Exercise 1

1. Find the tangent cone to The set S at x_0 where

 (a) $S = \{ x^2 + y^2 \leq 1 \}, \quad x^T_0 = [0, 0]$.

 (b) $S = \{ x^2 + y^2 \leq 1 \}, \quad x^T_0 = [0, -1]$.

 (c) $S = \{ x^2 + (y + 1)^2 \leq 2 \} \cap \{ y \geq 0 \}, \quad x^T_0 = [-1, 0]$.

2. Use multiplier conditions to solve

 \[\min \{ |x| + |y| \} \]

 subject to

 \[S = \{ ax + by = c, \quad x + y \geq 0 \} \]

 as functions of a, b, c.

3. Use Farkas lemma to derive multiplier conditions in the case that the (convex) problem data is differentiable.