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Preface

Introduction

Least squares, associated with the names of Gauss and Legendre, and max-
imum likelihood, developed into a systematic technique by R.A. Fisher, are
commonly used tools in the analysis of experimental data in cases where an
underlying theory suggests that parametric modelling techniques are appro-
priate. The material presented here provides information concerning com-
putational procedures available for the estimation of parameters by these
techniques given appropriate experimental data . Basic to these applications
is an assumed system model

F(t,x,8,u) =0,

where the exogenous variable t fixes the point at which the corresponding
observation is made - it could, for example, be the scalar variable time, x
gives the values of the variables describing the corresponding system state,
3 is a constant vector of parameters which serves to distinguish this system
realisation from other members of the class of possible implementations of
the underlying model, and u is the vector of outputs which provide functions
of the state information that can be observed. The problem of interest is that
of estimating the parameter values B8 and thus identifying the particular real-
isation under consideration given the results of a given set of n observations
u(t;),i=1,2,--- ,n . In most cases considered the model will be explicit
in the sense that the observed output is expressed as a function of the input
data and the system state. That is F' has the form

u(t) =G (t,x,0).

In the examples considered here F' will be given by a functional expression
(linear or nonlinear) of the system variables or will be determined by the
numerical integration of a system of differential equations.

The aspect of the estimation problem which provides the particular em-
phasis in these notes is the further assumption that the experimental data
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obtained by making measurements of the system outputs are contaminated
by noise, typically additive in form and with known probability distribution.
That is the observed quantities at t = t; have the representation

Y1:u(tl)+€177’:172 , 1,

where the g; are random variables. For our purposes €; will be assumed to
have bounded covariance matrix and €; and €; will be assumed independent if
1 # j. The form of distribution of €; proves to be important in the selection of
the estimation procedure. The above assumptions are sufficient for successful
application of least squares [52] while there are advantages in efficiency to be
gained in maximising the likelihood when the form of distribution is known.

There is an intended method behind this presentation. Chapters 1 and
3 give an overview of the problem settings of the basic least squares and
maximum likelihood procedures. The least squares problem in chapter 1
links Gauss-Markov theory, best linear prediction in stochastic models, and
filtering and smoothing via the Kalman Filter. Here models are linear, and
Hilbert space theory provides an elegant geometric picture. The maximum
likelihood methods considered in Chapter 3 are going to lead to nonlinear
estimation problems except in the case of linear models and Gaussian errors.
Their justification is based on the concept of consistency which comes with
the idea that the computed parameter estimates 3, — 3" in an appropriate
probalistic sense where 3, is the estimate from the n’th set of experimental
data, where the number of observations per set tends to oo as n — oo, and
where 3 is the true parameter vector. This requires the following assump-
tions:

1. the model provides an exact description of the observed process;
2. the nature of the data collected is appropriate; and

3. the manner in which the data is collected can be described asymptoti-
cally as the number of observations tends to oc.

The key tool used in developing the consistency results in this chapter and
in Chapter 5 is the Kantorovich development of Newtons method [66].
Both chapters 1 and 3 are followed by chapters which describe appropri-
ate classes of associated numerical algorithms in some detail. However, there
is a presumption that the estimation problems lead to dense linear algebra
formulations. Chapter 2 treats classic least squares methods such as the
Choleski factorization of the normal matrix and orthogonal transformation
of the design together with the related surgery to permit the adding and
removing of observations in updating procedures. Methods for generalised
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least squares include the generalisation of orthogonal techniques provided
by V-invariant transformations. Methods are described for both information
and covariance settings for the Kalman Filter and include a covariance imple-
mentation which provides a square root implementation for both filter and
smoother. The key computational result developed in Chapter 4 is that the
Gauss-Newton algorithm has seriously advantageous properties including an
asymptotically second order rate of convergence as n — oo, strong transfor-
mation invariance, and genuinely powerful global convergence characteristics.
All this is based on the framework used in the discussion of consistency which
means that it is developed under the indicated assumptions. These refer to
an ideal situation which can only be approximated in much modelling work,
but it does serve to indicate what could be described as “best practice”.

Chapter 5 deals with the estimation of differential equations and presents
parallel development of both basic properties and algorithmic aspects for
the two main types of estimation procedure — embedding and simultaneous.
The numerical integration of the differential equations means that the like-
lihood, which is required explicitly in the embedding method, can only be
evaluated approximately, and this provides a new feature. The integration is
performed here courtesy of the trapezoidal rule which has well known stabil-
ity advantages and proves more than accurate enough given non-trivial data
errors. However, because the likelihood is now only evaluated approximately,
it becomes necessary to show this approximation doesn’t alter significantly
the results obtained for exact likelihoods. Maximum likelihood can be used
directly with the embedding methods for which Gauss-Newton provides a re-
liable workhorse, but it appears more indirectly in the simultaneous approach
where the necessary conditions involve Lagrange multipliers as a result of the
treatment of the differential equation as constraints on the estimation pro-
cess. The unifying feature is a consequence of the identity of results produced
by the two methods. In the simultaneous method there is a possible analog of
the Gauss-Newton method in which second derivatives are deleted from the
augmented matrix in the quadratic programming steps. This Bock iteration
can be shown to be asymptotically second order only if the observational
errors are strictly Gaussian, a weaker result than that for Gauss-Newton in
the embedding method .

The final chapter discusses certain aspects of nonparametric approximat-
ing families developed from linear stochastic differential equations obtained
by adding a random walk process with strength A to a given linear sys-
tem of differential equations. The best known examples include both splines
[T09)and g-splines [113]. The Kalman filter subject to a diffuse prior proves
to be a suitable tool for fitting these families to observed data and estimat-
ing the strength parameter A\. This suggests a possible approach to model
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selection from a given hierarchy of differential equation models in which the
sequence of strength parameter estimates are compared with zero using an
information criterion such as AIK or BIK.
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Chapter 1

The Linear Least Squares
Problem

1.1 Introduction

The linear least squares problem has become the starting point for most
introductory discussions of system modelling in which the potential presence
of data errors is admitted. It has the generic form

mxianr; r=Ax—b. (1.1.1)
where the design matrix A : R — R", the residual and observation vectors
r, b € R", and the vector of model parameters x € RP. This is a simple op-
timization problem subject to equality constraints, and it will be convenient
to refer to these constraints as the model equations . Typically p will be
fixed corresponding to an assumed known model or at least a priori bounded
in variable selection calculations, while n which controls the amount of data
available will usually be assumed ”large enough” to reflect the situation that
“more” is “better” in most practical situations. Based on these assumptions,
limiting processes will most often be concerned with p fixed and n — oc.

Remark 1.1.1 Let x' = Tx be a linear (contravariant) transformation of x.
Then the equation defining the residual vector r in transforms to

r=AT'x' — b.

That is the rows of A transform covariantly. In this sense equation
15 invariant under diagonal rescaling of x, and only trivially modified by
multiplication by a scalar. Thus it possible to impose scaling that makes
quantities in commensurate. For example, diagonal rescaling of x

11



12 CHAPTER 1. THE LINEAR LEAST SQUARES PROBLEM

allows the scaling of the columns of A and scalar multiplication scales the
right hand side so that it is possible the satisfy the conditions

1 1
— [[Aull=1,i=1,2,--- ,p, —|b][ =1
=l =1 p. = b
where the norm is the usual euclidean norm.

The necessary conditions for a minimum for the sum of squares in (|1.1.1]
give
0= V.r'r=2r"A (1.1.2)

Substituting for r from ((1.1.1)) gives the normal equations
ATAx = A™b. (1.1.3)

This system defines the least squares estimator x™ and the corresponding
residual vector r™ uniquely provided the design matrix A has full column
rank p, and a strengthened form of this condition will usually be assumed.
An important modelling context in which the linear least squares problem
arrises is the following. Assume noisy observations are made on a system at
a sequence of configurations labelled by a reference variable ¢t;,7 =1,2,--- ,n
which could be time. Let the data collected from this investigation be sum-
marised as
bz‘ :y(tz>+5u 1= 172,"' , N, (114)

where y(t) is the error free signal (true model) which is assumed to be
expressible in parametric linear form as

y(t) = fo@-(t), (1.1.5)

the z7,7 = 1,2,--- ,p, are the (hypothesised) true parameter values, and
the &; are random variables summarising the noise in the observations. A
standard assumption would be that the ¢; are independent and have a normal
distribution with mean 0, and standard deviation o (¢ «~ N(0,0%I)). In this

case
AZ]:¢](tl)7 ]:1,2’ , D, Z:1,2, , M.

It is important to know how the estimate x of x* given by behaves as
the number of observations made in the investigation increases without limit
because this permits statements to be made about rates of convergence of the
parameter estimates to their true values. This is not just a theoretical point
because it provides information on how much data needs to be collected in
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order to be able to predict the model structure with confidence and so is
directly relates to the practicality of the measurement exercise. It is also
important to know how the computational algorithm chosen to solve
will behave on large data sets. In this connection, the first point to make
is that a systematic process of designed experiments capable of automation
is required to generate the values of the reference variable ¢; and record
the observations b; associated with large data sets. In this sense there is
a requirement for a sequence of designed experiments . The nature of this
recording process must depend on the nature of the system being observed.
Here two cases are distinguished:

1. The system has the property that after a finite horizon for the labelling
variable ¢ no further information on model structure is available. One
case corresponds to signals decaying to zero. Such processes are called
transient and can be expected to have relatively simple stability proper-
ties with imposed perturbations also dying away. However, the case of a
finite observation window dictated by external factors is also included.
Such systems may be required to be controlled, and may have much
more complicated stability properties. The refinement process needed
to increase the amount of information available is one in which indepen-
dent trials are performed to obtain data for an increasing sequence of
values of n. Usually it will be convenient to assume that transient pro-
cesses correspond to measurements in the interval [0, 1]. Here the use
of the descriptor systematic is interpreted to mean that the successive

sampling regimes generate sequences of points {tﬁ”’, 1=1,2,-- n} for
increasing values of n associated with a limiting process such that

%Zf(tl(")) — /0 f()dw(t), n — oo, (1.1.6)

holds for all sufficiently smooth f(t) (f(¢t) € C[0, 1] for example) where
w(t) is a weight function characteristic of the sampling regime. The left
hand side in (1.1.6)) can be interpreted as a simple quadrature formula
. For example, w(t) =t in the two cases:

(a) The t; are equispaced. The corresponding quadrature error for
smooth enough f(t) is strictly O(1/n).

(b) The t; are uniformly distributed in [0,1]. The corresponding

quadrature error is asymptotically normally distributed with vari-
ance O (1/n).
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A sampling scheme for estimating a transient system satisfying this
requirement for a designed experiment is called regular to stress that
there is a sense in which the quadrature error is o(1) asymptotically
as n — oo. The above example shows that regular sampling may
require different interpretations in different settings. It will be tacitly
assumed that w(t) has no intervals of constancy so that asymptotically
the observation points fill out [0, 1].

2. The system is persistent in the sense that observations made for arbi-
trary large values of ¢ provide useful information on model structure.
Often it is the case that system behaviour is largely independent of
the time at which measurement commences. Here there may be no
a priori reason for carrying out the graded sequence of experiments
characterising the transient case, and the conceptually simplest sam-
pling procedure keeps incrementing ¢ by a constant amount so that
t; = 1A, i =1,2,---. In this case difficulties may occur because the
fixed sampling interval could have problems in resolving signals of too
high a frequency. In nonlinear problems (for example, relaxation oscil-
lations) the stability properties of the linearized model equations can
be relatively complicated.

Now assume that the design matrix in (1.1.1]) is constructed in association
with a regular sampling scheme. Then the regularity condition gives

n

1 n)T 4(n 1 & n n
SATAR = 3 ai)6(0”)
k=1

%Amwmwwd% (1.1.7)

This shows that for large n the normal matrix is approximately proportional
to the Gram matrix G : R — RP determined by the weight function asso-
ciated with the sampling procedure. The following result is immediate, and
sets the paradigm for the form of the rank assumptions that will be made on
the sequence of design matrices A™.

Lemma 1.1 Let 0;(A™), i =1,2,--- ,p be the singular values of A™, and
let the corresponding eigenvalues of G be \;;, 1 =1,2,--- p. Then

oi(A™) = (n\)Y2, n — oco. (1.1.8)

If G is positive definite, then A™ has full rank for all n large enough.
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p | k(G) ta(p)
2 119301 |1

3 1524022

4 [ 15504 |4

5 | 47705 |5

6 | 15007 |7

7 | 47508 | 8

8§ | 15310 |10

9 (4921111
10 | 1.60 13 | 13

Table 1.1: Condition number for leading segments of the Hilbert matrix

Example 1.1.1 Consider the case of polynomial regression :

¢Z(t) = ti_1> L= 1727 LD

and the regqular sampling scheme corresponding to choosing the values of the
labelling variable to be equispaced:

1

(n) _ ¢, (n) 3(n) _
t = 1A h\" =
(A (Z ) ) n 1

It is easy to verify this sampling scheme is reqular by noting that
corresponds to a rectangular quadrature rule with weight function w(t) = t.
This gives

1

Gij=——,
T4 —1

1<i4,75 <p.

The Gram matrix can be identified with the p X p principal minor of the
Hilbert matrixz . While this is known to be positive definite for all finite p, it
15 also known to be notoriously ill conditioned. That is the condition number

K(G) = GIH|GH|

15 desperately large. This 1s illustrated in Table where the entries are in
floating point notation and have been rounded to three significant figures.

Remark 1.1.2 The connection of reqular sampling schemes with potentially
il conditioned limiting matrices raises interesting questions about our ability



16 CHAPTER 1. THE LINEAR LEAST SQUARES PROBLEM

to obtain information on model parameters even assuming we start with a
true model. To explore this further let A™ have the orthogonal factorization

An =g o ] [ U(()") }

(1.1.9)
where Q™ : R — R" is orthogonal, and U™ : R? — RP is upper triangular.
Construction of such a factorization is described in the next chapter. Let
e« N(0,02I). Then

x(M — x* = U(")AQYL)T&:,

_(Lyw) Lgmr,
v vt

It follows from the orthogonality of the rows of an)T that the components of

Qg")Ta are also independent random variables with distribution N(0,0?). If
G is bounded, positive definite then

Lymrym _ @
n )
so that the term —=

WU(”) tends to a Cholesky factor and hence is bounded

in norm as n — oo. It follows that x™ — x* has a distribution which is
multivariate normal with mean zero and variance

(n) * 1 (n) g WT__1 0 L 1 (n) -
Vi xyme () praeal g (0) )

2 —1
_7 (lA(n)TA(n)) ’

n \n
2
o _

— =G n— oo
n

It is instructive to write this result in the approximate form, valid for n large

enough,
vn (x(”) — X*) “ N (O,aszl) :

This can be interpreted as showing a rate of convergence of x™ to x* of
@) (n_l/Q). Howewver, it also indicates that the discrepancy involves a ran-
dom component, and that the spread of the distribution, and hence the size
of confidence intervals for the components of x™, depends on the elements
of the inverse of G. The implications of this is indicated in the third col-
umn of Table which records t,(p), the power of 10 such that the order
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of magnitude of n gives |G| /n = 1. This can be bounded easily for the
range of values of p considered as 1 < ||G|| < 2 . The significance of this
value of n is that the spread of the resulting random variable is determined
by o, the scale of the error in the observations. To gain any improvement
in the parameter estimates obtained from the measurements made in a single
experiment larger values of n are required.

Exercise 1.1.1 Verify the form of w(t) for the particular cases (a) equis-
paced observation points, (b) uniformly distributed observation points, and
(c) observation points chosen as zeros of T, the Chebyshev polynomial of
degree n shifted to the interval [0,1]. Which set leads to the best conditioned
Gram matriz?

1.1.1 Under- and over-specified models

While the presumption that the posited model is correct is a valid working as-
sumption in many circumstances there are also important situations in which
an appropriate form of model is the question of major interest. Examples
include:

1. Exploratory data analysis where the question asked is can the observed
data of interest be explained adequately by a model based on a selection
of terms from available covariate data.

2. Model economisation where a complex interacting system needs to be
explained in terms of a dominant set of reactions for purposes of efficient
control.

There are two basic approaches to developing suitable models in these cases:

1. To start with a minimal (typically underspecified) model and add de-
sign variables which meet a test of effective explanatory power until an
adequate representation of the data is obtained.

2. To start with a maximum (typically overspecified) model and delete
ineffective variables until an appropriate economy has been achieved.

The second approach is more likely to run into computational problems when
the Gram matrix G corresponding to overspecified models is illconditioned.
On the other hand, the first approach is forced to make decisions on infor-
mation obtained from inadequate representations of the data.
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To illustrate an underspecified model , let the true model be
b=[A B] {X*]—a
y

where A constitutes the columns of the underspecified design and € «~ N (0, 021).
Let an orthogonal factorization of the true design be

Ul U12
[A B]=[Q Q Q]| 0 U
0 0

The underspecified problem is
mins’s; s = Ax — b,
X
and has solution

X =U;'Q7b,
1T X*
oarfia 3]

so that
X-x"=U7'QT {By" —€}.
The estimate X is necessarily biassed unless QT B = 0 - that is the additional
columns of the true design are orthogonal to the columns of the underspecified
design.
To illustrate an overspecified model let the true model be

b = Ax™ — ¢,

and let the overspecified design matrix be [ A B } Then the overspecified
problem is

min sls;s=[ A B]{X_X*]Jrs
N

{i—x*}__[Ufl —U;lUmU;lH lTs]

y ] 0 Uy 2€

so that

~

Here [ ; is an unbiassed estimator of [ )6

ifesting itself in the determination of ¥ by the noise. The variance of the

*

, but there is overfitting man-
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estimator X is increased by comparison with x(:

Vi{x} = Uurte {{Q1T€—U12§} {Qipe—Ulﬁ}T} Ut
= o {UflUfT + 21571,
=y {X(”)} + 0% Z19 21,

where

Ziy = U UpU

Again the exceptional case corresponds to

Ul 2

0=V =0TV =UTQT [ @ Q2] |

} = A"B.

That is to the case of mutually orthogonal sets of design variables.

Exercise 1.1.2 Verify in detail the computation of the means and variances
of the solution variables in both the under- and over-determined cases.

1.1.2 Stepwise regression

Stepwise regression constitutes an important application of the above ideas
to model exploration. Here a set of possible explanatory variables A,;, i =
1,2,---,p, is given, and it is required to find an efficient subset for repre-
senting a given data vector. A tentative model is summarised by an index
set o with |o| = k,

o={c(1),0(2),---0(k)},

which points to the columns of the current design A? in the sense that o (7)
holds the column number in A of the column currently in the ¢’th position in
A?. We let the solution of the corresponding least squares problem be r?, x”
and seek to test the effectiveness of the variable A,,, where m = o (j). It is
convenient to swop the variable in question to the last position so that the
design matrix becomes

AP, = [ A™ A, ]

where A™ is the partial design matrix which results when columns j and & of
A? are exchanged and then AJ, = A, omitted. Here P, is the permutation
matrix which interchanges columns 7, k. Let the “hat matrix”

H™ = A™ (A™T A7)~ AmT (1.1.10)
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be the projection onto the range of A™. If r™ is the vector of residuals corre-
sponding to the solution x" of the least squares problem with design matrix
A™ then straightforward calculations give

xm _ Ay (I—H™)b (AmTAm)_l AT A,

o T AT (I—H™)Aum
Ppx” = 7 AN . (1.1.11)
_ 1
(A7T A7) = (1.1.12)

i AL (I —H™) A’

2 o\ 2
fp ) = ey - em U= HD)_ (25) (1.1.13)
AL (1= H™) A, (A7)

These formulae provide a basis both for entering a single variable into the
current selection and for deleting a single variable from the current selection.
Typically this is done by testing the hypothesis Hy : 0 by computing
the t statistic

g __

J

g
}%‘

- 1/2°
oT Ao\—1
(s (Carran;}))
where s, is the current estimate of variance
o112
_ 7l

So = Cdf

where ndf is the effective degrees of freedom. Equivalently the corresponding
F statistic could be used.
There are two important shortcomings with this procedure [70]:

1. This procedure cannot be guaranteed to give best subsets in any global
sense. In particular, it is easy to construct examples in which the best
subset of £ variables does not contain the best subset of k—1 variables.

2. The procedure is open to the criticism of selection bias if the same
data is used both in the selection of the model and in subsequent data
analysis.

Exercise 1.1.3 1. Verify the update equations (1.1.11-|1.1.15).
2. Construct an example in which the best set of two variables does not
contain the best single variable set.
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--—---"“"_"j =1 [D }
k

&m

Il =%

Table 1.2: The [; norm provides a mechanism for variable selection

1.1.3 The lasso

The lasso provides an interesting alternative to stepwise regression [104], [79].
Here the basic problem solved is

I S

min — ||r||”.

]I, <x 2
The method uses properties of the [; norm illustrated for a two variable
problem in the following figure. The constraint region centred on the origin
has the characteristic form appropriate to the /; norm and is scaled by x. It
just touches the critical ellipsoidal contour of 3 |r||> where it intersects the
2o axis. It follows that z; = 0 so that only the second function is selected in
this example.

This pattern of selection is followed in general. The analogue of the
stepwise regression procedure proves to be a piecewise linear homotopy which
steps from k = 0 to k = ||X||; where X is the unconstrained minimizer of
%||r||2 Each slope discontinuity that occurs as k is increased corresponds
to addition or deletion of (generically) just one component variable to the
selected set. As k is further increased this new selection moves away from
zero initially. In contrast to stepwise regression, the lasso has the advantage
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of optimality for each point of the homotopy trajectory. It has the current
disadvantage that statistical testing of the estimates is not well developed.

1.1.4 The case of an intercept term

In the case that the design matrix can be partitioned in the form
A=|e A ] (1.1.14)

then the intercept variable corresponding to the column of 1’s can be removed
from the computation and its value then determined by solving a reduced
problem involving one fewer variable. Here it is said that the model contains
an intercept term. Models of this form are common in statistical computa-
tion. The reduction argument is as follows. Let r(™ be the optlmal residual
vector. Then it is a consequence of the necessary conditions ) that

AT = 0 = eTr™ = 0.
= (I - P)r™ =r™

where P = eel /n is a projection matrix. Now consider the linear least
squares problem based on the linear model

s=Ay—b
where
A=(I-P)A = [ A*i—%e ol i=2 .,
el
b—(I-P)b —=b- e,
n
The design matrix for this reduced problem has full rank if and only if A

has full rank. Now (I — P)s = s by construction so that, if z™,s™ is the
optimal solution, then

_ T
Al = AT — [ ZT } st =0,

1

Also
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It follows that

r ()
) g ) | T (b -2 A*z’ZFl)
Z(n)

solves (|1.1.1). The operation of removing the mean values from the com-
ponents of the columns of A; and of the right hand side b is called centring

1.2 The generalised least squares problem

The simplest step beyond the assumption that the errors have a standard
normal distribution corresponds to the assumption that the ; have the mul-
tivariate normal distribution

e N(O,V), (1.2.1)

where V =& {EET} is the variance covariance matrix (assumed for the mo-
ment to be nonsingular and therefore positive definite). It follows that

e=V"1%  N(0,1),
and this permits the transformed linear model
T=V"124(x—x") —F,

to be identified with the previous discussion of the linear least squares prob-
lem. Substitution leads to the generalised least squares problem

minr’ Vlr; r = Ax — b. (1.2.2)
The necessary conditions for this problem are
r’VIA=0,
giving the linear system determining x™ in the form
ATV Ax = ATV . (1.2.3)

The corresponding distributional results are that x(™ —x* has a multivariate
normal distribution with

& {x(”) —x"} =0,

1(1 -
V{x"-x} = - {EATv—lA} :
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In practice the above requirement that V' is invertible is often associ-
ated with the implication that it makes good computational sense to invert
the corresponding Choleski factors V' = LL” where L is lower triangular.
The computation of this factorization is discussed in Chapter 2. However,
this strategy does not always make good sense, and an alternative approach
which weakens the condition that V' is stably invertible can be based on the
constrained formulation

rgli(n s's; Ls = Ax — b, (1.2.4)
where LLT =V and r = Ls. Note that this provides an alternative interpre-
tation of the transformation of random variables

e=~Le, e~ N(0,1)

considered above. The two formulations are clearly equivalent when L is
nonsingular and the revised formulation has the potential to make sense
in at least some cases of singular V. Note that a sufficient condition for
the constraint equation to be consistent is range {[ L A }} = R" so that
(1.2.4)) makes sense for arbitrary right hand side b. The necessary conditions

for (1.2.4) are
[sT 0]=A"[L -A],

where A is the vector of Lagrange multipliers . Eliminating s between the
necessary conditions and the constraint equations gives

LLT —A Al | -b

AT 0 x| | 0 |
This system can be well determined even when V' is singular. Transforming
this system using the orthogonal factorization of A (1.1.9)) gives

U

T o T _NT

ove -] [ ]9 ey
-[U" 0] 0

In certain circumstances this factorization provides an effective way of solving

the augmented equations . Tt is called the null-space method in [73]. Setting

ove=| | e[ 3]
then the solution is given by:
A =0,
A2 = —Vp'Qyb,
x" = U{Qfb - VsV, ' Q3 b} . (1.2.6)



1.2. THE GENERALISED LEAST SQUARES PROBLEM 25

Condition 1.1 This shows that sufficient conditions for to have a

well determined solution are

1. U is stably invertible . This would appear to be a natural condition to
want to satisfy in any controlled modelling situation.

2. QTVQ, is well conditioned.
The corresponding form for the covariance matrix is
V{x"W} = U {Vii = Vig Vo' Vau f U T

One application of this result is to equality constrained least squares .
Consider the problem

0 0 A b
T k _ 1 B 1
mins”s; { 0 I, } s = { A, } X [ by } , (1.2.7)
where 0y is a k X k zero matrix. This corresponds to a least squares problem

with k equality constraints where these consist of the first k equations with
constraint matrix A;. Here the augmented matrix in (1.2.5)) has the form

0 0 —Ay
0 ]n—k _AQ
[—AT —A7] 0

when k£ < p, and the requirement that this is nonsingular is the condition
for a well determined problem. Note that the placement of the constraint
equations is significant in ensuring Va9 is nonsingular [41]. This connects with
the argument for row pivoting in solving penalised least squares problems
given in [90]. This approach considers the problem

X

—2
mian[Py I }r;r:Ax—b,
]nfk

and

I 0
LWZ{“ In_k}%{ In_k},y—m.

Exercise 1.2.1 Show that the appropriate generalisation of to the
case of singular V' is
minr’ V'r; r = Ax — b, (1.2.8)

T

where V't is the pseudo-inverse of V. Use this result to interpret the penalised
least squares problem discussed above.
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1.3 Minimum variance estimates

1.3.1 Gauss-Markov theory

The least squares estimate x™ has further interesting properties. The use of
the covariance matrix V of the error term e to scale the least squares problem
makes good sense, but it is reasonable to ask if more of the structure of the
problem could be exploited. For example, the estimation problem could be
approached by asking is it possible to select an estimator x to minimize the
expected mean square error. This requires

minE{Hx—x*Hg} (1.3.1)

where the expectation is taken with respect to the density ([1.2.1)). Expanding
the expectation term gives

2 T «

e {lx—xlg) e { xSRI TR0 2T 0g ) )

+[[€4{x} — x5
X 2
=V{x}+ ||x" = E{x}|5. (1.3.2)
Thus the expected mean square error can be decomposed into terms repre-
senting variance and squared bias respectively.

The estimator is constructed as a function of the data so it is natural to
represent it as a mapping of the data vector b. a prior: this does not have

to be a linear mapping. However, this choice of form of mapping families

proves tractible. Let
x™ =Tb, T: R" — RP, (1.3.3)

and set
w=Tb-x"=T(Ax" —¢) — x",
— (TA—I)x* — Te.
Then, as £ {e} = 0, the objective function becomes
E{ITb = x5} = € {lIwll5} .

=& {trace (WWT)} ,

= trace {TVT"} +|(TA-1I) x*||5.
This depends on the unobservable vector x*unless TA — I = 0.

Remark 1.3.1 This condition ensures that the linear estimator is unbi-

assed:
E{x} =TE{b} =TAx" =x".
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It requires that A have full column rank, and no weaker form of this condition
15 possible without structural assumptions being made on X*.

Thus the construction of the minimum variance, linear, unbiassed estimator
comes down to solving the problem

min trace {TVT" }; TA = 1. (1.3.4)

This decomposes into the sequence of problems for the rows of the matrix
T
mint! Vt; t;A=e!, t; =T, i=1,2,---,p.
The necessary conditions for the i’th problem give

tI'V = AT AT,

where A; € RP is the vector of Lagrange multipliers. Eliminating t; using the
constraint equation gives

el = ATATY 14,
T = (ATV1A) ATV (1.3.5)

The resulting estimator is best minimum variance, linear, unbiassed. From

(11.3.3), (1.3.5) it is also the generalised least squares estimator. Let A be
the matrix whose rows are the Lagrange multiplier vectors. Then A =

(ATV*A)_l. This result is known as the Gauss-Markov Theorem . To
calculate the variance we have

£ {(x* —xM) (x* - x<n>)T} s {((TA ~D)x* —Te)(TA—I)x* — Ts)T} ,
=E{Tee"T"} =TVT",
— (ATV1A) T = A (1.3.6)

Remark 1.3.2 [t is interesting that the (implicit) assumption that V' is in-
vertible is not used until the elimination leading to . Written out in
full, this system of equations is

[T A}[_‘IQT _OA}:[O ~I]. (1.3.7)
To compute the resulting minimum variance, note that from
TV —AA" =0
so that
TVTT = ANATTT = A (1.3.8)

by the condition that the estimator be unbiassed. Thus the matriz of Lagrange
multipliers coincides with the covariance matrix .
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Remark 1.3.3 This analysis extends to cases in which the components of
the design A are known random variables, independent of the data b, with
distributions independent of X*. It is necessary only to condition on the real-
1zation of A in the above calculations. If the design components are observed
with error, and hence are unknown, then the problem becomes more diffi-
cult. This is the error in variables problem. Typically it requires additional
information to resolve it.

Exercise 1.3.1 Complete the extension indicated in Remark[1.3.3

1.3.2 Prediction of random effects

What happens if x* in the linear model is a random vector with known sta-
tistical properties? The problem now is to predict the particular realization
of x* given the observations, and is to be distinguished from the problem
of estimating a vector of constants. In this case there is a sense that more
information is available, and it is possible to characterize the predictor giving
the realization of x* which minimizes the expected mean square error if it
is possible to compute the conditional expectation £ {x*|y(-)} of x* given
data y (-) [55]. Here the notation permits the possibility that the data is
derived from more complicated objects than the finite collections of random
variables which is the main type considered here. The identification of the
best predictor requires the following lemma which is quoted without proof

(see [8]).

Lemma 1.2 The conditional expectation satisfies the condition
E{l—=E{zly ()N gy ()} =0

for all functionals g (y (+)) for which the expectation has meaning.

Theorem 1.2 The best predictor of X* in the sense that it minimizes the
expected mean square error of prediction is given by

h(y(.) =E{x"y(.)}- (1.3.9)

Proof. Let h(y(-)) be a predictor for the realization of x*. The calculation
of the mean square error gives

E{Ix =y (NI} =& {Ix" = € {x'ly ()} + € X'y ()} =B (y (DI}
= & {lIx" — £ {x"ly (M3} +
E{IEGy ()} =R (I3} +
26 {(x = £y (N (E Xy ()} —h ()]
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The last term in this expression vanishes as a consequence of the lemma,
while the second term is nonnegarive and vanishes provided holds .
The remaining term is independent of h (y(.)) so the result follows. m

The predictor is linear if the error distributions are normal, but
not otherwise. In the normal case the assumptions amount to the assumption
that the mean and variance are known:

E{x*} =%, V{x'} = Ru.. (1.3.10)

The problem is now specialised to that of predicting the realisation of x*
given the vector of observations b with

E{b} =b, V{b} = Ry, C{x*,b} = Ry (1.3.11)

Proceeding much as in the development of the Gauss-Markov theory, we seek
the linear predictor

x=%X+T (b—b) (1.3.12)

to minimize the expected mean square error
min € {J|(x* = x)[3} = min & {|T (b-b) - (x" = %)}

where the expectation is taken with respect to the joint distribution of b, x*.
It follows from (|1.3.12)) that this predictor is unbiassed in the sense that

E{x"} =E{x}.
Expanding this gives (with T}, = t7)
: ¢ 7T 2 * — T * —12
mTlnc‘,’ Zl {((b—b) ti) —2(z; — ;) (b—b) tz} + [|x* =X ¢ -

This leads to a series of minimization problems for each of the t; separately.
The necessary conditions for the i’th problem are

0=&{(t7 (b-B) (b-B)" — (a1 =) (b-B) ")} i= 1.2+ .
(1.3.13)
and these can be summarised as

0=¢{(®~x"+T (b-b)) (b-b)"} (1.3.14)
=C{x",b"} =TV {b}. (1.3.15)
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Equations ((1.3.12)), (1.3.14) show that the error in the best prediction is
uncorrelated with the data vector b.

5{(x—x*) (b—E)T} - 5{((x—x) ~ (x* - %)) (b—E)T},

—e{(T(b-B) - (x'=%) (b-b)"},
= 0.

Thus, in an important sense, all the information in the data has been used
in constructing the prediction x. The necessary conditions can be solved for

the prediction matrix using (|1.3.11]) to give
T=C{x*,b}V{b} " = RyyR;,. (1.3.16)

It should be noted that the operation expressed by 7' is a projection. Assume
for simplicity that means are zero, then

T?*b = C{x*,Tb}V{Tb} ' Tb,
— C{x*, b} TT{TV {b} TT} " T,
= C{x*, b} 17 {C{x*,b}V{b}lc{x*,b}T}1Tb,

= pe by ) e {x by e x by v (b} e b}T}_l b,
_Th.

Because T is a projection it follows that the necessary conditions (|1.3.14))
have the character of orthogonality conditions. The target space will be
formlated as a Hilbert space of random variables.

Remark 1.3.4 The best prediction result generalises in a couple of direc-
tions.

1. The best linear expected mean square predictor of Zx* is Z (i +T (b—B)) .
It is only necessary to replace X* by Zx* in the above development.

2. If the expectation in mean square is replaced by a weighted least squares
norm with weight matriz W then the best predictor is unchanged. Here
we seek a predictor x =X+ 5 (b—b) by solving

. T % _\T _ = % —
min€ { (5 (b-b) - (x" = %)) W (S (b-B) - (x' -x)) }
2
2} ’
where S = W=Y2S. It follows from the previous result that S =
W=2T, so that S =T.

— ning {H§ (b=B) — W (x* — %)
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Remark 1.3.5 The connection between best mean square prediction and con-
ditional expectation permit convenient evaluation of the latter when the un-
derlying distributions are multivariate normal. Let

MEI(Rr )
y Yy || Ra Ra ’
where y € R™ and the lack of independence between x and y 1is indicated

by nontrivial offdiagonal blocks in the covariance matriz. Equation (1.5.14

suggests seeking a representation
x=xX+T(y—-y)+w (1.3.17)

such that w is uncorrelated with y and has mean zero. Note that
can be interpreted as expressing an orthogonal decomposition in which covari-
ance is used as an analogue of scalar product. Here the assumption that the
variables are normally distributed implies that they are independent so that

the joint density of [ yv_vy ] factorizes into the product of the respective

marginal densities . The condition that C{w,y} =0 gives
C{x,y} = Ria=TRp=TV{y},

whence (compare with )

T=C{xy}V{y}". (1.3.18)
The mean of w is zero by assumption. The variance is given by

V{w} = Ri1 — Ri2R55 Ro1, (1.3.19)

The best prediction of x based on the information contained in 'y is

E{xly} =x+T (y-y) (1.3.20)

and is equal to the corresponding conditional expectation by Theorem [1.3.
Note that it is linear in'y. The conditional distribution of x given'y, p (x|y),
in which y is treated as a constant vector, is

p(xly) =N (X+T(y —¥), Ri — RiaRyy Ron) - (1.3.21)

Remark 1.3.6 The analogy used above can be taken much further as it turns
out this result has an important interpretation in terms of Hilbert spaces of
random wvariables . Here this space H{x — X,y — ¥} is generated by the
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components of X —X and 'y —y - that is each component of an element in H
1 a linear combination of all the components of both x —X andy —y. Let

w € H be defined by
W:W|:X_X:|

y—-y
where the linear combination is defined by the matrix W : R** — R"™. The
variance of an element provides the norm ,

|w —w|? :5{||W—W||2} = trace V {w}, (1.3.22)

provided V { l x- ; ] } 18 nonsingular, and the corresponding scalar product

of elements u, v € H is given by trace C {u, v}, with expectations being taken
with respect to the joint density. In this context the conditional expectation
E{x|y} of x given y is computed using the orthogonal projection of x — X
onto the subspace H{y — ¥} generated by the components of y —y. This
orthogonal projection operation defined on H{x — X,y — ¥} is just that given
by the operator T'. In typical applications w could be an error vector in which
case ||w — W||? would be the expected mean square error.

