 12. Let µ be a probability measure on Ω and let X1, ..., Xn be indepen-
dent random variables distributed according to µ. Given a function f : Ω → R,
set Z =

∑n
i=1 f(Xi), let b = ‖f‖∞ and put v = E(

∑n
i=1 f2(Xi)). Then,

Pr
{|Z − EµZ| ≥ x

} ≤ 2e− x2
2(v+bx/3) .

This deviation result is tighter than Hoeffding’s inequality because one has addi-
tional data on the variance of the random variable Z, which leads to potentially
sharper bounds. It has been a long standing open question whether a simi-
lar result can be obtained when replacing Z by supf∈F |∑n

i=1

(
f(Xi) − Eµf

)|.
This “functional” inequality was first established by Talagrand [32], and later
was modified and partially improved by Ledoux [14], Massart [17], Rio [27] and
Bousquet [3].

Theorem 13. [17] Let µ be a probability measure on Ω and let X1, ..., Xn be
independent random variables distributed according to µ. Given a class of func-
tions F , set Z = supf∈F |∑n

i=1

(
f(Xi) − Eµf

)|, let b = supf∈F ‖f‖∞ and put
σ2 = supf∈F

∑n
i=1 var

(
f(Xi)

)
. Then, there is an absolute constant C ≥ 1 such

that for every x > 0 there is a set of probability larger than 1 − e−x on which

Z ≤ 2EZ + C(σ
√

x + bx). (11)

Observe that if F consists of functions which are bounded by 1 then b = 1 and

σ ≤ √
n. If we select x = nε2/4C2 then with probability larger than 1 − e− nε2

4C2 ,

sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf | ≤ 2E sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf | +
3ε

4
.

This equation holds with probability larger than 1 − δ provided that n ≥
(4C2/ε2) log 1

δ .
It follows that the dominating term in the complexity estimate is the ex-

pectation of the random variable Z. Again, the notion of symmetrization will
come to our rescue in the attempt to estimate EZ. Let us define the (global)
Rademacher averages associated with a class of functions.
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Definition 6. Let µ be a probability measure on Ω and set F to be a class of
uniformly bounded functions. For every integer n, let

Rn(F ) = EµEε
1√
n

sup
f∈F

|
n∑

i=1

εif(Xi)|,

where (Xi)n
i=1 are independent random variables distributed according to µ and

(εi)n
i=1 are independent Rademacher random variables.

The reason for the seemingly strange normalization (of 1/
√

n instead of 1/n) will
become evident in the next section. Now, we can prove an “averaged” version of
the symmetrization result:

Theorem 14. Let µ be a probability measure and set F to be a class of functions
on Ω. Denote

Z = sup
f∈F

| 1
n

n∑

i=1

f(Xi) − Eµf |,

where (Xi)n
i=1 are independent variables distributed according to µ. Then,

EµZ ≤ 2
Rn(F )√

n
≤ 4EµZ + 2

∣
∣sup
f∈F

Eµf
∣
∣ · Eε| 1

n

n∑

i=1

εi|.

Proof. Let Y1, ..., Yn be an independent copy of X1, ..., Xn. Then,

EX sup
f∈F

∣
∣ 1
n

n∑

i=1

f(Xi) − EY f
∣
∣

=EX sup
f∈F

∣
∣ 1
n

n∑

i=1

f(Xi) − EY f − EY

( 1
n

n∑

i=1

f(Yi) − EY f
)| = (1).

Conditioning (1) with respect to X1, ..., Xn and then applying Jensen’s inequality
with respect to EY and Fubini’s Theorem, it follows that

(1) ≤ 1
n

EXEY sup
f∈F

∣
∣

n∑

i=1

f(Xi) −
n∑

i=1

f(Yi)
∣
∣ =

1
n

EXEY sup
f∈F

∣
∣

n∑

i=1

εi

(

f(Xi) − f(Yi)
)∣
∣,

where the latter inequality holds for every (εi)n
i=1 ∈ {−1, 1}n. Therefore, it

also holds when taking the expectation with respect to the Rademacher random
variables (εi)n

i=1. By the triangle inequality,

1
n

EXEY Eε sup
f∈F

∣
∣

n∑

i=1

εi

(
f(Xi) − f(Yi)

)∣∣ ≤ 2
n

EXEε sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ =

2Rn(F )√
n

.
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To prove the upper bound, the starting point is the triangle inequality which
yields

1
n

EXEε sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣

≤ 1
n

EXEε sup
f∈F

∣
∣

n∑

i=1

εi

(
f(Xi) − Eµf

)∣∣+
∣
∣sup
f∈F

Eµf
∣
∣ · Eε

∣
∣ 1
n

n∑

i=1

εi

∣
∣.

To estimate the first term, let (Zi) be the stochastic process defined by Zi(f) =
f(Xi) − Eµf and let Wi be an independent copy of (Zi). For every f ∈ F ,
EWi(f) = 0, thus,

EXEε sup
f∈F

∣
∣

n∑

i=1

εi

(
f(Xi) − Eµf

)∣∣ = EZEε sup
f∈F

∣
∣

n∑

i=1

εiZi(f)
∣
∣

= EεEZ sup
f∈F

∣
∣

n∑

i=1

εi

(
Zi(f) − EW Wi(f)

)∣∣.

For every realization of the Rademacher random variables (εi)n
i=1 and by Jensen’s

inequality conditioned with respect to the Zi,

EZ sup
f∈F

∣
∣

n∑

i=1

εi

(
Zi(f) − EW Wi(f)

)∣∣ ≤ EZEW sup
f∈F

∣
∣

n∑

i=1

εi

(
Zi(f) − Wi(f)

)∣∣,

which is invariant for under any selection of signs εi. Therefore,

EεEZ sup
f∈F

∣
∣

n∑

i=1

εi

(
Zi(f) − EW Wi(f)

)∣∣ ≤ EZEW sup
f∈F

∣
∣

n∑

i=1

(
Zi(f) − Wi(f)

)∣∣

≤ 2EZ sup
f∈F

∣
∣

n∑

i=1

Zi(f)
∣
∣.

This result implies that the expectation of the deviation of the empirical
means from the actual ones is controlled by Rn(F )/

√
n. Therefore, we can for-

mulate the following

Corollary 3. Let µ be a probability measure on Ω, set F ⊂ B
(
L∞(Ω)

)
and put

σ2 = supf∈F

∑n
i=1 var

(
f(Xi)

)
, where (Xi) are independent random variables

distributed according to µ. Then, there is an absolute constant C ≥ 1 such that
for every x > 0, there is a set of probability larger than 1 − e−x on which

sup
f∈F

∣
∣ 1
n

n∑

i=1

f(Xi) − Eµf
∣
∣ ≤ 4Rn(F )√

n
+

C

n
(σ

√
x + x). (12)

In particular, there is an absolute constant C such that if

n ≥ C

ε2 max
{
R2

n(F ), log
1
δ

}
,

then Pr
{
supf∈F | 1

n

∑n
i=1 f(Xi) − Eµf | ≥ ε

} ≤ δ.
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After establishing that the random averages control the uGC sample com-
plexity, the natural question is how to estimate them. In particular, it is in-
teresting to estimate them using the covering numbers and the combinatorial
parameters which we investigated in previous sections.

