Books
-
M.Sc. thesis: On the farthest point problem. -
Ph.D. thesis: Mathematical
aspects of learning in Neural Networks. -
Advanced Lectures in Machine Learning, (S. Mendelson, A.J.
Smola Eds), LNCS 2600, Springer 2003.
-
Geometric Aspects of Functional Analysis, Israel
Seminar 2006-2010, Bo'az Klartag, Shahar Mendelson and Vitali D. Milman
Editors, Lecture notes in Mathematics 2050, Springer 2012.
Papers
-
S. Mendelson, On the size
of convex hulls of small sets, Journal of Machine Learning
Research 2, 1-18, 2001.
-
S. Mendelson, l-norm and
its application to Learning Theory, Positivity, 5, 177-191,
2001.
-
S. Mendelson, A new
on-line learning model, Neural Computation 13(4), 935-957,
April 2001.
-
S. Mendelson and I. Nelken, Recurrence
techniques in the analysis of neural networks, Neural
Computation 13(8) 1839-1861, August 2001.
-
S. Mendelson, Rademacher
averages and phase transitions in Glivenko-Cantelli
classes, IEEE Transactions on Information Theory, 48(1),
251-263, 2002.
-
S. Mendelson, Improving
the sample complexity using global data, IEEE Transactions on
Information Theory 48(7), 1977-1991, 2002.
-
S. Mendelson, Learnability
in Hilbert spaces with Reproducing Kernels, Journal of
Complexity, 18(1), 152-170, 2002.
-
P.L.
Bartlett, S. Mendelson, Rademacher
and Gaussian complexities: risk bounds and structural results
(extended version of conference paper (5)), Journal of Machine
Learning Research 3, 463-482, 2002
-
S. Mendelson, R. Vershynin, Entropy
and the combinatorial dimension, Inventiones Mathematicae,
152(1), 37-55, 2003.
-
S. Mendelson, A few
notes on Statistical Learning Theory,In Advanced Lectures
in Machine Learning, (S. Mendelson, A.J. Smola Eds), LNCS 2600,
1-40, Springer 2003.
-
S. Mendelson, Estimating
the performance of kernel classes, Journal of Machine Learning
Research, 4, 759-771, 2003.
-
G. Lugosi,
S. Mendelson, V.
Koltchinskii, A note
on the richness of convex hulls of VC classes, Electronic
communications in Probability, 8, 167-169, 2003.
-
S. Mendelson, G. Schechtman, The
shattering dimension of sets of linear functionals, Annals of
Probability, 32(3A), 1746-1770, 2004.
-
S. Mendelson, Geometric
parameters in Learning Theory. GAFA lecture notes, LNM 1850,
193-236, 2004.
-
S. Mendelson, P. Philips, On
the importance of "small" coordinate projections, Journal of
Machine Learning Research, 5(Mar), 219-238, 2004.
-
S. Mendelson, R. Vershynin, Remarks
on the geometry of coordinate projections in R^n, Israel Journal
of Mathematics, 140, 203-220, 2004.
-
F.
Barthe, O. Guedon,
S. Mendelson, A. Naor,
A
probabilistic approach to the geometry of the $\ell_p^n$ ball,
Annals of Probability, 33(2), 480-513, 2005.
-
S. Mendelson, Embeddings
with a Lipschitz function, Random Structures and Algorithms,
27(1) 25-45, 2005.
-
S. Mendelson, A. Pajor, N.
Tomczak-Jaegermann, Reconstruction
and subgaussian processes, CRAS 340(12) 885-888,
2005.
-
P.L.
Bartlett, O.
Bousquet, S. Mendelson, Local
Rademacher Complexities, Annals of Statistics, 33(4) 1497-1537,
2005.
-
B.
Klartag, S. Mendelson, Empirical
Processes and Random Projections, Journal of Functional Analysis,
225(1) 229-245, 2005.
-
S. Mendelson, A. Pajor, M. Rudelson, On the
Geometry of random {-1,1}-polytopes, Discrete and Computational
Geometry, 33(3) 365-379, 2005.