Exercise 1.3.2 Sketch the geometrical picture showing the orthogonal pro-
jection and use the Hilbert space setting to derive the expression (1.3.20)) for

the conditional expectation.

1.3.3 Mixed models

The following application establishes a connection between the the solution
of the generalisd least squares problem (|1.3.16)) and a limiting case of best
linear prediction

b=Ax+e, x~ N(0,R), e -~ N(0,V), C(x,€) = 0. (1.3.23)

Then
E{b} =0, E{bb"} = ARA" +V,

and
& {be} = A€ {XXT} = AR.

This gives the prediction ({1.3.16))

% = RAT (ARAT +V) " 'b (1.3.24)
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which is available provided & {bbT} is invertible. By 1) in the chapter

appendix this is the same as
= (ATV'A+ R ATV b (1.3.25)

assuming that V' and R have full rank. The variance calculation can make
use of the same device. From (|1.3.19) it follows that

V{x—x}=R—RAT (ARA” + V) " AR,
— (ATV' A+ R

Letting R~' — 0 gives the solution of the generalised least squares problem
(1.2.3). This limiting process expresses a form of the assumption that there
is no prior information on the values of the parameter vector x (assumption
of a diffuse prior ).

Also can be expressed as the solution of the least squares problem

min { 2 r { v Pl } { 2 } (1.3.26)

subject to the constraints

Mﬂ:[ﬂ““ﬁ] (1.3.27)

It is easy to verify that the variance calculation is also consistent. The
Gauss-Markov correspondence gives

VG:[VR}’

-1 %
o= (v ey L [V,

so that (1.3.8) gives
A=ToVeTE = (ATVT'A+ RTY) T = V{x—x}. (1.3.28)

This form proves convenient for the development of computational algo-
rithms.
This argument can be extended to the case of mixed models . These have

the form
b=Ax+Bz+¢ (1.3.29)
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where now x is a vector of parameters (the fixed effects ), z are the random
effects uncorrelated with e with known probability distribution N (0, Rss),
and € ~ N(0,V). The idea is to turn the mixed model problem into a
prediction problem by associating the vector of parameters x with a random
vector uncorrelated with both z and € and having covariance matrix Ry
such that R} is small and then taking the limiting solution of the resultant
prediction problem by letting R;;' — 0. The prediction problem sets

b = AX + e, C (x,e) =0,

iefap) s [x e (o] B0 )).

An application of ([1.3.25)) now gives the prediction

where

{ X } — Aty A+ Rl]_l ATV 1.

VA

The limiting process appropriate here is R;;' — 0. This gives the system of
equations

ATV Ax + ATV Bz = ATV b, (1.3.30)
B'"V'Ax+ (B"V'B+ Ry )z = B"V'b. (1.3.31)

The corresponding least squares formulation is

. Ir 4 V_l 0 I
Rl 0 Ry ||

subject to the constraints

rr| |A B x| |b

o - 0 I VA 0 '
Exercise 1.3.3 Formalise the estimation of x given the distribution of z as
a generalised least squares problem with covariance V + BRyy BT . Show that
the solution of this problem is identical with that obtained by solving for z

from (1.3.831]), substituting the result in (1.3.30}) to obtain an equation for x
alone, and then simplifying the result using in the chapter appendiz.
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1.3.4 The projection theorem

What happens when additional information becomes available? Let

x; =Ty (y1 —¥1), Ti =C{x",y1} V{yi} ',

be the best (linear, minimum variance) prediction of x* —X based on data
y1. Then
X'=X+x1+w

where C {y1,w} = 0 by (1.3.14)), and x; is the best approximation to x* — x
from the Hilbert space of random variables H {y; —y:} in the [-||, norm
(1.3.22)). Let fresh data ys become available. Then

yo=y2 —C{y2,y1} V{Yl}_l (y1i—¥1)

is uncorrelated with y; by ([1.3.18)and so corresponds to the new information
available. Setting
w=T5(y2—¥,) +Wa,

where wy is uncorrelated with y, (compare ((1.3.17))), then
Ty =C (X" y2) V(¥2) "
Thus the best prediction of x* —X based on the augmented data is given by

X2 =X1+ 15 (Y2 — V),

where the representation is based on decomposing the estimate into its pro-
jections onto the orthogonal spaces H{y: —¥,} and H {y> — ¥, }.

Example 1.3.1 A typical application of this projection result is the follow-
ing. Assume X = 0 and let xq be the best estimate of X* where

b1 = Alx* + €1, & {bl} = 0,
A N(O,‘/l), C{X*,é'l} =0.
Then
X1 = T1b1
where .
Ty =C{x*, b} V{bi} ' = RA] {A\RAT +V;}~

by . The best approzimation property is expressed in the orthogonality
condition
C{x"—x1,x1} =0. (1.3.32)
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This follows from the necessary conditions (1.3.14)) which give
0=E{(x"—x1)b] } = 0=E{(x" —x;)b{ T]'}
in this case. If the new data is

b2 = AQX* -+ €9,
€2 N(07‘/2) ’ C{X*a€2} = 07 C{€17€2} = 07

then the updated estimate is
~ N
X = X, +C{x*,b2}v{b2} by (1.3.33)
where B
by = by — C{by, b1} V{bi} ' by
is uncorrelated (here orthogonal as expectations are zero) with by.

This result, which decomposes the best approximation into the sum of
orthogonal components obtained by projecting into orthogonal subspaces, is
known as the projection theorem . Note that if the condition C {e1,e2} =0
is inserted in the previous equation (this is the only point at which it is used)
then this gives

BQ = b2 — AQC {X*, bl} V {bl}_l bl,
= b2 — A2X1. (1334)

It also illustrates Remark which emphasises that As;x; is the best ap-
proximation to by from #H {b;} in this case. Let

V{x; —x"} = Ry,
then
C {X*, EQ} =C{x", Ay (x* —x1)},

=C{x* —x;,x" —x;} A,

— RAT,
using the best approximation property of x; to x* , and

Vb =& {(b: — Ax1) (b — Ax1)" ],
= AR AT + V.

This gives the revised estimate in the form

X3 = X1 + Ry AL (AyRy AT +V3) ™" (b — Aoxy).
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Exercise 1.3.4 Diagrams to illustrate the geometrical situations are very

helpful here.

1.4 Estimation of dynamic models

An important application of the projection theorem is the development via
the discrete Kalman filter of a description of the evolution of an important
class of discrete linear dynamical systems . Here the starting point is a state
variable x;, = x(t;) € RP which describes the state of the system under
consideration at time t;, kK = 1,2,--- ,n and which satisfies the evolution
(dynamics) equation or state equation

Xpr1 = XpXp + Ui, k=1,2,--- n—1. (1.4.1)

Information on the unobserved state variables is available through an obser-
vation equation ,
yk:Hka—i-Ek, k= 1,2,"' ,n, (142)

and the requirement is to predict the realisation of the x; ., given past values
X;,7 =1,2,--- k. Here X}, : R — RP, while Hy : R — R™, m < pis as-
sumed to have full rank, and the random effects u; € RP,1 =1,2,--- |k, €; €
R™ 7=1,2--- k41 are mutually independent, normally distributed, ran-
dom vectors for all 7, 7 with covariance matrices

V{uk} = Rk, V{Ek} = Vk

It follows from the form of the state equations that past state variables are
uncorrelated with the random effects in both state and observation equations,

C{xj,uk} = O, C{Xj,Ek} = 0, j S k.

Remark 1.4.1 Typically conditions of observability and reachability are im-
posed on and [42]. The simplest case corresponds to m = 1
and X; = X constant. The resulting system is observable if the initial value
(x; say) of any consecutive sequence {t,t+1,--- t+p—1} can be recovered
from the corresponding observations {yi, Yi+1," -+, Yirp-1} - here H = h'.

This requires that the matriz with columns [h, XTh,--- ,(Xp_l)T h] has
full rank. Reachability is the condition that a minimum length sequence
U, Uy, ,Us can be imposed to drive xs11 to any desired point. This

can be expressed in similar algebraic form when appropriate assumptions are
made about the covariance structure of u.
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To start the recurrence requires information on an initial state. This could
be either constant or random, but the random case, in which the initial state
is assumed to be given by x;o with &£ {X1|0} = 0, and covariance

Sl|0 =& {(Xl - X1|0) (X1 - X1|0>T} )

is the one considered here. Frequently Sy is assumed to be large correspond-
ing to the assumption of a diffuse prior , and it will be recalled that there
is algebraic identity between the system determining constant x by gener-
alised least squares, and that predicting the realisation of random x under
the assumption of a diffuse prior. It is further assumed that

C{xio,up} =0, k=1,2,--- ,n—1,
C{X1|0,€k} :0, k:1,27 ,n.

Here the problem data is of two kinds. The initial vector x;o has something
of an existential role with the entire computation being conditioned on it.
The data of principal interest are the observations yx, £k =1,2,--- ,n, in the
sense that replications of the system observations are considered to generate
new sets of the y; for given system initialisation x;o.

Let the input data be written ), = {X1‘07y17y2, e ,yk} k=12, . n.
Then the linear, minimum variance prediction of x; conditional on Y is given
by € {x;|Vk} = X, with corresponding covariance V {Xi — Xi|k} = Sij- The
prediction problem is typically formulated in two parts:

1. predict Xy, k= 1,2, ,n recursively (the filtering problem ); and

2. predict Xp,, & = 1,2,--- ,n, the dependence of the state predictions
on all of the data (the smoothing problem ).

The filtering problem can be considered in the context of revising a system
state estimate as additional information becomes available, and here it has
been spectacularly successful in applications [2]. An analysis is given in
the next two subsections. The smoothing problem can be formulated as a
generalised least squares problem. This follows on noting that the system
dynamics can be written - here quantities with subscript ¢ are formed
by amalgamating the component elements -

Lex — |: Xolc|0 :| = U,
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where
I Up
_Xl [ u,
Lc = ;, Ue =
—An-1 I U,—1

In this case the minimum variance estimation problem corresponds to the
data

Yo - Hoxe = €0 N(0o Vi), Loxe — { il } —u, -~ N(O, R,),

where the block diagonal matrices H., R., V, are given by
[ H, Vi

Rnfl

This can be written in the form of (|1.3.23)) by introducing the new variable
t. = L.x. — { Xouo 1 N (0, R.) satisfying C {t.,e.} = 0. This leads to the
least squares problem (compare ((1.3.26]) and (1.3.27))

mln {rl Vilr + i R rg}

where
| X _
[“}:{HC]Q— Ye H{ocl , H.=H.L".

Remark 1.4.2 Note that the predicted realisation is conditional on the value
selected for x10. An important special case corresponds to the case of no
prior information on xi. This can be treated by letting Syo — ool in similar
fashion to the treatment of mixed models. This serves to remove the equations
corresponding to the initial conditions from the objective function.

In terms of the untransformed variables this becomes

mm{er 'ri+ TR} (1.4.3)
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where
Ye
[rl ] _ [fC}xc— {xlo} . (1.4.4)
r2 (& 0

This is a result originally presented in the dynamical systems context by [26].

1.4.1 The filtering problem

The recursive calculation of Xpyqx41 given Xy, and the new data from the
observation equation is an exercise in the use of the projection theorem .
First the best estimate of x;,; given the past is obtained from the dynamics
equation:

Xitijk = XpXk|k-
The interesting component in the new observation, the innovation , is ob-

tained using (|1.3.34]) which gives

Yi+1 = Vi1 — Hpp1Xppa, (1.4.5)

= Hy1 (Xe1 — K1) + €t
If this is plugged into the result is
Xt 1)kt1 = Xeg1k + C{Xpg1, Yrs1} V (Fr} " Fors (1.4.6)
where, using the orthogonality result ,

S T
C{Xp1, Y11} =C {Xk+1, Xk+1 — Xk+1|k} Hj iy,
T
= C {Xp41 — i1, X1 — X1} Hir,
T
= Skl (1.4.7)

and
V{Vir} = Hip1 Sk HE o + Vi (1.4.8)

These calculations require a knowledge of Sj4 but this also can be recurred
using

Sktie = V {Xks1 — X}
=V {Xk: (Xk - Xk|k) + Uk} )
= XS X} + Ry (1.4.9)
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This, in turn, requires Sy, which is given by

Sk =V {xx — X1 — C{xp, Vi } VT4 Vi } s
= Sp—1 +C {30, ¥} V{ye} ™ C{Fw %1}
-C {Xk — Xk|k—15 Yk} V {yk}fl CA{Yr,Xr}
-C {Xk, yk} V {Yk}_l C {?m X — Xk\k—l} )
= Sie—1 — C{xp, ¥} V{Fe} " C{Fn. xa}

This is computed readily by expanding out the component terms and then
applying the above results. We obtain

-1
Skik = Skp—1 — Skip—1Hj, {HpSkr—1Hy, + Vi} ™ HypSkjp—1- (1.4.10)

The minus sign in this equation emphasises that Sy is less positive definite
(smaller!) than Syj,_1 showing that the information on x; has increased.

The filter equations are readily extended to certain cases of correlated
data . The simplest one corresponds to additional correlation between uy
and €;,1 only. Here the innovation y,; is orthogonal to the Hilbert space
H {Yx} containing Xy 1. Thus remains valid. Evaluating the terms
now gives

C{Xpt1, i1} =C {Xk+1 = Xk+1]k> §k+1} )
= C{Xpt1 — Xpt1fks Hor1 (X1 — Xijk) + €t } 5
= Sk+1|ng+1 + C{Xpt1, €41},
= SkripHyyy +C{ug, €x41};
VA{Vi+1} = Hera Sk + HinC {ug, e} +
C{up, epi} Hiy+ Vi

Also, while the basic form of the recurrence is preserved, the computation
of the covariance term Sy, must be modified to take account of the change
in the correlation calculations which follow from the weakened assumptions.
Discussion of the case when the only new correlation is between u,_; and
€41 1s given in [2] and [19]. Here the new information in y,4; is used to
update estimates of both x; and xj1.

Exercise 1.4.1 Derive the filter equations in the case when there is correla-
tion s between uy_1 and € q.
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1.4.2 The smoothing problem

Here the question considered is given the output of the filter x;;, 1 = 1,2,--- , n,
find the values x;),, showing the dependence on all the data corresponding

to the solution of the generalised least squares problem ((1.4.3)), (1.4.4). This
can be done using a neat argument due to [3]. Note that C{x;i1,€;41} =

XiC{x;,€i41} =0, and that, as x,11, € H{V;},
Yitr1 = Hipy (Xi+1 - Xi+1\i) + Hi1 X1 + €iy1,
= Vit CH {yiaxi—f—l - Xi+1|i7€i+1} .
It then follows from the dynamics and observation equations that
Yo CHA{U}

where
U, =Y U {Xi+1 - Xi+1|i} U{€it1, " Ens Wig1, s U1}

and the component sets of vectors are independent. As x; is independent
of {€;11, - €n,Wis1,+ , 0,1}, it follows that the projections of x; into the
corresponding orthogonal subspaces are related by

E{xilth} = € {xi|Vi} + € {xilxip1 — xigapi}
= X;|; + C {Xi7xi+1 - Xi+1|i} S;rlw (Xi+1 - Xz‘+1\z‘) )
=x;; +C {sz Xi (Xi - Xz‘\z‘) + ui} S;rlw (Xi+1 - Xi+1|z') ;
= X;|; + Si\z'XiTS;rlw (Xi+1 - Xi+1|i)
as C {Xi|i,Xi — Xili} = 0 by the best approximation property (|1.3.32), and
C {x;,u;} = 0 by independence. The only element on the right hand side
that is not already in the subspace H {)),,} is that involving x;,1, but this is

contained in H {U;} as a consequence of the above identity. Projecting both
sides into H {V,.} gives

Xijn = Xili + A (Xi+1\n - Xi+1\i> (1.4.11)
where the interpolation gain A; is given by

Ai = Z|ZX;TS_1

e (1.4.12)

The variance S;), of the smoothed predictor is given by

V {Xi - Xz‘\n} =C {Xz‘\z‘ — X, Xjjn — Xi} + AiC {Xi+1|n = Xit1}ir Xiln — Xi} .
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The first term can be written
C {Xz‘\z‘ — Xy Xijn Xi} =Sy +C {Xi|i — Xy Xijn Xi\z‘} .
The second gives
AC {Xi+1|n — Xi1liy Xijn — Xi} =
AC {Xi+1|n — Xit1|ir Xit1n — Xi+1|i} AiT +C {Xz‘\n — Xiliy Xi)i — Xi} .
We have
AiC {Xi+1|n — Xit+1)iy Xit1n — Xi+1|i} AzT

— A { S’i+1|n + Sz‘+1\i -C {Xi+1|n = X1, Xit1)i — Xi—i—l} - } AT
= A, ;

Xit1)i = Xit1, Xit1jn — Xit1
= A; {Sz’+1|n - i+1|z’} AiT—
C {Xi|n — Xiliy Xit1ls — Xi+1} AiT — AC {Xi+1|z’ = Xij+1, Xijn — Xz’|i} .
At this point we have that
Sitn = Siji + Ai {Sizajn — Sipapi } AT + W

where

W=U+UT,
and
T
U=C {Xi|n — Xiliy Xi|i — Xi} -C {Xi|n = Xiiy Xit1]i — Xi+1} AZ- )
=C {Xi|n = Xl Xifi — X — A; {Xi+1|i - Xi-l—l}} )

= 0.

This follows because the first term in the covariance is x;, — x;; C H {U;},
while the second is orthogonal to H {U;} as A; {Xi+1 — xi+1|,~} is just the
projection of x;— x;; onto H {xz-+1 — xi+1|z~}. Thus the final result is

Sipn = Siji + A {Si+1|n - z’+1|z’} Al (1.4.13)

In certain circumstances there can be a need to interpolate the smoother
output at intermediate time points ¢, t; < t < t;,;. Here it is assumed that
the intermediate dynamics is given by

X (t) =X (t, tz) X; +u (t,tl) s
where the matrix of the dynamics equation satisfies

X’i - X (t’i+17 t) X (t, tz) 5



44 CHAPTER 1. THE LINEAR LEAST SQUARES PROBLEM

and the stochastic term possesses the covariance property
Clu(t,t;),w;y =V{u(t,t:)} X (tis1, )",

where V{u (t,tl>} — Rz,t — ti+1,v{u (t,tl)} — O, t — ;. It will turn
out that this property is appropriate for an important class of random walk
processes. The argument is similar to that employed above. We have

E{x(t)|Us} = E{X (t,t:) xi +u(t, ) Ui},
=E{X (¢, ')Xi+u(t,tz) Vi }
+ E{X () x; +u(t,ty) [Xiy1 — Xig1i )
X (t,t:) Sy X1+ )
= X (t, ;) Xy; '
(F ) X3 + ( { (t,ti) , Xiy1 — Xi+1\i}
= X (t,t;) xii + A(t, 1) (i1 — Xig1i)

g-1

i+1[i (Xi"'l - Xi+1|i) ’

where
A(t,t;) = (X (t. 1) S Xy +V{u(t 1)} X (tiga, 1) ) S (14.14)
Projecting into )/, gives
E{x(t) |V} = X (t,6:) xip + A (4, 6:) (Xi1pn — Xit1)s) - (1.4.15)
The corresponding formula for the variance is
VIx(t) = E{x(t) [V} = V{u(t,t:)} + X (t,t:) Sy X (t,:)" +
A(t, ;) (Sisapn — Sipa) At t:)"

The argument used to develop the smoothing algorithm extends to the
case of correlation between u; and €;,1, but at a cost of additional complexity.
Again it follows that ), C H {U;} where it is convenient to write the basis
set as

U =V U{Xip1 — Xigai U {eip} U{eira, €iys, - €0, Wity Wigg, -+ Uy 1}
and to express the contribution of the interesting part as
H{{xit1 = xipap} U{ei} ) = H {{xi1 —xip1} U{Eina}},

where
€it1 = €it1 — P (Xip1 — Xigai) »
and
P=C {€i+1,Xz’+1 - Xi+1\z‘} S;rlm C {ElJrla uz} th,
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in order to provide a decomposition of H {U;} into orthogonal subspaces.
Now

E{xillhi} = xii + € {Xi|xi+1 - Xi+1|i} +E{xil€i1} -

Evaluating the new term gives

E{xilgin} =-C {Xi> Xi+1 — Xi+1|i} PZ-TV {giJrl}_l €it1,
= =Sy X! PV {1} &,
= —AC{w, e} V{En}T " (i1 — B (%ie1 — Xipaps))

where, as in the development of the filter equations, covariances must be
modified to take account of the correlations and

V{€it1} =Vis1 —C{eir1,ui} SZ»::WC {w;,ei41}.

Collecting terms gives

E {Xl‘ul} = Xz‘|7; + Az (I + C {ui, €i+1} v {gi+1}_1 C {€i+17 ui} Sz_Jrll\z> ( _);Z:rllll )
— AiC{uw;, i1}V {giﬂ}_l (Yis1 — Hiz1Xig1) -

Projecting from H {U;} into H {YV,} gives

Xi|n = Xz|z+Az <I + C {u,», €i+1} V {Ei_:,_l}_l C {€i+17 ui} S;_ll‘l> < Xi+1|n )

X414
—AC {U-i, 52’—1—1} 1% {gi—i-l}_l (yi+1 - HZ‘+1X1‘+1|n) .

Exercise 1.4.2 Formulate the orthogonal subspaces needed to develop the
smoothing recurrence in the case that ug_q is orthogonal to €xy1. What is
the form of this smoothing recurrence.

1.5 Mean models

A standard example leading to a constrained least squares problem is the
mean model arising in experimental design . The problem situation here is
expressed by a multiway table , and the data to be modelled are the sets of
outcomes recorded in the cells of the table. For simplicity consider a two-
way table consisting of n, rows and n, columns. Let the number of outcomes
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recorded in cell ¢j be n;;, and assume a description of these outcomes is
provided by the mean model

Yijk :Hij_‘_sijk; 1= 1727"' y Np,s j: 1727"' y g, k= 1727"' y gy (151)

where ¢, «~ N (0,0%), and & {&;j1Epgr} = 0ipdjOrr- The object is to fit the
cell means by a linear model consisting of a mean term p plus contrasts «,
B:

Wij = p+ oy + By, (1.5.2)

to the observed outcomes y;;, by least squares. The linear model is given by
a two dimensional array which can be written in matrix form

fir = p1ePe DT 4 e 4 o) 3T

Note that the problem of minimising

Np  Ng  N4j

Z Z Z (Yiji — Mij)2

i=1 j=1 k=1

is equivalent to the problem of minimizing the fit to the cell means

np Mg
_ 2
E E i (s — 1i5)
i=1 j=1
where the cell means are
R
Yij = — E Yijk;
Mij k=1

as the two sums differ by a term depending only on the data. The matrix
representation of the array of values 7;; will be written 7,,. Also there is

inherent indeterminacy in the formulation ([1.5.2)) of the linear model as
pij = p+ o + B = i+ a; + Bj,

where az = Oéi_’_Al’ 1= 1727”' » Tlps g] = ﬁ]+A27 ] = 1727"' y Thqs /j =
i — Ay — Ag. It follows that the problem is not well posed without the
addition of extra constraints. Typically these are taken to have the form

Np Nq
el = Zai =0, e(Q)T,B = Zﬁj =0.
i=1

j=1

The estimation problem is said to be balanced if n;; is independent of 4, 7,
otherwise unbalanced . The key feature of the balanced case is that the
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solution of the least squares problem is a straight forward computation. The
first step is to use each of the equality constraints to remove a degree of
freedom from the solution. Let orthogonal matrices be defined by

Qe = vimel”, Qje = e’

where

Q= e Q2] Q= e Q2.

For example, a suitable Aitken-Householder form for @), is

Q= (1 2w = STl
p= ) = .
2 (np + . /np)

Thus the imposed constraints are satisfied by setting
_ 2 np—1 _ 2 ng—1
a =%y, x, € R, B=0Q,%x, X, € ™.

The indeterminancy in the governing equations can now be removed by writ-
ing these in the block form

ij = pe® + Qf;xp + e(p)eJTngq, J=12- n,

or

where X is the corresponding design matrix,
e(p) Q?) e(p)e,{ 3
X = : : (1.5.3)

e(p) Q}% e(p) ezq Qg

and p, y have the block components p.;,7,; j = 1,2,--- ,ng. The normal
equations are

1

X'DX | x,

X

= XTDy

q
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where D = diag {n;j,i =1,2,--- ,n,,7=1,2,--- ,n,}. In the balanced case
the relevant quantities are

[ n,e®Te® 0 0
T
|0 0 225 (@7);. e™e (Q)),,
[ NpTg 0 0
= 0 nqlp_l 0 s
| 0 0 nply—1
and
ZJ e(p)Tg*j npnqyoo
_ T _ T_
wy= | @'s, |- w@h. |
(@7) > e; e’y ny (Q7) 2 €iYs;
— _ 1 — — _ 1 — - T— . .
where 7,, = o > iiYijs Yo = o > i Usj> Yoj = e Y.;- The solution is

12 y.j:
x, | = | (@) T |- (1.5.4)
Xq (@QF) 2,70

1.6 Appendix: Matrix identities and projec-
tions

The starting point for the discussion of the linear least squares problem
included the assumption that the design matrix A had its full column rank p.
This assumption is a reasonable reflection of the main application priorities
but is by no means the full story. Following this assumption leads to the
solution operator

At = (ATA) T AT,

with the corresponding solution given by x = A*b. This operator has the
projection properties that A™A = I projects onto the domain of A, and
AAT = A (ATA)fl AT projects onto the range of A. This provides the clue
for extending the definition of A" to the case when the rank assumption is
weakened. Assume now that rank A = k£ < p, and let 01,09, , 0, be the
nonzero eigenvalues of AT A. Then

ATAVj =0,V; = AAT (AV]') =0j (Avj) 7j = 17 27 U 7k7
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so the o are also the nonzero eigenvalues of AA” with corresponding eigen-
vectors u;, where oju; = Av,,j = 1,2,--- k. Then the singular value
decomposition of A is

A= U V! (1.6.1)

where U, € RF — R", V,, € R¥ — RP are matrices whose columns are the
normalised eigenvectors of AAT and AT A respectively, and ¥, € R* — RF is
the diagonal matrix of the nonzero eigenvalues. Conveniently defined using
the singular value decomposition is the pseudo or generalised inverse of A:

AT =2 UL. (1.6.2)

This definition extends that of the least squares solution operator given above
and is justified by the associated projection properties

AAT = UUT (1.6.3)
giving an orthogonal projection onto the range of A, and
AtA =WV (1.6.4)

giving an orthogonal projection onto that part of the domain of A which is
not the pre-image of 0 under A. These results are usually expressed as the
Moore-Penrose conditions

AATA= A, (AAN)" = AA*,
ATAAY = AT (ATA)" = At AL

The generalised inverse provides the equipment needed to solve the least
squares problem when A does not have full rank. The unique solution of
minimum norm is given by

x = A*b. (1.6.5)
Substituting in (1.1.1))gives
r=— (- AA")b.

The necessary conditions requires A'r = — (AT — ATAAT) b = 0 and this
follows directly from (|1.6.3))

AT = ATAAT.

To show that the generalised inverse solution is the solution of minimum
norm consider r = A (x4 dx) — b where x 4+ dx is also a solution. The
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necessary conditions give

ATr — AT Ax + AT Adx — A,
= ATAdx =0,

This shows that x is the orthogonal projection onto the set of solutions and
hence has minimum norm.

The generalised least squares problem leads to more complicated algebra
largely due to the critical scaling role of the inverse of the covariance matrix
which provides the natural metric for projection operations. A good example
is provided by the following derivation of which was used in showing

the equivalence of best linear predictor forms (|1.3.24) and (|1.3.25). The

starting point is a formula for the inverse of the sum of a nonsingular matrix
plus a rank one term and is easily found by a direct calculation. For example:

VixxTy—1

Loyl
(V4+xx") =V e

This result is capable of significant generalisation.

Lemma 1.3 Let X : RP — R?, V : R? — RY, and W : R? — RP have their
maximum ranks, with V., W symmetric positive definite. Then the following
wdentity is valid:
(V+XWXT) " =V —vIX (XTV X + W) T XTV L (1.6.6)
Proof. A straightforward calculation gives

1

(IT+XxWXT) ' =T-x (W 4+ xx7)" xT.

The desired result now follows by using this result to compute the inverse of
(V+XWXT) =V (I +VIPXWXTV ) v,
m m A corollary gives the desired equivalence:

Corollary 1.1 following identity holds.

WXT (V4 XWXT) " = (W 4 XTVvix) T xTv (1.6.7)
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Proof. This follows by expanding the lefthand side using (1.6.6). m
Now let X C R? be defined by

X ={x; x=XzVz € R},

where X : RP — R?is assumed to have full rank p < ¢, and let X be endowed
with the scalar product (and associated V~' metric ||o]|,)

(x1,X2)y = XV x,

where V' is positive definite. The notation here reflects the role of the inverse
of the covariance matrix in the normal distribution.
The projection of a point a € R? onto X in the V! metric is defined by

min [|a — Xz,
This corresponds to the problem ((1.2.2) with the solution z given by
z= (XTVX) T XTV
The corresponding projection matrix that realises the point Xz is given by
Xz=Pla=X (XTV'X)" X"V a. (1.6.8)
Let Qy : R"P — R™ provide a basis for the null space of X”. Then
[-PY=1-VQ:(QIVQ,) " QF (1.6.9)

also gives a projection onto the range of X, and I — P} = Py. This is a
consequence of the equalities

(I-PY)X=PyX, Q) (I-Py)=Q3Py =0.

Note that Pg does not depend on the precise form of (). However, it will
often be computed via an orthogonal factorization of X.

Remark 1.6.1 Let Y be the orthogonal complement of X. That is
Y={y; y=Yb, Y'X =0, be R},
where Y : RT™P — R? has full rank ¢ — p. Then, fory e Y, xe X
(Vy,x), =b"YVV !Xz =0.

Thus the V=1 orthogonal subspace is VY, and PYVY = 0.



52 CHAPTER 1. THE LINEAR LEAST SQUARES PROBLEM

Properties:

1. Let Py be the orthogonal projection onto X corresponding to V' =1
then

PyPy =Py, (I —Py) (I —Py)=1- Px, (1.6.10)
PYPy =Py, (I-Py)(I—Py)=1-PY. (1.6.11)
2. The transpose of Py is also a projection matrix. In particular,
(PY) =V 'PYY, (1.6.12)
[—(PY) =V (I-PY)V.
3. Let Y be the orthogonal complement of X. Then
(1= ) )y=v ' (1-P)VY =Y.

Also
(1= )" ) v =v (- Ry x =0,

so that, as XTV~-1VY = 0, it follows that V1X is the V orthogonal
complement of ) in the V metric, that

P = (1-(PY)")
provides the corresponding projection matrix, and that
P+ (PY) =1

As an application of these operations consider the problem of attaching
a limit to (1.6.7) as W~! — 0. We have

lim (V+XWxXT) " =Vl voix (XTV X)) T XTY

W-1-0
—V (=R = (1= (P)") v
= PYvL
This result can be interpreted in terms of orthogonal projectors using the
g-pseudo inverse defined by the relations
AAYA = A, (1.6.13)
AIAAI = A9, (1.6.14)
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Lemma 1.4
V(I = Py) ={(I-Px)V (I - Px)}.
Proof. To verify the defining relations let

A=(I—Py)V(I—-Py)V ' (I-PY).

Then
A=(I-Py)V(I—Py) (1— (P,‘(/)T> VL
— (1= Py vV (1-(PY)" )V,
_<I_PX)([_P¥)7
(I — Px).

The first required expression is
Al —Py)V(I—Py)=(1—Py)V ([ —Py).
This verifies . The second part considers
V(I -Py)A=V'(I-Py)(I - Px),
V(- PY)
by . This verifies .

93
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Chapter 2

Least squares computational
problems

2.1 Introduction

This chapter is not intended to be an all-embracing account of computational
algorithms for the least squares and constrained least squares problems, nor
is it intended to be a thorough account of the associated error analysis.
Rather the aim is to summarise aspects of these problems that are relevant
to numerical considerations stemming from the developments of the previous
chapter. Further information on the general problems can be found in the
definitive accounts [I1] and [46] respectively.

2.2 Perturbation of least squares problems

2.2.1 Case of fixed perturbations

There is no real restriction in assuming for the moment that the design matrix
satisfies ||A]] = y/n. It has been assumed already that the model structure

ensures %ATA % @G where the Gram matrix G is bounded, positive definite
n—oo

and that p is fixed, so this further assumption amounts to a rescaling of the
design by a quantity which is asymptotically constant.
We consider the generic perturbed least squares problem ([1.1.1)) with data

r=(A+7E)x— (b+ 72)

where perturbations F, z are fixed in the sense that they result from a well
defined rule for each n. The perturbation E is assumed to be independent

95
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of any observational error . It is assumed that 7 is a small parameter which
determines the scale of the perturbations. The component-wise scales of E
and z are fixed by requiring

max || B[l = n <1, [|lz[l, < 1. (2.2.1)
Z7j

It is assumed also that 7 is small enough for both A and A+ 7FE to have full
rank p. The necessary conditions for the perturbed and unperturbed least
squares problems give

(A+7E)'t=0, ATr™ =0

where the ~ indicates the solution of the perturbed problem, and the super-
script (n) the exact solution of the original problem. Subtracting gives

(A+7E)" (T —1™) +7ETr™ =,
and substituting for the residual vectors gives the basic relation

(A+7E)" (A+7E) (R —x") =7 {(A +7EB)" (z— Ex™) — ETW} .

(2.2.2)
For small enough 7 this gives
x = x( =7 {(ATA) 7 (A" (2 Ex) - B"x™) } + 0 (7)),
—1
1 LT (4 — (n)
=7 (ﬁU> (- Ex) L (?), (2.2.3)

_ (lATA)_l 1 pTy(n)
where A possesses the orthogonal () times upper triangular U factorization

1=e|(]-Ta @] |-euv

and ()1 corresponds to the first p columns of (). There are two ways of
looking at this relation. The first considers n fixed and worries about the
size of cond (A) = Z—’l’, the ratio of the largest to smallest singular values of A.
This describes the problem sensitivity corresponding to 7 — 0 in the order
term. It leads to the basic inequality

2
o) <o 2 oo 20 ) o 7,
(2.2.4)
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where the assumption that |A|| = \/n = 0, has been used. The original form
of this result is due to [40]. It highlights possible dependence on cond (A)2
which is likely if % HETr(”) H is not small. The importance of this inequality
is that it is a generic result highlighting what is best possible. For this
reason computational algorithms in which the error takes this form are said
to have optimal error structure . Methods based on orthogonal factorization

prove to be important in the development of such optimal algorithms. These
techniques go back to [48], [35], and [9]. It follows from (2.2.3)) that

r—rW=_r {(I — P)z+PEx™ + A (ATA)_1 ETr(”)} +0 (7%,
=—7{(I-P)z+PEx"™ + QU 'ETT™} + 0 (r*) (2.2.5)

where P is the orthogonal projection A (ATA)_1 AT onto the range of A.
Thus the result of the perturbation is a change of O (cond (A)) on the resid-
ual showing that a more satisfactory result is possible if the residual is the
required quantity.

However, there is an alternative way of considering this result which is
important when n is large and € is a random vector. Here the order terms
must be interpreted in the sense that n — oo and 7 is small enough. The
Gram matrix G (1.1.7) can be used to write a limiting form of as
n — oo. Contributions from the quadrature error terms have been ignored
(the following Lemma shows they contribute at most 7 (0 (1)) given regular
sampling), and G'/2 is written for the large n approximation to \/LEU in

2-2.3).