2.4 Random Averages, Combinatorial Parameters, and Covering
Numbers

In this section we present several ways in which one can bound the Rademacher
averages associated with a class F . First we present structural results, which
enable one to compute the averages of complicated classes using those of simple
ones. Next, we give an example of a case in which the averages can be computed
directly. Finally, we show how estimates on the empirical entropy of a class can
be used to bound the random averages.

Structural results. The following theorem summarizes some of the properties
of the Rademacher averages we shall use. The difficulty of the proofs of the
different observations varies considerably. Some of the claims are straightforward
while others are very deep facts. Most of the results are true when replacing the
Rademacher random variables with independent standard Gaussian ones (with
very similar proofs), but we shall not present the analogous result in the Gaussian
case.

Theorem 15. Let F and G be classes of real-valued functions on (Ω, µ). Then,
for every integer n,

1. If F ⊂ G, Rn(F ) ≤ Rn(G).
2. Rn(F ) = Rn(conv F ) = Rn(absconvF ), where conv(F ) is the convex hull of

F and absconv(F ) = conv(F ∪ −F ) is the symmetric convex hull of F .
3. For every c ∈ R, Rn(cF ) = |c|Rn(F ).
4. If φ : R → R is a Lipschitz function with a constant Lφ and satisfies φ(0) =

0, then Rn(φ ◦ F ) ≤ 2LφRn(F ), where φ ◦ F = {φ
(
f(·))|f ∈ F}.

5. For every 1 ≤ p < ∞, there is a constant cp which depend only on p, such
that for every {x1, ..., xn} ⊂ Ω,

cp

(
Eε sup

f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣p)

1
p ≤ Eε sup

f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣

≤ (Eε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣p)

1
p .

6. For any function h ∈ L2(µ), Rn(F +h) ≤ Rn(F )+ (Eµh2)
1
2 , where F +h =

{f + h|f ∈ F}.
7. For every 1 < p < ∞ there is an absolute constant cp for which

cp

(

E sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣
p) 1

p ≤ E sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ ≤ (

E sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣
p) 1

p ,

provided that supf∈F Eµf2 ≥ 1/n.



A Few Notes on Statistical Learning Theory 21

Proof. Parts 1 and 3 are immediate from the definitions. To see part 2, ob-
serve that Rn(F ) ≤ Rn

(
conv(F )

) ≤ Rn

(
absconv(F )

)
. To prove the reverse

inequality, note that H = absconv(F ) is symmetric and convex. Hence, for ev-
ery sample x1, ..., xn and any realization of (εi)n

i=1, suph∈H |∑n
i=1 εih(xi)| =

suph∈H

∑n
i=1 εih(xi). Every h ∈ H is given by

∑m
i=1 λjfj where

∑m
j=1 |λj | = 1,

and thus,
n∑

i=1

εih(xi) =
m∑

j=1

λj

n∑

i=1

εifj(xi) ≤ sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣.

Hence, the supremum with respect to F and to H coincide.
Part 4 is called the contraction inequality, and is due to Ledoux and Tala-

grand [15, Corollary 3.17].
Part 5 is the Kahane-Khintchine inequality [24]. As for part 6, note that for

every sample x1, ..., xn,

Eε sup
f∈F

∣
∣

n∑

i=1

εi

(
f(xi) + h(xi)

)∣∣ ≤ Eε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣+ Eε

∣
∣

n∑

i=1

εih(xi)
∣
∣ = (∗).

By Khintchine’s inequality for the second term and the fact that (εi)n
i=1 are

independent,

(∗) ≤ Eε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣+
( n∑

i=1

h2(xi)
) 1

2 .

Normalizing by 1/
√

n, taking the expectation with respect to µ and by Jensen’s
inequality,

Rn(F + h) ≤ Rn(F ) + (Eµh2)
1
2 .

Finally, part 7 follows from a concentration argument which will be presented
in appendix 3.2.

Remark 1. A significant fact we do not use but feel can not go unmentioned
is that the Gaussian averages and the Rademacher averages are closely con-
nected. Indeed, one can show (see, e.g. [24]) that there are absolute constants c
and C which satisfy that for every class F , every integer n and any realization
{x1, ..., xn}

cEε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣ ≤ Eε sup

f∈F

∣
∣

n∑

i=1

gif(xi)
∣
∣ ≤ CEε sup

f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣ · log n,

where (gi)n
i=1 are independent standard Gaussian random variables.

When one tries to estimate the random averages, the first and most natural
approach is to try and compute them directly. There are very few cases in which
such an attempt would be successful, and the one we chose to present is the case
of kernel classes.
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Example: Kernel Classes. Assume that Ω is a compact set and let K :
Ω × Ω → R be a positive definite, continuous function. Let µ be a probability
measure on Ω, and consider the integral operator TK : L2(µ) → L2(µ) given
by
(
TKf

)
(x) =

∫
K(x, y)f(y)dµ(y). By Mercer’s Theorem, TK has a diago-

nal representation, that is, there exists a complete, orthonormal basis of L2(µ),
which is denoted by

(
φn(x)

)∞
n=1, and a non-increasing sequence of eigenval-

ues (λn)∞
i=1 which satisfy that for every sequence (an) ∈ �2, TK(

∑∞
n=1 anφn) =∑∞

n=1 anλnφn. Under certain mild assumptions on the measure µ, Mercer’s The-
orem implies that for every x, y ∈ Ω,

K(x, y) =
∞∑

n=1

λnφn(x)φn(y).

Let FK be the class consisting of all the functions of the form
∑m

i=1 aiK(xi, ·)
for every m ∈ N∪{∞}, every (xi)m

i=1 ∈ Ωm and every sequence (ai)m
i=1 for which∑m

i,j=1 aiajK(xi, xj) ≤ 1.
One can show that FK is the unit ball of a Hilbert space associated with the

integral operator, called the reproducing kernel Hilbert space, and we denote it
by H. In fact, the unit ball of H is simply

√
TK

[
B
(
L2(µ)

)]
, which is the image

of the L2(µ) unit ball by the operator which maps φi to
√

λiφi. An important
property of the inner product in H is that for every f ∈ H,

〈
f, K(x, ·)〉

H
= f(x).

An alternative way to define the reproducing kernel Hilbert space is via the
feature map. Let Φ : Ω → �2 be defined by Φ(x) =

(√
λiφi(x)

)∞
i=1. Then,

FK =
{
f(·) =

〈
β, Φ(·)〉

H

∣
∣‖β‖2 ≤ 1

}
.

Observe that for every x, y ∈ Ω,
〈
Φ(x), Φ(y)

〉
H

= K(x, y).
Let us compute the Rademacher averages of FK with respect to the proba-

bility measure µ.