-
P.L.
Bartlett, S. Mendelson, Empirical
minimization, Probability Theory and Related Fields, 135,
311-334, 2006.
-
S. Mendelson, A. Pajor, On
singular values of matrices with independent rows, Bernoulli,
12(5), 761-773, 2006.
-
P.L. Bartlett, S.
Mendelson, Local
Rademacher complexities and empirical minimization, Annals of
Statistics, 34, 2657-2663,
2006.
-
S. Mendelson, J. Zinn, Modified
Empirical CLT's under only pre-Gaussian conditions, High
Dimensional Probability, in IMS lecture notes monograph series, vol 51,
173-184, 2006.
-
N. Linial, S. Mendelson, G. Schechtman, A.
Schraibman, Complexity
measures of sign matrices, Combinatorica, 27(4) 439-463,
2007.
-
S. Mendelson, A. Pajor, N.
Tomczak-Jaegermann, Reconstruction
and subgaussian operators in Asymptotic Geometric
Analysis, Geometric and Functional Analysis, 17(4), 1248-1282, 2007.
-
S. Mendelson, Lipschitz
representations of subsets of the cube, Proceedings of the AMS,
135, 1455-1463, 2007.
-
S. Mendelson, N.
Tomczak-Jaegermann, A
subgaussian embedding theorem, Israel Journal of Mathematics,
164, 349-364,
2008.
-
O. Guedon,
S. Mendelson, A. Pajor, N.
Tomczak-Jaegermann, Subspaces
and orthogonal decompositions generated by bounded orthogonal
systems, Positivity, 11(2), 269-283, 2008.
-
S. Mendelson, On
weakly bounded empirical processes, Math. Annalen, 340(2), 293-314, 2008.
-
S. Mendelson, A. Pajor, N.
Tomczak-Jaegermann, Uniform
uncertainty principle for Bernoulli and subgaussian ensembles,
Constructive Approximation, 28, 277-289,
2008.
-
Y.
Gordon, A. Litvak, S. Mendelson, A. Pajor, Gaussian
averages of interpolated bodies, Journal of Approximation
Theory, 149, 59-73,
2008.
-
S. Mendelson, Obtaining
fast error rates in nonconvex situations, Journal of Complexity,
24(3), 380-397,
2008.
-
S. Mendelson, Lower
bounds for the empirical minimization algorithm, IEEE
Transactions on Information Theory, 54(8) 3797-3803,
2008.
-
O. Guedon,
S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Majorizing
measures and proportional subsets of bounded orthonormal systems,
Revista Mathematica Iberoamricana, 24(3). 1075-1095,
2008.
-
G. Lecue, S. Mendelson, Aggregation
via Empirical risk minimization, Probability Theory and related
Fields, 145, 591-613, 2009.
-
S. Mendelson,
J. Neeman, Regularization
in Kernel Learning, Annals of Statistics, 38(1), 526-565, 2010.
-
G. Lecue, S. Mendelson, Sharper
bounds on the performance of the empirical minimization algorithm,
Bernoulli, 16(3), 605-613, 2010.
-
S. Mendelson, Empirical processes with a bounded
\psi_1 diameter, Geometric and Functional Analysis, 20(4) 988-1027, 2010.
-
P.L.
Bartlett, S. Mendelson, P. Philips, Optimal
sample based estimates of the expectation of the empirical
minimizer, ESAIM Probability and Statistics, 14, 315-337, 2010.
-
S. Mendelson, Discrepancy, Chaining and Subgaussian processes,
Annals of Probability, 39(3) 985-1026, 2011.
-
P. Bartlett, S. Mendelson,
J. Neeman,
\ell_1-regularized linear regression: Persistence and oracle inequalities,
Probability Theory and Related Fields, 154, 193-224, 2012.
-
G. Lecue,
S. Mendelson, General non-exact oracle inequalities in the
unbounded case, Annals of Statistics, 40(2), 832-860, 2012.