1 1
S (n) — -1/2_~ T —FE (n) _ —I_ET (n) 1 2 ]
o T{G \/ﬁQ1 (= x) -G o T }+O(T(O<))7T)
(2.2.6)

We have the following bounds for the interesting terms in this equation.

Lemma 2.1

2 BX)| < Ja - BxV]..
) < ol
n n >

Proof. The first part applies the standard inequality relating the 2 and
oo norms. The second part follows in similar fashion from the inequality

IE|| < /npn, (2.2.7)

1 T
%HQl (
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where the the right hand side is a simple bound for the Frobenius norm of
E. m

Also it is important when fixing the order of dependence on 7 that the
n dependence of the O (7) terms is appropriately bounded as n =% co. The
key is the following result.

Lemma 2.2

1(A+TE)T(A+TE) S G+0(7).

n n— oo

It follows that the normal matriz associated with the perturbed least squares
problem has a suitably bounded inverse under reqular sampling.

Proof.
1

1
—(A+ TE)" (A4 7E) = EUT {I+7{QTEU ' +U TETQ,}

+7?UTETEU T} UL

(2.2.8)

To show that the terms multiplying both 7 and 72 in this expression are
O(1), n ™5 oo, requires a bound for ||[EU~Y|| valid for large n. Note
|EUY| > ||QFEUY||. The required bound can be constructed as follows:

vIUTETEU v
vy
B wET Ew
N sgp wUTUw’
1B
T NOmin {%ATA}’

pn?

L —
= Umin{G}+0

)

HU_TETEU_IH = sup

(1), n ™% 0,

where the estimate of || E|| obtained in the previous Lemma has been used.
Thus

1
n

(A+7E)" (A+7E) - GH <7 {3 G| \/pcond (G) + 0(1)} "% oo,

The last step uses 72 | EU™Y|* < 7 |EU || when 7 [|[EU~Y| < 1. m
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Remark 2.2.1 This result shows that provided a regular sampling scheme
applies then all terms in the basic relation have the orders claimed as
n — oo. More can be said if the law of large numbers (see Appendz'a: can
be applied to estimate ETr™ . It follows from the necessary conditions that

AT =0 = QQQ;FI‘(”) =",
This means that in the case of an exact model the necessary conditions give

r™ = Q,Q7 (A (x™ —x*) —€) = —Q:Q7e.

so that
1 T..(n) 1 T T . as.
SETY™ = _ZETQ,QTe S 0,
n n n—00

1 a.s.
= —G'ETr™ % . (2.2.9)
n

n—oo

by the law of large numbers . This provides a sense in which the term in

G2 dominates in(2.2.6) for large n.

Remark 2.2.2 The above discussion has been in terms of prescribed pertur-
bations and exact arithmetic. However, at least as important is the question
what information, if any, this discussion can give regarding the behaviour
when E, z, 7 are determined by the nature of the computational procedure
and the characteristics of floating point arithmetic and n is large.

1. The scale T 1s determined by the requirement that the component-wise
scaling conditions are satisfied. If these are set by reference to
worst case error analysis (for example, [{6l], Theorem, 19.3) , then this
suggests T = ypu where u is unit roundoff and vy, = O (n). This is not
compatible with the previous asymptotic results.

2. The application of the law of large numbers requires that € be indepen-
dent of £, z. This cannot be strictly true here as right hand side values
must influence rounding error behaviour to some extent.

3. The values of E, z depend on the detail of the particular algorithm
implemented.

Putting aside the setting of T for the moment, some progress can be
made on other matters. Consider the Golub orthogonal factorization algo-
rithm based on Aitken—Householder transformations [35]. A suitable form
of error analysis is given in [51] for the hypothetical case in which the or-
thogonal matriz () is estimated by computing the product of the component



60 CHAPTER 2. LEAST SQUARES COMPUTATIONAL PROBLEMS

Aitken—Householder transformations explicitly. This shows that the potential
cond (A)? contribution comes from a term

_ U0
A=U 6@\/51- , (2.2.10)
where 0Q) is the error in the computed orthogonal transformation. The com-
putation of the factorization matrix () does not involve the problem right
hand side so the potential rounding error/stochastic error interactions can
only contribute to potential cond (A) terms. Now A can be estimated us-
ing the law of large numbers provided the individual elements of 6Q) have an

O (\%) estimate, a magnitude typical of the elements of an n x n orthogonal

matriz.

A corresponding result to does not appear available for more usual
methods of treating Q. However, it suggests that the previous analysis could
be applied here provided T is small. This requires systematic cancellation not
allowed for in the setting of T = v,u based on worst case analysis. There
is more hope from informal observations which would seem to suggest that
the cumulative effects of rounding errors prove relatively small in large com-
putations. This could indicate something like a weak-mizing form of a law
of large numbers (weak mizing because there is certainly some local rounding
error interaction). Such a law need not depend on the precise statistics of
individual rounding errors, and could be compatible with worst case analysis
in the sense of allowing certain exceptional cases by analogy with almost sure
convergence

A similar program can be carried out in the generalised least squares case
[85]. Some aspects will be considered here first under the assumptions that
the principal interest is in the conditioning of the design matrix A, and that
there is inherent structural stability in the weighting matrix V' so that the
rank is fixed by the problem structure, as in the case of least squares subject
to equality constraints, and is invariant under allowed perturbations. Let
perturbations of the orthogonal factorization of the design matrix be given
by

A+7E =[Q1 + 7P| |U+ TR|

where

Q+7P)"[Q+7P|=1= PrQ,+ QTP =0

to first order in 7. Then the first order term in the perturbation of the
minimum variance solution operator 7" is given by

~U'RT+TQP"+U'[0 A]Q"
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where A is the contribution from the term involving Vi3V,,'. The depen-

dence on cond(A)? must occur here also, and this is most easily seen by
considering the case V =1 =T = U~'QT, A = 0. We have

~U'RT +TQP" = ~-U'QTET + U 'QTPUT + TQP”,
= U 'QTET - U 'PrQ,QT +U'PT,
— —U'QTET+U P} (I - Q.QF),
= UTQIET + U U (BT - Q) (1 - Qi)
= —UT'QTET+U'UTE" (I1-:QY7).

This agrees with on noting that Tb = x™, (I - Q:Q7)b = r™,
and adding in the contribution from the right hand side. The other extreme
corresponds to the assumption that V' is perturbed, but [ A b } remains
fixed. In this case it is the perturbation to A that matters, and the important
term is cond (QgVQg). This conclusion is worse than that obtained in the

1
analysis in [85]. The result there gives a dependence on cond (QQTVQQ)2
by an analysis of an algorithm for solving ((1.2.4) which avoids the use of
Lagrange multipliers.

Exercise 2.2.1 Show that the norm assumptions ||A|| = v/n, ||E|l« =1 are
compatible with the requirement %ATA — G € RP — RP, bounded.

2.2.2 Rounding error implications

Perhaps the most interesting result of the fixed perturbation analysis centres
on the use of the law of large numbers to show that the role of the term
involving the square of the condition number is deemphasised if n is large
enough. The other component of this argument is that the condition number,
although certainly it can be large in commonly used models, is bounded as
n — oo. When the perturbations are attributed to rounding error , the
second part of this argument remains steady enough. However, the first part
becomes more conjectural because it is no longer valid to assume that the
perturbations are independent of the observational error . The conjecture
that this result remains true has to be based on the expectation that the
mixing between the two processes is weak enough for a form of the law of
large numbers to continue to hold. The argument is that the rounding should
mostly be independent of the observational error if there is no significant
relative amplification of this relative to the signal (but note that significant
is here a ”value loaded” descriptor).
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Apart from this distinct awkwardness the perturbation development is
useful. For example, the rounding error analysis for orthogonal factorization
is summarised in [46] where it is presented in just the right form for mimicking
the above development. Key inequalities are:

IAU]

< o cond () 1241
01

1Al
|AAl
1Al
where ||.|| is the Frobenius norm, ¢, is a constant, and the scaling of each
of the perturbations AQ, AU, AA has the form eps f (n, p) where eps is the
machine precision, and f (n,p) is characteristic of the role of the particular

quantity in the algorithm. Each contribution is required to be small enough
for the argument leading to these inequalities to hold.

ond (A)

|AQ] » < ¢, cond (A)

2.3 Main computational algorithms

2.3.1 Cholesky factorization

The classical computational algorithm for solving the linear least squares
problem involved forming the normal matrix M = AT A, factorising this into
a lower triangular matrix times its transpose

M = LL", (2.3.1)
and then performing the forward and back substitutions
Lz = A", LTx = =.

This approach has an unavoidable worst case conditioning dependence on
k(M) = k(A)®. This is potentially much worse than the  (A) sensitivity
of the underlying problem in the cases that errors are random or when ||r||
is small, so this is an algorithm that does not have optimal error structure
. The source of this difficulty occurs already in forming M and ATb. These
computations lead to results which can be represented as

A(M)=(A+7E)" (A+7E); 1(A™) = (A+7E)" b

where the differing subscripts on the perturbation terms indicate the round-
ing errors arise from independent computations. Here the standard back-
ward analysis for the Cholesky factorisation leads to a computed solution
[46] which is the exact solution of

((A v E) (A+TE) + TAM) X=(A+7E)"b
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where TAM takes account of the rounding contributions in the solution pro-
cess. The leading term in the error in this case is

Ax=7M""' (E3b— (Ef A+ ATE, + AM) X)

which clearly shows the s (M) dependence for fixed n. As a consequence
of this unfavourable condition estimate which is certainly valid when [|r(™||
is small the Cholesky algorithm has fallen out of favour as a method for
“standard” linear least squares problem. However, the method is important
a priori in reducing the generalised least squares problem to the form (|1.2.4))
when the covariance matrix V' # [ is given. It also has potential advantages
when the design matrix is large and sparse or possesses other structural
properties which need to be exploited to reduce computational cost.

The Cholesky factorisation is a recursive procedure which at each inter-
mediate stage gives the factors of a leading principal sub-matrix. Let M;
be the (i — 1) x (i — 1) principal sub-matrix. Then L;, 1 = M;_; = 0 for

1t =1, and for i = 2,3,--- n the factors of M; are determined by the relation
T
R R e e B2
We have
L; 11, = m; (2.3.2)
which gives 1; by a forward substitution. Then
1+ 12 = my. (2.3.3)

Positive definiteness of M ensures that m; > 171; in exact arithmetic, but
this property can be destroyed by rounding error in ill conditioned cases.
Also, there is an ambiguity in the sign of [; which typically is removed by
taking the positive square root

This factorisation process lends itself to several different organisations. In
the above discussion L is built up a row at a time, but it can equally well be
found a column at a time. The quantities that are required to be computed

to complete stage i of the recursion are [y, [(i11yi," -+ ,ln;. These are found
from the relation
Ly 01[2r, 1 1@ 1@ ] _
IE 0 lu layne - lu
Mi—l m; mgﬁl s l’l’lq(q?)
miT M Mygi41) - Min
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The previous step of the recursion gives
L =m@ k=ii+1,-- n
so that [; is found as before, while the [;; satisfy the relations
11 4 Ll = g, k=i +1,--- ,n.

This completes the computation of the i’'th row of LT and simultaneously
gives
10D = {1;” ] k=it m,
Ui
ready for the next stage of the computation.
An important variant forms the factorisation in modified form

M = LDL" (2.3.4)

where the diagonal elements of L are set equal to 1. In this case the factori-

sation is unique and can be computed without extracting square roots. It can
be written down immediately from the standard form, but it is convenient to
develop a modified recursion. To do this let M} be the submatrix factorised
at step k. Then the component terms in the partial factorization in column
oriented form satisfy

Ly Dy, Lt o7 fo oo
[ 1T ET [0 ] e
Equating terms gives
LDy Lj, = My,

LDy LY" = M) (ke 1:m),
M* = My ronyi1my — LS DL
= Mgt 1) (et1:m) — Mgty Ly T Dy ' De Dyt L Mgy (et 1:m)
= Mgt rm (et 1m) = M1 am) My, M1k (1:0)-

This shows that MF is the Schur complement of M}, in M. It is a standard
result that M* = 0 if M = 0. To develop a recursion for the factors set

[ Dy
p- [P, ]
[ Ly
L. =
k lgk)T 1:|7

(k) _ <L(k—1)> 1)
L2 2 (2:n—k+1)x* 2 )




2.3. MAIN COMPUTATIONAL ALGORITHMS 65

Here 1§’“>T = e{Lgﬁ*l) is already known in a column oriented method, and
it is necessary to compute d; and 1§’“) so that 1) holds. Equating the

remaining terms gives
di = My — lﬁk)TDk_llik),

k—1

M(k+1:n)k = |: <Lg :

= a1 + (L4

l(k) T
) (2:n—k+1)x* 2 DkLk €k

) Dy 1%
(2:n—k+1)*

Also the elements of D can be generated recursively. Let
; i 2 .
d(lz: = Mk, d‘ljg = d?@ b dj—l (Lk(]—l)) y ] = 17 27 e 7k7 (236)

where dy = Ly = 0. Then A
& >di >0

as a consequence of My > 0, and
dp = df.

We have seen that the generalised least squares problem can be solved
under weaker conditions than V' > 0. This makes it of interest to determine
the Cholesky factors in the semi-definite case. If rank (M) = r then the
factorisation will have the form

Ly D Lt Lo
T r — M
L LT e

so that M"™ = 0. This corresponds to the conditions
di:o, j=r+1Lr+2,---,n

If there is a need to determine information on the rank of M then there is
a definite advantage in modifying the algorithm to permit a pivoting strat-
egy in which rows and columns of M* are exchanged in order to bring the
maximum element (necessarily on the diagonal) to the leading position be-
fore the next stage of the factorisation. This can be done equivalently by
fixing the new pivotal row and column by selecting the maximum element
of the set {df}?:kﬂ to become dj;in the permuted matrix as these ele-
ments are non-increasing as a function of k. This pivoting strategy ensures
diy > dy > --- > d, > 0. This pivoting strategy can be thought of as elimi-
nating the most significant elements as part of a greedy strategy to reduce
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MF¥ to zero. Criteria for the success of this factorisation procedure in real
arithmetic are discussed in [46]. They boil down to the requirement that the
smallest eigenvalue of M), when scaled to have diagonal elements unity, is
large enough for k < r. Note that this is a criterion for the success of the fac-
torisation - not a criterion for the success of the rank determination. Further
analysis of the triangular factors may be required to obtain this information
[43]. What is achieved here when the computations are carried out in real
arithmetic are factors for a perturbed and permuted matrix whose rank is
known. If this perturbation is small then this result is frequently all that is
required.

If the interchange applied to MF* after step k involves exchanging row
and column j > k + 1 of the full matrix then, if Pj; is the symmetric el-
ementary permutation matrix interchanging rows k + 1 and j, Py = I —
(exs1 — €;) (exr1 —€;)", the exchange is effected by

0 0 Ly D
}%j[() A{k ]}%j::}%jﬁif%j—’}%j[_Lg) ]}}ijfij{ O}
LT L(k)T
Py Py { k 2] Pyj,
Ly Dy r T

where ng) is obtained from Lgk) by interchanging the first and (j — k) + 1
rows and the lower triangular form of the factor is preserved. Thus the
rank revealing factorisation in the sense indicated above produces an LDLT
factorisation of PM PT where the permutation matrix P is given by

0
P = Ppn a)jm-2 - Pojoy = ] Pow

k=n—2

where j (k) is the index of the maximum diagonal element of the permuted
form of M*.

Remark 2.3.1 Positive definiteness requires that d{c >0 . It fol-

lows that in the rank revealing factorisation

@t )
0< d—] — (Lk]) = |Lk]‘ <1

as df;_l < d; as a consequence of the diagonal pivoting . This condition puts
a limit on the possible ill-conditioning in L and serves to concentrate this in
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D in the case that M is ill-conditioned. A simple case is illustrated in the
next example.

Example 2.3.1 The use of diagonal pivoting helps to concentrate ill-conditioning
in M into the diagonal matriz D. Consider the identity

1 1 1 v |1 y

v 1 1 L] |y 149
Here the matriz has been defined by a factorisation which has non-decreasing
elements in D, which is well conditioned, but has distinctly ill-conditioned

L - cond(L) = O (v) for large ~y. On the other hand the modified Cholesky
factorisation with diagonal pivoting gives

1++4% v 1 1++2 I
v 1 14:72 1 1+172 1 ‘

Example 2.3.2 [t is important that structure be preserved in cases when
n is large. This need not be achieved by the rank revealing factorisation.
Consider the LDL™ factorisation

o
3

= O Ot

M = =LDLT.

[JUREN N
N Ot W
W o

where

1
11
L= 11 , D= 3
1

1
1

1 1

Let M be scaled to have diagonal elements 1. This gives

1 .745
745 1 504
Mg = S04 1 507
H07 1 516

Hl6 1
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The permutation sequence induced by diagonal pivoting is {1,3,5,4,2}. The
permuted matrix is

1 0 0 0 .745

0 1 0 .507 .504
PMP = 0 0 1 516 0

0 507 516 1 0

745 504 O 0 1

and the factors are

1 1
N 0 1 N 1
L= 0 o0 1 . D= 1
0 507 516 1 A76
745 504 0 —.537 1 053

Note, in particular, that L has more non-zero elements than L. This pattern
is a property of this family of tri-diagonal M and continues as n increases
with the asymptotic ratio of the number of non-zero elements approaching 2.

Exercise 2.3.1 Show that the Schur complement M* in equation 18
positive definite if M is.

2.3.2 Orthogonal factorisation

The algorithm that replaced Cholesky factorisation as the preferred method
for the linear least squares problem (|1.1.1]) is based on the reduction of the
design matrix A to the product of an orthogonal matrix times a trapezoidal
matrix with upper triangular and zero blocks by means of a sequence
of orthogonal transformations. The two families of transformations consid-
ered lead to algorithms with optimal error structure. The transformations
are:

1. Aitken—Householder transformations based on elementary othogonal
matrices

H=(I-2ww"), ww=1 (2.3.7)

(note the matrix is symmetric); and

2. plane rotation based transformations based on elementary reflectors
I

H= I LAt =1. (2.3.8)
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The first class is preferred for the direct reduction of a dense design matrix.
The second class is more flexible as it just mixes two rows or columns so a
sequence of these transformations is typically required to achieve the same
result as a single Aitken—Householder transformation. However, plane ro-
tations possess a flexibility that can prove valuable in sparse problems and
in problems in which the design is systematically modified by the sequential
addition or deletion of observations and by the sequential addition or deletion
of variables. Several examples are given subsequently.

Elementary orthogonal matrices were introduced for systematic matrix re-
duction in [I06]. The appreciation of their use in developing computational
algorithms is due to Householder [48], and their popularisation to Golub [35].
The typical operation that defines the algorithmic use of an elementary or-
thogonal matrix H as a function of its defining vector w is the transformation
of a given vector v into a multiple of a unit vector:

Hv=(I-2ww")v=20|v|e, 6 =+l (2.3.9)

It is immediate that
w =7 (v—_0v]en)

where

L= whw =2 (V] = v va)
Possible cancellation in computing w is minimized by choosing § = — sgn (v1)).
This gives

1
Y ANV = oD

Note that H? = I, and det (H) = —1 so that H is a reflector.

To construct the factorisation ([1.1.9)) assume an intermediate step with
the partial factorisation

(v—0|v]el). (2.3.10)

Ui, Uifl
AZQz’—l[ 01 ;12. }

Define the elementary reflector H; by requiring it to map the first column of
A; to a multiple of e;. Then

RN A (DR
HzAZ - |: 0 AZ'+]_ )

and set

_ I _ Ui* (Uiil)* T (Ui_l)* p—1i
Qi—Qil|: Hi‘|, U, = { 1 0||(1,§11)*11||}’ Uiy = { 12 T(z )1_
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Then

U, U
A = i ! 12 .
< { Aip ]

If A has its full rank p < n then the required factorization is produced
after p steps. in this case the resulting orthogonal transformation () can be
partitioned as

Q=[] Q] (2.3.11)

where

A=QU, Q3A=0. (2.3.12)

If p = n corresponding to a square design then the number of transformations
required is reduced to p — 1.

Remark 2.3.2 The analog of the diagonal pivoting strategy in the Cholesky
factorisation is a pivoting strategy that chooses the largest column norm of A;
to determine the column to be reduced at the current stage . As orthogonal
transformations preserve length, column mnorms cannot be increased in the
passage i — 1+ 1. It follows that column pivoting forces the diagonal elements
of U to be non-increasing in magnitude. As these elements must be identical
up to sign with the corresponding diagonal elements of L in the diagonal
pwoting Cholesky factorisation the Ly,i = 1,p must be non-increasing in
magnitude also.

The fundamental theorem governing the error analysis of orthogonal fac-
torisation based on Aitken—Householder transformations is due to Wilkinson
[115], [116], and can be stated as follows.

Theorem 2.1 Let ﬁp be the computed upper triangular factor in .
Then there exists an orthogonal matriz (), such that

A+7TE = @p [ (ép ]
where ||E|| < npl||Allr and 7 is of the order of the machine precision pro-
vided quite weak restrictions on the size of n are satisfied. Here @), can be
constructed as the product of the Aitken—Householder transformations that

would be generated by carrying out each stage exactly using the actually com-
puted numbers.
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To solve the least squares problem using the Householder factorisation note
that the invariance of the Euclidean norm under orthogonal transformation
gives

min ||Ax — b||* = min
X X

(4]x-a
{ Upx — (@)1 b }

= min
X

It follows that the minimiser is

x=U," (Q,); b, (2.3.13)
while the norm of the residual satisfies

Il = [| (@3 b

The error analysis is very satisfactory [46]. This is summarised in the next
result which assumes that A has full rank p.

Theorem 2.2 The computed solution X™) is the exact least squares solution
of a close by problem

mxin |(A+7E)x — (b + Tz)||§

where the perturbations satisfy ||E|» < np ||Allp, [|zll, < np||b]|, and 7 is
of the order of the machine precision provided quite weak restrictions on the
size of n are satisfied.

This is a backward error result, but it follows directly from this that the
algorithm has optimal error structure .

The solution method based on the Aitken—Householder transformation
based orthogonal factorisation has the minor disadvantage that neither )1,
the orthogonal basis for range (A), nor r(™, the optimal residual vector, is
given explicitly. The hat matrix (1.1.10]) provides one example of an impor-
tant quantity that requires this information. However, both (); and U can
be computed explicitly by Gram-Schmidt orthogonalisation. Here the se-
quence in which the computations are performed is important for the round-

ing error analysis [9], the preferred form being referred to as the modified
Gram-Schmidt algorithm (MGS). Consider

[A b]:[al,---,ap b].
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The first step sets

ala, ,
a?:ai_l—;alv 222737"'277
[au |
a’b
b*=b ! ay, thal/HalH-

RTITE
lau |

This can be represented in matrix form as

ala; al
llay | T ni_llﬂ
2 2
(A b]=[a a, - ,a
1
Subsequent steps orthogonalise aj,,,---a} b’ to a} for i = 2,3,---,p in
similar fashion. The result is
U z
= —rm)
[Ab]=[Q -r ]{ 1], (2.3.14)
. iTgi
where Uy; = ||a||, Uy = %2, z = QTb. The solution of the linear least

1
a;

squares problem is now computed as
xW = U~z

The resulting algorithm has very satisfactory numerical properties. This can
be seen most easily from the observation that the MGS procedure is identical
with the application of p steps of Aitken—Householder transformations to the
modified design matrix in RP*t — R™? [10]

[AB]=] 4o

By (2.3.10]) the elementary orthogonal matrix in the first step is determined
by the partitioned vector in R™*P

Wy = 1 { — [lai][ &1 }
V2 |la] a
When applied to the £'th column it gives

aTa
0 el
T _ flasl]
(I— 2W1W1) { a } = [ a alay, ] )

k — —=a
ar)? <t
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indicating the manner in which the factorisation is developed. The final
result is

[ i b ] = { gl _Z } . (2.3.15)
An interesting feature of the implementation of MGS by means of elemen-
tary orthogonal transformations is that while the product of the Aitken—
Householder matrices provides a computed result which is close to an orthog-
onal matrix, there is possible loss of orthogonality in the computed realisation
of Ql .

The result shows that this implementation of MGS provides a lot
of useful additional information. An alternative formulation provides even
more. This represents a development of the sweep methods described in [65].
This starts with a different augmented matrix (note that replacing b by —b
requires replacing z by z = —Q7Tb)

A —-b
I 0

Making use of the MGS equations (2.3.14]) gives
A -b|[U 2] [4 -b|[U' —U'z
I 0 0 1 L I0 0 1 ’
[ @1 -b-0Qiz
U-! x() ’

} € RPN — RMP. (2.3.16)

: ()
_ (52_11 X(n)}, (2.3.17)

Remark 2.3.3 If A,y = e then the first MGS orthogonalisation step auto-
matically centres the remaining columns. Thus the MGS algorithm provides
an elegant procedure for the inclusion of an intercept term in a statistical
model. See subsection |1.1.4].

The implementation of the algorithm is very simple.Each orthogonalisa-
tion step is computed as usual (this involves just the design matrix component
of the augmented system) , but it is then applied to the full set of columns in
a sweep step. The work is basically the same as in the implementation based
on Aitken—Householder transformations, but the information gained is even
more useful in form. Also, the algorithm produces the solutions to a sequence
of partial regressions as it evolves. Thus it lends itself to variable selection
computations . Stability of this form of the MGS algorithm has been tested
numerically [78] with the results indicating optimal error structure, but a
complete error analysis does not appear to be available.
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Exercise 2.3.2 Show that the sum of squares of residuals is produced explic-
itly by the sweep form of the MGS algorithm if the row

[ ~bTA bTD |

is added to the augmented matriz .

2.3.3 Methods for generalised least squares problems

The generalised least squares problem has a unique solution provided the

1}(T 61 has full rank n+p. A sufficient condition that
makes good sense either in the case of a known, parsimonious model or in
an exploratory context is that the design matrix A has full column rank p
and QTV Q5 has full rank n — p (chapter 1, condition . The factorization
and solution provide the basis for an effective computational
procedure in which the Cholesky factorization is applied to Q¥VQy. The
full rank condition on A is an important aspect of an efficient model, while
QTVQ, regulates the size of the residual. The catch with the generalised
problem centres on V' : R® — R". Treating this as an arbitrary positive
definite matrix runs into problems with the large n (asymptotic limit) case.
These problems are of two kinds and may have no easy answers:

augmented matrix {

theoretical Variance information is assumed available in the generalised
least squares problem formulation but it is not the easiest quantity to
come by. A nondiagonal form for V' implies coupling between obser-
vations in the measurement process. Typically this results in narrow
banded block structures in sequential experiments and in special struc-
ture reflecting symmetries in other cases. Methods for estimating V'
are considered subsequently.

practical The potential size of V' requires that computational methods
that exploit a priori structure such as sparsity are important. The
characteristic feature of sparsity most often encountered here is that V/
depend on at most O(n) distinct elements.

Standard factorizations

If V' is given explicitly then its Cholesky factorisation is a typical first step
as it has the advantage that it preserves a banded block structure in V' in
the sense that if V' is 2n, + 1 banded then the Cholesky factor L is n, + 1
banded with blocks of the same size. This result may not hold if diagonal
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pivoting is used in a rank revealing factorization. If V' is well conditioned
then the least squares problem ([1.2.4))can be written

mins’s;s = L7 'Ax — L™'b.
The usual approach based on orthogonal factorization sets
L'A=Q,U
so that o
x™ = U1QTL .

The storage requirement is dominated by that required for L plus that for
the design A.

If the problem does have a well determined solution while V' is illcondi-
tioned or positive semi definite then direct solution of the augmented system

% ) [

could be appropriate.This matrix is symmetric but indefinite. Solution meth-
ods (for example, the Bunch-Kaufman-Parlett algorithm [46]) are available
in both dense and sparse cases.

Paige’s domain of ideas

The idea here is to provide an algorithm that avoids any dependence on a
rank revealing factorization of V', and is numerically stable provided the gen-
eralised least squares problem has a well determined solution. The starting
point is the constrained form (|1.2.4])

mins’s: Ls = Ax — b.
X,S

Let X : R"? — R" have full column rank and satisfy
XTA=0.

This implies that X = 2B where B : R"? — R" P has full rank and ()5 has
orthogonal columns. In particular, (); can be constructed via the standard
orthogonal factorization

A= QQ]H].

It follows that X7V X has full rank n — p under the second order sufficiencey
condition (|1.1)). The main result is the following.
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Theorem 2.3 Equation can be stated in the equivalent form which
does not involve x
mins’s: XTLs = —X"b. (2.3.18)

S

Proof. The necessary conditions for an optimum in ((1.2.4]) give
[§ 0] = [ LA

where p is the vector of Lagrange multipliers. An immediate consequence is
that

p= QY
for some v € R"P where (s is the orthogonal complement of the range of
A. The values of s and ~ can be found from

L"Qyy =s; Q3 Ls = —Q1b.

It follows from the necessary conditions for (2.3.18]) that the optimum is
identical to the optimal residual vector in (1.2.4). mm

The necessary conditions on give
s =ATXTL,
so the Lagrange multiplier vector A satisfies the nonsingular linear system
X"VXX=-X"b.
If X = @2 then the system becomes
Vasd = —Q3b

. Given A then s is available and x can be found by multiplying by QT
and then solving the resulting upper triangular system. A significant problem
is the requirement that V55 be formed explicitly as the matrix multiplications
required are likely to disturb any sparsity pattern in V. For this reason an
alternative approach is sought [85], [86]. Let the orthogonal factorization of
LTQy : R*P — R™ be given by

o[ 1]

where S is orthogonal and R is upper triangular. Then the constraint equa-
tion becomes

[ RT 0]S5"s=-Q7b.
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It follows that the conditions determining the minimum sum of squares are
STs = —R7TQI,
STs = 0.

Thus
s=-S51R7"Q}b,

and
<) = U1QT (b - LSRTQID) (2319)

This should be compared with ([1.2.6). The identity follows on noting that
(QFL)" = SR = 17Qs (Q5VQs) ™

where + indicated the generalised inverse. Here it seems that sparsity would
be destroyed in forming QT L, but Paige [86] noted that it does not have to
be formed explicitly. He suggests the factorization

1 0O 0 Ly O
Q"[b A L] I =|n 0 g p :
S VA UT L21 m L2

where (), S are orthogonal, p # 0, z,m € RP, g € R* P! L, : Rv Pl —
R P~ Ly € P71 5 RP, Ly, U : RP — RP, and Ly, Ly and UT are lower
triangular. Given this we have

1
O:[b A L] -x |,
s
0 0 Ly 0 171 1
=Q|n 0 g" p I -x |,
VA UT L21 m LQ_ ST S
[ 1
0 0 Ly O —X
=|n 0 g" p 51
VA UT L21 m L2 So
51
where S9 = ||s||. The key step is to design the factorization and, in
S3

particular, the choice of S so that L; is forced to be nonsingular. Then the

first block row gives
L151 =0
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so that
51 = Oa
n+ps2 =0,
z — Ul'x + som + Lys; = 0.
The minimum value of |[s|| = |s3| is achieved when s3 = 0, and these equa-
tions can then be solved for x, p. The identifiability conditions A, Vo, full

L . . .
rank correspond to U, g% ,(0) } nonsingular. Thus p # 0 is required.
To develop the transformation Paige suggests the following sequence of
operations:

for i=1 to n-1
for j=1 to min(i,p+1)

transformation from left. This loop works from right to left.
mix rows i-j+1,i-j+2 to zero element (i-j+1,p-j+2)
repeat j

for j=1 to min(i,p+1)

transformation from right. This loop works from left to right.
k=i-min(i,p+1)+]j
mix columns p+k+1,p+k+2 to zero element (k,p+k+2)
repeat j

repeat i

It is easy to see that these do transform the data array in the desired manner.
This is illustrated in the following diagram in which the array is split into
data and covariance components and corresponds to p =2, n = 6.

3 2 1 r 1—3

4 3 2 T T 2—4

5 4 3 1 x x 3—5

r 5 4 3 2 T T 4—5
r x 5 4 4 3 T T 5
T T T 5 5 5 4 T T

Here the integers in the data array [ b A ] indicate the stage at which the
corresponding elements are zeroed. In the covariance component L the range
in the super diagonal elements indicate the steps in which transformations
from the left introduce fill in this position to be removed by the transfor-
mations from the right. The subdiagonal elements show the propagation of
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fill in the case that L is bidiagonal. Note that it apparently fills the lower
triangular matrix showing no apparent sparsity advantage. However, infor-
mation from the fill only propagates to the right while the column is involved
in removing the superdiagonal fill. After this it has no effect on the quantities
of interest l’fl in determining x™. Elements that have no effect in this

way are indicated in bold and there is no point in computing them unless
additional information on the transformed covariance matrix is required.

Transformations leaving the covariance matrix invariant

The need to develop computational algorithms for the generalised least squares
problem raises the question of the possibility of constructing nonsingular
transformations of the model equations in order to facilitate their solution

r=Ax—-b — s=JAx — Jb,

where typically JA would be upper triangular, while preserving any useful
structure in V. This idea has been exploited in developing the application of
orthogonal factorization of the design matrix in the least squares case where
J = QT. In the present context the idea has been explored by, in particular,
[41]. Tt leads naturally to consideration of transformations which leave the
covariance matrix invariant corresponding to @7Q = I in the least squares
case. Because V' has the dimension of the data space it must be allowed to
be large so the preservation of its structure in cases where it is already in a
convenient form is particularly important. The conditions for the solution
of the generalised least squares system in the form ([1.2.8) which permits
certain cases where the covariance matrix V' is singular has been summarised

in Condition as
U T )
A=0Q 0| Q3 V Q2 nonsingular.

A convenient starting point that includes the possibility of this generality
proves to be equation ([1.3.7]) defining the Gauss Markov solution operator.
The constraints on allowable transformations are:

1. the solution operator must transform by 7" — T.J~! to take account
of the transformation b — Jb of the right hand side of the model
equations; and

2. the transformed equations must have a symmetric matrix if it is to be
interpretable as an augmented matrix .
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This suggests the the transformation

el [ e
(o —1]| 7 ] =10 1],

leading to the system

_ JVJE —JA
[TJlA}{_ATJT 0 }:[0 ~I]. (2.3.20)
Thus the condition for invariance makes the requirement
JVJT =V (2.3.21)

on the covariance matrix [41]. We say that the nonsingular matrix J is V-
invariant . This terminology is convenient here, but J7 will be recognised as
generating a congruence transformation, and these have been widely studied.

Remark 2.3.4 The formal objective in the generalised least squares prob-
lem is vV ='r while the V-invariance condition s a condition on
transformations applied to V. This is convenient not only because it is con-
sistent with the extra generality of the Gauss-Markov theory but also because
the transformations are required to reduce the linear system if they are to be
useful. The argument in [41)] goes as follows. Let J be nonsingular. Then

min (Ax — b)" V= (Ax — b) = min (JAx — Jb)" (J-TV1J71) (JAx — Jb)
It follows that

JTVIIT = ve vt =V
if V' is nonsingular.
Remark 2.3.5 Let J; and Jo be V-invariant. Then Jl_l, J2_1, JiJo and JoJy
are V-invariant. If V is nonsingular then JI' and JI are V~'-invariant. If

V' is singular then assume it has nullity k. In this case it has the reduced
form

V = 00 2.3.22
o] (23.22)

where Vo € R*% — R" % and Vo = 0. Here J can be V-invariant if and
only if

| Ju T _
J = |: ng JQQ :| ) ']22‘/21]22 - ‘/27

and Jy, and Joy are nonsingular.



2.3. MAIN COMPUTATIONAL ALGORITHMS 81

Example 2.3.3 Let J = [ —2uv”, then J is an elementary reflector (J? =
I, det (J) = —1) provided viu =1 and

JVIT =V =2(uw'V+Vva") +4(v'Vv)uu" =V. (2.3.23)
Let v,vIVv # 0 be given. Then this gives

Vv VvvT
= J=1—-—2———
v vIivv’

= — 2.3.24
vIivv’ ( )

and defines a V-invariant transformation. Also viu = 1 so that J is an
elementary reflector. There is a corresponding formula for v if u is given.