Theorem 16. Assume that the largest eigenvalue of TK satisfies that λ1 ≥ 1/n.
Then, for every such integer n,

c
( ∞∑

i=1

λi

) 1
2 ≤ Rn(FK) ≤ C

( ∞∑

i=1

λi

) 1
2 ,

where (λi)∞
i=1 are the eigenvalues of the integral operator TK arranged in a non

increasing order, C, c are absolute constants and FK is the unit ball in the re-
producing kernel Hilbert space.

Remark 2. As the proof we present reveals, the upper bound on Rn(FK) is true
even without the assumption on the largest eigenvalue of TK .

Before proving the claim, we require the following lemma:

Lemma 3. Let FK be the unit ball of the reproducing kernel Hilbert space H

associated with the kernel K. For every sample sn = {x1, ..., xn} let
(
θi(sn)

)n
i=1
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be the singular values of the operator T : R
n → H defined by Tei = K(xi, ·).

Then,

Eε
1√
n

sup
f∈FK

∣
∣

n∑

i=1

εif(xi)
∣
∣2 =

n∑

i=1

θ2
i .

Proof. By the reproducing kernel property,

Eε sup
f∈FK

∣
∣

n∑

i=1

εif(xi)
∣
∣2 = Eε sup

f∈FK

∣
∣

n∑

i=1

〈
εiK(xi, ·), f

〉
H

∣
∣2

= Eε sup
f∈FK

∣
∣〈

n∑

i=1

εiTei, f
〉

H

∣
∣2.

Since FK is the unit ball in H then

Eε sup
f∈FK

|〈
n∑

i=1

εiTei, f
〉

H
|2 = Eε‖

n∑

i=1

εiTei‖2
H.

Thus,

Eε sup
f∈FK

∣
∣

n∑

i=1

εif(xi)
∣
∣2 = Eε

∥
∥

n∑

i=1

εiTei

∥
∥2

H
=

n∑

i=1

‖Tei‖2
H =

n∑

i=1

θ2
i (sn),

proving our claim.

Proof (Theorem 16). Firstly, it is easy to see that there exists some f ∈ FK

for which Eµf2 ≥ 1/n. Indeed, f =
√

TKφ1 =
√

λ1φ1 ∈ H satisfies that
Eµf2 = λ1 ≥ 1/n. Thus, using part 7 of Theorem 15, Rn(FK) is equivalent
to n−1/2

(
E supf∈FK

∣
∣∑n

i=1 εif(Xi)
∣
∣2)1/2. Applying the previous lemma and us-

ing its notation,

1
n

Eµ

(
Eε sup

f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣2
∣
∣X1, ..., Xn

)
= Eµ

1
n

n∑

i=1

θ2
i (sn).

By the definition of the operator T ,
(
θ2

i (sn)
)n
i=1 are the eigenvalues of T ∗T , and

it is easy to see that T ∗T =
(
K(xi, xj)

)n
i,j=1. Therefore,

n∑

i=1

θ2
i (sn) = tr(T ∗T ) =

n∑

i=1

K(xi, xi).

Hence,

1
n

Eµ

(
Eε sup

f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣2
∣
∣X1, ..., Xn

)
= Eµ

( 1
n

n∑

i=1

K(Xi, Xi)
)
.
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To conclude the proof, one has to take the expectation with respect to µ and
recall that

EµK(Xi, Xi) = Eµ

∞∑

j=1

λjφ
2
j (Xi) =

∞∑

j=1

λj .

Corollary 4. Let (Ω, µ) be a probability space, set FK to be the unit ball in the
reproducing kernel Hilbert space and put tr(K) =

∑∞
i=1 λi. Let T ∈ B

(
L∞(Ω)

)

and denote by L the loss class associated with FK and T . Then, there is an
absolute constant C such that

Pr
{
sup
f∈L

∣
∣ 1
n

n∑

i=1

f(Xi) − Eµf
∣
∣ ≥ ε

} ≤ δ,

provided that n ≥ C
ε2 max{1 + tr(K), log 1

δ }.
Proof. The proof follows immediately from Corollary 3 and the estimates on the
Rademacher averages of FK . Indeed, by Theorem 15,

Rn(L) = Rn

(
(FK − T )2 − (PFK

T − T )2
) ≤ 4Rn(FK − T ) + ‖PFK

T − T‖2
∞

≤ 4
(
Rn(FK) + C‖T‖∞

)
+

1
4

where C is an absolute constant.

Entropy and averages. Unfortunately, in the vast majority of cases, it is next
to impossible to compute the random averages directly. Thus, one has to resort
to alternative routes to estimate the random averages, especially from above —
since this is the direction one needs for sample complexity upper bounds. We
show that it is possible to bound the Rademacher and Gaussian averages using
the empirical L2 entropy of the class. This follows from results due to Dudley
[6] and Sudakov [30]. Originally, the bounds were established from Gaussian
processes, and later they were extended to the sub-gaussian setup [8, 33], which
includes Rademacher processes.

Theorem 17. There are absolute constants C and c for which the following
holds. For any integer n, any sample {x1, ..., xn} and every class F ,

c sup
ε>0

ε log
1
2 N

(
ε, F, L2(µn)

) ≤ 1√
n

Eε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣

≤ C

∫ ∞

0
log

1
2 N

(
ε, F, L2(µn)

)
dε,

where µn is the empirical measure supported on the sample.

This result implies that if the class is relatively small, then its Rademacher
averages are uniformly bounded.
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Corollary 5. There is an absolute constant C such that for every Boolean class
F with VC(F ) = d and every integer n, Rn(F ) ≤ C

√
d.

Proof. Since F is a Boolean class, all of its members are bounded by 1. Thus,
for every ε ≥ 1 only a single ball of radius ε is needed to cover F . Using the
uniform L2 entropy bound in Theorem 8 it follows that for every integer n and
every empirical measure µn,

log N
(
ε, F, L2(µn)

) ≤ Cd log
(
1/ε
)
,

and the claim is evident from Theorem 17.

In a similar way one can show that if F ⊂ B
(
L∞(Ω)

)
has a polynomial fat-

shattering dimension with exponent strictly less than 2, it has uniformly bounded
Rademacher averages. This is true because one can obtain a uniform L2-entropy
bound for which the entropy integral converges. It is less obvious what can be
done if the entropy integral diverges, in which case Theorem 17 does not apply.

To handle this case, we present a stronger version of Dudley’s entropy bound,
which will be formulated for Gaussian random variables.