-
S. Mendelson,
G. Paouris,
On generic chaining and the smallest singular values of
random matrices with heavy tails, Journal of Functional Analysis,
262(9), 3775-3811, 2012.
-
G. Lecue, S. Mendelson, Optimality of the aggregate with exponential weights for low temperatures, Bernoulli, 19(2) 646-675, 2013.
-
G. Lecue, S. Mendelson, On the optimality of the empirical risk minimization procedure for the convex aggregation problem, Annales dIHP, 49(1), 288-306, 2013.
-
S. Mendelson,
G. Paouris,
On the singular values of random matrices, Journal of
the European Mathematical Society, 16, 823-834, 2014.
-
F. Krahmer,
S. Mendelson, H. Rauhut,
Suprema of chaos processes and the restricted isometry
property, Communications on Pure and Applied Mathematics, 67(11) 1877-1904, 2014.
-
Y.C. Eldar, S. Mendelson, Phase Retrieval: Stability and Recovery Guarantees, Applied and computational Harmonic Analysis, 26(3), 473-494, 2014.
-
S. Mendelson, A remark on the diameter of random sections of convex bodies, Geometric Aspects of Functional Analysis (GAFA Seminar Notes, B. Klartag and E. Milman Eds.), Lecture notes in Mathematics 2116, 395-404, 2014.
-
S. Mendelson, Learning without concentration, Journal of the ACM, 62(3), Article No. 21, 1-25, 2015. doi:10.1145/2699439.
-
V. Koltchinskii, S. Mendelson, Bounding the smallest singular value of a random matrix without concentration, International Mathematics Research Notices, Vol. 2015 (23), 12991–13008, 2015.
-
G. Lecue, S. Mendelson,
Minimax rate of convergence and the performance of ERM in phase recovery, Electronic Journal of Probability 20(57), 1-29, 2015.
-
G. Lecue, S. Mendelson, Performance of empirical risk minimization in linear aggregation, Bernoulli, 23(3) 1520-1534, 2016.
-
S. Mendelson, Upper bounds on product and multiplier empirical processes, Stochastic Processes and their Applications, 126(12), 3652–3680, 2016.
-
S. Mendelson, Dvoretzky type theorems for subgaussian coordinate projections, Journal of Theoretical Probability, 29(4), 1644-1660, 2016.
-
G. Lecue, S. Mendelson, Learning subgaussian classes: Upper and minimax bounds, Topics in Learning Theory - Societe Mathematique de France, (S. Boucheron and N. Vayatis Eds.), to appear (37 pages).
-
G. Lecue, S. Mendelson, Sparse recovery under weak moment assumptions, Journal of the European Mathematical Society, 19(3), 881-904, 2017.
-
S. Mendelson, On multiplier processes under weak moment assumptions, Geometric aspects of Functional Analysis, Lecture notes in Mathematics, 2169 301–318, Springer, 2017.
-
S. Mendelson, On aggregation for heavy-tailed classes, Probability Theory and related fields, 168(3), 641-674, 2017.
-
S. Mendelson, Local vs. global parameters - breaking the gaussian complexity barrier, Annals of Statistics, 45(5), 1835-1862, 2017.
-
G. Lecue, S. Mendelson, Regularization and the small-ball method II: complexity dependent error rates, Journal of Machine Learning Research, 18(146), 1-48, 2017.
-
G. Lecue, S. Mendelson, Regularization and the small-ball method I: sparse recovery, Annals of Statistics, 46(2), 611-641, 2018.
-
S. Mendelson, Learning without concentration for a general loss function, Probability Theory and Related Fields, 171(1), 459-502, 2018.
-
S. Mendelson, Column normalization of a random measurement matrix, Electronic Communications in Probability, 23, article 13, 1-8, 2018.
-
S. Mendelson, H. Rauhut, R. Ward, Improved bounds for sparse recovery from subsampled random convolutions, Annals of Applied Probability, 28 (6), 3491-3527, 2018.
-
G. Lugosi, S. Mendelson, Sub-Gaussian estimators of the mean of a random vector, Annals of Statistics, 47(2) 783-794, 2019.