V~—tu

If V is singular and Vv = 0 then it follows from that J is V-
invariant for arbitrary w. In the special case in which V is given by

then a V -invariant elementary reflector is obtained by setting
J:]—Q{m][vfo],ﬁVp:L (2.3.26)
where vy # 0 is arbitrary.

Example 2.3.4 Let D = { d d ] Then
2

0 in 6 d
Z{ﬁi %ﬁ&], =, (2.3.27)
Vi 2
satisfies
JDJT = D.

It provides the invariant reflector which corresponds to the plane reflector in
linear least squares problems. It can be written in the standard form (2.5.24):

inf/2
J:I—Q[Si?sg/é ][sin9/2 Vicos0/2 .
Vi

Remark 2.3.6 It is of interest to consider the case V' = 0 as a limiting case
of V.- 0. Let

%:[w

q
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where V5 € R¥ — R* is a positive diagonal matriz, and § is a small param-
eter. Making use of the Vs-invariant transformation specified in terms of u

derived from (2.3.24) gives

2 Ty, —1
Byt
2 T —1
BT A
2 ul
=1 — Tw-=t 0
ulw-1tu, {U2} [ul ]’

as 0 — 0. Note that the action of this transformation can be considered to be
on the scale defined by §.

The use of J in computational algorithms requires control of the numbers
entering and so, by implication, of its norm. The following result is presented
in [41] and provides relevant information:

Lemma 2.3 Let J be an elementary reflector and set n = ||ul||v] > 1.
Then the spectral norm of the V-invariant, elementary reflector is

1) =0+ VP — 1.
Thus the norm is determined by 7).
Proof. The norm is determined by the largest eigenvalue of
JJw = uw.
Because J is an elementary reflector this is equivalent to
Jw =pJ w. (2.3.28)

If w is orthogonal to u and v then u = 1. It follows that the eigenvectors
associated with the interesting eigenvalues have the form

w =au + fv.

Equating the coefficients of u and v shows that a nontrivial solution of
(2.3.28)) in the subspace spanned by u, v is possible only if

—1—p —2vlv

2pufu 144 =0
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This gives the largest eigenvalue as

p=2n" =142/ (n*—1),
= (1+v (' -1)"

[
Remark 2.3.7 In the case of (2.5.24)) then
VI Vv
= 2.3.29
" vI'Vv ( )

so the relative size of vIV'v is significant. Note that ||J| = 1 if and only if
V = 1. The corresponding V-invariant transformations are orthogonal.

To construct the transformed solution operator T'J~! = T = [ T, T }
where Ty € RP — RP, Ty € R"P — RP consider (2.3.20) in the form

0 0 O U
(7] a]| |2 % Y| - [0] =0 )
-[U" 0] 0

where U € RP — RP is upper triangular,

{mz{g},%:[gi%ﬂ,mﬁu#k%RPh%ﬂuwp%Rnﬁ

This gives the sequence of equations

~ O 0 ~
0[] a0 )

~ 0 ~
T [ Vi } + 15 V5 = 0,
U = 1.

These can be solved to give the quantities of interest

szUl,iﬁ:—Ul[‘i}v%% (2.3.30)
L fTo 0 07, _
e (AR A IR T

xm—pt|lr -9 V' | Jb. (2.3.32)
Vi
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Both the form of the solution given by and the construction of the
factorization when V' is non singular follows the same procedure as that in
the orthogonal case. At the start of the i’th step assume a partial reduction
to upper triangular form

U U
JHA_[ 0 Ai]

has been obtained. Let the i’th (pivotal) column be
Ji_lAei = |: Ul :| .

Then v is chosen such that the elementary, V-invariant reflector .J¢ satisfies

U] 2 | | UL ] _ | Ui
! [ a; ] B {I_VTVVVVV a, | [ ve |’
giving the updated partial factorization matrix J; < J “J;_1. An appropriate
choice of v is obtained by setting

Vv — [ 0 } . (2.3.33)
a; — e

To fix v note that, as J* is a reflector,

Ui 2 r| | Ui
= |I- .
R | B

Taking the scalar product with v gives
][
a; el

r| 207 | _
v {aﬁvel = 0. (2.3.34)

so that

This gives a quadratic equation for v so this stage of the factorization can
be completed, at least formally.

Remark 2.3.8 In this generality there are apparent disadvantages in this
approach. Perhaps the most obvious is the need to solve linear equations with
matrix 'V in order to compute v. This appears to engage exactly the problem
that it is hoped to avoid. Also, if off-diagonal elements of V are not all 0
then v is potentially a full vector so there is coupling involving U’ in the
calculation of J'. This appears an unwelcome complication.
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The transformation of the design matrix to upper triangular form is made
easier by the structural assumption that V' has the reduced form ([2.3.22))
where V, € R** — R" % and

Vo = diag {vks1, Vkro, " Vn}, 0 <1 S pga < -+ < . (2.3.35)

If V is a positive semidefinite matrix in general form then it is suggested in
[100] that this could be achieved by:

1. First scaling V' so that the nonzero diagonal elements of the transformed
matrix are unity. Here V — SVS where S = diag {Vlll/ 2 7117{2}

2. Then making a diagonal pivoting (rank revealing) Cholesky factoriza-
tion (2.3.4) applied to V' to construct - a matrix of known factorization
and rank which closely approximates V'

rvrPT =LDL".

Note that the ordering achieved by this factorization gives the elements
of D in decreasing order of magnitude which is the inverse of that

required in ([2.3.35).

3. Next transforming the problem to one with covariance matrix D
r— L'PS7lr=A— L7'PST'A, b— L'PS'b.

Here Remark which indicates that illconditioning in V' tends to
be concentrated in D rather than in the triangular factor L should be
noted.

4. Finally permuting the covariance into increasing order with permuta-
tion matrix @)

D—=Q"DQ, r - Qr.

Via

Let‘/Z: V- :| 5 mlzdiag{yk—‘rlv”' 7Vi—1}7 %QZdiag{yiy'” 7Vn}7
22

where the partitioning is chosen to correspond to the i’th factorization step
with ¢ > k. Then

I
Jt = L

R T
I VTVQQV‘/QQVV
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is V-invariant where I, is the k x k£ unit matrix and I; and [, are unit
matrices conformable with Vj; and Vi, respectively. The calculation of J°

can be specialised in much the same way as in (2.3.33) by setting
Vaov = a; — yey.
In this case ([2.3.34]) reduces to

(a; — ’Yel)T Vo' (a; + ver) =0,

v =0y/{val Vy'a;}. (2.3.36)

The argument used here mirrors the corresponding argument in specifying a
Householder transformation. This suggests that to minimize cancellation the
choice § = —sgn (a;), is appropriate (note below). An interesting
feature is the appearance of the term v;Vj,' which means that ~ is indepen-
dent of the scale of V. To evaluate the denominator in the transformation:

so that

v Vasv = (a; — ’Yel)T ‘/251 (a; — veq),
=a/ Vi,'a;—2y (a;), /v +7°/vi,
=2yl (W + (@i ]) /vi. (2.3.37)

This leads to a convenient form

(a—7e1) (a—ye)” N

J=1-—
v (vl + 1(24), 1)
where
N=yV1=231—" ... =
v 22 { ’Vi+1’ ,Vn}7

is the diagonal matrix of scaled weights. These are nonincreasing and bounded
by 1.
In this case the stability criterion (2.3.29)) is given by

_ Hvﬁl (a; — ’Yel)H l|la; — ’yelﬂ‘
(a; —ve1)" Vi,' (a; — yer)

The denominator is given by (2.3.37)), and the terms in the numerator can
be estimated by

V' (@i — ver)|| = (|7] + [(a),]) /w4, and
|ai —ve1l| > [Jay]|
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where the first inequality is most accurate if v; < v;41, so that

iy
27|

It follows that the transformation will have large norm corresponding to an
illconditioned case if

n =

Iy < [lag|| - (2.3.38)

Remark 2.3.9 Control over conditioning is possible by using column piv-
oting . Equation suggests that possible candidate values of |7y| in
2.3.38) are given by pi(A,j) = Y0 NjAZ, j = i,i+ 1,---,p. Then
2.5.38) suggests that the pivotal column at the current stage should be chosen
to mazimize p; (A, 7) / la;||> . However, while it is not difficult to economise
on the calculation of the p; using simple recursions (see the example below)
the ||a,||> are not invariant under V -invariant transformations if V. # I and
so cannot be economised in the same way in general. Thus it is usual to base

the selection of the pivotal column on the size of the p; (A, j) alone.

If £ > 0 so that the form (2.3.22)) is assumed for V' with V5 diagonal, then
the key mapping
Ja; =ve, | <k,

needs to make use of the second family of V-invariant transformations .
There is no loss of generality in choosing [ = 1 corresponding to the first step
of the factorization. Insight is provided by considering it as the limit as  — 0
of the case

Vi =Uy =+ =1 =0, Vpp1 > 0. (2.3.39)

Here
lim vt = | L (2.3.40)
550 * 0’ "

m 7] = [
(151_{%‘7‘ Hal 2

1
where a; = [ Z% } to match the partitioning of V. The resulting transfor-
1

mation matrix J = I — 2cd” has the generic form ([2.3.26) with
Ve = (an +sen ((a1),) [Jar]],e1) / [[aill

vaa— | e Ehlaien ] gjaty, + (),
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This transformation will have large elements if
aa], < llall,

This is the limiting case of (2.3.38|) which characterizes illconditioning in the
other class of transformations.

Example 2.3.5 The possibility of column pivoting in solution methods for
the standard least squares problem has been indicated (Remark . It is
unlikely to be a critical factor in the numerical solution of problems with well
conditioned design matrices. However, this need no longer be true for the V -
inwvariant solution methods when the structure of V' supports different scales.
An important example is provided by equality constrained problems. In this
case Remark[2.3.9 indicates that the column to be chosen as pivotal column
at the i’th step is the one that mazimizes p; (A, j) = ZZ;m N;Agj, j=1,i+
1,--- ,p, where m is the number of equality constraints and N is the scaled
diagonal weighting matriz. To illustrate the requirement consider the design
matriz Ay € RP — R™ given by

(A2),, = Se,
(A2);(a;) = Sicos (2mj (i — 1) h),
(AQ)i(ZjJrl) = Sisin (2mj (i — 1) h),
1=1,2,---,n,7=1,2,--- k,
where p = 2k + 1, S = diag{l/\/ﬁ,l,--- ,1,1/\/5}, h=1/(n—1). The
columns of As are orthogonal and similarly scaled so a least squares problem

with As as design is very well conditioned. Let the constraint matriz A, €
R? — RP be given by

(Al)l* = eT7 (Al)Q* = eT _pez—i-l'

Then the constrained least squares problem

. T, O . Al . b1
Irsg(nss,[ I:|S_|:A2 X by |’

b; . Ae R c ;
[b2}_{Aze—l—s]’ez—sm(QW(k‘Fl)(Z Dh),i=14,--n,

with

has the solution x = e. This follows because e’ Ay = 0 so e solves the
unconstrained problem and also satisfies the constraints. However, the leading
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2 x 2 submatriz of Ay is singular if k > 2. This causes a breakdown of the
V-invariant factorization at the second step as a consequence of the form
of N? if column interchanges are not used. In the particular case
corresponding ton = 8, p = b, the ordering resulting from column pivoting is
{3,2,1,4,5}. The first interchange is a consequence of the largest coefficient
in the second constraint, and it succeeds in forcing the leading 2 X 2 submatriz
to be nonsingular.

Column sums can be computed recursively by noting that

Pi (A7.7> = (pifl (Avj) - A%ifl)j) /Ni1717 1=2,---,p—1, =1, ,p.

(2.3.41)
However, the advantage of this recurrence is economy, and it needs to be
monitored carefully. In the above example N* = v; diag {v;, Viy1, - - 1/n+m}71
changes character when 7 increases from ¢ = 2, corresponding to the last
zero element in V., to ¢ = 3 corresponding to the first nonzero. Here
N? = diag{1,0,---,0}, while N* = diag{1,1,---,1}. At this point the
perturbation approach is not satisfactory and the p; (A, j) must be

recomputed. However, there is also some potential for cancellation in the

recurrence (2.3.41), and this must be watched.

Does the use of the LDLT factorization of V make sense?

A rank-revealing Cholesky factorization of V' has the form
V — Ldiag{D,,D,_1,---, Dy} LT
where the diagonal pivoting ensures that
D,>D,>--->Ds.

This order is the reverse of that required here. As a consequence it must
be inverted to be used to construct the factorization of the design matrix
based on V-invariant transformations. Conditions for the rank revealing
factorization to provide a satisfactory basis for implementing the V-invariant
factorization are [40]

Ay = diag{Dy, Do, -+, Dy} small,
Dy, < Djyq,

Ay = diag {Dyy1,- -+, Dy} not small,
where £ < p.
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It would be expected that the values {D;, Do, -+, Dy} could have high
relative error as a result of cancellation as they are computed at the fi-
nal stages of the Cholesky decomposition. Does this matter? The follow-
ing argument suggests strongly that it does not. First note that the case
D = diag{0,---,0, Dgy1,- -, D,} corresponds to the equality constrained

problem ((1.2.7)):

mins’s; 0 S = A X — by
X ' A;/Q A2 b2 '
This is the limiting problem as A — oo associated with the penalised objec-
tive

mxin {rI Aty + Arir }s r= [ ﬁ; } X — [ E; } (2.3.42)

which has the alternative form

T AVRT A b,
m}}ns S A;/Q S = A2 X — b2 .

From penalty function theory we expect that ||x (A\) —X|| = O (1/\), A —
oo [29]. To justify this note that the necessary conditions for the penalty

problem ([2.3.42)) are
I‘gAQ_IAQ + )\I‘{Al = 0.

If we set 7 = 1/\ and define
Ta = AIX — bl (: I'l)

then we can find differential equations defining a trajectory satisfied by
x (7),u(7) for small 7 by differentiating these relations. This gives

_ dx du
AgAQ 1AQE —|— A,{E = 0,
dx _ du_
Ydr TdT_ ’

The matrix of this system is nonsingular for 7 small enough provided M =
{ ATATA, AT

Ay 0
and A, having full rank. This ensures that the initial value problem for
the differential equation system has a well determined solution. Thus it
is possible to integrate the system back to 7 = 0 starting from the initial
condition provided by the solution of the generalised least squares problem
for a finite value of 7. The Taylor series expansion of the solution is well

has full rank. This is a weaker condition than both A;
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defined at 7 = 0. The first two terms give x (1) = x (0)+O (7) corresponding
to a small perturbation, and this is just what had to be proved. The size of
the derivatives, hidden by the big-O notation, depends on the conditioning
of M.

The generalisation of this result to the case where A; is a matrix of
small elements resulting from a rank revealing Cholesky factorization follows
directly. It is only necessary to associate with A; a scaled family of matrices
TAjwhere Ay = Ay/||Ay|| (in the above argument A; = I) and to apply
the homotopy argument to the corresponding modified penalty problem. Let
D = diag{A;,As}. We conclude that the equality constrained problem
obtained by setting A; = 0 has a well defined solution which differs from
that based on the LDLT factorization by O (||A4]]).

2.3.4 Updating and downdating methods
Surgery based on orthogonal transformations

This section considers methods for the eficient modification of factorizations
developed for the solution of the least squares and generalised least squares
problems associated with the design data [A, b] both to permit the addition
of new data (updating) and to enable the deletion of data considered unsat-
isfactory (downdating) [33]. In the case of the linear least squares problem
these operations when applied to the associated Cholesky decomposition of
the normal matrix or the orthogonal factorization of the design can be given
a unified treatment by considering the relation

{5%7“% ;}Z{LZTHI%J (2.3.43)

where L, and Lo are lower triangular matrices. This requires that the fol-
lowing equations hold:

LiLT = Lyl +uu’, (2.3.44)
Lyv =nu, (2.3.45)
viv 492 =1. (2.3.46)

To add a new row to the design let LyLL = AT A then (2.3.44)) shows that
u’ corresponds to the new row in the augmented design and that L, is the
updated Cholesky factor of the normal matrix. The computation of L; can

be carried out by constructing an orthogonal matrix ¢ such that

LT LT v
ol )= Y
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Here () can be built up by the sequence of plane rotations (Q = Hjl.:p Rj>

where R; mixes rows j, p+1 of the target matrix and eliminates the (p + 1, j)
element.

Downdating is a little more complicated. In this case L; is the given
factor, Lo is the target, and u’ is the row of the design to be removed. It
follows from (2.3.45)) that v = L u, and, for consistency, 72 = 1 —v’v must
be positive. This is just the condition that

Lng = L1L1T —uu’ = LlL{ - L1VVTLf = 0.

Note that there is the possibility of cancellation in this step [I02]! The
requirement this time is the construction of an orthogonal matrix such that

LT v LT
o[-l

The computation can be carried out using plane rotations to zero the com-
ponents of v in an order that preserves the upper triangular form of LT.
In terms of the component plane rotations the transformation has the form
Q = H§:1 R; where R; mixes rows j,p + 1 in order to introduce a zero in
position (j,p+ 1). For example, in the first step, rows p,p + 1 are mixed
to introduce a zero in position (p,p + 1) and fill in position (p + 1, p). Next,
rows p— 1, p+ 1 are mixed to zero the (p — 1,p + 1) element. This introduces
a nonzero in position (p + 1,p — 1) but preserves the upper triangular form
of L.

Another application is to certain trust region methods used for nonlinear
least squares and maximum likelihood problems (subsection . Here the
solution of the system

[ATA++*D"D]v = A"b, (2.3.47)

where A : RP — R", and D : RP — RP is upper triangular, is required for
a sequence of values of 7. For each ~ this corresponds to the least squares

problem
minr’r; r= { ;ll) } \ [ E) } . (2.3.48)

Let A=@Q [ g } , where @ is orthogonal. Then ([2.3.47)) reduces to

[UTU +~+°D"D]v=U"Q{b=U"c;. (2.3.49)

This is requivalent to the least squares problem

. T_.. . U . C
mins's; s = [’YD 0 | (2.3.50)
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This has reduced an (n + p) X p problem to a 2p X p problem once the initial
factorization of the design has been carried out. Here orthogonal factorization
to solve the reduced least squares problem gives

5 ]-o[5) 3]-o[5]

It is convenient to use elementary reflectors to generate (), and these can be
organised to preserve the upper triangular structure in U while eliminating
the elements of D and any associated fill. This is shown in (2.3.51]) below.

-I’I'ZL'ZE- _.TJ/’I'[L'-

r I X r Tr X

xr X xr X

X X
123471000 0 (2.3.51)

2 3 4 00 0

3 4 0 0

L 4_ L O_

Here the numbers indicate which of the first four rows of U is mixed with the
current row of D using an elementary reflector to eliminate the indicated ele-
ment. In each column the eliminations are typically performed in increasing
row order. However, usually this would not be essential. In the notation used
above the contribution to @)’ from eliminations in row k&, k=p+1,---,2p
is H?:p 11 Rjx where Rjj, mixes rows j and k and eliminates the element in
the (k,7) position. For example, in the second step in the above example,
the second row is used to zero elements in the (5, 2), reflector Rys5, and (6, 2)
reflector Rog, positions. The exact row order in which the elements in D are
eliminated does not affect the result (in exact arithmetic).

Remark 2.3.10 In the trust region application considered in Chapter 4, sub-
section D is diagonal. However, this additional structure does not
help because the fill generated in the target row p + 1 by the first step which
eliminates the element (p + 1,1) introduces fill in positions (p + 1,2), (p +
1,3),---,(p+1,p). Similar fill patterns are introduced by subsequent stages
and the result is that the same basic elimination pattern has to be followed
as in the case D upper triangular.

Remark 2.3.11 Each sweeping out of the D matriz costs O (p3) arithmetic
operations. This costs more than the previously discussed examples of variable
addition and deletion which cost O (p*) operations. However, the additional
cost 1s negligable if n >> p.
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Surgery based on V-invariant methods

Some generalisation of the above techniques to the application of V-invariant
transformations in the solution of generalised least squares problems is pos-
sible. Let the D-invariant factorization of the design matrix A be

| T D, r | D1
e[ )= [™ 5]

D
where A has full rank p, and D = [ ! B } is diagonal with positive
1

elements. Then, using the properties summarised in Remark [2.3.5]
ATDYA = AT JT - TD 11 J A,
-1
=U"[1 0] {Dl f?l] {HU
=U'D;'U. (2.3.52)
If the additional information is
ry = Aox — by = yo + €2, V{ez} = Do,

where, if necessary, the data [ Ay by } : RPTY — R9 g > 1, has been ma-
nipulated to give a diagonal covariance Dy, and &5 is assumed to uncorrelated
with the original data. In this setting the system corresponding to (2.3.43))
is

ur D! v, Zz'  [ul AT T Dyt Uy
Z G Dyt GT | — I Dy' || Ay T |

where Uy, Us are upper triangular, and GG can be taken as lower triangular.
The relations which must be satisfied are:

Ul DU, = U DU, + AT DS A,, (2.3.53)
ZD{'U, = Dy Ay, (2.3.54)
ZD'ZT + GD;'GT = Dyt (2.3.55)

Equation ([2.3.53) shows that U; is the required factor in the updating step.
It can be computed by the D-invariant factorization

U2 o U1 D1 T Dl
0 o I R s P |
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where the elementary transformations are organised to preserve the upper
triangular structure of U,. If J, is made up of products of elementary D-
invariant transformations Ji, J, = [[ J,

u D D
Jk:I_2|:u;:|[V{ V%],Jk[ 1D2:|ngl 1D21

Jy=I-2| 0 | [v] 0 vI],
L u2
leaves 3
D,
D == 51
! Dy

invariant. Let .J, = IL, jk, then it follows that

B R Uy
7045 ]- )
2 A, 0

provides the updated factorization.

Downdating requires that Ul D;'U; — AT D5 Ay = 0. This turns out to
be equivalent to the consistency of the defining relations. Equation
requires Dy ' —Z D' Z7 = 0 in order for G to be defined satisfactorily - it can
then be computed by an obvious modification of the Cholesky factorization.
This equivalence is the subject of the next two results.

Lemma 2.4 Let Dy : RP — RP, Dy : R? — R? be positive diagonal matrices,
and Z : RP — R be given. Then Dy — ZT"DyZ = 0 if and only if Dy*' —
ZD'ZT - 0.

Proof. Let

M:[Dl ZT]'

Z Dyt

Then M has the block symmetric factorization

M- I Dy I D{'z7
T | ZD7t T Dyt —ZDtz" I '

It follows that M = 0 if and only if D;* — ZD;'Z" = 0. Now let

~ [ Dyt Z
=% 5
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be the symmetric (row and column) permutation of M. Then M = 0 if and
only if M = 0. Also, it has the symmetric block decomposition

7 — I D;! I D,Z
Z'Dy 1 D, —Z"DyZ I |

Tt follows that M = 0 if and only if Dy — ZTDyZ = 0. m

Corollary 2.1 The third relation has a solution GD;'GT = 0 if
and only if UI Dy'U, — ATD; A, = 0.

Proof. The defining relations give
U'Dy'Uy — AJ Dy Ay = Ul Dy {Dy — Z" Dy Z} DU

Thus U D;'U, — AYD;'A; = 0 if and only if Dy — Z"DyZ = 0. The
proposition now follows from the preceding. m
The downdating step requires the construction of the D-invariant factoriza-

tion
v, 271 [ U, D r [ D
Jd |: GT :| - |: AQ I :| ) Jd [ D2 Jd - D2 .

The organisation used in the linear least squares downdating can be fol-
lowed here, and the D-invariant plane reflectors ([2.3.27)) possess the flexibility

needed to preserve the upper triangular form of Uj.

Remark 2.3.12 As D; does not enter this calculation, the ordering of the
elements of Dy relative to those of Dy is not a factor in the stability of this
reduction. Permutation matrices can be used for local reordering and then
the restoring of the original order. Let P be the permutation matriz, and D*
be the reordered diagonal matriz. Then

PTPDPTP = PT'D*P, J*D*J*T = J*, J*PA = { g } .

The reduction sequence becomes:

1

r'D7'r =" (P"PDP"P) 'r
=r"PTD* ' Pr,
_ rTPTJ*TJ*—TD*—lj*—lj*Pr’
= TPT TP (PTD*P)" PTJ Pr
=r"J'D Jr,

Y
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where

J=PTJ*P.

Let T* = TJ~! where T is the Gauss-Markov operator defined in .
Then T™ satisfies

. D —-JA
T A}{_ATJT / }:[0 1]
so that
Tﬁ[g}:LT@—A[W‘MP:O

Setting [ T, T, } =T*PT gives

x =Tb =T*Jb,
:[ﬁ E}Pﬁfﬁmb,
=[U" 0]JPb.

This just corresponds to the solution for the permuted diagonal matrixz D*.
However, when A is structured, the elimination is carried out in several steps
to avoid fill. If the scope of the permutations for the different steps overlap
then care is required.

2.3.5 Algorithms for filtering and smoothing

The dynamical system equations provide useful examples to illustrate the de-
velopments indicated in the previous subsection. Computational algorithms
for the Kalman filter have a long history during which they have gradually
evolved to take account of improvements in computational technology. There
are two ways of representing the model equations. The first is a rearrange-

ment of ([1.4.3)), (1.4.4) and can be written

minr’ V,'r; r = Xx —y (2.3.56)
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where
- -
Hy
-X; I
_ Hy
X = X, I , (2.3.57)
—An—1 I
VD :diag{51\07‘/17R17‘/27"' 7Rn—17Vn}> (2358>
y' = {x{j0:¥1,0,53. -, 0yp ) (2.3.59)
The solution of this problem gives xj,, k = 1,2,--- ,n, so the action of the

interpolation smoother is implicit in the solution process and quantities such
as the innovations and intermediate covariances must be found by special
intervention. Note that X is block bidiagonal and that Vp is block diagonal.
Thus this problem has considerable sparsity structure and preservation of
this structure has to be an important component of any solution procedure.
The second approach poses the problem in a recursive form correspond-
ing to the steps in the Kalman filter , as described in Section
1.4 Here the sparsity in is preserved implicitly. There are two
cases to consider. If one starts with the knowledge of xj,—1, Skx—1 then the
generalised least squares problem
min 7 diag {Sjx_1, Vi, Re} T, (2.3.60)
Xk Xk+1
Xk — Xk|k—1
r= Hipxi, — y ;
— XX + Xpq1
has the solution Xz, Xg41)x- This form is appropriate for a forward recursion.

The alternative form starts with x, Sk, and considers the generalised least
squares problem

min r? diag{Sk‘k,Rk,VkH}_lr, (2.3.61)
Xk Xk+1
X — Xk|k
r= — XX + Xpp1

—Yit+1 + Hpp1 X1

The solution gives Xpr41, Xp41jk+1. This form is of interest because it updates
Xy |k to take account of the new data. Thus it provides a route to determining
the interpolation smoother.
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Three possibilities are considered here.

1. Reduction of the problem ([2.3.56|) to the least squares problem

mins’s; s = L' Xx — L'y,
X

where LDL:,S = Vp is the standard square root Cholesky factorization
of Vp. If this is solved using orthogonal factorization of the modified
design L' X then the information filter of Paige and Saunders results
[87]. The requirement to form L' explicitly makes this approach sensi-
tive to ill conditioning of Vp. An important example occurs as a result
of the occurence of small elements in Vp corresponding to accurately
known components of the state vector . This can occur as a result of
the gain of information through the innovation sequence.

2. Application of a Vp-invariant transformation either directly to the de-
sign (this reqires that solution of linear equations with matrix Vp is
cheap), or following an L IDL? factorization of Vp. Here L; is lower
triangular with unit diagonal. Because the rank revealing Cholesky can
destroy sparsity the algorithm developed here works with the recur-
sive form (22.3.60). The algorithm is due to [99]. This approach has
the potential to cope with zero diagonal blocks in Vp corresponding to
accurately known quantities.

3. Solution of the recursive system (|2.3.61)) using a version of the Paige
approach. This leads to the square root covariance filter algorithm of
Osborne and Prvan [83]. This approach is distinguished in this class of
methods by incorporating an effective square root implementation of
the interpolation smoother.

The information filter

Let the Cholesky factorization of the covariance matrix Vp be

Vb = LDLg, Lp = diag {Lh My, Ly, My, -+, Ly, Mn} .
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Then the transform of the design matrix (2.3.57)) can be written

— Ll_l —
H,
-X, Ly*
H
Li'X = 2 , 2.3.62
D N, L3 ( )
_~n71 le
H,

where f[z = M[lHZ-, )?1 =1L +11Xi. The algorithm now proceeds as an ordi-
nary least squares problem, and the standardization of the error term to an
iid vector should be noted. The modified design matrix is block bidiagonal
with rectangular blocks

_X. Lt
Li(il):|: )éz_l},[m’:[ 2 },2':1,27"',71.

The result of the orthogonal factorization is a block bidiagonal, upper trian-
gular matrix. For example, the first step takes

Lj 1 0 U, Ui U Uy
H 0 =10 0 |=P| 0 Uy
-X, L;* 0 U, 0 0

where the tilda indicates that Us will enter the factorization at the next stage,
and P is a permutation matrix interchanging block rows to build up the upper
triangular structure. There are several ways of organising this computation,
but one starts by combining L;! and H; to sweep out the elements in the
H, position followed by the use of the modified matrix in the L' position
to sweep out X 1 . This approach introduces the structured elements in the
second block column. The next step takes

Us 0 Uy Uss
H, 0 — 0 9
X, L 0 U

This shows that the algorithm has the recursive pattern characteristic of a
filter algorithm. If a back substitution is performed at the k’th stage then
the result is

T T T T
{Xl\lw Xolks = Xk Xk+1|l<:} :
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This shows the dependence of past state value estimates x;;, on all the current
data characteristic of a smoothing algorithm. Because the errors are now iid,
it follows that

% {Xk:-H — Xk+1\k} = ﬁk_lﬁk_T = Sk+1|k:~ (2.3.63)

At this point it should be clear that there is recursive procedure in operation
as a consequence of the block bidiagonal structure of the design matrix, and
that each of the steps indicated above solves the generalised least squares
problem ([2.3.60)). The appearance of the inverse in provides the ori-
gin of the term information filter. This algorithm provided an interesting
alternative to the then standard algorithms (for example [7]) both in recur-
ring the inverse and in being one of the first to introduce a technology based
on orthogonal factorization in the filtering context. The information filter
has the useful attribute that it can run when a diffuse prior corresponding
to Sijp = 00 is used to initialise the computation. In this case Lyt =0.

A Vp-invariant filter

The information filter has the distinguishing characteristic of coping with dif-
fuse initial conditions, but makes the explicit assumption that the component
covariances in Vp are all nonsingular. This assumption can be weakened by
using V-invariant transformations. The advantage of this approach is that
certain cases in which exact information is available on certain state variable
combinations (R;, Sj;—1 singular) and/or certain variable combinations are
observed without error (V; singular) can be treated in routine fashion. The
complication with the use of the V-invariant methods to factorise is
that reordering may be required both in the rank revealing Cholesky factor-
ization (PVpPT = LDLT), and in the reordering of the components of D to
meet the requirement that the elements of D are increasing. This reorder-
ing has the potential to destroy the block bidiagonal structure. However,
we have seen that the block bidiagonal structure has the recursively defined
form of the filter given by associated with it. Each of the recursively
defined subproblems can be solved by V-invariant techniques and potential
fill is much less serious. Let

W; = diag {Si|i—17 Vi, Ri} = K,W,K,

define the scaled covariance and diagonal scaling matrix. Then the rank
revealing Cholesky is

PW,P = LiD;LT,
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the transformed design becomes

I 0 Xili—1
[ A; by } =Q:L;'PK;! H; 0 Yi ;
-X; I 0
D; = @Q:D;QT is the required diagonal weighting matrix with increasing

elements, and @); is the corresponding permutation matrix. Let the D;-
invariant transformation give

J;iAiCy = { % } , J;D;J! = D,
where C; = H?;i P; is the permutation matrix summarising the column

interchanges. Then
cr [ il } =U'[1I 0]Jb.
Xit+1)i
It follows from (|1.3.28]) that the variance is given by
v{{ i Xl ” —CU [ 1 0]D; [ (I) } Ul

Xi+1 — Xi41]s

A covariance filter

The algorithm developed here is based on the solution of the recursively
defined problem . A particular feature is the ready availability of the
interpolation gain. Here the design matrix X : R?? — R?*™ and data vector
y € R?P*™ are given by

I 0 Xi—1}i—1
X=| X1 I |,y= 0
0 H; Vi

The corresponding generalised least squares problem, making use of the
Cholesky factorization of the covariance, is

mins”s: diag {S}_/ 2 LRI ‘/;1/2} s= Xx—y. (2.3.64)
Let Z € R™ — R+,
X HY
7= | HT

(2

—1
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Then Z has full column rank m and satisfies Z7 X = 0. Thus it can be used in
a (nonorthogonal) Paige formulation of the generalised least squares problem

as in ([2.3.18]), and this yields the alternative form

mins’s; Z7 diag {Sjﬁ“fl, Rl-lﬁ, Vil/z} s=—-Zly = -y, (2.3.65)
where y; = H; X;_1X;_1);—1 — y; is the innovation at the current step (1.4.5)).
Let

i—1]i—1

diag{ST/2 R;-F,/f,ViT/z} Z=Q [ g } :
Then the minimum norm solution (generalised inverse) of ([2.3.65|) gives
S=-QU 72"y = -Q,U 5. (2.3.66)

Recovery of the state variable x given S is simple in this case because the
first 2p rows of X form a lower triangular matrix with unit diagonal.

The implementation suggested by Osborne and Prvan [83] is based on
two stages of orthogonal factorization corresponding to the prediction and
update steps in the filter respectively. The prediction transformation QP is

defined by

T/2 T/2
S X Si_l'i_llz[cyf Q% ] [S"T"/‘Zl K (2:3.67)
R0 0 K

while the corresponding update transformation Q" is given by

T/2 T/2 177 T/2
[ Sy S ] =[or @] [ o g ]
0 V; W; [W + Hi5¢|i—1Hﬂ
(2.3.68)
Computation of QF is a straightforward orthogonal times upper triangular
factorization. However, Q" requires a patterned factorization using elemen-

tary reflectors. This is illustrated below for the case p = 3, m = 2.

r T T X T r x x 05 Og
Y Y A r x 03 04
r zxz x| —|. . x 0 09

T x 5 3 1 = =

x 6 4 2 T

Here the subscripted zeros indicate the stage at which the zero is introduced,
while numbers indicate the stage at which fill first occurs. For example, rows
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3 and 4 are combined in the first step to introduce a zero in location 0; and
fill in location 1. The second step combines rows 3 and 5 introducing fill in
location 2 and a zero in location 0, while preserving the zero in location 0;.

To verify the identities in (2.3.67)) and (2.3.68]) we have

Xi—lSilzz\i—l R11121 5?7/12\1;1)(1{1 8?7/12\1;1 _
CHETI R} 0
|: Xi—ISi—Hi—lXi,]ll + Ri—l Xi—ISi—l‘i—l :|
Sic1jim Xy Si—1)i-1

and

Sil‘ﬁl SZ.T”/_?l Ka | _ Sifi—1 SZ-1|£1K¢
KL K% 0 K, KESI? KEKq + KhK

ili—1

for the Q7 transformation. This shows that S;;_; is updated correctly, and
that
Ko = S5, X 1S = Si%, AT

i ili—14%

where A; is the interpolation gain (|1.4.12)) required for evaluating the smoothed
values in ([1.4.11)). For the Q" transformation we have

Si2. st/2 - gl/2 gr Siioa Sy HT
ngl_m V12 PO A { HiSyi 1 Vit HySys 1 HT } )
i94)i—1 i 0 ‘/z i4)i—1 i i04)i—141;
and

Sy W; Syl 0
[Vi + H; Sy HT]Y? WT  [Vi+ H;Sy_ HT]?
Sii + WW Wi [Vi + Hi Sy HY | 1 '
[Vz‘ + HiSi|i—1HiT] V2 wr [V% + Hisi\z‘—1HiT]

Thus
Wi = Syi H] [Vi+ HiSiyi—1 H]'| o ’

showing that
Sifi = Siji—1 — Si|i—1HiT [Vi + HiSi|i—1HiT:|_1 H;Siji

as required.