Lemma 4. [18] Let µn be an empirical measure supported on {x1, ..., xn} ⊂ Ω,
put F ⊂ B

(
L∞(Ω)

)
and set (εk)∞

k=0 to be a monotone sequence decreasing to
0 such that ε0 = 1. Then, there is an absolute constant C such that for every
integer N ,

1√
n

E sup
f∈F

∣
∣

n∑

i=1

gif(xi)
∣
∣ ≤ C

N∑

k=1

εk−1 log
1
2 N

(
εk, F, L2(µn)

)
+ 2εNn

1
2 ,

where (gi)n
i=1 are standard Gaussian random variables. In particular,

1√
n

E sup
f∈F

∣
∣

n∑

i=1

gif(xi)
∣
∣ ≤ C

N∑

k=1

εk−1fat1/2
εk/8(F ) log

1
2
( 2
εk

)
+ 2εNn

1
2 . (13)

The latter part of Lemma 4 follows from its first part and Theorem 10. Before
presenting the proof of Lemma 4, we require the following lemma, which is based
on the classical inequality due to Slepian [26, 8].

Lemma 5. Let (Zi)N
i=1 be Gaussian random variables (i.e., Zi =

∑m
j=1 ai,jgj

where (gi)n
i=1 are independent standard Gaussian random variables). Then, there

is some absolute constant C such that E supi Zi ≤ C supi,j ‖Zi − Zj‖2 log
1
2 N .

Proof (Lemma 4). We may assume that F is symmetric and contains 0. The
proof in the non-symmetric case follows the same path.

Let µn be an empirical measure supported on {x1, ..., xn}. For every f ∈ F ,
let Zf = n−1/2∑n

i=1 gif(xi), where (gi)n
i=1 are independent standard Gaussian

random variables on the probability space (Y, P ). Set ZF = {Zf |f ∈ F} and
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define V : L2(µn) → L2(Y, P ) by V (f) = Zf . Since V is an isometry for which
V (F ) = ZF then

N
(
ε, F, L2(µn)

)
= N

(
ε, ZF , L2(P )

)
.

Let (εk)∞
k=0 be a monotone sequence decreasing to 0 such that ε0 = 1 and set

Hk ⊂ ZF to be a 2εk cover of ZF . Thus, for every k ∈ N and every Zf ∈ ZF

there is some Zk
f ∈ Hk such that ‖Zf − Zk

f ‖2 ≤ 2εk, and we select Z0
f = 0.

Writing Zf =
∑N

k=1(Z
k
f − Zk−1

f ) + Zf − ZN
f it follows that

E sup
f∈F

Zf ≤
N∑

k=1

E sup
f∈F

(Zk
f − Zk−1

f ) + E sup
f∈F

(Zf − ZN
f ).

By the definition of Zk
f and Lemma 5, there is an absolute constant C for which

E sup
f∈F

(Zk
f − Zk−1

f ) ≤E sup
{
Zi − Zj |Zi ∈ Hk, Zj ∈ Hk−1, ‖Zi − Zj‖2 ≤ 4εk−1

}

≤C sup
i,j

‖Zi − Zj‖2 log
1
2 |Hk| |Hk−1|

≤Cεk−1 log
1
2 N

(
εk, F, L2(µn)

)
.

Since ZN
f ∈ ZF , there is some f ′ ∈ F such that ZN

f = Zf ′ . Hence,

(
n∑

i=1

(f(xi) − f ′(xi)√
n

)2
) 1

2

= ‖Zf − Zf ′‖2 ≤ 2εN ,

which implies that for every f ∈ F and every y ∈ Y ,

∣
∣Zf (y) − ZN

f (y)
∣
∣ ≤

n∑

i=1

∣
∣
∣
∣
f(xi) − f ′(xi)√

n
gi(y)

∣
∣
∣
∣ ≤ 2εN

( n∑

i=1

g2
i (y)

) 1
2

.

Therefore, E supf∈F (Zf − ZN
f ) ≤ εNE

(∑n
i=1 g2

i

) 1
2 = 2εN

√
n, and the claim

follows.

Using this result it is possible to estimate the Rademacher averages of classes
with a polynomial fat-shattering dimension.

Theorem 18. Let F ⊂ B
(
L∞(Ω)

)
and assume that there is some γ > 1 such

that for any ε > 0, fatε(F ) ≤ γε−p. Then, there are absolute constants Cp, which
depends only on p, such that

Rn(F ) ≤ Cpγ
1
2






1 if 0 < p < 2
log3/2 n if p = 2
n

1
2 − 1

p log
1
p n if p > 2.
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Proof. Let µn be an empirical measure on Ω. If p < 2 then by Theorem 10,
∫ ∞

0
log

1
2 N

(
ε, F, L2(µn)

)
dε ≤ Cpγ

1
2

and the bound follows from the upper bound in Theorem 17.
Assume that p ≥ 2 and, using the notation of Lemma 4, select εk = 2−k and

N = p−1 log2(n/ log2(n)). By (13),

Rn(F ) ≤ Cpγ
1
2

N∑

k=1

ε
1− p

2
k log

1
2

2
εk

+ 2εNn
1
2

≤ Cpγ
1
2

N∑

k=1

√
k2k( p

2 −1) + 2n
1
2 − 1

p .

If p = 2, the sum is bounded by

Cpγ
1
2 N

3
2 ≤ Cpγ

1
2 log3/2 n,

whereas is p > 2 it is bounded by Cpγ
1
2 n

1
2 − 1

p log
1
p n.

These bounds on Rn are “worst case” bounds, since they hold for any empirical
measure. In fact, the underlying measure µ plays no part in the bounds. Using
a geometric interpretation of the fat-shattering dimension, it is possible to show
that the “worst case” bounds we established are tight (up to the exact power of
the logarithm), in the sense that if fatε(F ) = Ω(ε−p) for p > 2, then for every
integer n there will be a sample {x1, ..., xn} for which

1√
n

Eε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣ ≥ cn

1
2 − 1

p ,

where c is an absolute constant. Since this is not the main issue we wish to
address in these notes, we refer the interested reader to [18].

The complexity bounds that one obtains using Corollary 3 and Theorem 18
are a significant improvement to the ones obtained via Theorem 11. Indeed, the
sample complexity estimate obtained there was that if fatε(F ) = O(ε−p) then

SF (ε, δ) = O
( 1
ε2+p

· (log
2
ε

+ log
2
δ
)
)
.

Using Talagrand’s inequality, we obtain a sharper bound:

Theorem 19. Let F ⊂ B
(
L∞(Ω)

)
and assume that fatε(F ) ≤ γε−p. Then,

there is a constant Cp, which depends only on p, such that

SF (ε, δ) ≤ Cp max
{ 1

εp
,

1
ε2 log

1
δ

}

if p 
= 2. If p = 2 there is an additional logarithmic factor in 1
ε .



28 S. Mendelson

We were able to obtain this improved result is because we removed the major
looseness—the union bound in the “classical” argument. But this is not the
end of the story.... There is still one additional source of sub-optimality; as we
said in the introduction, using the uGC property only yields upper bounds to
the quantity we wish to explore — the learning sample complexity. In the next
section, we use very similar methods to the ones used here and obtain even
tighter bounds.