-
S. Mendelson, E. Milman, G. Paouris, Generalized Sudakov via Dimension Reduction - A Program, Studia Math., 244, 159-202, 2019.
-
G. Lugosi, S. Mendelson, Regularization, sparse recovery and median-of-means tournaments, Bernoulli, 25(3), 2075-2106, 2019.
-
G. Lugosi, S. Mendelson, Near-optimal mean estimators with respect to general norms, Probability Theory and Related Fields , 175(3-4), 957-973, 2019.
-
G. Lugosi, S. Mendelson, Mean estimation and regression under heavy-tailed distributions – a survey, Foundations of Computational Mathematics, 19(5), 1145-1190, 2019.
-
S. Mendelson, An unrestricted learning procedure, Journal of the ACM, 66(6), art 42, 2019 (44 pages).
-
G. Lugosi, S. Mendelson, Risk minimization by median-of-means tournaments, Journal of the European Mathematical Society, 22(3), 925-965, 2020.
-
S. Mendelson, On the geometry of random polytopes, Geometric aspects of Functional Analysis, Lecture notes in Mathematics, Lecture notes in Mathematics 2266, 187-198, 2020.
-
S. Mendelson, N. Zhivotovskiy, Robust covariance estimation under L_4-L_2 norm equivalence, Annals of Statistics, 48(3), 1648-1664, 2020.
-
S. Mendelson, Approximating the covariance ellipsoid, Communications in Contemporary Mathematics, 22(8) 1950089, 24 pages, 2020.
-
G. Lugosi, S. Mendelson, N. Zhivotovskiy, Concentration of the spectral norm and Erdos-Renyi random graphs, Bernoulli, 26(3), 2253-2274, 2020.
-
S. Mendelson, Extending the scope of the small-ball method, Studia Mathematica, 256(2), 147-167, 2021.
-
G. Lugosi, S. Mendelson, Robust multivariate mean estimation: the optimality of trimmed mean, Annals of Statistics, 49(1), 393-410, 2021.
-
S. Dirksen, S. Mendelson, Robust one-bit compressed sensing with non-gaussian measurements, Journal of the European Mathematical Society, 23(9), 2913-2947, 2021.
-
S. Mendelson, Learning bounded subsets of L_p, IEEE Transactions on Information Theory, 67(8), 5269-5282, 2021.
-
S. Mendelson, Approximating L_p unit balls via random sampling, Advances in Mathematics, vol 386, article 107829, 2021.
-
O. Guedon, F. Krahmer, C. Kummerle, H. Rauhut, S. Mendelson, On the geometry of polytopes generated by heavy-tailed random vectors, Communications in Contemporary Mathematics, 24(3), article 2150056, 2022.
-
S. Mendelson, Column randomization and almost-isometric embeddings, Information and Inference: A journal of the IMA, https://doi.org/10.1093/imaiai/iaab028, 2022.
-
D. Bartl, S. Mendelson, On Monte-Carlo methods in convex stochastic optimization, Annals of Applied Probability, 32(4) 3146-3198, 2022.
-
D. Bartl, S. Mendelson, Random embeddings with an almost gaussian distortion, Advances in Mathematics, 400, article 108261, 2022.
-
S. Mendelson, An isomorphic Dvoretzky-Milman Theorem using general random ensembles, Journal of Functional Analysis, 283(2), article 109473, 2022.
-
S. Dirksen, S. Mendelson, Robust one-bit compressed sensing with partial circulant matrices, Annals of Applied Probability, 33(3), 1874-1903, 2023.
-
G. Lugosi, S. Mendelson, Multivariate mean estimation with direction-dependent accuracy, Journal of the European Mathematical Society, to appear (40 pages).
-
S. Dirksen, S. Mendelson, A. Stollenwerk,
Sharp estimates on random hyperplane tessellations, SIAM Journal on Mathematics of Data Science, 4(4), 1396-1419, 2022.
-
S. Mendelson, G. Paouris, Stable recovery and the coordinate small-ball behaviour of random vectors, Geometric aspects of Functional Analysis, Lecture notes in Mathematics, to appear (26 pages).