2.3. MAIN COMPUTATIONAL ALGORITHMS 105

The factors @; and U needed to compute s defined in (2.3.66) can be
found by combining (2.3.67) and (2.3.68)). The argument can proceed as

follows
. . . S?—/12|i—1Xi—1Hf
diag {Si_/f\i—DRi_/lz?‘/i /2} Z = RngzT ’
_yT
[ oT/2 T
fer e o 7| S
| 0 0 I, T2 ’
o L, 0 07| S/ H!
Qr @ 0
— 01 02 7 0 0 I, vz |,
L im0 L, 0 0
_ [ I, 0
P P 0 p
_ | @ s B 0 0 Q;[Vri-HiSm—lHﬂT/Q,
| 0 0 I | 0 I
OF 0 u ) T/2
_ %1 Y ]Qz Vi + H;Sy HI™?
This gives

0 _

The updated state vector can be found from the system
[p Xi-1li | _ | Xi-1li-1 + 31/2 0
_Xifl Ip Xi|i 0
—1/2 ~

i—1li—1 }
1/2
0 R;%y
5. = [ QY 0 } Q3 [Vi + HiSih'leZT] Yi-
Verification that the update is correct can be carried out directly. For exam-
ple

P
5= [ ! 0 } Q3 [V% + HiSz‘\i—lﬂﬂ_l/Q Yi-

s,

where

X = Xi1Xi—1ji—1 + [ Xi—151/2 Rfﬁ :|/S\*7

i—1Ji—1

= X;)i-1 t+ [ gl 0 } Qs [Vi+ Hz'Si|z‘—1HiT}_1/2 Yi,

i—1li—1
T71—-1/2 ~
= X1+ Wi [Vi+ HiSyi 1 Hy |75,
= Xji—1 T Si|i—1HZ‘T [V; + Hz’Si|i—1Hz‘T] o Yi-

The only condition on the success of this stage of the filter is that V; +
H;S;;—1H] has a bounded inverse.
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Initialisation of the covariance filter

Values of the initial state x;)o and state covariance Sj|o are required to ini-
tialise the covariance filter. The case requiring attention is xj9 = 0, Syjo =
~2I which is used to approximate the idealisation of a diffuse prior by taking
72 large. The generalisation in which the diffuse prior applies only to a sub-
set of the initial state information is also of interest. The limiting process as
v? — oo is known to be well defined in both these cases [4], and the limit
is of interest. It turns out that S;; settles down to bounded values once
sufficient observational data has been accumulated. However, the removal
of large values in the successive state covariance matrices comes about by
a sequence of steps in which cancellation can occur (|1.4.10). The concern
is that this cancellation could introduce numerical problems for the covari-
ance filter. The Paige and Saunders form of the information filter potentially
avoids this as v — oo by working with the inverse of Sjjp in the case that
this is bounded . Subject to this requirement, it provides one approach to
initialising the covariance filter.

An alternative is to follow the asymptotic approach of [4] until the leading
terms in v have disappeared. The filter must be followed explicitly for & steps
where p < km < p+ m in order to study the asymptotic behaviour for large
~v. The case considered here corresponds to km = p. It is convenient to
define the following quantities.

Xa = Xs—lX(sfl)la 1<1< s, Xy=1,
G,=XLH! G,: R™ — RP,

G'=G, = H,

G =[G - Q]G R R,
YIZYh

y'=[yl - yI'],y:R—>R™

Let Ty : RP — RP be an orthogonal projection onto the span of G*, s =
1,2,---  k, (TsG®* = G*, Ty = 0) and define

W,=(I,—Ts1)GZ; ', W, : R™ — RP, (2.3.69)
where Z; : R™ — R™ is upper triangular and satisfies
7'z, =G (1, - T..,)G..

Conditions under which Z; is invertible are given subsequently. They are
linked closely to the increment in rank(7}) when s — s+ 1. Then

WIw,=21GI (I, - T, 1) G Z;' = I,
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and
wWwl =wwIww!,
so that W,WTI is an orthogonal projector. Also
WWIG, =(1,-T, )G Z ' Z; "G (I, — Ty_1) Gy = (I, — Ty 1) G,
so that
[Ty + WW] G = [ TG | TG+ (I, — Tioo1) Gy |

This gives an updating formula for 75:

T, =T, 1 + WWI (2.3.70)

as the orthogonal projectors on the right hand side map onto orthogonal
subspaces.

The quantities defined above permit an orthogonal times upper-triangular
factorization of G*° to be defined recursively. Let

G =P VU,

then
(s—=1)T
GS - QiUs = Qgs_l) Ws i| [ Us_l Q Z GS (237]‘)
That @] has orthogonal columns follows because fol)Q?*l)T =T, 1 and

T, Wy = 0 by definition. The factorization follows from the definition
(2.3.69) of W,. The interesting calculation is

gs_l)Qgs_l)TGs + WsZs = Tsfle + (IP - TS*l) Gs’

In order to simplify the following calculations it is assumed that m divides
p (k=p/m) where Hy : R — R™, that rank (G*) = sm so that each Z, is
invertible, and that each X has full rank. The aim is to show that under these
conditions it takes exactly k steps for the information from the observation
equations to build up to the point that the variances of the state variables
settle down as v — oo.

Lemma 2.5 The following relations are valid for large v*, and s = 2,--- , k:
Sese1 = X {7V (I, = Ts_1) + Es_1 } X, (2.3.72)
Ses = X {7V (I, — Ts) + Fyo1, } X1, (2.3.73)

1
Xqjs = X, + ﬁxi‘s + - (2.3.74)
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where Es and Fy are defined recursively in and respectively.
Ey =0, while E,, s < k, and F,_; are positive definite and O (1) as v* — oo.
The leading term in the asymptotic dependence of the state variables is given

by
X0, = Xa&,, &= [GT]"y". (2.3.75)

s|s

Proof. This proceeds by induction. We assume the form of S,,_; and

evaluate Sy, using ([1.4.10f). This gives
Ss|5 = Psls—1 — Ss|s—1HsT {HSSS|8—1H3T + ‘/5}_1 HsSs|s—17
where

Sqs—1H! = Xa {7/ (I, - Too1) + By} XL H]
= Xa {72 (I, = To—1) + Es—l} G,
= Xa {72WSZS + Es—le} ;
HSys1H +Vy = G {¥*W,Z, + E,1G,} + V,
= {*GI (I, - T\ ) W, Z, + GLE,_\G,} + V,
= {+*27Z, + GTE,..G,} + V,,

and
Ss\sleZ {HsSs|sleZ + ‘/5}71 HsSs|sfl
Xsl {’YQWSZS + Es—lGS} Z;l
= {1+ ZT (GTE LG+ V) 27 3,
ZAPZIWS + GIEL X
1 {’72Ws + Es—lezgl}
- =X, {I-%L##Lg} X 4+0 (Y,
(W4 26Ty
where
Ly=2z"(GIE, Gy +V,) Z]!
Thus

Sgs = Xa [V (I, = Toor = WW]) + By
1
—E G Z7 W =W, Z T GE, + W, LW X1+ 0 (—2) :
gl

= Xsl [72 ([p - Ts) + stl] ijia
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where

7
(2.3.76)

Fon={I-WZ;"GE) Esy (I — G Z'WHAW, 2"V, 2 ' W] +0 < ! ) :

The final step in the argument notes that
B —E, G Z; "W - W, 2, "GTE,_ + W, Z;TGTE,_ G, Z;'WT
= -W,Z;"G) E,.i (I - Goz7'W]) .

It now follows from that S,41)s has the required form with

By = For+ X1 R XL (2.3.77)

As k < p, and the boundedness of the inverse matrices is guaranteed by the
assumptions made in the preamble of the Lemma, it follows that both F
and F, are O (1) = 0 as v — oo for each s, 1 < s < k — 1. Also, F} = 0

because V; = 0 by (2.3.76)), Fs > 0 implies Fs.; > 0 by (2.3.77)), and E, > 0
implies £y > 0 by (12.3.76]).

To develop the recurrence satisfied by the state variables note that the
above manipulations give

Sge 1 HI {H Sy 1 HT + V) =

VW, + E,G,Z'}
{2+ 2T (GTEG, + V) 27

Thus, substituting in (|1.4.6)),

Xs|s = Xsflxs—l\s—l + X1 { {

z;T. (2.3.78)

s

{V*W, + E.G.Z; '} e
I+ 277 (GTEG + V) 27 } Za s
Separating out the leading order terms and making use of the representation
of xgls gives
£ =81+ WSZS_T (YS - HsXs—lxg—l\s—l) )
=&+ W,z " (Ys — GST€S—1) .

Verification of (2.3.75) can be carried out neatly by using induction. Here
the generalised inverse of G*T uses the orthogonal factorization (2.3.71)) of
G°.

S S S— US_—T y871
oy = (et W ggiobous 0 ||y, |
_ [G(sfl)T}Jr vl w,zo T <ys el [G(sq)T]Jr ysfl) 7
= és—l + WSZgT (ys - Gzés—l)
=&,
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Em

The key result is that the computation settles down after k£ steps in the
sense that the explicit dependence on v* disappears when rank{G*} = p =
s =k, Ty, = I . This means that suitable initial conditions on the filter for
s > k are provided at step k by the v? = oo limiting values.

Theorem 2.4 After exactly k steps
Sk = X Fy X, = 0 (1),
where FY | =lim 2, Fy_1 is well defined and positive definite.

Proof. This follows from the preceding Lemma on noting that rank G¥ =
k = T, = I so that the explicit dependence on 72 in disappears. m

To compute the dependence of the state variables on all the data for s < k
requires a knowledge of the limiting form of the interpolation gain for large
v2. The derivation makes use of the following result which can be verified by
direct calculation.

Lemma 2.6 Let the projection matriz T; possess the orthogonal factorization

L 0 r
r-la @]t o] @]

and set
M7 M3
Q= i ]
M3, M3,
where My is a generic (subscripted) matriz, then (72Q2Q2T + FEy + 7%EQ + )

has the formal inverse (Bl + W%Bg + 7—1433 + - ) with leading terms

By = (E111)_1 1,

-1 -1
— (E111) (E%2E211 - E%l) (E111) _B%1E112 T
BQ Q 1 1 Q
—E5 By I 7
Q2QYBs = —E\ By — E»B,.

To calculate the limiting form of the interpolation gain

Ay =Sy XS

i1

assume that it has the asymptotic expansion

1
Ai = Xi (Az‘l + ,)7141'2 +-- ) X(;lrl)l.
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This expression has to be matched with
T o-1 2 T 1 1 -1
SiiXi Sirp = X [ 17Q2Qy + Fia + ?Fiz - ) | Ba+ ¥3i2 + ) X

where the B;; are the coefficients in the asymptotic expansion of S -1 cal-

i+1]3
culated using Lemma [2.6] This gives

A= (I, —T;) Bip + Fiu By = I + (Fu - E(z’+1)1) B,
A = (I, = T;) Bis + F;1Bio + Fi2Bix,
= (Fz‘l - E(i+1)1) Big + (-Fz - E(i+1)2) Bi.

The corresponding recurrence for the variance is
Sijn = AiS(i+1)\nAiT + Siji — Az‘S(i+1)|iAiT-

To show that this gives O (1) terms it is necessary to show that the O (7?)
terms in S;); — AiS(iH)”AiT cancel. This requires

(]p - T,) — A (Ip - Tz) Aﬂ =0.
This follows because
(I, —=T;) B (I, —T;) = (I, - T3), (I, = T;) Ba = Ba (I, = T;) = 0.
The recurrence for the O (1) term comes down to
Siin = A4S Al + XuCi X}y
where

C;=F;, — A¢1E¢+1AiT1 — A (I, = T;) AiTl —Ain (I, = T;) Az;-

Exercise 2.3.3 If partial initial information is available then X0 = Xo, Sij0 =
v*Ty + Ey where Ty is an orthogonal projection and Ey = 0. What changes
must be made to the initialisation procedure to accommodate this more gen-
eral situation?
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2.3.6 Methods for structured matrices

2.3.7 Applications of the conjugate gradient algorithm

The conjugate gradient algorithm addresses the problem of solving the system

of equations
Mx=A"b=c, M € R* — RP, (2.3.79)

where M = AT A is positive (semi)definite, by associating it with the opti-
mization problem

1
min F (x); F (x) = —c'x + QXTMX.

X

Directions which satisfy the conditions
df Md; = §;; (2.3.80)

are said to be conjugate, and such directions provide a favourable set for
descent calculations. Let

k
d (OC) = Z Oél'di,
i=1

where the d; are conjugate and consider the problem of minimizing F' (x + d («)).
The necessary conditions give

0=VyF[d dy -+ dy ],

k T
= —CT+<X+Zaidi> M |:d1 dy --- dk}a
=1

= {VxF (x) + a" D[ M} Dy,

where

Dk:[dl dy, --- dk}.
Conjugacy (|2.3.80) now gives
ol = ~V,F (x) Dy.
This shows:

1. As ViF (x) is linear in x, the computation of each «; depends only on
the conjugate direction d;,

Q,; = —VXF (X) dz

and
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2. The step to the minimum in the subspace is to a point
x; =x— D,D! (Mx —c) = (I — P*)x+ D;Djc,

where P* = DD} M is the projection onto the subspace spanned by
the conjugate directions. If & = p then PP = I, and x, = Dngc
solves . This is readily verified by noting that M D, is an M !
conjugate set as

(MD,)" M~ (MD,) =1.

In this basis, as factors of the inverse commute,

c=(MD,)(MD,)" M~'c,
= MD,D}c = Mx,,.

It follows that minimization along p mutually conjugate directions provides
a basis for a finite algorithm (at least in exact arithmetic), and it is straight-
forward to generate such sets recursively by familiar orthogonalisation tech-
niques. A suitable form is the following. Fix the initial point x = xg, and set

dy = —gy = ¢ — Mxq. Then successive estimates are computed recursively
using
T
X1 = X + agd ap = kB
k+1 = Xk KAk, Q) =
’ df Mdy’
T
_ Bit18k+1

dir1 = —8k+1 + Brdr, Bk T
g 8Bk

The successive directions d; are conjugate
di,,Md; =0, i <k,

and the recurrence is verified inductively. The orthogonality properties g} 418k
0, gf, ,dy = 0 are important in this verification.

Although the algorithm is finite in exact arithmetic as at most p descent
steps are needed to reach the solution, this property is lost under perturbation
in real computation. An important step in improving the algorithm is the
use of a pre-conditioner [39]. Let Z > 0, and let Z~'MZ~! be closer to a
multiple of the unit matrix than is M in some sense (for example, better
conditioned), then the above sketch for an algorithm can be reworked as an
iteration for X = Zx satisfying the system

Z'MZ'x=Z"c.



114 CHAPTER 2. LEAST SQUARES COMPUTATIONAL PROBLEMS

The resulting algorithm is most interesting in terms of the original variables.
Let W = Z% d}V = —glV. Then the basic step of the algorithm is

Solve Wg" = Mx;, — ¢ for g}’

b= B Wer
g1 Wgry

de = —gZV + ﬁdeV_b
gt Wer

Qfp = oo
P AT MaY
Xi+1 — Xk + Oékde
The key results associated with this form of the conjugate gradient algo-

rithm are that the vectors g}’ are W-conjugate (this generalises the orthog-
onality results noted above),

g ' WglV =0, j <k,

and the vectors d} are M-conjugate. The power of the method is shown to
most effect in the result that the number of steps required in exact arithmetic
is equal to the number of distinct eigenvalues of Z='M Z~1. Thus if

M =W + N,

where N is a low rank correction, then the number of iterations required is
1+ rank(NV). Of course it is important that W is readily invertible.

Example 2.3.6 An example of a problem leading to a matrix which is the
sum of an easily inverted matrix and one of low rank is given by the mean
model (Section which is balanced except for the entries in a few of the
cells [36]. In this case, W can be taken as the matriz of the balanced problem,

and g}” is known explicitly .

The preconditioned algorithm permits of an interesting interpretation as
a gradient method in a modified metric [50]. This identifies

gV =2W ! {Mx—c} (2.3.81)

as the gradient of ||r||>, r = Mx — ¢, in the metric defined by W, |t =
{tTWt}l/Q. We have

Ie)2 = "Wy = (r,W™'r).
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An infinitesmal displacement dr causes a change

or’or = 200" WW " r,

=2 <5r, W_1r> ,
= <6r,gw> )
verifying . Also, in this metric,
I 46 O -1 1

B

et dETMAT

Here the geometric interpretation of oy, is as the step to the minimum of the
objective function F (x) in the direction determined by d}’.



116 CHAPTER 2. LEAST SQUARES COMPUTATIONAL PROBLEMS



Chapter 3

The method of maximum
likelihood

3.1 Introduction

The basic idea of maximum likelihood is relatively simple and leads to re-
markably effective algorithms. It formalises the idea that the event outcomes
making up a sequence of experimental observations are, at least in the long
run, those more likely to be observed. While this does not mean that the
probability of the occurrence of any particular event outcome is necessarily
high, it does mean that the occurrence of a significant number of unlikely
outcomes is very unlikely. To formalise this idea, let the probability den-
sity (probability mass for discrete distributions) associated with the outcome
y: € R at configuration t € R! be g (yy; 0;,t) where

0, =n(t,x),0 € R°, x€ RP,

expresses a parametric model of a process in which the current realisation is
determined by the values taken by the vector of parameters x. The compo-
nent values of the parameter vector x are not observed and it is assumed that
these have to be estimated from the event outcomes y;. If the individual
event outcomes are independent then the likelthood

G(y;xT) =[] 9(y:0t), (3.1.1)

teT

where T is the set of experimental configurations, is the joint density (prob-
ability mass) of the observed events, and the informal principle suggests this
density considered as a function of x should be relatively large in the neigh-
bourhood of the actual outcome. The computational principle is called the

117
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method of maximum likelihood . It is expressed in the form

X = argmax§ (y;x,T) (3.1.2)
where X is the required estimate.

Example 3.1.1 An important family of distributions frequently used in like-
lihood calculations is the exponential family . Here the density is usually
represented in the form

g (y; { g D =c(y,¢)exp [{y'0-b(0)} /a(9)]. (3.1.3)

The corresponding likelihood in the case of independent events is

g = HC(Yt,¢) €xp [Z {ytTHt - b(0t>} /a (¢’)

teT teT

Familiar cases include:

normal distribution This is an example of a continuous density:

M _ 1 — Ly (y—p)?
I - € 2 )
g <y { a D 2ro

L e ()

= e 22¢ 22 (3.1.4)

\V2To

so that
1 _ 42
c(y,¢) = e 22, 0 =p, b(0) =p?/2, a(d) =0
2mo
In the multivariate case set
1 1 Ty,—1
V) = 1t ey DR (yfu), 315
9y, V) R (3.1.5)
_ 1 e_%(yTV—1y)e(“TV71y_uT‘,;lu)‘
(2m)" det V
Note that the scale has been absorbed into V. Then
1 7;( Tv—l _
c(y,¢) = ———e"2V y),ezvl,
¥.9) 27) det V H
Tv—l
b@)=H" P _9Tve, a(¢)=1.

2
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An alternative form is obtained by setting 01 = 02, Oy = — Then

552 -
9(y;0) = Ly Y ]t‘Lb(e)7

where )

07 1 1
b(0)2—4—92+ 10gﬂ+§10g 92

This form has some advantages. For example, the components of the
vector multiplying @ contains sufficient statistics for estimating the pa-
rameters, and b(0) is the moment generating function for these statis-

tics. Thus:
o _ 0 _
00, 20, "
aob 6? 1

2 2
= — =2+
90, 402 20, "
The formalism extends to the multivariate case . Let Set 6, =
Vi, 0, = —%vec (V=Y) where vec is the operation mapping the
columns of V™' successively into a vector in R™ (the corresponding
inverse operation is written invec). Then
J(y,0) = 10131030

Y

where

b(0) = —}lesz'nvec (651) 6, + 2

1
5 log 7 + 3 log det (—invec (05)) .

multinomial distribution This is an example of a discrete distribution
(probability mass function):

n!
= —p leZJ':l " 1og7rj7 (316)
=11
p _ . . . _
where ZFl n; =n, and the frequencies w(j),j =1,2,--- ,p must sat-

isfy the condition

p
Zﬂ'j =1.
j=1
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Eliminating 7, gives

p p—1 p—1 p—1
an logm; = an logm; + (n — Zm) log (1 - Zm)
j=1 j=1 j=1 j=1

p—1 - p—1
_ , J _ .
_anlogl—zp_lw» + nlog (1 Zm)

=1 "t j=1

It follows that

c(n) ==—7, al¢) =1, (3.1.7)
j=1 nJ
T
0; = log - T (3.1.8)
=1 "t
1

b(0) =nlog (1 + pz:eej> : (3.1.9)

Example 3.1.2 One important model for the event data 'y, is that of a signal
observed in the presence of noise . In this case typically there would be a
parametric model for the signal given by

Eyyiorn 1y} = p(x7,t). (3.1.10)

The normal distribution provides one example of a distribution typically used
for describing the noise. Here p specifies location, while the second parameter
o determines the scale of the noise. In exponential family form for the normal

distribution % = . This result is an instance of the general property of the

exponential family that the term 2(—3))), which serves to normalise the density

integral, is directly related to a moment generating function . From

Juo (s [8]) 5=

/ ey, d) ¥ 0@ gy — O /at@) (3.1.11)
R(y)

it follows that

Differentiating both sides of (3.1.11]) and identifying terms gives
E{y}=Vb(0)". (3.1.12)
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Differentiating again gives
Elyy"} =Vb(0)" Vb(8) +a(p) Vb (3.1.13)
from which it follows that

V{y}=a(¢)V?(0).

If an invertible transformation h (u) can be found linking the mean p = VbT
with a linear model h (pu) = Ax then h (w) is called a link function . It is an
important component in the analysis of generalised linear models presented
in [69]. One reason for this is that special cases can simplify computation.
For example, if the distribution is normal, then the choice h(u) = p leads
to a linear least squares problem for the maximum likelihood estimate. More
generally, if h (u) = 0 then h is called a canonical link .

Equation provides an important example of the application of the
general method of maximum likelihood in which unobserved parametric in-
formation is estimated by maximizing the joint density (probability mass for
discrete distributions) with respect to these parameters. It proves remark-
ably successful in a wide variety of contexts but needs to be hedged with
appropriate reservations. Associated with the likelihood is its logarithm

L(y;x,T) = Zlogg (y¢;0:,t) . (3.1.14)

teT

Maximizing the log likelihood is equivalent to maximizing the likelihood and
this is the strategy usually adopted. Typically the assumptions made are

1. that there exists a true model with parameter vector x*,

2. the log likelihood is at least two times differentiable with Lipschitz
continuous second derivatives as a function of x in an open region that
contains x* properly in its interior, and

3. integrals with respect to y, in particular the boundedness of expecta-
tions of (products of) the likelihood, log likelihood, derivatives with
respect to x and polynomial terms in the components of y, taken over
S (y) = range (y), is assumed.

The above examples of distributions satisfy these requirements. Examples
which do not include:

1. Uniform distribution on [0, 6] . Here the parameter is 6 so convergent
estimates must approach the boundary of the allowable range, and
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2. Negative exponential distribution

(25

Here the density is not smooth when y = 6.

It does not follow that maximum likelihood has no value for distributions of
this kind. Just that properties derived under an assumption of smoothness
may not fit these cases.

Consequences of the above assumptions include the following results. It
is assumed that range (y) = S (V) is independent of x

Lemma 3.1
0=E{VL((y;x,T))}. (3.1.15)

Proof. It follows from

1=/ g (y;x,T)dy,
S(Y)

by differentiating under the integral sign, that

0= VG (y;x,T) dy,
S(Y)

Vo.9 (yi;0:,t) }
= V0, ¢ G (y;x,T)dy,
/smz{ 9(ys; 04, t) 91 )

teT

=E{VxL(y;x,T)}.

Em
This result applies to each term in (3.1.15)) separately. Let

L, (}’t; 0., t) =logyg (Yt; 0., t)

then
0=E{VxLi(y:;0:,t)}. (3.1.16)

Lemma 3.2

E{VAL((yix, T} = —€ {Vul ((yx, 1)) Vul ((yix, T)) ) (3.1.17)
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Proof. This follows by differentiating under the integral sign a second
time. This gives

O = VX / VXL" (y, X7 T>T g (Y7 XJ T) dY7
S(Y)

- / {Viﬁ (v;x,T) + ViL (y; %, T)T VL (y;x, T)} g (y;x,T)dy,
S(Y)

and the result follows directly . mm
As in the previous lemma the result applies term by term. Here independence
is important as the vector result uses

& {VxLi (vi;0:,t:)" ViL; (yj; Ojatj)} =0, i #J.

Example 3.1.3 These two fundamental identities are readily verified in the
case of distributions from the exponential family (5.1.5). Here

L=logc(y,¢)+ (y'0—0b(8)) /a(d).
Differenciating and using gives

VoL = (y" —€{y}") Ja(é) > €{VaL} =0

which is (3.1.15). Also, it follows that
V{y} =a*€{VeL"VoL}.
The second identity is a consequence of (3.1.13).
Vel = —Vgb/a = a’€{V4zL} = —V{y} = —a’€ {VeL"VyL}.
Definition 3.1 The matriz

I, = %8 {Vxﬁ (y;x, T)" VoL (y;x, T)} =V {LVXE (v; %, T)} :

\/ﬁ
(3.1.18)

where n = |'T|, is called the (Fisher) information matriz associated with the
parameter vector X.

T, is generically positive definite, and the scaling is chosen so the limit as
n — oo is reasonable under appropriate sampling regimes because then the
strong (weak) law of large numbers ensures an almost sure (in probability)
limit. The information matrix allows us to get a hold on the variance of
unbiassed estimators of x by providing a minimum variance lower bound .
This is the substance of a famous result associated with the names Cramer
and Rao , but earlier atributions exist [57].
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Theorem 3.1 Let X{y1,y2, " ,¥n} = X(y) be an unbiassed estimator of
x* based on the data {yi,ys, - ,¥n} S0 that

£} =/ % (y) G (y: x*, T) dy = x".
S(Y)

Then

V{vnx(y) -x)}>1,"! (3.1.19)
where the inequality is to be interpreted as indicating that the matriz
difference V {\/n (X (y) —x*)} — Z,;! is positive definite.

Proof. Differentiating the condition for X (y) to be an unbiassed estimator
gives

/ X (y) VxG (y:x",T) dy:/ X(y) Ve L (y;x*,T) G (y;x", T)dy = 1.
S(Y) S(Y)

This just says that, using (3.1.15)),
1
e{Vi®E) -x) VLl T -1

Thus

Al s ) [ 1)

where the matrix on the right hand side is generically positive definite. It
follows that the matrix

[V{x/ﬁ(ﬁ(Y)—X*)}—Iil 0 }:[1 —??1}

0 z,
{V{\/ﬁ(ﬁgy)—X*)} Iln} {_éﬂl I}

is also positive definite. The result follows as its leading principal minors
must also be positive definite. mm

Maximum likelihood estimates are not necessarily unbiassed. However, a
consistency result is established in the next section, and this is something
like an asymptotic form of the unbiassedness condition. It goes together with
a result that shows that asymptotically the estimate satisfies the minimum
variance bound. This is generally taken as a strong argument in favour of
maximum likelihood estimation.
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3.2 Asymptotic properties

3.2.1 Setting the scene

In this section the convergence behaviour of the maximum likelihood esti-
mate X,, determined by the particular set of observed events corresponding
to |T| = n is studied as n increases without bound. To develop the asymp-
totic results which provide a basis for discussing such questions as the esti-
mation of the rate of convergence of numerical algorithms it is necessary to
provide a mechanism (systematic or random) which allows the specification
of a sequence of sets of designed experiments with n = |T,|, the number of
observations per set, tending to co. The idea has been introduced in Chapter
1, and a slight generalisation of to t € R* allows for data collected on
spatial grids, for example. It is stressed that the key idea is that designed
experiments allow sets of regularly sampled points t; € T,, to eventually fill
out a region S (T) C R* so that

= SR CEY B IONIOL: (3.2.1)

teTn 5(T)

for all sufficiently smooth f (t) where p (t) is a density function describing the
limiting form of the measuring process as the number of observations grows
without bound. It was noted in Chapter 1 that p(t) = 1 if configuration
values are allocated in S (T) either by successive subdivision of a uniform
grid or randomly under a uniform distribution, but that the interpretation
as a quadrature formula differs in the two cases.

Definition 3.2 X, is a (strong/weak) consistent estimate of x* if
X, — X", n— oo almost surely (a.s.)/in probability.

The different modes of stochastic convergence prove to be appropriate for dif-
ferent forms (strong/weak) of the law of large numbers . Our considerations
will generally have to do with the strong law, and the choice of an appropriate
form s discussed in the appendiz to this chapter.

The proof of the consistency of estimates given here is by no means weakest
possible. For a classical treatment see [I10]. However, the method presented
here has several advantages:

1. it links the concept of consistency with an algorithmic approach based
on Newton’s method which will be a paradigm for our computational
methods;
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2. it makes no assumption about the knowledge of a global maximum of
the likelihood function; and

3. it lends itself to discussion of the case when model values can only be
estimated approximately.

The connection requires the characterization of X,, as the solution of a system
of nonlinear equations and these are obtained as the necessary conditions for
the maximization of (3.1.14]). This gives the estimating equation

VL (y;x,T) =0. (3.2.2)

It is convenient to work with the log likelihood which leads to equations
involving sums of random variables to which the strong law of large numbers
can be applied as a consequence of our regularity assumptions. This point is
illustrated first by deriving a system of equations satisfied by the true vector
of parameters x*.

Theorem 3.2 [f{T,} is defined as a sequence of designed experiments for
each n as n — oo then, under the assumptions governing the regqularity of the
likelihood, the true vector of parameters X* satisfies the system of equations

/ £ (VoL (:00,6)) p (t) dt = 0, (3.2.3)
S(T)

where E*indicates that the expectation is evaluated using the true density
g (y;07,t). The corresponding limiting form of the information matriz is

7- —/ £ V2L, (y:0,,6)} p(t) dt. (3.2.4)
S(T)
Proof. Writing out (3.2.2)) in terms of its components gives

Vx£ (y; X, Tn) == Z Vth(}’t; 0t7 t)7

teT,

= Z {VxLi(ys; 01, t) — E{VxL: (y:;0:,t)} } +

tETn

Z E"{VxLi (ye; 0., t)} .

teT,

Applying the strong law of large numbers (appendix to this chapter) to the
first term on the right hand side, and the condition (3.2.1) for designed
experiments to the second, gives almost surely

1
—ViL (y;x,T,) — / E{VxL: (y;0:,t)} p (t) dt.
n S(T)
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It now follows from Lemma that is satisfied when x = x* corre-
sponding to 6; = 6. The limiting form of the information matrix follows
from (3.1.18]) using the condition for designed experiments. mm

Equation expresses the condition that x* is a stationary point of

I = [ e Lot plt)ae
S(T)

A sufficient condition for x* to be an isolated solution of (3.2.3)) is that L* (x)
has an isolated maximum at x = x*. This will be the case if VZL* (x*) is
negative definite. From Lemma |3.2] we have

V2L* (x7) = / £ [V2L, (v:0,, )} p (t) db
S(T)

—— [ e {VaLi 300 VaLe (67 )} (0.
5(T)
Thus this requirement does not amount to a severe assumption.

3.2.2 Consistency of estimates

The method used to demonstrate consistency makes use of Newton’s method
to solve the estimating equation (3.2.3]). Let

J0(x) = ~V2L (y;x, T,)

n

Then the Newton iteration is defined by

1
h = _jn (X)_l ﬁvxﬁ (ya X, Tn)T )

X <+ x+ h.

Associated with this iteration is the famous Kantorovich theorem [66] , p.277,
which not only provides conditions under which the iteration converges but
goes further even permitting the existence of a solution to be deduced from
calculations made at the initial point of the iteration xq.

Theorem 3.3 (Kantorovich) If the following conditions are satisfied in a
ball S, = {x;[|x — xo|| < 0}:

(1) [1Tn (@) = Tn (V)| < Ki[Ju— v, YVu,v €S,
(ii) || T (x0) || = K,
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(iii) ‘
(iv) £ = KiKK3 < %,

then Newton’s method converges to a point X € S, satisfying ,
and X is the only root of in S,.

Remark 3.2.1 A lower bounds on ¢ can be obtained by summing estimates
of successive Newton corrections. It turns out that

% (1 - \/ﬂ) Ky <o (3.2.5)

is a consequence of the conditions imposed in the theorem. Also the step to
the solution X is bounded by

T (%0) " 2V.L (yi %0, T)"|| = K, and

% — xoll, < 2KG. (3.2.6)

Theorem 3.4 (Consistency of likelihood) Let the estimation problem as-
sociated with a sequence of designed experiments have a well determined so-
lution in the sense that VZL* (x*) is bounded, negative definite. Then for
each sequence of experiments {T,} there ezists an ng such that the New-
ton iteration started at X* converges to X, mazimizing (possibly just locally)
L (y;x,T,) for almost all n > ngy, and
X, 3 x" (3.2.7)
n—oo
Proof. This involves verifying the conditions of the Kantorovich theorem
at x*. The product KK, is like cond 7, (x*) and so is scale independent.
The trick of adding and subtracting expectations can be used to show that,
by the strong law of large numbers,

Tn (x*) 25 E{ViL(y;x*T)}p(t)dt = —Z, n — oo. (3.2.8)
S(T)
Thus the assumption that K; K5 is bounded is equivalent to the assumption
that the estimation problem has a well determined solution. It remains to
show that

41
K3 = |7, (x¥) IEVXE (y;x*,Tn)T

gets small almost surely as n — oco. K3 is just the magnitude of the Newton
correction, and the interesting part is
< +

1 1 1
- x*, T - x*,T,) — — “{VxLy (y1:0;
anx/:(y,x, || S|V X To) = = Y & Vil (y1:6;, 1)}

tETn
H % ZteTn E{VuLi (ys; 05, t)} —
Jser EAV<Li (v; 07, 0)} p (t) dt.
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where Lemma has been used. Here the first term on the right hand
side get small almost surely as n — oo, while the second gets small as a

consequence of the designed experiment assumption. It follows that & %%
n—oo

0. Thus X,, is well defined and lies in S,, for almost all n large enough.
As ||X* — X, | shrinks to zero with K3 by (3.2.6), is an immediate
consequence. W

The property of consistency permits the limiting form of the distribu-
tion of the maximum likelihood estimates to be deduced. Expanding the
estimating equation (3.2.2)) about the true parameter value x* gives

1_. ~ ~ o~
0= vXE’ (yv X*7 ’:[‘n)—i_(i - X*)T V)Q([’ <Y7 X*a Tn)+§vi£ (Y7 X, Tn) (X - X*> X = X*) )

where X is a vector of mean values and hence a consistent estimator of x*.
Solving for X — x* gives

~

1 - - g
X—x"= |:‘7n (X*) + %viﬁ (Y7 X, Tn) (X - X*a ):| EVX'C <y7 X*7 Tn)T

Under reasonable conditions the mean value term is small compared with
the second derivative term in the square brackets. One such condition is the
uniform bound assumption [68] .

1 . - . 1 ~ N
[ty ®-x0) < {EZBm,w} -],

teT

where the B (y;,t) are positive random variables with bounded variance. In
this case the sum in brackets tends to a limit in the appropriate stochastic
convergence mode while the norm term is small as a consequence of con-
sistency. The limiting distribution of \/iﬁvxﬁ (y; x*, Tn)T follows from the
central limit theorem and is given by

1
vn

while J,, — Z given by (3.2.4]). Thus the asymptotic distribution of \/n (X — x*)
is ([98], p.209)

VL (y;x*, Tn)T ~N(0,Z), n— oo,

Vn(x—x") N (0,27"). (3.2.9)

This can be formulated in terms of the variance to obtain a convergence rate
result:

V{g—x1=0 (%) (3.2.10)
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Exercise 3.2.1 Show that the nonlinear least squares estimator

X, = arg m)gnz (yi — (%, tz’))Q,
i—1

where y; = p(x*,t;) +¢&;, @ = 1,2,---,n, and the &; are independent and
have bounded variance, is consistent under the conditions for a designed ex-
periment. This result is due to [52]. It provides an example of a consistent
estimator which is not necessarily a maximum likelihood estimator . It is,

however, a quasi-likelihood estimator (Remark|3.5.5)

3.2.3 Working with the wrong likelihood

This subsection examines some consequences of the situation where the true
density is g (y; 8,t) but the likelihood calculations are performed using

7 (y;x,T) Zlog (y;0:,t)), (3.2.11)

teT

where f (y; 0, t) is also a density and f # g. A first step is to find the system
that would be satified by a limiting parameter vector as n — oo.