3 Learning Sample Complexity

After bounding the uGC sample complexity using Corollary 3 and establishing
bounds on the Rademacher averages, we now turn to the alternative approach
which will prove to yield tighter learning sample complexity bounds.

Recall that the question we wish to answer is how to ensure that an “almost
minimizer” of the empirical loss will be close to the minimum of the actual loss.

Thus, our aim is to bound

Pr
{∃f ∈ L,

1
n

n∑

i=1

f(Xi) ≤ ε/2, Eµf ≥ ε
}
. (14)

To that end, we need to impose an important structural assumption on the class
at hand.

Assumption 1 Assume that there is an absolute constant B such that for every
f ∈ F , Eµf2 ≤ BEµf .

Though this assumption seems restrictive, it turns out that it holds in all the
cases we are interested in.

Lemma 6. Let F ⊂ B
(
L∞(Ω)

)
satisfying assumption 1. Fix ε > 0 and define

H =
{ εf

Eµf

∣
∣f ∈ F, Eµf ≥ ε, Eµf2 ≥ ε

}
, (15)

and set

Fε =
{
f ∈ F | Eµf2 ≤ ε

}
, Hε =

{
h ∈ H| Eµh2 ≤ Bε

}
.

Then,

Pr
{∃f ∈ F,

1
n

n∑

i=1

f(Xi) ≤ ε/2, Eµf ≥ ε
} ≤

Pr
{

sup
f∈Fε

|Eµf − Eµn
f | ≥ ε

2

}
+ Pr

{
sup

h∈Hε

|Eµh − Eµn
h| ≥ ε

2

}

In particular, for every 0 < δ < 1,

CL(
ε

2
, δ) ≤ max

{
SFε

(ε

2
,
δ

2

)
, SHε

(ε

2
,
δ

2

)}
.
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Proof. Denote by µn the random empirical measure n−1∑n
i=1 δXi . Then,

Pr
{∃f ∈ F, Eµn

f ≤ ε/2, Eµf ≥ ε
} ≤

Pr
{∃f ∈ F, Eµf ≥ ε, Eµf2 < ε, Eµnf ≤ ε/2

}
+

Pr
{∃f ∈ F, Eµf ≥ ε, Eµf2 ≥ ε, Eµnf ≤ ε/2

}

= (1) + (2).

If Eµf ≥ ε then Eµf ≥ 1
2 (Eµf + ε) ≥ 1

2Eµf + Eµn
f . Therefore, |Eµf − Eµn

f | ≥
1
2Eµf ≥ ε/2, hence,

(1) + (2) ≤ Pr
{∃f ∈ F, Eµf2 < ε, |Eµf − Eµnf | ≥ ε

2
}

+ Pr
{∃f ∈ F, Eµf ≥ ε, Eµf2 ≥ ε, |Eµf − Eµnf | ≥ 1

2
Eµf

}

= (3) + (4).

The first term is bounded by Pr
{
supf∈Fε

|Eµn
f−Eµf | ≥ ε/2

}
. As for the second,

assume that |Eµnf − Eµf | ≥ (Eµf)/2 and that Eµf ≥ ε. Then, h = εf/Eµf
satisfies that |Eµn

h − Eµh| ≥ ε/2 and since Eµf2 ≤ B(Eµf) then

Eµh2 ≤ B
ε2

Eµf
≤ Bε.

Therefore, (4) ≤ Pr
{∃h ∈ Hε, |Eµnh − Eµh| ≥ ε/2

}
.

To simplify this estimate, we require the following definition:

Definition 7. Let X be a normed space and let A ⊂ X. We say that A is star-
shaped with center x if for every a ∈ A the interval [a, x] = {tx + (1 − t)a|0 ≤
t ≤ 1} ⊂ A. Given A and x, denote by star(A, x) the union of all the intervals
[a, x], where a ∈ A.

It is easy to see that each element h ∈ H is given by αff , where 0 ≤ αf ≤ 1.
Thus, H ⊂ star(F, 0) and obviously F ⊂ star(F, 0). Therefore,

Pr
{∃f ∈ F,

1
n

n∑

i=1

f(Xi) < ε/2, Eµf ≥ ε
} ≤ (16)

2Pr
{

∃h ∈ star(F, 0), Eµh2 ≤ Bε, |Eµh − Eµnh| ≥ ε

2
}
.

This implies that the question of obtaining sample complexity estimates may
be reduced to a GC deviation problem for a class which is the intersection of
star(F, 0) with an L2(µ) ball, centered at 0 with radius proportional to the
square-root of the required deviation. Combining this with Corollary 3 yields
the following fundamental result:
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Theorem 20. Let F ⊂ B
(
L∞(Ω)

)
and assume that assumption 1 holds. Set

H = star(F, 0) and for every ε > 0 let Hε = H ∩ {h : Eµh2 ≤ ε}. Then, for
every 0 < ε, δ < 1,

Pr
{

∃f ∈ F,
1
n

n∑

i=1

f(Xi) ≤ ε/2, Eµf ≥ ε
}

≤ δ,

provided that

n ≥ C max
{R2

n(Hε)
ε2 ,

B log 2
δ

ε

}
.

The proof of this theorem follows immediately from (12) in Corollary 3.
Theorem 20 shows that the important quantity which governs the learning

sample complexity is the “localized” Rademacher average Rn(Hε), assuming, of
course, that assumption 1 holds.

Before presenting bounds on the localized Rademacher averages of some
classes, let us comment on assumption 1. Assumption 1 clearly holds for 2-
loss classes if the target function is a member of the original class G, since in
that case, PGT = T , and every loss function is nonnegative and bounded by
4. The situation when T 
∈ G is much more difficult. One can show that if
G ⊂ B

(
L∞(Ω)

)
is convex and T ∈ B

(
L∞(Ω)

)
, then for every probability mea-

sure µ and every 2-loss function f , Eµf2 ≤ 16Eµf [16, 19]. In fact, it is possible
to obtain results of a similar flavor for q-loss classes, where the “usual” exponent
2 is replaced with some q ≥ 2 (see [19]). Even the convexity assumption can be
relaxed in the following sense; if G ⊂ L2(µ) is not convex, then there will be
functions which have more than a single best approximation in G. The set of
functions which do not have a unique best approximation in G is denoted by
nup(G, µ) and it clearly depends on the probability measure µ, because a change
of measure generates a different way of measuring distances. One can show ([23])
that given a measure µ and a target T 
∈ nup(G, µ), the 2-loss class L satisfies
that Eµf2 ≤ BEµf for every f ∈ L. The constant B will depend on “how far”
T is from nup(G, µ). Thus, the complexity bounds one obtains in this case are
both target and measure dependent.

For the sake of simplicity, in all the cases we shall be interested in we impose
the assumption that either T ∈ G, or that G is convex. In both these cases, a
selection of B = 16 suffices to ensure that assumption 1 holds.