-
S. Dirksen, S. Mendelson, A. Stollenwerk,
Fast metric embedding into the Hamming cube, SIAM Journal on Computing, 53(2), 315-345, 2024.
-
D. Bartl, S. Mendelson, Optimal non-gaussian Dvoretzky-Milman embeddings, International Mathematics Research Notices, 10, 8459-8480, 2024.
Preprints
-
D. Bartl, S. Mendelson, Structure preservation via the Wasserstein distance, (31 pages).
-
D. Bartl, S. Mendelson, On a variance dependent Dvoretsky-Kiefer-Wolfowitz inequality, (17 pages).
-
D. Bartl, S. Mendelson, A uniform Dvoretzky-Kiefer-Wolfowitz inequality (32 pages), (32 pages).
-
A. S. Bandeira, A. Maillard, S. Mendelson, E. Paquette, Fitting an ellipsoid to a quadratic number of random points, (17 pages).
-
P. Abdalla, S. Mendelson, Covariance estimation with direction dependence accuracy, (37 pages).
Book chapters, conference proceedings and other publications
-
S. Mendelson, N. Tishby, Statistical
Sufficiency for classes in empirical L2
spaces, Proceedings of the 13th annual conference on
Computational Learning Theory COLT00, 81-89, 2000.
-
S. Mendelson, Geometric
Methods in the Analysis of Glivenko-Cantelli
Classes, Proceedings of the 14th annual
conference on Computational Learning Theory COLT01, 256-272,
2001.
-
S. Mendelson, Learning
Relatively Small Classes, Proceedings of the
14th annual conference on Computational Learning Theory
COLT01, 273-288, 2001.
-
P. L.
Bartlett, S. Mendelson, Rademacher and
gaussian complexities: risk bounds and structural results,
Proceedings of the 14th annual conference on Computational
Learning Theory COLT01, 224-240, 2001.
-
S. Mendelson,
R.C. Williamson, Agnostic learning of non-convex classes of
functions, Proceedings of the 15th annual conference on Computational
Learning Theory COLT02, 1-13, 2002.
-
S. Mendelson, R. Vershynin, Entropy,
combinatorial dimensions and random averages, Proceedings of
the 15th annual conference on Computational Learning Theory COLT02,
14-28, 2002.
-
S. Mendelson, Geometric
parameters of kernel machines, Proceedings of the 15th
annual conference on Computational Learning Theory COLT02, 29-43,
2002.
-
P.L.
Bartlett, O.
Bousquet, S. Mendelson, Localized
Rademacher Averages, Proceedings of the 15th annual conference on
Computational Learning Theory COLT02, 44-58, 2002.
-
S. Mendelson, P. Philips, Random
subclass bounds, Proceedings of the 16th annual conference on
Learning Theory COLT03,
Lecture Notes in Computer Sciences 2777, Springer, 329-343,
2003.
-
P.L.
Bartlett, S. Mendelson, P. Philips, Local
complexities for empirical risk minimization, Proceedings of the
17th annual conference on Learning Theory COLT04, Lecture Notes in Computer Sciences 3120, Springer,
270-284, 2004.
-
S. Mendelson, A. Pajor, Ellipsoid
approximation with random vectors, Proceedings of the 18th annual
conference on Learning Theory COLT05,
Lecture Notes in Computer Sciences 3559, Springer, 429-433,
2005.
-
S. Mendelson, On
the limitations of embedding methods,Proceedings of the 18th
annual conference on Learning Theory COLT05, Lecture Notes in Computer Sciences 3559, Springer, 353-365,
2005.
-
S. Mendelson, Learning without Concentration,Proceedings of the 27th
annual conference on Learning Theory COLT14, Journal of Machine Learning Research – Workshop and Conference Proceedings, 35, 25-39, 2014.
-
D. Bartl, S. Mendelson, On a variance dependent Dvoretsky-Kiefer-Wolfowitz inequality, (17 pages).
|