Lemma 3.3 Assume that the problem of mazimizing Ls (y;x,T,) has a so-
lution XY for alln large enough, and that Xy — xy, n — oo. Then Xy satisfies

the system
* vxf (y, 02&7 t) B
/S(T> ¢ {W} p(t)dt =0. (3.2.12)

Proof. The necessary conditions for a maximum of (3.2.11]) give

Ly [Tt (Vo))
’ ”tEZTn{ [ (yt; 64, t) ¢ f(y;0:,t)
* xf Y79t7 )
—25 {y—‘g”} (3.2.13)

where it should be noted that the expectation is calculated using the true
density. The desired result now follows by letting n — oo, and using the
condition for designed experiments. mm

It will be an isolated maximizer if the Hessian of the limiting likelihood is
positive definite. To consider this point further let

1
Jf = Eviﬁf (y;x, Ty).



3.2. ASYMPTOTIC PROPERTIES 131
Then the law of large numbers gives
1
Ji =& {—Viﬁf (v;x, Tn)} — 0, n — co.
n

Now

AEASIREARES 3|

teT, range(y

Vi f?
f

The first term on the right hand side is generically positive definite. To see
this note that it follows from Lemma [3.2] that

) (9—f) Vx { } dy. (3.2.14)

1
E{Tf} = ——&; {VLIVLs}, (3.2.15)

—>/ Er{VxLiVxLs} p(t)dt, n — oo,
S(T)

where Ly = log (f (y;0:,t)). Thus positive definiteness depends on the rel-
ative size of the second term. This can be evaluated using the following
Lemma.

Lemma 3.4 Let A be positive definite. Then A+ B, where B is symmetric,
is positive definite if w (A™'B) < 1 where w denotes the spectral radius
(magnitude of the eigenvalue of largest magnitude) of the indicated matriz.

Proof. The condition to be satisfied is
v (A+ B)v >0, ¥v #0.
This is equivalent to
VIAVZAT 2y £ yTAVZATIZBATI2 AT 2y > 0, Wv £ 0,

or to
w' (I+C)u>0, C=A"2BATT? vu+o.

As C'is symmetric, C = TATT where A is the diagonal matrix of the eigenval-
ues, and 7" is orthogonal. Thus the condition on C' reduces to the requirement

w'T(I+A)T"a>0, Yu#0,

and this is satisfied if and only if all elements of A are less than 1 in magnitude
= w (C) < 1. The desired result now follows as

AT'B = ATTPCATR

is similar to C. mm
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Theorem 3.5 Let x; be a solution of . Then xy is an isolated so-
lution corresponding to a mazximum of the limiting problem provided

-1
- (fsm Er{VxL}VxLs}p(t) dt)

<fS(T) [frange(y) (g— 1) ViLfdy} o (t) dt) <L (3.2.16)

Proof. This follows by an application of Lemma to (13.2.15) and

Remark 3.2.2 This result can be used to show that the Newton iteration to
mazimize L¢ (y;x,T,) converges to X} from all starting points close enough
to xy provided n is large enough, and that limy, . X} = Xy provided
holds. This property is called consistency with the assumed probability model
m [77/.

Conditions under which x ¢ = x* include:

1. The case f = g is a consequence of Lemma, [3.1] which gives
O—/ E{VLL(y;0",t)} p(t)dt
S(T)
= [ & T (0 ) O 1)
S(T)

2. When a signal in noise model is assumed, so that the dependence of
VxLy (y;0 (xy),t) on the signal is of the form y; —p (x, t), and (3.1.10))
holds. If f is normal then a nonlinear least squares problem results.

3.3 Quasi-likelihood formulations

The method of maximum likelihood makes the strong assumption that the
exact distribution ¢ (y;@,t) is known. Thus it is of interest to ask if it is
possible to preserve some at least of the good properties when this informa-
tion is not available. If the new objective function is to be chosen to force
consistency then analogy suggests an objective function having the generic
form

y,X T Z Kt ytuetv 9

teT,
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while meeting the requirements suggested by the form of Theorem [3.2] gives

| & Vet (v 070} p (01t 0,

S(T)

/ E{ViK, (y:; 0;,t)} p(t) dt bounded, negative definite.
S(T)

The general theory of quasi-likelihood starts with the estimating equation
ViKr (y;x,T,) =0, (3.3.1)
where the VK, t € T, satisfy the differential condition
E{ViK, (y;0;,t)} =0. (3.3.2)

In particular, it is not assumed that an explicit form for K is known, only that
its gradient is available . A general theory of optimal estimating equations
has been developed under these constraints [34]. A less ambitious program
characterised initial work on quasi-likelihood [112]. The idea is to work from
the general form of likelihoods based on the exponential family , and
to abstract a generic structure to be satisfied by Vi K; (yy; 0y, t) from this.
If the exponential family likelihood terms are given by

L= {ytTet —b (et)} /a(¢) + log (c(y¢, 9)) -
Then
VoLi={y{ —Vab(6,)} /a(¢)

which has the form of a signal in noise model (3.1.10) with g = Vb (cf
example 3.1.2). The form of estimating equation adopted in [I12] is based
on

VI (v (%), 6) =V ()™ (ve — 1y (%)), (3.3.3)
where

po (x7) = E {y:} (3.3.4)

(so the model is exact) and V () is assumed to be a function of the mean
only to avoid problems with nuisance parameters.

Remark 3.3.1 If
Vip)=V{y—n} (3.3.5)
then
E{V,K} =0,
E{V.K'V,K} =—E{VLK} =V ()"
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These results correspond to those of Lemmas and [3.9 which hold in the
case of the likelihood. They quarantee optimality in the sense of [45] for esti-

mating equations having the general form with V , K given by .
However, it is not necessary that hold. If V () # V{y} = V" then

E{VK'V,K} =V VvV

Thus the analogue of the method of maximum likelihood seeks an estimate
X, by solving
Z (Vxﬂt)T 4 (Nt>_1 (ye — p (x)) = 0. (3.3.6)

t

The consistency of the sequence of estimates {X,} is now considered. Note
first that as a consequence of € {y;} = p, (x*), K; trivially satisfies (3.3.2)),
and that, from the form of (3.3.3)), it follows that

1, 1 (Vichte) Vi Vit

- x5 T,) = —— ) _ _

v i ) = =5 {+(<vxut>’fvxvt VRV (9 - )
(3.3.7)

o [ (V) Vi Vg (0t (3:38)
S(T)

Let this limit be written —Zx. The requirement that Zx be positive definite
does not impose a severe restriction. Also, given consistency, this require-
ment serves to guarantee that x* is an isolated limit point. The proof for
quasi-likelihood estimates can follow the approach based on the Kantorovich
Theorem (Theorem [3.3)) used in the likelihood case. Here the argument that
produces the limiting equation gives:

ST T = [TV () ) ) o0t (339)

Here (3.3.4)) is used to evaluate £*{V,K}. Note that the limiting equation
has the solution x* essentially independent of the choice of V.

Theorem 3.6 (Consistency of quasi-likelihood) Let the quasi-likelihood
estimation problem associated with a reqular sampling regime have a well de-
termined solution in the sense that Ty = fS(T) (Vatt,) ViV p,p () dt. is
bounded, positive definite when x = x*. Then for each sequence of designed
experiments {T,} there exists an ng such that, for almost all n > ng, the
Newton iteration applied to and started at xX* converges to a solution

~ ~ a5 4
X, and X, — X* as n — 00.

}
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The direct analogue of the argument used to show asymptotic normality
of the distribution of y/n (X, — x*) where X,, is the estimate computed by
maximizing the likelihood can be carried through in this case as well by
expanding the estimating equation about x* by Taylor’s Theorem. The result
is

Vi XY N (071[—(1 [/S(T) (Vaett)" VY Vi (t) dt} II_(I)
where V{K} =V, ' V{y} V"

Remark 3.3.2 Starting from a derivative based definition has its disadvan-
tages. Integration to find the form of the objective function requires knowledge
of the “constants of integration” - for example, the term log (c (yi, ¢)) in the
exponential family case considered above. This requires additional informa-
tion. Such information is likely needed for estimation of scale, the typical
role of the auzilliary parameter ¢ in this example. In [69] it is suggested that

log (¢ (v, 9)) = —51 (6) ~ B (3)

and that, under suitable restrictions on the size of o> and higher order cu-
mulants, the estimate hy (0?) = o2 is approzimately valid. An alternative
approach is to estimate the covariance matriz separately using the results of
the quasi-likelihood computation. One possibility [119] is the sample variance

V{x} < VY

where
‘/1 = - Z Xu’t Vflvxﬁt,
Va=— Z XNt t_ (vt — He) (ye — ﬁt)T Vs,

and hats indicate evaluation at the quasi-likelihood estimate. This estimate
is consistent even when Vi # V{y.}. Its robustness is discussed in [11])].

Remark 3.3.3 The best known example of a quasi-likelihood is given by the
method of nonlinear least squares. Here

VoK (ye; py (x) 7t)T =y — p, (x)
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corresponding to V (u) = I. This method provides a consistent estimator
under quite general conditions (adequate smoothness, density with bounded
second moment, and a sampling regime consistent with (3.2.1)) [52]. It is not
required that V () be a consistent estimator of the true covariance matriz,
but the cost could well be a serious loss of efficiency. If the error distribution
is not normal then nonlinear least squares provides an example of the use of
the wrong density in a likelihood calculation.

3.4 Equality constrained likelihood

The consequences for the estimation problem resulting from the imposition
of a (fixed) finite number m of equality constraints on the the likelihood
function are investigated in this section. One possible approach is to use the
constraints to eliminate variables, and this is attractive when the elimination
is straightforward. Here it is assumed that the elimination is not straight-
forward and that the constraints must be handled explicitly by the use of
Lagrange multiplier techniques. The development follows a similar sequence
of steps to that in the analysis of the unconstrained likelihood. That is, first
a limiting form of the necessary conditions characterizing the maximum of
the constrained likelihood as n = |T,| — oo is found. Then the Kantorovich
Theorem can be used to demonstrate consistency of the estimates, and the
corresponding asymptotic distributions are derived.
The constrained form of the likelihood problem is written

max L(y;x,T,), (3.4.1)

x,¢(x)=0
where ¢ (x) € R? — R™, m < p, is the constraint vector. It is assumed to
be smooth enough (at least twice continuously differentiable) in a set B, =
{l[x —x*|| < 7} containing the true parameter vector x*, and the constraints

are assumed to be independent in the sense that rank (Vyc (x)) = m, x € B,.
The necessary condition for a maximum of (3.4.1)) are

VL (y;x,T,) = ¢T'Vie (x), (3.4.2)
c(x) =0, (3.4.3)

where ¢ is the vector of Lagrange multipliers. To use the law of large num-

bers, equation ( [3.4.2) is written as
CT

1 . 1., B
~{VaL = E{VRL}} + € {VaL} = = Vice.
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This permits the limiting form of (3.4.2)), (3.4.3)) to be written

/S L E T (01t = Ve (), (3.4.4)

where E is the limit of the scaled sequence of multiplier estimates {En = En / n}

Remark 3.4.1 [t is tempting to conclude that this system has the solution
x =x*, ¢ =0, (3.4.5)

as a consequence of Lemma[3.1] and the linear independence of the constraint
gradients. However, the reversal of the order of integration and differentia-
tion in Lemmal3. 1| requires that the optimum be properly in the interior of the
allowable set of independent variables, a property at variance with the equality
constraint conditions. To see how this works out consider the variation

Gy, x+0x,T,) = G (v,%x,T,) = VxLGox + O ([|6x]%) ,
where the constraint ¢ = 0 forces the condition
Vxcdx = 0.
Let
U
Then
0x = Qoh, [|0x[| = [[h.

Using this information to differentiate under the integral sign now gives the
modified condition:

E{VL(y,x,T,)} Q2 = 0. (3.4.6)
This s directly compatible with 43.4.@ in the sense of leading directly to the
same multiplier condition as implies that for some m

E{VLL (y,x,T)} =n"QT.

Note Q)2 is a constant matriz if the constraint vector is linear. If the con-
straint vector is nonlinear then Qs can be replaced by a projection onto the
null space of VycT, and in this form it can have a smooth (differentiable)
representation. The corresponding form for the conclusion of Lemma 18

QIELVEL) Q= —QYE{ViLTVAL) Qo — o E{VRLY,  (347)

where the extra term on the right hand side is obtained by differentiating the
transformation.
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To see that the limiting Lagrange multiplier equations are satisfied
by the true solution x* note that the independence of the constraints implies
that a subset of m of the variables can be expressed in terms of the remainder
using the implicit function theorem . After possible reordering the result is
the system of equations

c(u(v),v)=0.

To construct a representation of the constraint gradient null space differen-
tiate this equation. The result is

Vuca—u + V,c =0,
ov

showing that

1

The log likelihood expressed in terms of the independent variables v now has
an unconstrained maximum. The limiting form (3.2.3)) of the corresponding
necessary conditions in this case is

) ou
/ g* {VuLt—u + vat} pdt = / S* {v(u,v)Lt} pdt |: v :| s
S(T) ov S(T) I

= 0.

[ Vuc Vyc | { ov } =0. (3.4.8)

This is equivalent to @
Equations (3.4.2)) and (3.4.3)) have an isolated solution provided the Ja-

cobian of the system, scaled by dividing by n, is nonsingular for all n large

enough. Let the Lagrangian function corresponding to this system be

L (%,€) = £ (v, Ty) — e ().

If the Jacobian is written as A, (x,{) (the terminology anticipates the stan-
dard notation which refers to the Jacobian as the augmented matrix in this
case) the condition for an isolated solution for n large enough becomes

2 * o VA
Avo,0) = | Vg b8 Ve,

rank (A, (x*,{)) = m +p.

This requirement is close to the one met before in Condition [I.1} Setting
of ] -reer

1
V= ~Q"ViL.Q.
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gives the condition in the equivalent form
U nonsingular, Vay = Q2 V2L, @, nonsingular.

The first condition guarantees that the constraints are linearly independent
in the case that they are linear, and it provides the obvious extension of
independence if they are nonlinear by ensuring that they are (locally) not
contradictory. The second condition is satisfied if Vao is positive definite.
In this form positive definiteness of the restriction of %ViLn to the tangent
space of the constraints corresponds to the second order sufficiency condition
[73].

Theorem 3.7 Let the estimation problem associated with a reqular sampling
regime have a well determined solution in the sense that the augmented matrix
A, (X*,Z> has its full rank. Then for each sequence of experiments {T,}

there exists an ng such that the Newton iteration started at (X*, C) converges

to <§n, E

all n > ng, and

n) satisfying the necessary conditions (3.4.4), (3.4.3) for almost

(in (2; X*a En a;s; E) , T — Q. <349)

Proof. To use the Newton’s method based approach to the question of
consistency note that the predicted correction given the initial guess xq =
x*, ¢, = ¢ satisfies the system of linear equations

x hN _ _%vxﬁ (Y; X*, Tn)T + vxCTE

A, (x ,C’> { AC] = { 0 : (3.4.10)
where h = x — x*. If we assume that the conditions for the nonsingularity of
the augmented matrix are satisfied and the problem data are smooth enough
then the Kantorovich conditions ensure that the Newton iteration proceeds
satisfactorily provided the right hand side of is small almost surely for
all n large enough. This follows by the same law of large numbers argument

as before. mm B
To derive the asymptotic distributions let <§, Cn> satisfy the estimat-

ing equations (3.4.2), (3.4.3). If these are expanded by Taylor series about
x*, E then we obtain

0= V,L, <X*, E) + (X — X*)T V2L, (X*, E) + %ViLn (i, Z) (X — x", X — x¥)
- ¢ {Tex) 4 3V (13- x) |

1
0= Vxec (x) (X —x") + §V,2(c (X) (X —x*,Xx — x7),
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where X indicates that a mean value is appropriate. Ignoring the almost
surely small terms

ViLn (f, E) (i - X*> X — X*) 7AC£V)2(C (i) ('7 X — X*) ,Vic (i) (i - X*ai - X*)

gives a system of equations basically similar to (3.4.10) . Making use of the
orthogonal factorization of Vyc (x*)" gives for X — x* the equations

QT (% —x") =0,
Q5 ViLlaQ:0Q5 (X —x*) = Q3 ViLy,
1
= __ngxﬁgw
n

and these have the solution

< * 1 - *
X=X = _EQQ (QgViLnQQ) ' ngxﬁ (y; X aTn)T ’
1
= ——ViL PV, L (y;x",T,)", (3.4.11)
n
where P, is the oblique projector

P, = V2L,Q, (QFV2L,Q:) ' QT (3.4.12)

Because V2L, converges almost surely as n — oo as a consequence of con-
sistency so does P, — P. The equation for the multiplier vector is

“UAC, + QI ViLnQ2Q; (X~ x7) = —Q] Vil + UG,
= QIV.Ll

The solution to this equation is

&y C=UTQIVILQ:QE R —x) + U™ QI VLT,

= %UlQlT (I — P,) VL (y;x*, T,)" . (3.4.13)
Theorem 3.8 The asymptotic distributions are as follows:
1. /n(X—x*)~ N (0, V,) where
Vo= Q2V ' QyIQxV ' Qs

and V7, is the almost sure limit of Q3 V2L, Q.
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2. n (Zn — E) ~ N (0,V;) where
Ve=U"'Qf(I-P)Z(I-P)" QU™

Proof. That the limiting distributions have mean 0 follows from the cen-
tral limit theorem applied to \/LEVXE (y;x*,T,) via an application of Slut-
sky’s theorem [98]. To compute the variance estimates, the same approach
allows the substitution of almost sure limits with small error. mm

3.5 Separable regressions

Estimation problems where the basic data has the particular form
y=?(B)a+e (3.5.1)

are said to be separable with the «;, ¢ = 1,2,--- | p, the linear parameters
, and the components of 3 € R™ the nonlinear parameters . They have
received a fair deal of attention, and a number of special methods which
first eliminate the linear parameters and then solve a reduced optimization
problem to recover an estimate of 3 have been proposed (an early reference
is [37]and a recent survey is [38]). One possible approach notes that
is the general solution of a linear ordinary differential equation of order p
with fundamental solutions given by the ¢; (¢,3), i = 1,2,--- ,p. This is
discussed in Chapter ) Two approaches are considered here. Both use
orthogonal projection to eliminate the linear parameters from the objective
function. They differ in the mode of constructing this projection.
Typical sets of model functions include:

1. Sets of exponentials (here m = p)
(bj (taﬁ) = eiﬂjtv ] = 1727 Y 2

2. Rational functions

ti—1

¢j(taﬁ):W> J=12,--,p
=171

Here the scale of the §; remains to be fixed as multiplying numerator
and denominator of the rational function by an arbitrary constant does
not change y ().
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To illustrate the separation of the calculation of the linear and nonlin-
ear parameters assume that the observation errors are independent, &; ~
N (0,0%),i=1,2,--- ,n, and let Q(B) be an orthogonal matrix such that

[@8) @) oe)=| | . (35.2)

where ® (8);, = ¢; (t;,3) is assumed to have its full column rank p. Then
maximum likelihood estimation, ignoring constant terms including the vari-
ance contribution, involves minimizing the sum of squares of residuals

r’r =r7QQT,

= [va—Qib|" + l@sb]”,

where b with components b; = y; +¢;, © = 1,2,--- ,n is the signal observed
in the presence of noise. A point to notice here is that the noise in the
observations is additive, but this property is not preserved in the sum of
squares term ||622Tb||2 as the matrix multiplication couples the nonlinear
parameters and the noise. Note also that a appears only in the first term
on the right hand side. This term can be reduced to zero for all 3 such that
® (3) has full column rank by setting

a(B)=U""'QTb. (3.5.3)
Thus ,
inr’r = mi Tb||” = min || Pb|? 3.5.4
minrr = min Q7 b[|" = min||Pb| (3:5.4)
where
P=QQF =1 —(073) " o (3.5.5)

projects onto the orthogonal complement of the range of ®. Thus the prob-
lem has been reduced to a nonlinear least squares problem with a smaller
number of parameters. The objective function in the reduced problem is
referred to as the wvariable projection functional. There is identity between
the minimizers of the full log likelihood and the solution computed from the
variable projection formulation . Hence the solution of the reduced
problem is consistent.

The key step in eliminating the linear parameters in equation is
the construction of an orthogonal basis for the null space of ®. This provides
an explicit form for the orthogonal projector P, and the problem reduces to
minimizing ||Pbl|?. Any other method of constructing P can be used, and
this provides a way to use additional information on the parametrization.
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The reduction is essentially that used in (3.5.4). Let P be the orthogonal
projection onto the null space. Then
r’r =r"(I — P)r +r’ Pr,

— 70 (070) ' ®Tr + || Pb|%. (3.5.6)
The projection onto the range of ¢ gives a nonnegative term which is mini-
mized when « (3) satisfies the normal equations so the problem reduces to
determining the nonlinear parameters by minimizing || Pb||>. A key property
which permits the direct elimination of the linear parameters in each of the
two examples quoted above is an explicit difference equation linking p + 1

consecutive values of each of the model functions computed on an equispaced
grid with spacing increment 7.

Example 3.5.1 For the exponential fitting problem this difference equation
has the form

p+1
nyje_ﬁj(tk—i_(j_l)ﬂ = 07 k= 17 2a e, —p.
j=1

Here this introduces an alternative parametrization ~y replacing the original
nonlinear parameters , and the B;, j = 1,2,--- | p are recovered from the roots
e, k=1,2,--- p, of the polynomial equation

p+1

>N =0
j=1
by using the relation
>\k = 67’8’”7 k= 1727“ “D-

The ~; are the elementary symmetric functions of the A\ up to an arbitrary
scalar multiplier.

Example 3.5.2 In the rational fitting example the difference equation is
given by

V4 m
APZ{< ﬁ]ti_l) al¢l(tkaﬁ)}zo7k:1a27vn_p
i=1 j=1
where A is the forward difference operator defined by

Ap(t) =¢(t+7)—¢(1).

In contrast to the previous example, the nonlinear parameters 3 appear ex-
plicitly in the difference equation.
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Assume now that a difference equation with coefficients F}, exists satisfy-
ing the conditions

p+1

ZFk(tl7’y(ﬁ))¢](tl+(k_1)7—7/3):OJ 221727 Jn_p7j:1727“' e
k=1

and having the property that it is linear in the parametrization « as in the
above examples. Application to the data gives

p+1 p+1
D Ee iy (B) bk =Y Fi(tiy (B) isp, i = 1,2, ,n—p.
i=k k=1

In matrix form this is
F(y)b=F(v)e, Fe€ R" — R"?,

where F' is a p + 1 banded, rectangular matrix which is linear and homo-
geneous in 7. The property that Fj is exactly p + 1 banded implies that
rank(Fy) =n —p. Now F can be used to compute the projection matrix P.
This permits the nonlinear parameters to be computed by minimizing the
objective:

T (y) = b FT (FFT)™ Fb = ||Pb|*. (3.5.7)

Note that the objective function I' is independent of the scale of the parametriza-
tion so that it is necessary to adjoin a scaling constraint

U(y) =1 (3.5.8)

to completely specify the optimization problem. Because F'" (F F T)fl F is
a projection matrix of rank n — p it follows that

E{L(v)} = (n—p)o”.

The term F' (7)b, being linear in the components of -+, can be trans-
formed to show the dependence on the parametrization explicitly. Let

F(v)b = B~, (3.5.9)
where B : RPTt — R"P Then
B=V,(F(y)b).
In the exponential fitting case:

Blj :biJrj,l, 221,2, ,n—Dp, j:1,2, ,p+ 1. (3510)
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In the rational fitting example

p+1
m—ZAftfﬂl i, =12 n—p k=12 m.  (3.511)

To compute the gradient of the objective we have

or 10 (FF")

_ o T pT T\~ 1 T T T T\~ 1
o =2e; B (FF") By —~"B" (FF") 7 (FF")" Bs.
Setting
F = Z%CZ-, s = (FFT)_1 B~,
i=1
then

or

m T m
oy = 2el' BTs —s' { C; (Z C'ﬂj> + <Z ijj) cl b s,
i i=1 i=1

=2 (e;fFBTs — wiT'y) ,

where (w;); = s"C]'Cjs = (w;),. Tt follows that the necessary conditions are
(B (FF") ™ B=W)y=aveT, (3.5.12)

where W is the symmetric matrix with W;, = w! and ) is the Lagrange
multiplier associated with the scaling constraint. This looks like an eigenvalue
problem, but it is nonlinear in « through the term (F F T)fl. Because I' is
homogeneous of degree 0 as a function of ~ it follows that

V,I'v=0.

It follows that ~ satisfying the necessary conditions is associated with the
multiplier A = 0 provided

V Uy #0, v #0,

for example, if ¥ = ||y|*.

There is a connection between the the above development and the classical
method of Prony [91] . This seeks to minimize the sum of squares of the
transformed residuals.

min || F (v) b (3.5.13)
Y
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It turns out that this procedure is not even consistent [54]. The problem
comes about because the random component in the sum of squares is F' () &
and there is nontrivial correlation between these elements.

VIF ()} =&{F(me"F ()},
=’ F () F(7)".

In contrast, the correct maximum likelihood formulation is

IganFcﬂTV{pmynflﬁxy)b. (3.5.14)

3.6 Analysis of variance

In the analysis of a linear model with normal errors «~» N (0, 0I) the variance
o? appears as a factor multiplying the normal equations and so does not
interfere with the calculation of the linear parameters. If unknown it can be
estimated separately once the linear parameters are known. The problem is
more complicated when the covariance matrix depends on a second set of pa-
rameters 3 € R™. It is convenient to write this dependence in distributional
form:

r, o~ N (Aa, V, (8)). (3.6.1)

Structure of V,, (B) becomes significant in problem analysis in as much as it
reflects aspects of matters such as the set up of experiments or equipment
performance. For example, the discussion of consistency has involved the
assumption of data collected from observations on a sequence of independent
events. Independence brings with it the implications that V, (8) is block
diagonal with n indexing the number of events, and that block sizes are
determined by the individual experiments and are bounded a priori. Thus
V. (B) has a particular form of sparsity, and this has been used explicitly in
the analysis based on the law of large numbers. In the application of the
analysis of variance to experimental design , where quantifying variation in
plot yields is of particular interest, a common assumption [47] is

V(B)=/I+> BViV/.
=2
The log likelihood based on (3.6.1]) is, up to constant terms, given by

—2L =rTV (B) ' r+logdet (V (B)). (3.6.2)
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The necessary conditions are

'V (B)TA=0, (3.6.3)
"V (B)! g‘é\/(ﬁ)‘l r+ trace V (8)~" gg =0,i=1,2,---,m. (3.6.4)

The first set of conditions is just the normal equations for a for each fixed
B. This gives the linear parameters a (3) as functions of the nonlinear pa-
rameters . This reduces the problem to one in 3 alone but at a minimum
cost of repeatedly solving a generalised least squares problem. Strict sep-
aration between the linear and nonlinear parameters can be achieved by a
transformation which permits us to work in the null space of A. However, in
contrast to , the critical part of the transformation is independent of
the parametrization. Let () be orthogonal,

B T
A=[Q @] g},T—{ﬁ%A}.

Then T is nonsingular provided A has full column rank p. If

Tl
C‘_@]_T“

then
T
E{C} = [ ATvqlAa ] ) V{C} = { QQ‘(;QQ ATXEflA .

Thus ¢, ¢, are uncorrelated. This implies independence for normally dis-
tributed random variables. The log likelihood is the sum of the corresponding
log marginal likelihoods which are simply written down given the means and
variances. The log likelihood is, up to constant terms,

— 2L =b"Q, (QTVQ,) ™' QTb + logdet (QTVQy)
+ VA (ATVA) ATV 4 logdet (ATVTIA) L (3.6.5)
As the part of T" which affects the linear parameters depends on 3 it is worth
noting that (3.6.5)) gives values that are pointwise identical to (3.6.2)) - again

up to constant terms. This uses that ng + P} =1 (Appendix 1 of Chapter
1), that the densities of b and ¢ have densities related by

fe (€)= fo (T71¢) det (T) ",

and makes use of the following Lemma.
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Lemma 3.5

-1

det (Q3VQs) = det (V) det (A"V ' A) det (A" A)
Proof. First note that
det (ATVTA) = det (ATQQTVT'QQTA),
:det([ ur 0]Q"v- 1@{ D
=det (UTU) det (QTV'Q),,) .
— det (UU) det ((Q"VQ),).
and that

det (QTVQy) = det ((QTVQ),,)

Jacobi’s Theorem on complementary minors [49] gives

det ((Q'VQ),)') = det ((QTVQ),,) det (Q"VQ) ™,
=det ((Q"VQ),,) det (V).

The desired result now follows. mm

Identity between the likelihoods means that the linear parameters are
determined by and this is readily verified by differentiating
with respect to a. Separability has been achieved because given then
the term involving a in drops out. Differentiating with respect to 3
gives

0= —bTQ, (QIVQ:) " Q1L @, (QIVQ,) ' Qb

? aﬂl
+ trace ((Q2 VQQ) Q, Z_XQQ) (3.6.6)

— trace ((ATV_lA)1 ATaVA> L i=1,2,--,m.

It is tempting to drop the third term in this equation and just work with the
terms corresponding to the marginal log likelihood for ¢;. The marginal log
likelihood up to constant terms is given by

Lai(B) = £ (a(B), B) + %log det (ATV"4), (3.6.7)
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and the corresponding necessary conditions are

0= -bTQ, (Q5VQ) Ol 3 00 (QIVQy) ! ol
(WZ (3.6.8)
+trace((Q2TVQ2) 585Q2),i:1,2,...7m

This approach has been adopted for general problems in experimental design
, for example, in [88] where the acronym REML is introduced.

Example 3.6.1 Let V = oI then
T T -1 7 OV T -1 A7 L 7 T
b” Q. (Qz VQ2) Q3 WQQ (QQ VQ2) Qyb = ;5 (QQ2Q5 ¢

-1 oV n—op
trae (V@) @50 ) = "2

Thus the REML estimate of o2 is

1
= b’ Q,Q1b.
n—p

This contrasts with the full maximum likelihood estimator in being unbiassed:
E{e"Q:Q5e} = trace (Q3 € {ee”} Q1) ,

= (n—p)o’.

Remark 3.6.1 For the REML estimate for 3* to be consistent when this is
true of the maximum likelihood estimate requires that the term

trace ((ATle) AT gg A)

be negligible compared to the other terms. Typically this is an O (p) term
if £ (ATVA) and X (AT%A> are bounded for large n, conditions which
fit well with our standard assumptions. The REML terms can be written as

matrix traces each involving n — p terms. These will dominate if the trace
arguments involve O (1) terms as was the case in the above example.

To calculate the expected Hessian of the marginal log likelihood Ly, at
B* note that £ {QIbb" Qx} = QLV (8%) Qs and set

¢ {bT% ©0van) " ot 0, (Vo) 1Q2Tb}-

QQ aﬁz
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Then
7 = trace ((QzTVQg) Q2 a3, Q2 ( §VQ2)‘1 £ {ngbTQ2}>

70V
_ trace ((% Vo, a—ﬂ%) |

This shows that the REML necessary conditions involve equating statistics
to their expectations.This provides a sense in which the resulting estimating
equation can be said to be unbiased. The calculation of the expected Hessian
proceeds as follows:

0*L
e {2 e ((@IVQw) ! 450 8V Q) Qg0 )

03;03;
v oV oV

= trace [ V1PV yv-ipy >
< € B © 0B

(3.6.9)

where PY =V Q, (Q%VQQ)’I QY is defined in the Appendix to Chapter 1.

3.7 Appendix: A form of the law of large
numbers

The classic Khintchtine form of the law of large numbers shows that £ =3 =3
0, n — oo where the ¢; are mean zero, iid random variables. An extenswn
of this result [52] shows that 1 37" | X;e; 30, n — oo provided the X are
sufficiently slowly varying. This proves to be in the right form for our con-
siderations in the case of (nonlinear) least squares problems associated with
normal likelihoods. It is of interest for introducing a regularity condition
which is a form of the designed experiment condition.

Theorem 3.9 Let {f;(v} be a sequence of continuous functions defined for
~ € I' having the property that

1 n
- > ) i) (3.7.1)
i=1
converges uniformly for vy, v, € I', n — oco. Then
1 = a.s.
= fi(v)e 0, n— oo (3.7.2)
n <

for v € I, where the g; are mean 0, #d random variables.
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In our application, typically f;(v) = f(t;,7y), t; € Tn. In this case (3.7.1)
corresponds to a case of the designed experiment condition ([3.2.1)).

The noise term need not enter linearly in V,£L ((y;x,T)) in more general
likelihoods, and in this case a sufficient condition for the validity of the
Kolmogorov form [98] can be applied. Let the ¢; be iid random variables,
the X; = X(¢;,7,&;) be continuous functions of their arguments, and let
V{X;}, i =1,2,--- ,n be uniformly bounded. Then

% Xn: (X, — E{X;}) 3 0. (3.7.3)
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Chapter 4

Computational methods for
maximum likelihood

4.1 Introduction

This chapter considers in some detail implementation and properties of the
Fisher scoring algorithm for maximizing a likelihood. Scoring is widely used
in statistical calculations, and there is a general belief in its effectiveness.
This context draws attention to the importance of a data analytic setting in
analyzing the algorithm, and this is the one that is adopted here. In contrast,
not only the orthodox computational literature (for example [24]), but also
texts such as [103], which set out computational developments for statisti-
cians, restrict performance considerations to discussion of the Gauss-Newton
algorithm in the special case of small residuals. It is stressed here that this
analysis can be broadened dramatically by considering the properties of the
large sample asymptotics in the correct setting.

The scoring algorithm is no more than a particular variant of Newton’s
method applied to solve the maximization problem. Recall that the basic
step of the Newton algorithm has the form

h= -7, (x)"! %vxc (y:x, )7, (4.1.1)

X <+ X + h.

The modified algorithm has two variants:

1. The Hessian of the likelihood 7, (x) is replaced by its expectation

153
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T, (x*) B I(x)

n—oo
~ ||x* — x|| small
L % I

Table 4.1: Scoring diagram
E{T, (x)} = =7, (x) to give the iteration

1
h; =7, (x)" VL (y5, T,)", (4.1.2)

X < x+ h.

This form is the one corresponding to the standard form of the Fisher
scoring algorithm. The particular case of nonlinear least squares corre-
sponds to the use of the normal likelihood and gives the Gauss-Newton
method. An immediate consequence of is that

vx'C <Y7 X, Tn) hI > 0, hI 7é 07
so that h; is a direction of ascent for maximizing the likelihood.

2. The standard form is fine provided the evaluation of the expectation is
straight forward. Otherwise a possible replacement is provided by the
sample information

1
Sn (X) = ﬁ Z Vth (Yt, gta t)T Vth (}’t7 Ot, t) . (413)
teT,

The resulting iteration is

1
hs =S, (x)~ vaﬁ (y:x,T,)", (4.1.4)

X <+ x+ h.

Remark 4.1.1 The steps from Newton’s method to the scoring algorithm
are summarised in Table[{.1. Note the important roles played by the almost
sure convergence of the Hessian to a matriz that does not depend on second
derivatives of the log likelihood, and by the convergence associated with a
reqular sequence of erperiments.
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Remark 4.1.2 In the case of a normal likelihood, independent observations,
and a signal in noise model (here p;(x) is written for u(t;,x)) then the depen-
dence on the standard deviation o® can be suppressed and the log likelihood
written:

VoL = Z (yi — pi (%)) Vaop (x)
ViL = Z {=Veut] Vopi + (yi — 11 (X)) Vi) -,

Here

and does not involve random components.

The first result is that the three iterations are asymptotically equivalent un-
der regular sampling regimes. This requires showing that the three different
Hessian estimates are asymptotically equivalent in the sense of almost sure
convergence for large enough n for then the values of h generated by the
different methods will agree to first order almost surely.