3.1 Localized Random Averages

In an analogous way to what we did in Section 2.4, we present two paths one can
take when computing the random averages. For the direct approach we present
the example of kernel classes. The second approach, which may be used in the
vast majority of examples is to apply uniform entropy estimates.
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Localized averages of kernel classes. Here, we present a direct tight bound
on the localized Rademacher averages of FK in terms of the eigenvalues of the
integral operator TK . It is important to note that the underlying measure in the
definition of Rn and of TK has to be the same, which emphasizes the difficulty
from the learning theoretic viewpoint, since one does not have a priori knowledge
on the underlying measure.

Theorem 21. [20] There are absolute constants c and C for which the following
holds. Let K be a kernel and set µ to be a probability measure on Ω. If (λi)∞

i=1 are
the eigenvalues of the integral operator TK (with respect to µ) and if λ1 ≥ 1/n,
then for every ε ≥ 1/n,

c
( ∞∑

j=1

min{λi, ε}
) 1

2 ≤ 1√
n

EµEε sup
f∈Fε

∣
∣

n∑

i=1

εif(Xi)
∣
∣ ≤ C

( ∞∑

j=1

min{λi, ε}
) 1

2 ,

where Fε = {f ∈ FK , Eµf2 ≤ ε}

Remark 3. The upper bound in Theorem 21 holds even without the assumptions
on λ1 and ε, and this is the direction we require for sample complexity bounds.
The assumption is imposed only to enable one to obtain matching upper and
lower bounds.

Proof. Let Rε = supf∈Fε

∣
∣∑n

i=1 εif(Xi)
∣
∣. Just as in the proof of Theorem 16,

there is some f ∈ FK for which Eµf2 ≥ 1/n. Hence, there will be some 0 < t ≤ 1
for which f1 = tf ∈ Fε and Eµf2

1 ≥ 1/n. Thus, supf∈Fε
Eµf2 ≥ 1/n and by

Theorem 15, part 7, ERε is equivalent to (ER2
ε)

1/2.
We can assume that �2 is the reproducing kernel Hilbert space and recall

that FK = {f(·) =
〈
β, Φ(·)〉| ‖β‖2 ≤ 1}, where Φ is the kernel feature map. By

Setting B(ε) = {f |Eµf2 ≤ ε} it follows that f ∈ FK is also in B(ε) if and only
if its representing vector β satisfies that

∑∞
i=1 β2

i λi ≤ ε. Hence, in �2,

Fε = FK ∩ B(ε) = {β|
∞∑

i=1

β2
i ≤ 1,

∞∑

i=1

β2
i λi ≤ ε}.

Let E ⊂ �2 be defined as {β|∑∞
i=1 µiβ

2
i ≤ 1}, where µi = (min{1, ε/λi})−1 and

note that

E ⊂ FK ∩ B(ε) ⊂
√

2E.

Therefore, one can replace Fε by E in the computation of Rn(Fε), losing a
factor of

√
2 at the most. Finally, let (ei)∞

i=1 be the standard basis in �2. By the
definition of E it follows that for every v ∈ �2,

sup
β∈E

〈 ∞∑

i=1

√
µiβiei, v

〉
=
〈
v, v
〉 1

2 .
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Hence, it is evident that

E sup
β∈E

|〈β,

n∑

j=1

εjΦ(Xj)
〉|2 = E sup

β∈E
|〈

∞∑

i=1

√
µiβiei,

∞∑

i=1

(λi

µi

) 1
2
( n∑

j=1

εjφi(Xj)
)
ei

〉|2

= Eµ

∞∑

i=1

λi

µi
Eε

( ∞∑

j=1

εjφi(Xj)
)2 = Eµ

∑

i,j

λi

µi
φ2

i (Xj) = n

∞∑

i=1

λi

µi
,

which proves our claim.

As an example, consider the case where the eigenvalues of TK are λi ∼ 1/ip, for
some p > 1. It is easy to see that in that case, Rn(Fε) ≤ Cε1/2−1/2p. Therefore,
if T ∈ FK , then according to Theorem 20 the learning sample complexity (when
the sampling is done with respect to the measure µ!) is

C(ε, δ) = O
(
max

{ 1
ε1+1/p

,
log(2/δ)

ε

})
.

Using the Entropy. The previous section is somewhat misleading since the
reader might develop the feeling that computing localized averages directly is
a winning strategy. Unfortunately, even if the geometry of the original class is
well behaved and enables direct computation, the problem becomes considerably
harder in the localized case. In the latter, one has to take into account the
intersection body of the original class and an L2(µ) ball. Thus, in most cases
one has no choice but to resort to indirect methods, like entropy based bounds.

Theorem 17 may be used to compute the localized version of the Rademacher
averages in the following manner; let Y be a random variable which measures
the empirical radius of the class, which is Y 1/2 = (supf∈F n−1∑n

i=1 f2(Xi))1/2.
Given a sample (x1, ..., xn) and any ε ≥ Y 1/2(x1, ..., xn), only a single ball is
needed to cover the entire class. Hence,

1√
n

sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣ ≤ C

∫ Y 1/2(x1,...,xn)

0
log

1
2 N

(
ε, F, L2(µn)

)
dε.

Taking the expectation with respect to the sample it follows that there is an
absolute constant C such that for every class F ,

Rn(F ) ≤ CE

∫ √
Y

0
log

1
2 N

(
ε, F, L2(µn)

)
dε.

where Y = supf∈F n−1∑n
i=1 f2(Xi).

Of course, the information we have is not on the random variable Y , but
rather on σ2

F = supf∈F Eµf2. Fortunately, it is possible to connect the two, as
the following result which is due to Talagrand [32], shows.

Lemma 7. Let F ⊂ B
(
L∞(Ω)

)
and set σ2

F = supf∈F Eµf2. Then,

Eµ sup
f∈F

n∑

i=1

f2(Xi) ≤ nσ2
F + 8

√
nRn(F )
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Using this fact, it turns out that if one has data on the uniform entropy, one can
estimate the localized Rademacher averages. As an example, consider the case
when the entropy is logarithmic in 1/ε.

Lemma 8. Let F ⊂ B
(
L∞(Ω)

)
and set σ2

F = supf∈F Eµf2. Assume that there
are γ > 1, d ≥ 1 and p ≥ 1 such that

log N2(ε, F ) ≤ d logp
(γ

ε

)
.

Then, there is a constant Cp,γ which depend only on p and γ for which

Rn(F ) ≤ Cp,γ max
{ d√

n
logp 1

σF
,
√

dσF log
p
2

1
σF

}
.

Before proving the lemma, we require the next result:

Lemma 9. For every 0 ≤ p < ∞ and γ > 1, there is some constant cp,γ such
that for every 0 < x < 1,

∫ x

0
logp γ

ε
dε ≤ 2x logp cp,γ

x
,

and x1/2 logp cp,γ

x is increasing and concave in (0, 10).

The first part of the proof follows from the fact that both terms are equal at
x = 0, but for an appropriate constant cp,γ , the derivative of the function on
left-hand side is smaller than that of the function on the right-hand one. The
second part is evident by differentiation.

Proof (Lemma 8). Set Y = n−1 supf∈F

∑n
i=1 f2(Xi). By Theorem 17 there is

an absolute constant C such that

1√
n

Eε sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ ≤ C

∫ √
Y

0
log

1
2 N

(
ε, F, L2(µn)

)
dε

≤ C
√

d

∫ √
Y

0
log

p
2

γ

ε
dε.

By Lemma 9 there is a constant cp,γ such that for every 0 < x ≤ 1,
∫ x

0
log

p
2

γ

ε
dε ≤ 2x log

p
2

cp,γ

x
,

and v(x) =
√

x logp/2(cp,γ/x) is increasing and concave in (0, 10).
Since Y ≤ 1,

1√
n

Eε sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ ≤ Cp

√
dY log

p
2

cp,γ

Y
,
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and since σ2
F +8Rn/

√
n ≤ 9, then by Jensen’s inequality, Lemma 7 and the fact

that v is increasing in (0, 10),

Eµ

(
Y

1
2 log

p
2

cp,γ

Y

) ≤ (EµY )
1
2 log

p
2

cp,γ

EµY

≤ cp,γ

(
σ2

F + 8
Rn√

n

) 1
2 log

p
2

cp,γ

σ2
F + 8Rn√

n

≤ cp,γ

(
σ2

F +
8Rn√

n

) 1
2 log

p
2

1
σF

.

Therefore,

Rn(F ) ≤ Cp,γ

√
d
(
σ2

F +
Rn(F )√

n

) 1
2 log

p
2

1
σF

,

and our claim follows from a straightforward computation.

In a similar manner one can show that if that there are γ and p < 2 such that

log N2(ε, F ) ≤ γ

εp

then

Rn(F ) ≤ Cp,γ max
{
n− 1

2
2−p
2+p , σ

1− p
2

F

}
, (17)

and if

log N2(ε, F ) ≤ γ

εp
log2 2

ε

then

Rn(F ) ≤ Cp,γ max
{
n− 1

2
2−p
2+p logβ 2

σF
, σ

1− p
2

F log
2

σF

}
, (18)

where β = 4/(2 + p).

Let F ⊂ B
(
L∞(Ω)

)
and set Fε =

{
f ∈ F

∣
∣Eµf2 ≤ ε

}
. Since Fε ⊂ F then its

entropy must be smaller than that of F . Therefore, all the estimates above hold
for Fε when one replaces σ2

F by ε.
The next step is to connect the entropy of the original class G to that of F =

star(L, 0). Let us recall that the uniform entropy for the loss class is controlled
by that of G (see Lemma 1). Hence, all that remains is to see whether taking
the star-shaped hull of L with 0 increases the entropy by much.

Lemma 10. Let X be a normed space and let A ⊂ B(X) be totally bounded
(i.e., has a compact closure). Then, for any ‖x‖ ≤ 1 and every ε > 0,

log N
(
2ε, star(A, x)

) ≤ log
2
ε

+ log N
(
ε, A

)
.
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Proof. Fix ε > 0 and let y1, ..., yk be an ε-cover of A. Note that for any a ∈ A
and any z ∈ [a, x] there is some z′ ∈ [yi, x] such that ‖z′ − z‖ < ε. Hence, an
ε-cover of the union ∪n

i=1[yi, z] is a 2ε-cover for star(A, x). Since for every i,
‖x − yi‖ ≤ 2, then each interval may be covered by 2ε−1 balls of radius ε and
our claim follows.

Corollary 6. Assume that G consists of functions which map Ω into [0, 1] and
that the same holds for T . Then, for any ε, ρ > 0,

log N2(ρ, Fε) ≤ log N2(ρ/8, G) + log
(
4/ρ
)
,

where Fε =
{
f ∈ star(L, 0)

∣
∣Eµf2 ≤ ε

}
.

This result yields sample complexity estimates when one has estimates on
the L2 entropy of the class (which can be obtained using the combinatorial
parameters or other methods). The case we present here is when the class has a
polynomial uniform entropy.

Theorem 22. Let G ⊂ B
(
L∞(Ω)

)
be a convex class of functions and assume

that N2(ε, G) ≤ γε−p for some 0 < p < ∞. Set T ∈ B
(
L∞(Ω)

)
and put L to be

the loss class associated with G and T . Then,

Pr
{

∃f ∈ L,
1
n

n∑

i=1

f(Xi) ≤ ε, Eµf ≥ 2ε
}

≤ δ,

provided that

n ≥ C(p, γ) max
{(1

ε

)1+ p
2 ,

log(1/δ)
ε

}
if 0 < p < 2,

and

n ≥ C(p, γ) max
{(1

ε

)p
,
log(1/δ)

ε

}
if p > 2.

Proof. Let F = star(L, 0) and set Fε =
{
f ∈ F

∣
∣Eµf2 ≤ ε

}
. Applying Theorem

18 it follows that for every integer n, every ε > 0 and any p > 2,

Rn(Fε) ≤ Rn(F ) ≤ Cpn
1
2 − 1

p .

To estimate the localized averages for 0 < p < 2, one uses the previous corollary
and (17). Both parts of the theorem are now immediate from Theorem 20.

3.2 The Iterative Scheme

The biggest downside in our analysis is the fact that the localized Rademacher
averages are very hard to compute, and it almost impossible to estimate them
using the empirical data one receives. If fact, all the results presented here were



36 S. Mendelson

based on some kind of an a-priori data on the learning problem we had to face;
for example, we imposed assumptions on the growth rates of the uniform entropy
of the class.

It is highly desirable to obtain estimates which are data-dependent. This
could be done if we had the ability to replace the L2(µ) ball in the definition of
the localized averages by the empirical ball

{
f ∈ F

∣
∣n−1∑n

i=1 f2(Xi) ≤ ε
}

Koltchinskii and Panchenko [12] have introduced a computable iterative
scheme which enabled them to replace the “actual” ball by an empirical one
for a random sequence of radii rk = rk(X1, ..., Xn). In some cases, this method
proved to be an effective way of bounding the localized averages. In fact, when
one has some “global” data (e.g. uniform entropy bounds), the iterative scheme
gives the same asymptotic bounds as the ones obtained using the entropic ap-
proach. To this day, there is no proof that the iterative scheme always converges
to the “correct” value of the localized averages. Even more so, the question of
when is it possible to replace the L2(µ) ball by an empirical ball remains open.

References

1. M.Anthony, P.L. Bartlett: Neural Network Learning: Theoretical Foundations,
Cambridge University Press, 1999.

2. N. Alon, S. Ben-David, N. Cesa-Bianchi, D. Haussler: Scale sensitive dimensions,
uniform convergence and learnability, J. of ACM 44 (4), 615–631, 1997.