Lemma 4.1 Assume a reqular sampling reqgime. Then, in the sense of al-
most sure convergence,

lim Z, (x*) = lim S, (x*) = — lim J, (x*) =Z.

n—oo n—oo n—o0

Proof. The result
lim 7, (x*) = —Z.

is equation (3.2.8)). We have

In (X ) + jn (X ) = E Z { +& {vth (Yt§ HI,t)T Vth (Yt§ 0:7t)} 3
teT,
1
— =3 (V2L (9565, ) — £ {V2Li (v 6}.t)} } .
ntETn
— 0, n = oo,

by Lemma and Jennrich’s form of the strong law of large numbers. In
similar fashion

sot) Ty = Ly [ YR 0Ot Vel (viifl Y
B ~E{VaLy (1107, 6) VLo (vi:6,8)}

teT,
— 0, n — o0,



156 CHAPTER 4. LIKELIHOOD COMPUTATIONS

by the strong law of large numbers. m
There is a similar development for the application of Newton’s method

to find a zero of the quasilikelihood estimating equation (3.3.6). The basic
step is

-1
h=— {%ViICT (v;x, Tn)} {%VXKT (y;X,Tn)T} : (4.1.5)
X < X+ h,

where

Vi (v:3% Ta)" =Y (Vaett)" V (12) ™ (ye — 1, (%)

t

The scoring algorithm replaces the Hessian term —%ViICT by its expectation

Ty (compare ({3.3.8))

Ty =— Z (Vxﬂt)T 4 (Nt)il Vi, (4.1.6)
to give the basic iteration step

11
ho = {Tp}7 HVXK:T (v;x,T,)", (4.1.7)
X < x+ h.

The key feature in the case of each of these variants is that the negative
of the modified Hessian matrix is generically positive definite, a property
not shared by the true Hessian at a general point. This has the important
consequence that the modified methods have good global convergence proper-
ties when line search strategies are employed to stabilize the basic iteration.
When this is combined with similar transformation invariance properties,
with asymptotically fast rates of convergence as a consequence of Lemma
[4.1], and with possibly lower computational cost, then the scoring algorithms
do look attractive.

Remark 4.1.3 The transformation invariance properties are readily demon-
strated. We consider the standard scoring step but the same argument applies
to all the modified algorithms. Let u = u(x). Then

~ Ou

- ox’

The Fisher scoring steps in the two variables are related by

VoL =V LT, T =T'T'T, T (x)

11 1
hy = (TTZ0T) " =TTV LT =T (T2) ' =V L7 (4.1.8)
n n
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so that
u=u(x)= h, =Th,.

No deriwative of T appears in so the transformation invariance, in
this sense, applies at a general point. This contrasts with Newton’s method
for function minimization applied to F (u(x)) where strict transformation
mvariance applies only in a neighbourhood of a stationary point, while at a
general point the invariance is restricted to constant T'. The problem occurs
because the second differentiation needed to compute the Hessian introduces
a term involving derivatives of the transformation matrixz multiplying the
condition for a stationary point.

4.2 Basic properties of the ascent method

The basic structure of an ascent or maximization algorithm involves two key
ingredients:

1. A method for generating a step h which defines a direction in which
the objective function is increasing; and

2. A method for measuring progress in this direction. This second re-
quirement recognizes that a full step (as in the Newton basic iteration
(4.1.1))) need not be satisfactory, and that a more detailed local exam-
ination can be needed to make progress - this is especially true in the
initial stages of the ascent computation. To do this a monitor func-
tion @ (x) is introduced as a basis for this measurement. This needs
to have both the same (local) maximum as F' (x), the function to be
maximized, and to increase when F' (x) is increasing. This requirement
is summarised by

VFh>0= V®h>0; VFh=0= V®&h = 0.

A second desirable property of a monitor function is transformation
invariance.

Two classes of approach based on these ideas have proved popular and
are considered here. In the first, a single efficient direction h is computed,
and the actual step Ah in this direction is controlled by searching using the
monitor function to gauge an effective step. Such methods are useful when
a fast rate of ultimate convergence is possible combined with a natural scale
determining the length of step. In the second approach the tentative ascent
step is required to lie in a trust region surrounding the current point. This
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trust region is then modified adaptively as a result of this computation with
the step being recomputed if necessary. Typically the ascent step is computed
by linearizing the problem, and the trust region serves to define a region in
which this linearization satisfies an acceptability condition computed using
the monitor.

4.2.1 Ascent methods using line searches

It is a classic result [30] that to prove convergence to a stationary point it
is not sufficient to make nominal progress in the direction of ascent. It is
required that the step Ah taken from the current point be associated with a
sufficiently large A in the set of allowable values.Typical strategies for choos-
ing A include:

1. (Goldstein) Let
¢ (x + Ah) — ¢ (x)

U (\x,h)= 0 5 4.2.1
( 7X7 ) )\VX(I)(X)h Y <Q< Y ( )

and choose A to satisfy the inequalities
o< VU (\x,h)<1-—p (4.2.2)

This can always be done provided ® decreases for A large enough caus-
ing a violation of the first (left hand) inequality, because the second
inequality prevents too small values of A occuring as

lim ¥ (A, x,h) =1
A—0

provided x is not a stationary point. Typically, ¢ is chosen small (say
107%). One aim here is prevent the test missing a suitable stopping
value by flipping from ¥ < p to 1 — 9 < V¥ in one correction to A.

2. (Simple) Let 0 < 7 < 1, and choose A = 7% where k is the smallest
integer such that £k =1 if ® (x +h) > ® (x) else k satisfies

®(x+7"h) <®(x)<®(x+7"h). (4.2.3)

The value of 7 does not seem critical. Values satisfying .1 < 7 < .5
seem satisfactory.

Remark 4.2.1 Direct convergence results will consider the Goldstein test.
There are even counter examples where premature convergence s flagged un-
der conditions similar to the Simple test [73]. This would require inf {\} = 0.
However, if this behaviour occurs in the scoring algorithm then it can be
shown that the Hessian of the objective function is unbounded (Theorem .
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Remark 4.2.2 There are some useful connections between the two search
strategies. Typically, if ® (x +h) > ® (x) then A = 1 is accepted correspond-
ing to the Simple test being satisfied with k = 0. The argument uses that
this step can yield a fast convergence rate for the transformation invariant
scoring algorithms under appropriate conditions so that it makes sense to use
it to set the search scale. Equation expresses a somewhat more strin-
gent condition. However, if successive iterates are contained in a bounded
region R in which k is an upper bound to the values of k computed in the

Simple steps then a three term Taylor series based analysis shows that o = T*

satisfies the left hand inequality in for each step provided the Hessian
of L is positive definite. Also, if X = 7% is accepted for a Simple step then in

¥ (7 x,h) <0< p. (4.2.4)
A method for computing \ to satisfy s given in Subsubsection .
This can be interpreted as computing a series of Simple multipliers T; < .5
with X = T[5_; 7.

Lemma 4.2 The scoring algorithms ({.1.9), generate directions of

ascent provided I,,, S, are positive definite (they are necessarily at least pos-
itive semidefinite). In both cases ® (x) = L (y;x,T,) provides a suitable
monitor.

Proof. The arguments are identical for both the variants of scoring so
only the standard one is considered here. If x is not a stationary point then
VL # 0 and positive definiteness gives

ViLh = %VXEI,‘LleL’T > 0.

To show transformation invariance in the step determining A\ only the first
criterion needs to be considered, and here it is necessary to show that V,Lh,
is transformation invariant. We have

nVyLh, = VLT 'V, LT,
— VLT (T7T,T) " TV, L7,
= Vul (Z;) VuL,
=nV.Lh,. (4.2.5)
]
The following Lemma is important for establishing convergence of the

scoring iteration. Again there are essentially similar results for both forms
of scoring.



160 CHAPTER 4. LIKELIHOOD COMPUTATIONS

Lemma 4.3 For the basic scoring algorithm

Vilh 1
VLI B cond ()"

(4.2.6)

where the condition number is the spectral condition number.

Proof. We have
V< Lh h™Z,h

IV<LI Il [[Z.h]] ]

Let v = Iﬁﬂh. Then

ViLh viv
[Vl B~ (W IZ )2 (yiZ 1y} 72
2 cond (Z,,)"/*
~ 14 cond(Z,)’
2

cond (Z,,)""* + cond (Z,,)/*

The key inequality used is the Kantorovich inequality [49], p.83 .
n

Definition 4.1 IfZ, (similarly S, ) is positive definite throughout a compact
region R on which L is bounded then the scoring algorithm gives an ascent
direction at every point which is not a stationary point of L, and the scaled
imequality holds. In this case we say that a uniform ascent condition
holds in R.

Lemma 4.4 If a uniform ascent condition holds in a compact region R on
which L is bounded then, if X (x), x not a stationary point, satisfies the
inequalities ([4.2.9), there is a uniform lower bound Ar such that X (x) >
AR > 0, Vx € R.

Proof. This follows by observing that the two propositions A (x;) — 0
and U (A (x;),x;,h(x;)) <1— g are inconsistent. m

Theorem 4.1 Let the sequence of iterates {x;} produced by the ascent algo-
rithm using the line search criterion be contained in a compact region
R in which a uniform ascent condition holds. Then the sequence of values
{L(y;x;, Ty,)} converges, and limit points of {x;} are stationary points of L.
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Proof. Convergence of the bounded, increasing sequence {£ (y;x;, Tp)}
is a consequence of the uniform ascent condition. It follows from (4.2.1)) that
L (y;xi + Aihi, Th) — £ (y; %3, Ts)

VXL 3 Xy TTL hl <
(¥ ) D

)
— 0, 1 — o0,

as the numerator on the right hand side is the difference between consecutive

terms in a convergenct sequence, and 0 < Ag < \; by the uniform ascent
condition. Combining this with (4.2.6]) gives

VL (y; %, Tl [ ]| <£ (v;x; +A\h;, T,) — L(y;x;, T))
KR - OAR

)l

where kg = cond (Z,,)"/*. But

L 1v.£]

[h]| = >

1
/e vy
n

Thus, if pg is an upper bound in R for ||Z,|| ,

V<L (y; i, Tn)||2<£ (y;xi + Aihy, Ty) — L(y; %, Ty)
NKRUR - 0AR '
It follows that {||V«<L (y;x;, T,)||} — 0.
]

Basically this theorem says that provided inf;{);} > 0 and starting conditions
have been selected appropriately then scoring provides an effective procedure
for maximizing the likelihood. The next result addresses what happens if the
computed step lengths approach zero so that inf;{\;} = 0. The argument
applies to both the Simple and Goldstein tests, but the Simple test is strictly
the only one which allows inf; {\;} = 0 as the right hand inequality in the
Goldstein test could approach this possibility in a bounded region only if the
Hessian is becoming unbounded and would flag this by terminating.

Theorem 4.2 Let the sequence of iterates {x;} produced by the scoring algo-
rithm implemented using the Simple step criterion be contained in a compact
region R in which T, has full rank and inf;{\;} = 0. Then 1V2L(x) is

unbounded in R.

Proof. For inf;{\;} = 0 to obtain there must be an infinite sequence of
points X; = x; + A\;h; where the Simple test fails so that, by lb
LX) — L(xi)
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Using the mean value theorem and the property that h; is a direction of
ascent gives

NV L(x:)h; — 2 hTV2L(R)hy|
where the bar denotes that a mean value is appropriate. Thus

o>

’

~ 1 1
Ai|h?ﬁvi£(i>hi| >2(1- Q)Evzﬁ(xi)hi»

so that

VL) >
1=V L&) % TNIE

2<1 B Q) hzTInhz

N |2
2(1 —
L9 (4.2.7)
Ai
where 0, is the smallest singular value of Z,,. The result now follows from
the definition of A;.
[]

Remark 4.2.3 This theorem provides something like a global convergence
result for the scoring algorithm . In particular, if £ has bounded second
derivatives in any finite region of RP then unbounded second derivatives can
occur only at oo so that the case inf;{\;} = 0 must be associated with an
unbounded sequence {X;} in this case. It is necessary to allow for this be-
haviour for consider approzimation of t by nonlinear combinations of the
form (1) + 2(2) exp~*®*. Here

t = lim {n —nexp—t/n}
n—oo

with an error for large n which is O(1/n). Thus large n solutions for exact
data must be close to x(1) = n, x(2) = —n, and x(3) = 1/n. This example
highlights the structural information that this theorem gives. It would seem
to improve on global convergence claims which start from an a priori position
that the second derivative matriz is bounded.

Remark 4.2.4 This example shows that this set of approximants is not
closed. Note also that the design matriz must become increasingly singu-
lar with n. It is of interest to note that the approximating function here
has the form of a separable regression function . At least some of the
methods that exploit separability in solving the parameter estimation problem
can avoid this specific difficulty.
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Finding a suitable monitor for the quasi-likelihood iteration is a rather
different proposition because of the lack of explicit values of K, the incom-
pletely defined function to be maximized. Just for the moment let the cor-
rection computed at the current step be denoted by h*. One possibility is
the transformation invariant quantity (“natural criterion function”)

1 1
e (x + M) = —VK (x + Ah7) (T (x + Ah*)) ! ~VK (x+ AT
=h’ (x + A\h*) T (x + Ah*) h (x + Ah*). (4.2.8)

This function vanishes at stationary points and is positive whenever h* de-
fines a direction of ascent for IC. The possible requirement to compute re-
peatedly (Zi (x + Ah*)) ™' VK (x + Ah*)" (amounting to a full scoring cor-
rection) in order to carry out the line search is something of a disadvantage.
However, at least the final adjustment in the line search provides also the
next scoring step. Another disadvantage is that h is not guaranteed to be
an ascent direction for @i (x). Here the condition is

V@ih = h" {2V?K + V{Z}[h]}} h > 0,

where the square brackets indicates that h is held constant in the differen-
tiation. There are two difficult terms here as V2K is not guaranteed to be
positive definite, nor is the gradient term involving Zj. One modification -
called affine invariance when applied to the Newton step [23], [25] - considers

4 (x + A\h*) = %v;c (x 4+ Ah*) (T2 (x)) 7" %VIC (x + Ah*)"
= h’{ (x + Ah*) T} (x) hs (x + Ah*) (4.2.9)
ha (x 4 Ab7) = (22 (x)) ! %vzc (x + b7 .

Here ®# has the possible disadvantage that apparently acceptable correc-
tions can lead to cycling with resultant stalling of the iteration in a related
application [5] which is discussed in Remark [5.3.1] The condition that h
be a descent direction for this objective also must be verified. The descent
condition is a simpler calculation as the gradient of Z}: now does not appear.
The Simple form of the line search would be the natural one to apply
in the quasilikelihood calculations as it does not require derivatives of the
monitor. An alternative ([77]) is to use a relatively robust method such as
the secant algorithm to iterate towards a solution of

VK (x + Ah*) h* = 0 (4.2.10)
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which characterizes stationary points of I in the direction defined by h*.
As function values are not available it is necessary to be conservative and
ensure quite high accuracy in determining the root of in order to be
confident that K has increased in the computed step.

Invariance plus the classic result that the basic Newton iteration (4.1.1]
has a second order rate of convergence implies that A\ = 1 is a good initial
choice in the line search step in this case. This result carries over to the
forms of the scoring algorithm. Note that it does not depend on the method
used to carry out the linesearch.

Lemma 4.5 Consider the standard scoring algorithm with monitor ® chosen
equal to L. Let the sequence of iterates {x;} computed using the Goldstein
linesearch converge to X,,. Then

U (1,x;,h;) = .5, n— oo,

so that X = 1 is acceptable eventually almost surely for all n large enough.
The size of n is determined by the requirement that ||X,, — x*|| be small (that
is by consistency).

Proof. Expanding £ (y;x; + Ah;, T},) using Taylor series, and assuming
||h;|| is small, gives

VxLh; + 1hIV2Lh; + O (||h|?
V,Lh;

1V, LT 'V2LT MY, LT 1

5 Y 0 VL] )
2 VLI 'V, L

IV LT (T, + V2L + T,) IV, LT 1

5 ( P ) +O0 | 5 VL] ),
2 VLI 'V LT n?

1 1VLLT' (AVIL+T,) TV, LT 1
LVl 4 1) +0 (2 1vect),

=1+

n2

=1+

~373 VLT VLT

2
~ 5 1 — 00, n large enough.

Here the law of large numbers and consistency of x,, are used to show the
second term on the right hand side is small almost surely when n is large
enough.

]
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Subproblems in least squares form

The actual computation of the scoring step often can be reduced to that of
solving a linear least squares problem with associated advantages in condi-
tioning and scaling which correspond to those discussed for the linear least
squares problem in Chapter 2 The main idea is illustrated in simplest form
by the sample form of the scoring algorithm . In this case

- Ly v,

teTy,
1
T
= -5, Sh,
n

where

Sn - Vth

Comparison with (4.1.4]) shows that the sample scoring step is identical with
the linear least squares problem:

m}}n r'r;r=S5h—e. (4.2.11)

The other cases require rather more work. To adapt equation (4.1.7)) for
the quasilikelihood step we have

Z Vxﬂ't V Nt - Vi,

tGTn

1 n n
- ﬁ (IK)T]K’

where

L= | V7V,

The least squares problem equivalent to (4.1.7)) is [77]
min r'r; r=I%h — b, (4.2.12)

where

b = ‘/;_1/2 (Yt - Nt)
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To set the basic scoring method (4.1.2) in this framework write the compo-
nent terms as

1
L=~ Van[E{V, L]V, Li} Vi, (4.2.13)
" teT,
VLT =) Van{ VLT (4.2.14)
teT,

For comparison with the quasilikelihood algorithm it is convenient to write

Vi =E{V,L{V,L}, (4.2.15)
=\ v,"?vem, |, (4.2.16)
VLT =Y VoV, = 1D, (4.2.17)
t
where
b= | V/"?v,LT |. (4.2.18)

The form of b is chosen so the least squares necessary conditions correspond
to the equations for the scoring step. The scoring iteration can now be
written as the least squares problem

m}}n r’r; r=I7h — b, (4.2.19)

Example 4.2.1 In the case of the normal distribution a typical situation

could have
1 _ (y—n(xr0)?
e 202 ,

vt 2ro

and the corresponding terms in the likelthood would be

1
L= ~5-3 (ye — 1 (x,1))> + const.
Here the mazimum likelthood formulation is equivalent to a nonlinear least

squares problem. To set up the scoring iteration
1
(yt —H (X7 t)) vx,u (Xv t) ’

Vth - -
o
or _ 1 T 2
ViLi = == (Van (x,0)7 Vit (5.8) = (y = 1 (1) Vi (x,1) )



4.2. BASIC PROPERTIES OF THE ASCENT METHOD 167

giving (compare Remark
1 3 T
In = W Vx,u (X, t) VX[L (X, t) .

teT,
The factor 1/na? cancels in the equations determining the scoring algorithm
correction, and these can be written

m&n r'r; r=Ih—(y — p(x)),

where

I = | Vau(xt)

In this form the basic step of the algorithm is identical with the Gauss Newton
algorithm for nonlinear least squares problems. The corresponding sample
form sets

1 T 1 2 T
Sn = - Z VxlLy Vily = ol Z (ye = 1 (%,8))" Vet (x,8)" Ve (X, 1) -

teT, teT,

The linear least squares algorithm for the sample scoring correction is
m&n r’r; r=S5h—e

where

S, = (yt*ugx,t)) Vst (%, 1)

g

An interesting feature here is that o* appears explicitly. It can be absorbed
into h, but then the scale of the correction depends on o2 and contains infor-
mation on its value. However, both the direction of search, and the minimum
along the resulting line are independent of o. Here the sampling form of scor-
ing is not attractive in comparison with the Gauss-Newton method. A case
where it is useful is considered later (Example (4.7.1)).

Exercise 4.2.1 Consider the separable model . Show that the corre-
sponding least squares problem for the Gauss-Newton correction in the case
of normally distributed errors is

[A@) V@)l ]| 1| =

where

r=y—A(B) .
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4.2.2 Some computational details

Consider first the nonlinear least squares problem:

migl s’s; s=f(x)—z (4.2.20)
p<S

where z ~ N (f (x*),0%I). Here z can be considered the observed data while
f (x) provides the underlying model. The scoring (Gauss-Newton) algorithm
predicts a correction step by solving the linear subproblem which corresponds
to (E1.2):

mhin r’r; r=Ah—b, (4.2.21)

where A = Vf(x), A is assumed to have full column rank p, and b =
z — f (x). Note that scoring is a method for maximizing a likelihood while
Gauss-Newton is a method for minimizing a sum of squares which in this
context is effectively the negative of a likelihood so there is some potential
to be confused by “-” signs.

The necessary conditions for a minimum of are

sTA=(f-2)"A=0,
= (f+Ah—2z)" A—hTA"A,
=rTA—-hTATA
Thus the linear subproblem (4.2.21)) has the solution h = 0 at the maximum
likelihood estimate. Taking the scalar product of the linear subproblem with

r gives
2
Ir]] = —x"b = [lr] < [[b.]|.

Also, taking the scalar product with b,

—rb = —bTAh + ||b|?,
=—(b+r)" Ah+ b|*,
= —|b+r|® +||b]*.

From this follows conditions characterizing a stationary point.

Lemma 4.6 The following chain of implications holds at a stationary point

of (4.2.20):

Ir] = |b]| = r+b=0= V.fTh=0= ||b|| = || (4.2.22)
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Remark 4.2.5 The size of ||b||*> — ||r||? provides a convenient test for con-
vergence involving quantities readily available from the solution of the linear
subproblem . The correspondence to quantities computed from the log
likelihood s

(IbJ2 = ) = V.h

so that it shares the transformation invariance properties .

In the case of nonlinear least squares L; = —$b? so the Goldstein condition
becomes

(b7b) (x + h) — (b7D) (x)

V(A x,h)=

22bT Ah ’
~ (b7b) (x + h) — (b7b) (x)
= aBP=E) (4.223)

Remark 4.2.6 The linear least squares form of the linear subproblem for
the scoring algorithm for mazximum likelihood estimation suggests
the use of orthogonal transformation methods as the preferred method for its
numerical solution. Here these have the additional advantage that required
auxiliary quantities can be computed readily. For example, let

n U
then

V.Ch = b’ I7h
—v7q | |ual
~ Q7B (4.2.21)

Note that this method for computing V,.Lh = ||b||?> — ||r||* necessarily gives
a nonnegative result.

A line search method

Two tests (4.2.1}}4.2.2) and (4.2.3)) have been presented for characterizing the

value of A\ determining the increment in x in the direction of h. The value
A = 1 is preferred as it is associated with fast convergence under appropriate
conditions (see section 3). As the algorithms are transformation invariant
this suggests the use of A = 1 as an initial increment and it is acceptable if



170 CHAPTER 4. LIKELIHOOD COMPUTATIONS

L(x+h) > L£(x). If it is not acceptable then it is necessary to predict an
improved value. This is well defined in the Simple test. For the Goldstein
test the information available after testing a step Ajh (A = 1 initially) is
{L(x), L(x+ A\h), V.L(x)h}. This is sufficient to permit construction of
the quadratic approximation

G(\) = L(x) + A\V,L(x)h + \*C,
where C' is to be determined to satisfy the condition
G(M) = L(x+ Aih).
so that

= % {£(x+ \h) — £(x) — \V.L(x)h},
1

VLR {0 ~ 1

Note that C' < 0 if the Goldstein test fails with ¥ < ¢ so that G(\) has a
maximum in 0 < A < A;. This is given by

e
= — = h
0 N V.Lh +2)\C

so that

~ VioLh
2C 7

Ap
SETETEWE (4.2.25)

A:

This step predicts an increase in £ and so can be used for the new incre-
ment for evaluating W. A test that combines the good features of both the
Goldstein and Simple tests is :

At
A2 = max (p)\l, m) : (4.2.26)

Setting a maximum net number of reductions in A serves a similar purpose to
the condition ¥ < 1 — o, A — 0 in the Goldstein test in the sense of flagging
the possibility of the exceptional case if inf A = 0.
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4.2.3 Trust region methods

The basic trust region method imposes a bound constraint on the solution
of the linear subproblem determining the successive corrections of the ascent
calculation. The idea is that the bound should be chosen such that the
accepted (full) step satisfies an acceptability criterion such as the Goldstein
test (£.2.1][4.2.2). In this case the bound is determining a region in which the
linear approximation is not too out of kilter with the nonlinear behaviour
of the objective in the sense expressed by the Goldstein test. The earliest
reports of the application of these methods include ([62],[72], and [67]). They
considered their use in the implementation of the Gauss-Newton method for
nonlinear least squares. They have proved popular in the development of
optimization software, possibly more popular than line search methods in
many cases. Here one advantage is that the (modified design) matrix to be
inverted at each step is always at least as well conditioned as the information
matrix in the basic scoring algorithm. A possible cost is that improved
conditioning could be bought by slower convergence.

To develop the basic ideas consider, for example, the linear subprob-
lem associated with the sample information . Let ||h|% = h”D?h,
D > 0, diagonal. Incorporating the bound constraint on ||h||% leads to the
constrained least squares problem

min r’r; r=S,h—e. (4.2.27)

b |3 <y
The Kuhn-Tucker necessary conditions give
(v 0]=X"[I -S,]-=[0 hW'D?],

where A, 7 are the multipliers associated with the equality and inequality
constraints respectively. It follows that

A=r, r’'S,+7h’D? = 0.
Thus h satisfies the system

(8:+ D)= T5Te = V" (4.2.98)
n n n

and is an ascent direction if 7 > 0. If 7 = 0 then the inequality constraint is
generically inactive and the scoring correction is obtained.

Remark 4.2.7 [t is possible to use the multiplier m rather than the bound ~y
to control ||h||3. The key result is that ||h||,, is monotonic decreasing as T
increases. To show this differentiate with respect to w. This gives
dh 1
(80 +2D?) 22 = ——D%n.
n dm n
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It follows that

dh” dh” dh
LN . YL
drm dm n dm

d .o
— ||h .
> 3 <0

Thus a simple and effective strategy for controlling the size of m, which was
used in the initial implementations [62] and [67], keeps a multiplier (o > 1
say) to increase w if h fails the acceptability test, and a second f < 1 to
decrease T if the acceptability test is passed easily. Typically af < 1 to favour
the scoring step with its known favourable convergence rate as the iteration
proceeds (o = 1.5, f = .5 is recommended in [76] but the choices do no
appear critical), but m = 0 is not achieved by this approach without separate
intervention, and this could be a disadvantage as we know from Lemma [].5
that m = 0 is appropriate eventually if n is large enough. This problem can
be overcome by controlling v [T1]. With the «, B strategy a successful step
will always be taken eventually because

1
h — —D7?V, LT, 7 — oo,
T

and this is necessarily an ascent direction. Because of this asymptotic relation
it follows that if the sequence {m;} of multiplier values is bounded then 30 > 0
such that the left hand inequality in the Goldstein condition 15 always
satisfied. Thus the boundedness of the multiplier sequence plays the same role
as the condition that the line search step be bounded away from zero.

Remark 4.2.8 The form of the trust region constraint interferes with the
good scaling properties of the scoring algorithm . The best that can be hoped
for in practical terms is that the linear subproblem has a useful invariance
property with respect to diagonal scaling. Introduce the new variables u = T'x
where T" 1s diagonal. Then, using subscripts to distinguish x, u variables,

T~ (SIS, +7D*) T~ 'Th, =T 'V, L'
This is equivalent to
(SeSy+ 7T 'D*T™ ') h, = VoL

Thus if D; transforms with % then T; ' D; transforms in the same way with

i

respect to %. This requirement is satisfied by

D, = (S,
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This transformation effects a rescaling of the least squares problem. We have

h= (575, +7D?) " STe,
= Dh= (D7'S7S, D! + 1) D'STe.

The effect of this choice is to rescale the columns of S, to have unit length,
a strategy recommended in [46]. It is often sufficient to set 1 = 1, and
D =diag {||(Sn);ll, ¢ =1,2,--- ,p} initially [76]. However, if there are sig-
nificant fluctuations in the size of the elements of S, then [71] recommends
updating D by

D; = max {D;, [|(Sn) I}

Theorem 4.3 Let the sequence of iterates {x;} produced by the trust region
algorithm using the Goldstein criterion be contained in a compact
region R in which the sequence of values {m;} are bounded (< w). Then
the sequence of values {L (y;x;, T,)} converges, and limit points of {x;} are
stationary points of L.

Proof. This is very similar to that in Theorem [4.1 Convergence of the
bounded, increasing sequence {L (y;x;, T,)} is a consequence of the ascent
condition. It follows from (4.2.1)) that

L(y;x;+h;, T,) — L(y;x;, Ty)

vx'c (Y; Xi, Tn) hz S 0 9

— 0, ¢ = o0,

as the numerator on the right hand side is the difference between consecutive
terms in a convergenct sequence. Combining this with (4.2.6)) gives

IV L (y; i, To) ]l _ £ (y;xi + by, To) = £ (y; %0, T)
KR - 0

Y

where kp = cond (Sn + %D2)1/2. Note kp — 1 as m — co. But

11

- VL
Il = | (5 702) " St > - 1V

~ S+ S0

Thus, if vg is an upper bound in R for ||S, + ZD?

)

I VL (v5 0, To)[* _ £ (vi%i + by, To) = £(y; %, To)

NKRVR 0

It follows that {||VxL (y;x;, T,)||} — 0 because vg < 0o by assumption.
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[ |

The (v, B) form of the trust region algorithm provides information about
the case {m;} 1 co. The only additional information assumed is that the
elements of the scaling matrix D are bounded away from zero - D; > £ >
0,i=1,2,---,p. In this case it is convenient to write ¥ = ¥ (7, x, h) in the
Goldstein test to emphasise the role played by the multiplier.

Theorem 4.4 Assume that the sequence {m;} determined by the («, 3) form
of the trust region algorithm is unbounded. Then the norm of the Hessian
V2L is also unbounded.

Proof. If {m;} is unbounded then there exists an unbounded subsequence
{m*} with the property that o > U (7 /a, X}, h}) because there must be an
infinite sequence of points at which the («, 3) test (hence also the Gold-
stein test) fails causing m; to be increased. Thus there exists an unbounded

sequence {7;} with the property that o > ¥ (%\i, X;, ﬁ,) where ﬁl is the tenta-
tive step generated by the linear subproblem at x = x; for 7 = 7;. Denoting
mean values by a bar this gives

]vx.cﬁi — 1|nTVZLh,
0> =
‘Vxﬁhi
so that R R R
hIVIZh| > 2(1 - o) ‘Vxﬁhz- .
Thus R
‘Vxﬁhi
vaﬁH >2(1-g) b — 1
|2
Now

‘Vxﬁﬂ,-

= nﬂ;‘F (Sn + zD2) ﬂi,
n
Z 7TI’\IZTD2EZ
It follows that
HViﬁH > 27 (1 — o) min D?.
| |

Remark 4.2.9 As in remark iterations can become unbounded for
smooth sets of approrimating functions as the closure of these approximating
sets cannot be guaranteed in the nonlinear case.
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Some computational details

The linear subproblem at iteration step ¢ has the generic form

m}}anr; r= [ /2] ] h — [ 0 } : (4.2.29)

K3
It proves convenient to start each iteration by making an orthogonal fac-

torization of A; : A; — Q; [ [é’ } It is assumed that this orthogonal fac-

torization is well behaved - here column pivoting, corresponding to diagonal
pivoting in the Cholesky factorization, could be used for extra stability but
for current purposes this is assumed to be unnecessary.

Remark 4.2.10 At this point h;(0) can be determined cheaply. If ||h;(0)| <
0%i—1, with 0 < 0 <1 and m; = % m;_1 where o signals an appropriate de-
crease in the trust region radius, B is the multiplier for decreasing w, and both
are preset constants, then the computation could be switched to the standard
scoring algorithm with its known good convergence properties. It could be
reset to the Levenberg iteration at any stage that a nontrivial linesearch step
1S required.

Adjustment of h(r) is now carried out by working with the typically signifi-
cantly smaller linear least squares problem:

. T._. o (]z o C1
mins’s; s = [7?1/2[ h ' (4.2.30)

This requires a further orthogonal factorization specific to the particular
value of 7 that is current :

{ Wff;I ] - Q { %{ ] : (4.2.31)
Q" { N ] - { ¥ ] . (4.2.32)
Ca

As in the case of the scoring algorithm the results of the orthogonal fac-
torization can be used in the computation of important auxiliary quantities.

For example (compare the derivation of (4.2.24)))

V.Lh =c!Uh,

el 0] Lf/@[] (U0 47Dy [ UT ] {‘3 ]

= ||ci|1* (4.2.33)
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Adjusting the trust region parameter

One catch with the (a, 8) form of the Levenberg algorithm has to do with
the initial choice of 7 (say m = my). While h(m) is guaranteed to generate a
descent direction, and while the unit step can be expected ultimately to be
satisfactory for small 7, there can be a serious requirement to adapt my to
ensure the resulting step h(m) is satisfactory. One example where problems
are possible is provided by models containing exponential terms such as e~
which on physical grounds should have negative exponents (z; > 0) but
which can be made positive (z;+hy < 0) by too large a step. That is by 7 too
small. This could result in the introduction of seriously large (negative) terms
into the log likelihood with consequent complications in making subsequent
decisions. One simple cure is to repeatedly increase 7 by « until the resulting
h(7) meets the positivity requirements. An alternative approach is to note
that there is a relatively straight forward fix which involves introducing a
damping factor 7 chosen such that the critical components of x+7h(m) > 0,
but this is a line search rather than a trust region device. However, ||7h(m)||
provides a possible choice for a revised trust region bound . The associated
computing problem is given « find the corresponding 7. This involves soving
the equation
()| =

This can be done by the application of Newton’s method as b can be found
by solving the equation

. dh
(UTU +7]) —=~h

which is obtained by differentiating the normal equations|4.2.28)) determining
h(m). It can be solved in tandem with the solution of (4.2.30) when this is

written in least squares form:
T _ U @ | =UTh

Newton’s method involves estimating the zero by solving a linear approxima-
tion to the function. However, a more intuitively satisfactory extrapolation
can be found in this case by noting that if

A=wxvT

is the singular value decomposition of the matrix in the least squares formu-

lation, then
p
h =
Z a —|—7r
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is a rational function of m. This suggests that a rational form for the local
approximation of ||h|| could be appropriate. The form which mirrors the sin-
gular value decomposition solution and uses the same amount of information
about the function as Newton’s method is

a
h|~ ———.
R

To identify the parameters a and b given the values ||h(m)|| and =L ||h(mo)||
we have

a
Il = 3,
d Tdh a
—|h — __dm S
dﬂ'” (WO)H HhH (7"0) b2
The result is ()|
7r
= a=|h(m)|b,
2 [l (o)

giving the correction

_ [Ih(mo)[| = [[a(mo)]
bl v

The effect of the rational extrapolation is just the Newton step modulated by
the term w It follows immediately that this modified Newton iteration
is also second order convergent. Measures to safeguard this iteration are

discussed in [71].

Exercise 4.2.2 Show that the same sequence of iterations is obtained by
applying Newton’s method to solve

L1
()]

4.3 Estimation of the rate of convergence

The equivalence result, Lemma [4.1] suggests that the asymptotic rate of
convergence of the scoring algorithms as n — oo should approach that of
the Newton iteration itself . It is worthwhile showing this explicitly because
further useful points follow. First note that it follows from Lemma that
A = 1 will be accepted ultimately so that the scoring iterations in either
line search or trust region form can be written in the form of a fixed point
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iteration for the purpose of estimating the rate of convergence. Here we
consider the standard form (4.1.2]) which becomes

Xi+1 = F, (Xz) )

where

Fo(x) = x+ T, (x)! %vx/: (x)7 . (4.3.1)
The condition for convergence of the fixed point algorithm is
= (FL (%) < 1,
where w (F) (x,)) is the spectral radius of the variation F) = VF,.

Theorem 4.5
@ (F (X,)) =0, a.s., n — oo.

Proof. To calculate w (F), (X,,)) note that V4L (X,) = 0. Thus
~ 11 N
F' (%) =141, (%,) " ﬁvic (%), (4.3.2)
o - - 1 -
=T, (X)) <In (X,) + EViE (Xn)> . (4.3.3)

If the right hand side were evaluated at x* then the result would follow from
the strong law of large numbers which shows that the p x p matrix F) (x*)
gets small (hence w gets small) almost surely as n — oo . However, by
consistency of the estimates, we have

w (F) (X,)) =w (F, (x*)) + O (||x, —x*]]), a.s., n — o0,
and the desired result follows. m

Remark 4.3.1 This result shows that both the scoring algorithms have ar-
bitrarily fast rates of first order convergence as n — oo. In other words,
they get closer and closer to the second order convergence associated with the
Newton method. This rate is actually achieved for generalised linear models
when the link s the canonical link. Let

L=y, -0 (et) )
Then

VoL = (yt - Mt) V.0,
V2L = —V,01V2b (0,) V.0 — 11, V20,.