3. O. Bousquet: A Bennett concentration inequality and its application to suprema
of empirical processes, preprint.

4. L. Devroye, L. Györfi, G. Lugosi: A Probabilistic Theory of Pattern Recognition,
Springer, 1996.

5. R.M. Dudley: Real Analysis and Probability, Chapman and Hall, 1993.
6. R.M. Dudley: The sizes of compact subsets of Hilbert space and continuity of

Gaussian processes, J. of Functional Analysis 1, 290–330, 1967.
7. R.M. Dudley: Central limit theorems for empirical measures, Annals of Probability

6(6), 899–929, 1978.
8. R.M. Dudley: Uniform Central Limit Theorems, Cambridge Studies in Advanced

Mathematics 63, Cambridge University Press, 1999.
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4 Appendix: Concentration of Measure and Rademacher
Averages

In this section we prove that all the Lp norms of the Rademacher averages of a
class are equivalent, as long as the class is not contained in a “very small” ball.

Theorem 23. For every 1 < p < ∞ there is a constant cp for which the follow-
ing holds. Let F be a class of functions, set µ to be a probability measure on Ω
and put σ2

F = supf∈F Eµf2. If n satisfies that σ2
F ≥ 1/n then

cp

(
E sup

f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣p)

1
p ≤ E sup

f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ ≤ (E sup

f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣p)

1
p ,

where (Xi)n
i=1 are independent random variables distributed according to µ and

the expectation is taken with respect to the product measure associated with the
Rademacher variables and the variables Xi.

The proof of this theorem is based on the fact that supf∈F |∑n
i=1 εif(Xi)| is

highly concentrated around its mean value, with an exponential tail. The first
step in the proof is to show that if one can establish such an exponential tail for
a class of functions, then all the Lp norms are equivalent on the class. In fact,
we prove a little more:

Lemma 11. Let G be a class of nonnegative functions which satisfies that there
is some constant c0 such that for every g ∈ G and every integer m,

Pr
{|g − Eg| ≥ mEg

} ≤ 2e−c0m.

Then, for every 0 < p < ∞ there are constants cp and Cp which depend only on
p and c0, such that for every g ∈ G,

cp(Egp)
1
p ≤ Eg ≤ Cp(Egp)

1
p .

Proof. Fix some 0 < p < ∞ and g ∈ G, and set a = Eg. Clearly,

Egp = Egpχ{g<a} +
∞∑

m=0

Egpχ{(m+1)a≤g<(m+2)a}.

By the exponential tail of g, Pr
{
g ≥ (m + 1)a

} ≤ 2e−c0m, and thus

Egp ≤ ap + 2ap
∞∑

m=0

(m + 2)pe−c0m,

proving that cp(Egp)1/p ≤ Eg.
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To prove the upper bound, set hm = Egχ{g≥ma}. We will show that there is
a constant C ≥ 1 which depends only on c0, with the property that for every
m ≥ C, hm ≤ (Eg)/2. Indeed,

hm =
∞∑

n=m

Egχ{na≤g<(n+1)a} ≤ 2a

∞∑

n=m

(n + 1)e−c0n,

which is a tail of a converging series that does not depend on the choice of g.
Thus, for a sufficiently large m our assertion holds.

Set A = {g ≤ a/4}, and observe that

a

2
≤ Egχ{g≤Ca} = EgχA + Egχ{a/4<g≤Ca} ≤ a

4
Pr(A) + Ca(1 − Pr(A)).

It follows that Pr(Ac) ≥ 1/(4C − 1) and thus,

Egp ≥ EgpχAc ≥ (a
4
)p · 1

4C − 1
= Cpa

p,

as claimed.

Before we continue with our discussion, let us observe that the exponential tail
assumption can be slightly relaxed. In fact, all that we need is that the proba-
bility that g is much larger than its expectation must decay rapidly, uniformly
in g.

Now, we can show that for any class of functions F , Rn(F ) may be bounded
from below by σF .

Lemma 12. There is an absolute constant c such that if F ⊂ B
(
L∞(Ω)

)
then

Rn(F ) ≥ cσF , provided that σ2
F > 1/n.

Proof. By the assumption on σF , there is some f ∈ F for which σ2
f = Eµf2 ≥

1/n. Applying the Kahane-Khintchine’s inequality, there is an absolute constant
c such that for every x1, ..., xn

Eε sup
f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣ ≥ c

(
Eε sup

f∈F

∣
∣

n∑

i=1

εif(xi)
∣
∣2)

1
2 ≥ c

( n∑

i=1

f2(xi)
) 1

2

(in fact c = 1/
√

2 will suffice, as shown in [13]). Hence,

Rn(F ) ≥ cEµ

(
n−1

n∑

i=1

f2(Xi)
) 1

2 .

Define g(X1, ..., Xn) = n−1∑n
i=1 f2(Xi) and since f is bounded by 1 then

Eg2 ≤ σ2
f . By Bernstein’s inequality (Theorem 12) and selecting x = nmEµg for

some integer m,

Pr
{|g − Eµg| ≥ mEµg

} ≤ 2e
−c

n2m2(Eµg)2

σ2
f

n+nmEµg .



40 S. Mendelson

But since Eµg = σ2
f then the exponent is of the order of nmσ2

f , and because
nσ2

f ≥ 1 then there is an absolute constant c such that

Pr
{|g − Eµg| ≥ mEµg

} ≤ 2e−cm.

Using the previous lemma for p = 1/2 it follows that there are absolute constants
c and C such that c(Eµg1/2)2 ≤ Eµg ≤ C(Eµg1/2)2. Thus,

(Eµg
1
2 ) ≥ c(Eµg)

1
2 = c

( 1
n

Eµ

n∑

i=1

f2(Xi)
) 1

2 = cσf ,

as claimed.

Proof. Theorem 23] First, note that the upper bound holds, by applying Hölder’s
inequality. As for the lower bound, denote by E the expectation with respect to
the product measure νn = (ε × µ)n and set

H = n−1/2 sup
f∈F

|
n∑

i=1

εif(Xi)|.

Instead of applying Bernstein’s inequality, we will use its functional version (11),
for the random variable

Z = sup
f∈F

∣
∣

n∑

i=1

εif(Xi) − E

n∑

i=1

εif(Xi)
∣
∣ =

√
nH.

Using the notation of Theorem 13, σ2 = nσ2
F , and with probability larger than

1 − e−x,

1√
n

sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣ ≤ 2E

1√
n

sup
f∈F

∣
∣

n∑

i=1

εif(Xi)
∣
∣+ C

(
σF

√
x +

x√
n

)
,

for some absolute constant C. By our assumption, σF ≥ 1/
√

n, and by Lemma
12, σF ≤ cn−1/2

E supf∈F |∑n
i=1 εif(Xi)|. Thus, selecting x = m for some inte-

ger m, it follows that there is an absolute constant C such that with probability
larger that 1 − e−m, H ≤ CmEH. Hence,

Pr
{
H ≥ mEH

} ≤ e−cm,

for an appropriate absolute constant c. Using the same argument as in Lemma 11,
it follows that all the Lp norms of H are equivalent, which proves our assertion.
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