If the link is canonical then V20, = 0 and V2L, = € {V2L}.
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Remark 4.3.2 In the trust region form of the algorithm I, is replaced by
Z,+ %DQ. Thus the aditional requirement for asymptotic second order con-
vergence is {m;} — 0.

Remark 4.3.3 It is an important fact that w (F) (X,)) is an affine invari-
ant. Making use of the transformation rule V,(x) = V,(x)T with constant

matriz T in equation gives
F (xX,)=1+T"1,(x,)  —-V.L(u,)T,
n
=T 'F (u,)T.

Thus F) transforms by a similarity transformation so the eigenvalues are
movariant.

Remark 4.3.4 If an incorrect choice of density f (y;60s,t) is made in con-
structing the likelithood then the basic scoring algorithm uses as the

expected Hessian (compare )
I} (x) = &0 {TF ()} -
The effect of this misidentification gives
noon—1 1 T
Ff (X) =X _'_If (X) ;vx‘cf (y;X, Tn)

The condition for X} to be a point of attraction is

_ 1
= (77 () = = (73 () (7 6cp) + 192 (i) ) ) <1
The limiting value of w (F} (x})) as n — oo is (compare )

(Jugw € AVRLE Tl p () )
(fS(T) |:frange(y) (9—1) ViLde} p(t) dt)

Thus the condition that w (Fj'c (x}‘)) < 1 here is just the condition in Theo-
7“6me7“ X to be an isolated solution. It follows that there is an intimate
connection between the condition for an isolated mazimum of the misidenti-
fied likelihood function and the condition for the ultimate convergence of the
scoring algorithm with a unit linesearch step.
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Remark 4.3.5 An alternative way to look at the above results notes that if
w (FJ’C (x?)) 1s small then it is likely that the density used in constructing
the likelihood is close to the true density. Thus the size of w (Fj’c (X?)) pro-
wides confirmation of the modelling strategy. It is shown in Remark
that w (F J’c (X;ﬁ)) 18 an invariant of the likelithood surface characterising lo-
cal nonlinearity. It follows that if it is small then confidence intervals based
on linear theory will be adequate for the parameter estimates, and if it is not
then they wont and the modelling process must be regarded as suspect. Clearly
knowledge of w (Fj’c (X}‘)) 15 of value. Frequently it can be estimated from the
ratio [|[hyy1]| / ||| of successive corrections in the scoring algorithm provided
the largest eigenvalue in modulus of F (X}‘) 1s 1solated. This follows from

h;\, =F (Xi+1) - F (Xz>
= F' (x*) hi + O (|lx; = x*[[[1hs]]) + O (IIhy]|?)

1

This shows that successive iterations look like steps of the classical power
method for estimating the largest eigenvalue of F' (x*). Experience suggests
it works well when convergence is fairly slow (w ~ .1). It will return a small
value in the case of fast convergence, and this should be all that is needed in
many cases.

Exercise 4.3.1 Assume the case of normal errors € ~ N (0,0%I). Show that
the covariance matriz of F! (X,) is small with o. This shows the scoring
algorithm converges rapidly in the case of small errors in this case.

Exercise 4.3.2 The consistency of nonlinear least squares estimators was
considered in Ezercise [3.2.1. Show that the Gauss-Newton algorithm pro-
vides fast convergence in large samples for the class of estimation problems
considered there.

4.4 Variable projection for separable prob-
lems

Separable problems are introduced in Section [3.5] In this section algorithmic
possibilities arising from the special model structure (3.5.1)) are analyzed.
The treatment follows closely [80]. The resulting methods minimize a special
sum of squares in a reduced number of variables. However, some of the
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simplicity of the scoring algorithm is lost as a result of the variable projection
transformation. The basic components of the scoring Gauss-Newton method
for minimizing a sum of squares corresponding to the log likelihood associated
with a signal in noise model and additive, independent normal errors are
summarised in Remark [4.1.2] There is a corresponding form for minimizing
a sum of squares,
1 2

Sn (€)= o 18" (x, ") (4.4.1)
which applies when the residuals s can be made small but the attractive
stochastic properties do not hold. This form of the iteration is basically

similar:

Xit1 = X — H;lvs;{ (Xl) y (442)
1
H; = —{Vs" (%)} {Vs" (x)}. (4.4.3)
In the variable projection formulation x = [ g }, and it is necessary to

distinguish between the roles of the linear parameters o and nonlinear pa-
rameters 8. The vector of residuals in the variable projection objective is

s"(B,e") = P (B)b",

where the projection P, is given by (3.5.5). The Gauss-Newton method
applied to minimize the resulting sum of squares is referred to as the RGN
algorithm . Several factors complicate the analysis of the RGN algorithm:

1. in this case there is coupling between the parameters and the noise;

2. this has the consequence that H; does not correspond to the expected
Hessian; and

3. rather harder work is needed to justify a similar large sample conver-
gence rate to that of the scoring algorithm applied to the original signal
in noise formulation.

Most methods for minimizing the variable projection sum of squares use a
modification of the RGN algorithm due to Kaufman —indexKaufman algo-
rithm [56]. This serves to reduce the amount of computation needed in the
RGN algorithm. The Kaufman algorithm also shows the favourable large
data set rates despite being developed using an explicit small residual (small
o) argument. It also proves to be actually closer to the scoring algorithm
applied to the original problem statement than is the RGN algorithm.
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Implementation of the RGN algorithm has been discussed in detail in
[96]. Tt uses the approximate Hessian computed from (4.4.3)) and this requires
derivatives of P, (3). The derivative of P in the direction defined by t € RP
is

VsP[t] = —PVd [t] o+ — (%) V407 [t] P,
=A(B,t) + AT (B,1),

where A € R™ — R", explicit dependence on both n and 3 is understood, and
®* denotes the generalised inverse of ®. Note that TP = &+ —dT PPt =0
so the two components of VP [t] in (4.4.5) are orthogonal. Define matrices

K,L:RP— R" by

A(B,t)b =K (8,b)t, (4.4.6)
AT (B,t)b=L(3,b)t. 4.4.7

Then the RGN correction solves

min ||Pb + (K +L)t|?, (4.4.8)

where
L"K =0 (4.4.9)

as a consequence of the orthogonality noted above.

Remark 4.4.1 Kaufman [56] has examined these terms in more detail. We
have

t" K"Kt =b"A"Ab = O (||a|?) ,
t"L"Lt =b"AA"b = O (| Pb|]*) .

If the orthogonality noted above is used then the second term in the design
matrix in corresponds to a small residual term when || Pbl|? is rela-
tively small and can be ignored . The resulting correction solves the linear
least squares problem

min | Pb + Kt (4.4.10)

Equation (4.4.10) is the basis of the modification suggested by Kaufman . It
can be implemented with less computational cost, and it is favoured for this
reason. Numerical experience is reported to be very satisfactory [38].
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It is not possible to repeat exactly the rate of convergence calculation of
the previous section because of the coupling between parameters and noise
noted above. Here the fixed point form of the iteration is

5¢+1 = Fn (51) )
F,(B)=B-H(B) "'VsS(B)". (4.4.11)

The condition for En to be a fixed point is w (F[L (Bn>> <1

-1 n

where the right hand side is evaluated at En The property of consistency
is unchanged so the asymptotic convergence rate is again determined by
w (F! (B")). This expression is now examined in more detail.

Lemma 4.7 Consider a reqular sequence of experiments. Then

1 r.€e.
~ofe, 5 @, (4.4.13)
n

n—oo

where )
C%Z/@@%ww@%ISMSm
0

and the density w(t) is determined by the asymptotic properties of the se-
quence of sample points 1}, 1 = 1,2,--- ,n for large n. The Gram matrix G
1s bounded and generically positive definite. Let T,, =1 — P,. Then

1 1 1
(Th),; =~ G ' + 0 (ﬁ) : (4.4.14)

n

where

¢ =[61(t) G2(t) - dm(t)]
This gives an O (%) component-wise estimate which applies also to deriva-
tives of both P, and T, with respect to 3.

Proof. The result (4.4.13)) is discussed Chapter 1, in particular equation
(1.1.7). Positive definiteness is a consequence of the problem rank assump-
tion. To derive (4.4.14]) note that

T, = ®, (¢1,) " 7,
= 1<I>nG_1<I>£ +o (l) .

n n
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]

The starting point for determining the asymptotics of the convergence
rate of the RGN algorithm as n — oo is the computation of the expectations
of the numerator and denominator matrices in . The expectation of
the denominator is bounded and generically positive definite. The expec-
tation of the numerator is O (%) as n — oo. This suggests strongly that
w (F) (B%)) — 0, n — oo, a result of essentially similar strength to that
obtained for the additive error case. To complete the proof requires showing
that both numerator and denominator terms converge to their expectations
with probability 1.

Consider first the denominator term.

Lemma 4.8 Let 3 = 3%, and set
bi = pi (B%) + &,

where
1 (B) = ej P (B).
The expectation of the denominator in is

1
~£ {Vss"Vs} = o> M, + Mo, (4.4.15)
where
] o —
My = n Z Z (VsPy)" VP, (4.4.16)
i=1 j=1
1 [ n_n
My =2 {Z ARSI Vﬁ“g‘Tvﬁﬂijk} , (4.4.17)
J=1 j=1 k=1

and M, = O (%) , n— oo while My tends to a limit which is a bounded,
positive definite matriz when the problem rank assumption is satisfied.

Proof. Set

V5STV5S = Z V/BS,:TFV5SZ‘,

=1
=D > (VsPy) b > ViPuby. (4.4.18)
i=1 j=1 k=1

To calculate the expectation note that

E{bjbr} = o0 + i (B%) i (BY) . (4.4.19)



4.4. VARIABLE PROJECTION FOR SEPARABLE PROBLEMS 185

It follows that

1 1 n n n n
e {Ves'Ves} = - > {0'2 D (VePy) VsPy+> > i (VsPy)" V/spik} :
k=1

i=1 j=1 J=1 k=

= O'2M1 + MQ

To show M; — 0 is a counting exercise. M, consists of the sum of n? terms
each of which is an p x p matrix of O (1) gradient terms divided by n® as a
consequence of Lemma [£.7 M, can be simplified somewhat by noting that
> i1 Py = ef PO (B) = 0 identically in § so that

Y wVsPy == VsuPy.
P =1

This gives, using the symmetry of P =1 —T,

DO i (VaPy) VaPi =Y Y Y V] VPP,
i=1 k=1

i=1 j=1 k=1 —1 j=1 k=

SV VP (1.420)
j=1 k=1

=D Vai Vaity = 3 D Vst VaiTon.

j=1 7=1 k=1

It follows from the estimates for the size of the T;; computed in Lemma
that My is bounded as n — oo. To show that M, is positive definite note
that it follows from (4.4.20]) that

du

tT Myt = {I - T} P,

As HTd” H H || this expression can vanish only if there is a direction

t € R? such that ’t‘ = yp for some v # 0. This requirement is contrary to
the Gauss-Newton rank assumption that [ ® Vizda } has full rank m + p.
]

Lemma 4.9 The numerator in the expression defining F!(B") is

=1

i=1 j=1 k=1
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Let M3 = %8 {Z?:l siV%Si} then

]' - 2 2 = 2
M=~ izlo— {VBPM — ZTUVBPU} , (4.4.22)

j=1
and Ms — 0, n — oo.

Proof. This is similar to that of Lemma [4.§] in using the component wise
estimates of the derivatives of the projection matrices given in Lemma [£.7]
The new point is that the contribution to Mz from the signal terms f,;(8%)

in the expectation (4.4.19) is
SIS Py VR = 0

i=1 j=1 k=1

by summing over j keeping ¢ and k fixed. The previous counting argument

can be used again to give the estimate M3 = O (l) , n—00. W

n
The final step required is to show that the numerator and denominator

terms in (4.4.12) approach their expectations as n — co. Only the case of
the denominator is considered here.

Lemma 4.10
1 T a.s.
(EV6S Vﬂs> njoo M. (4.4.23)

Proof. The basic quantities are:
B zlzn:v si Vs
n B B n Boi VB2
1 n n n
IS @R Y varn,
i=1 j=1 k=1

1 n n n
0 Z Z Z {pjpn + (pjer + pwe;) + €jent (Vﬁﬂj)T V5P

i=1 j=1 k=1

The first of the three terms in this last expansion is M. Thus the result
requires showing that the remaining terms tend to 0. Let

j=1
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As, by Lemma , the components of VzP;; = O (%), it follows by applica-
tions of the law of large numbers that

a.s.
T = 0,

n—o0

componentwise. Specifically, given § > 0, there is an ng such that

Vi, |7}l

Consider the third term. Let

Su= S ek (VaPy) VP,

i=1 j=1 k=1

— 1 Zn: i (Wﬂ)T
n : K3 1 *
i=1
Then, in the maximum norm, with probability 1 for n > ny,

150l < p0%,

< 0 Vn > ng with probability 1.

showing that the third sum tends to 0, n — oo almost surely. A similar
argument applies to the second term which proves to be O (§). m

These results can now be put together to give the desired convergence
result.

Theorem 4.6
F (B 23 0. (4.4.24)

n—o0

Proof. The idea is to write each component term €2 in (4.4.12)) in the form
Q=E{Q}+(Q-£{Q}),

and then to appeal to the asymptotic convergence results established in the
preceding lemmas. =

Remark 4.4.2 This result when combined with consistency suffices to es-
tablish the analogue of Theorem [[.5 in this case. The asymptotic conver-
gence rate of the RGN algorithm can be expected to be similar to that of the
full Gauss-Newton method. While the numerator expectation in the Gauss-
Newton method is 0, and that in the RGN algorithm is O (%) by Lemma
these are both smaller than the discrepancies (2 — E {Q2}) between their full
expressions and their expectations. Thus it is these discrepancy terms that
are critical in determining the convergence rates. Here these correspond to
law of large numbers rates for which a scale of O (n’lﬂ) 18 appropriate.

Exercise 4.4.1 Show that

1 n n n
- D> (wen+ i) (VsPy)' VaPi = 0 (), n — oo.

i=1 j=1 k=1
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4.5 The Kaufman modification

As the RGN algorithm possesses similar convergence rate properties to Gauss-
Newton in large sample problems, and, as the Kaufman modification is
favoured in implementation, it is of interest to ask if it too shares the same
good large sample convergence rate properties . Fortunately the answer is
in the affirmative. This result can be proved in the same way as the main
lemmas in the previous section. This calculation is similar to the preceding
and is considered after first exploring the close connection between the mod-
ified algorithm and the full (o, 3) Gauss-Newton method. That both the
Kaufman and Gauss-Newton methods can be implemented with the same
amount of work is shown in [96].

First note that the linear least squares problem that determines the full
Gauss-Newton correction is

2

. (4.5.1)

min
b, 03

-t (8 S0 ][ 5]

Introducing the variable projection matrix P permits this to be written:

min | P — PV (©) 68| *+min (I ~ P) (b~ V3 () 48) — @ (o + 0a1)

(4.5.2)
where the minimization is to be performed first with respect to 63 and then
with respect to da. Comparison with (4.4.4)) shows that the first minimiza-
tion is just

Hélﬁiin ||Pb — Ko3] . (4.5.3)
Thus, given «, the Kaufman search direction computed using (4.4.10) is
exactly the Gauss-Newton correction for the nonlinear parameters . However,
the two algorithms predict slightly different corrections dc. If a is set using

(3.5.3) then the second minimization gives

da=—0V; (Pa) 413,
0TV, 58] 07D, (4.5.4)

while the increment in « arising from the Kaufman correction is

a(B+388) —a(B) = (Vs2"b) 68+ O ([lBI°)

Note this increment is not computed as part of the algorithm. To examine
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(4.5.4) in more detail we have

ddt B Ty —1 ddT TdCI) Tay—1 =7 T —1 ddT
— =— (") (—dt<1>+61> E>(® ) o'+ (¢"0) —
1 doT dd 1 doT
=— (") o T—q>+%q>++ (@7 ) —
_ (TH) ! do” L .
= (") p P—® dt@ .

The second term in this last equation occurs in (4.5.4)). Thus, setting 63 =
168 t,

_1.d®T

ba — (V5@7b) 68 = — 98] (#7@) ~ ——Pb + O (|38]) .
_eBll -y [(d®” \ . dP
= TG ! <7P(‘I’(5 ) —®(B)) o — @TEE)
+0 (1581°) .

The magnitude of this resulting expression can be shown to be small almost
surely compared with ||08|| when n is large enough using the law of large
numbers and consistency as before. The proximity of the increments in the
linear parameters plus the identity of the calculation of the nonlinear param-
eter increments demonstrates the close alignment between the Kaufman and
Gauss-Newton algorithms. The small residual result is discussed in [96].

The variational matrix whose spectral radius evaluated at Bn determines
the convergence rate of the Kaufman iteration is

1 —1
Fl =1 (—KTK) V3F,
n

1 11 1
=—|-K'K - Vis,+—-LTL|. 4.5.5
(n ) (n 2 siVhsit n (45.5)

i=1

It is possible to draw on work already done to establish the key convergence
rate result that o {F’} % 0 also in this case. Lemmas4.8 and |4.10|describe

n—oo

the convergence behaviour of Z,, = %{KTK + LTL} as n — oo. Here it
proves to be possible to separate out the properties of the individual terms
by making use of the orthogonality of K and L once it has been shown that

%5 {L(B*,e)TL (,6*,8)} %% 0. This calculation can proceed as follows.

n—o0
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Let t € RP. Then
£ {ltTLTLt} _ L {JPV@ t]o* (0%)" Vo [t)” Ps} ,
n n
1 T TaH) L T
= ~¢ {e PV4® [t] (7)) Vs [t] Ps} ,

1
== trace {Vﬂcb (t] GIV@ [t]" PE {ee"} P} + smaller terms,
2

- % trace {vﬁq) [t] G_lvﬁ@ [t]T (I — T)} + smaller terms.

This last expression breaks into two terms, one involving the unit matrix and
the other involving the projection T'. Both lead to terms of the same order.
The unit matrix term gives

trace { V3@ [t) GV, [¢]" } =7 {Z ww} 3
=1

ololy
P’

2 n
g 2 : 1,7 1
2 . \I/zG \I[,L =0 (ﬁ) , I — OQ.

To complete the story note that the conclusion of Lemma can be written

1 1
E {—KTK + —LTL} .
n mn

where

v, - R™ — RP.

(\I’i>jk =
It follows that

% (KTK+L"L) =3

n—oo

If LKTK is bounded, positive definite then, using the orthogonality (4.4.9),
1 1 1 as. 1 1
~-K'K <—KTK £ {—KTK}> = —K'KE {—LTL} :
n n n n—oo M n

This shows that %K TK tends almost surely to its expectation provided it is
bounded, positive definite for n large enough and so can be cancelled on both
sides in the above expression. Note first that the linear parameters cannot
upset boundedness.

a(8) = (87®) " &b,
N O ) L ey
o

za*+l( %)) —P)a’ +e),
—a"+6, 6] =o0(1), (4.5.6)
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where a* is the true vector of linear parameters and ®* = ® (3*). Positive
definiteness follows from

rd®T _dd
-~ p=
at L at

- | Gaw - e ®)

tKT Kt = (B) (8),

2
> 0.

Equality can hold only if there is t such that Cﬁl—fa (B) = vPa (B). This
condition was met also in Lemma

Exercise 4.5.1 Show
2

g _
7 trace {vﬂcb t] G-V [t]TT} 50, n — oo.

4.6 Numerical examples

Scoring extends the Gauss-Newton algorithm to log likelihoods based on
distributions other than normal, both continuous and discrete. A range of
such possibilities is considered in this section.

4.6.1 Simple exponential model

Here the model used is
p(t,x) = x(1) + z(2) exp(—z(3)t). (4.6.1)

The values chosen for the parameters are x(1) = 1, z(2) = 5, and z(3) =
10. This should give a well determined model with all values contributing
significantly to major features of the graph of pu(¢,x) on the interval [0, 1].
Thus numerical results should provide insight into the complicating effects
of random perturbations. Initial values are generated using

z(i)o = x(i) + (1 + z(4))(.5 — Rnd)

where Rnd indicates a call to a uniform random number generator giving
values in [0,1]. Two types of random numbers are used to simulate the
experimental data.

e The data is generated by evaluating p(t,x) on a uniform grid with
spacing A = 1/(n+1) and then perturbing these values using normally
distributed random numbers to give values

by = (i, x) +¢&;, € ~N(0,2), i=12" - n.
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The log likelihood is taken as

n
£09 = —5 3 (b~ (i, %)*.

=1
Although the scale does not appear here it is significant in the random
number generation where it is important in controlling the estimation
problem difficulty. Easy problems correspond to small o with Newton’s
method having second order convergence in the limiting case o = 0.
Here the choice of standard deviation was made so that small sample
problems (n = 32) are relatively difficult. Also the algorithms used
explicitly scale the columns of the design matrix in the normal case
while for distributions without the auxiliary scale parameter the scaling
matrix is set to the unit matrix.

A Poisson random number generator is used to generate random counts
z; corresponding to p(iA,x) as the mean model. Here
e M1

P(X =1i)= = ,—|e_’\e“°g)‘
i! 7!

so that the distribution is a member of the exponential family with
0 =log\, b(0) =€ and p = 22 = A. The log likelihood used is

Zzl log( plid, X)) 4 (2 — plil, x)).

Here constant terms —z;log(z;) + z;, corresponding to the so called
saturated model, have been added to the log likelihood. Also, note
that if z; = 0 then the contribution from the logarithm term to the
log likelihood is taken as zero. The rows of the least squares problem

design matrix (4.2.19)) are given by
L ol —e2)lexpl=r @)

ezTA__a ) ) i:1727"'7n7
Si Si Si
where s; = y/pu(iA,x). The corresponding components of the right
hand side are )
b, — 2 = ILL(ZA7 X)
T s; .

Numerical experiments comparing the performance of the line search (LS)
and trust region (TR) methods are summarised in Table , and the final
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Normal Poisson
n LS TR || LS | TR | S
32 12.1* | 12* || 10.8 | 12.3 | 21
128 11.7 [ 119 7.6 | 79 | 16
512 8.4 7.3 71 1 6.9 |13
2048 6.7 6.1 6.3 | 5.8 | 9

Table 4.2: Algorithm performance, mean of 10 runs

column gives results for the linesearch version of the sample method. For each
n the computations were initiated with 10 different seeds for the basic random
number generator, and the average number of iterations is reported as a guide
to algorithm performance. The parameter settings used are a = 2.5, = .1
for the trust region method and p = .25 for the simple parameter used in
the line search (4.2.26)). Experimenting with these values (for example, the
choice « = 1.5, = .5) made very little difference in the trust region results.
The value returned by the local quadratic fit used in the line search
computations was favoured over the simple parameter about half the time
in the relatively few cases when step reduction proved necessary. However,
this observation must be qualified. An important cause of step reduction
corresponded to cases in which the initial unit step over-corrected the rate
constant in the exponential term turning it into an exponentially increasing
one. Such a step could not be profitable in maximizing the likelihood and
it was especially in these cases that the quadratic interpolation proved less
satisfactory. However, it is straight forward to guard against this problem
for the simple situation here by reducing the initial step. If this is done
then the quadratic interpolation procedure becomes much more competitive.
Convergence is assumed if V,£Lh < 1.0e™®. This corresponds to final values
of [|h|| in the range 1.e™* to 1.e7® while estimates of @ between .5 and 1.e2
characterize the difference between the slower and faster convergence rates
observed. In this range the estimates of w prove stable enough. In almost
all cases the values produced by the TR and LS procedures shadow each
other closely, more closely than the table entries indicate because of slight
differences in the program logic. Also, as expected, the problems become
easier as n increases with the consequence that the initial step is almost
always accepted for the larger values of n in the normal distribution problems.
For the Poisson distribution it is always accepted indicating that initial values
with up to 50% relative error componentwise are satisfactory here. The
sample algorithm applied to the Poisson data behaves in a similar fashion
but takes noticeably more iterations for each n.
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x(1) x(2) x(3)
-51.198 | 53.911 | 3.6269-02
-51.537 | 54.250 | 3.6039-02
-51.880 | 54.593 | 3.5808-02
-52.228 | 54.940 | 3.5578-02
-52.579 | 55.292 | 3.5348-02

Table 4.3: Iterations to a non-closure point

The starred entries in table indicate two cases of nonconvergence , the
same cases causing trouble for both linesearch and trust region algorithms.
The phenomenon observed is illustrated in table [£.3] Here the entries are
consecutive values of x from iteration 246 to iteration 250 for the linesearch
algorithm for one of the problems but behaviour both of the trust region
algorithm and of both algorithms on the other problem are similar. They
should be compared with the limiting process in Remark [£.2.3] Clearly the
entries in table [4.3] are consistent with an instance of the failure of the ap-
proximating set to be closed. Here this means that the perturbation of the
model signal with random normal error leads to a data set that is better fit-
ted by a straight line than by the actual exponential model used to generate
the data corresponding to the unboundedness of the set of approximations.
This point is reinforced in Figure 4.1 which shows the resulting fit (red curve)
after 50 iterations of the line search algorithm. The green curve gives a plot
of the data, while the blue curve is the fit given by the initial conditions.
It has been argued that variable projection would be more satisfactory in
situations like this [38]. Here it leads to the solution of a single nonlinear
equation, but this solution would still have to be interpreted. In the case of
non-compactness in more general separable models there is the likelihood of
the coalescing of terms involving the nonlinear parameters with consequent
singularity problems in the variable projection formulation. Here this clo-
sure problem goes away with more observations, but this means that n = 32
corresponds to a dangerously small data set. This problem does not occur
in the experiments based on the Poisson distribution, a case of a discrete
distribution, and this observation may have wider validity.

4.6.2 Gaussian peaks plus exponential background

The conventional orthodoxy is that well separated gaussian peaks are easy
to resolve while close peaks tend to merge into one composite. Extracting
information then requires special techniques. Omne such tool is numerical
differentiation of the data. This has the potential to exaggerate changes in
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Figure 4.1: Result shows a straight line fit

slope and curvature, but discussion of its properties is beyond the present
scope. As in the previous example, difficulties occur as consequence of the
effects of random perturbations to the prescribed signal and poorly chosen
initial parameter guesses. The model has the form

_ (t—x(4))?

_ (t—a(7)?

p(x,t) = 2(1)e @ 4 2(3)e” =® 4 z(6)e” =®

where typical values used were x(1) = 5., x(2) = 10. z(3) = 18., z(4) =
3333, z(5) = .01, x(6) = 15., z(7) = .6667, x(8) = .01. These values
are used to evaluate the simulated data which is then perturbed using ran-
dom numbers drawn from a normal distribution with standard deviation 1.0.
Initial values were given by

x(i) =x"(i) + .5xa"(i) * RND

where RN D is the standard uniform distribution. Note that this biases the
initial conditions to the high side of the correct values. Numerical results
are patchy for both the line search and trust region algorithms. For the
satisfactory results the behaviour is basically similar to that observed for the
exponential fitting problem. The reason for the problem results can be seen
in Figure which shows the computed approximation after 50 iterations
for one case corresponding to a data set with 128 points. Here the effect of
the positive bias in the initial conditions results in the starting values missing
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n c=1|0c=2]|0c=4
64 7 16 nc
256 11 21 50
1024 7 17 18

4096 6 6 7
16384 6 6 7

Table 4.4: ITteration counts for peak fitting with exponential background

the second peak. While the iteration picks up the exponential background
and the first peak it does no more than fit to the noise for larger values
of t. The estimate of x(7) is actually increasing in this case, and this is
further removing the second peak from consideration. The result is that the
corresponding columns of the design are getting exponentially small, and the
iteration actually fails eventually with an error in the scaling step. Typically,
with well spaced peaks in the data such as is the case here, good estimates
of both peak location and peak width would be available so this particular
phenomenon would not be observed. This is illustrated in Table In these
calculations

(t—. (t—.5)2 _ (t—.75)2

5 2
1 (x,1) = be™1% 4 18¢= I 4 15¢~ T 4 106 w15

Initial conditions are chosen such that there are random errors of up to 50%
in the background parameters and peak heights, 12.5% in peak locations,
and 25% in peak width parameters. Numbers of iterations are reported for
oc =1, 2, 4 and n = 64, 256, 1024, 4096, 16384. The most sensitive
parameters prove to be those determining the exponential background, and
they trigger the lack of convergence when ¢ = 4, n = 64. The apparent
superior convergence behaviour in the n = 64 case over the n = 256 case for
the smaller o values can be explained by the sequence of random numbers
generated producing smaller residuals. The sequence used here corresponds
to the first quarter of the sequence for n = 256. Plots for the fits obtained
for c =4, n =64 and 0 = 4, n = 256 are given in Figure 4.3| and Figure
4.4]respectively. The difficulty with the background estimation in the former
shows up in the sharp kink in the fitted (red) curve near t = 0. This figure
gives the result after 50 iterations when z(1) = 269 and x(2) = 327. The
green curve gives the fit obtained using the initial values. This manages to
hide the middle peak fairly well.
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Figure 4.3: No convergence: fit after 50 iterations case o = 4, n = 64
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Data points |, n=256

Figure 4.4: Fit obtained: case 0 =4, n = 256

log,,(titre) | dead | normal | deformed
-0.42 0 18 0
0.58 1 13 2
1.58 ) 4 6
2.58 12 1 6
3.58 18 0 1
4.58 16 0 0

Table 4.5: Cattle virus data

4.6.3 A multinomial example

Data for a trinomial example (m = 3 in (3.1.6])) is given in Table [r7]. It
is derived from a study of the effects of a cattle virus on chicken embryos. In
this case the log likelihood up to constant terms is

Zy] ) log (m;(t

where the y,(t) are the observed counts, and the 7;(t) are the frequencies to
be modelled. A feature here is that each observation yields a vector of data.
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The model fitted to this data is:

1
m = y
YT 1 exp (=B — Bslog (1))
1
1 — Ty =

1+exp (_/82 —53 log (t))’
T3 = 1— T, — To.

Differentiating gives

OLe _yi(t) ym(t)J:l,z’... m— 1,

on; Wi(t) 7Tm(t)

2 .
L _ 5@, ym® g9 m1.
) Tm (1)

87@07@ - T (t

Means and variances are computed most easily from the exponential family

form for the distribution ((3.1.7)-(3.1.9)). This gives:

E{yit = nm;,
g{ 0L, }__n(t)(s n (t)

omor; | mi(t) T ()

Thus V; ! in (4.2.15) is given by

72.aj:1a27"' 7m_1'

1
=n (t) Dt (I + mvtV?) Dt,

where

1
D, =diag | ——;i=1,2,---,m—i]|, v,=D;"e.
mi(t)

An appropriate form to use for V;;_I/ % in evaluating (4.2.16) is

Vo2 = vn(t) (I+ pvev)) Dy,

where
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iteration L V.Lh 61 62 ﬁg
0 -54.86 -4.597 | -3.145 | .7405
-47.70 | .1401+2 | -3.737 | -2.200 | .7555
-47.01 | 1277+1 | -4.373 | -2.551 | .8803
-46.99 | .3829-1 | -4.403 | -2.618 | .9056
-46.99 | .1234-5 | -4.505 | -2.619 | .9061
-46.99 | .3085-8 | -4.405 | -2.619 | .9061

QY | W DN —

Table 4.6: Results of computations for the trinomial data

T
The corresponding form for (Vf/ 2) which is used in evaluating (4.2.18]) is

(W) = J% (1= VaaDp(tw?) Dy

The contributions to the least squares form of the linear subproblem
(4.2.19)) can now be evaluated. This gives for the contribution from the ¢’th
observation

(I7), = v "(t) (I + p(t)vev]) DV gy,
=\ N {DtVB‘Trt — ( )VtV5ﬂm( )}, (462)

bt:\/n_< =V (t)p(?) VtVt) {D _—<?}
1 e y:
:m{Dt}’t_<1+\/i’rm \/7Tm ) }
32

:ﬁ{myt—mw( T (D) + (1)) v

where y(t) is the vector with components y; (t), yQ(t), ++  Ym-1(t). Note that
the components of b, have a scale of \/n(t)m;(t) = /& {y;(t)} while the
untransformed quantities th have a Correspondlng scale of n.

Numerical results are given in Table [£.6 An interesting feature is the
very satisfactory rate of convergence despite the fact that the data set could
hardly be described as large. This is another example of good convergence
behaviour being observed in a problem with a discrete probability model.
However, the sample algorithm is not effective in this case, and the most
likely explanation would seem to be the size of the data set.

Exercise 4.6.1 Verify the derivations of equations and .

(4.6.3)
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4.7 Constrained likelihood problems

The equality constrained problem presents a new source of difficulty because
now steps taken must not only contribute to maximizing the likelihood but
also move closer to the constraints. Thus general methods for these prob-
lems tend to focus sequentially on these aspects in each overall iteration
step. This would seem to favour methods within a trust region framework
because then adjustments are carried out within a region which controls the
validity of local approximations. Line search algorithms, in contrast, put
this requirement onto the choice of monitor function. In many applications
involving equality constraints the basic algorithmic approach is based on
applying Newton’s method to the necessary conditions. To avoid the calcu-
lation of second derivatives scoring-like simplifications are often made with
reported success. One example is provided by the simultaneous approach
which is considered in the next chapter.

Two methods are considered here. The first is the Powell-Hestenes form
of the augmented Lagrangian method . This form is attractive both because
of its conceptual simplicity and because it suggests a convenient extension
of the scoring algorithm. It has an important disadvantage in terms of cost
because it has an inner-outer iteration structure in which each outer itera-
tion involves a correction step for the Lagrange multiplier estimates while
each inner iteration requires a full unconstrained minimization computed by
the scoring algorithm. This latter need not be particularly effective in the
initial minimizations even if the conditions for fast convergence are satisfied
eventually. An alternative is provided by a sequential quadratic program-
ming algorithm (SQP) which potentially is made more efficient by avoiding
expensive inner iterations, but which is also significantly more complicated.

4.7.1 The Powell-Hestenes method

One method which suggests that it should lend itself to the effective use
of nonlinear least squares techniques in an unconstrained minimization as a
starting point is the Powell-Hestenes method (also known as the augmented
Lagrangian method in a slightly modified guise) [31]. This method separates
each iteration into a minimization step which considers the objective function

1 m
Pn (X7 e 0) = _Zﬁ (Y7 X, Tn) + Z (Ci (X) + 01)2 )
=1
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followed by an adjustment step which notes that at a minimum

1 m
VxPn = ——VXE + 2 C; + 0@ chi =0
- g ; ( )
so that the current x solves a perturbed constrained problem with multipliers
27 (¢; + 0;). Here the idea is to adjust 8 to force constraint satisfaction, while
v, which has the role of a penalty parameter, controls the rate of convergence.
The appealing feature of this method is its simplicity because the update step

0+ c(x(0))+0;vy<+~ (4.7.1)

proves distinctly effective. This equation is derived in the Appendix under
the assumption that v is large enough. However, if the rate of convergence
appears slow then this assumption on ~ is challenged. In this case the ad-
justment step is be replaced by

0« 0/a;y < ay, a>1. (4.7.2)

Remark 4.7.1 If this second step 15 applied repeatedly then the result
1s essentially a penalty method for the equality constrained problem. This
gives guaranteed convergence with error tending to 0 like O (1 / o/“) where k s
the number of minimization/update steps. On the other hand, if the repeated
application of the first step 15 successful then the convergence rate
is given by and is first order with multiplier O (1/v). An important
distinction between this approaches and that based on SQP notes that here
the condition number of V2P, is O (vy) . This follows because the norm of
V2P, is O () as a consequence of the v dependence in ([4.7.9) below, while
the norm of V2P, ' is O (1). This estimate is given in equation (4.8.1) in
the appendiz. This must impact the minimization calculation. It is bounded

if is successful but tends to oo like o if the pure penalty approach
is used.

A variant of scoring can provide an effective algorithm for minimizing P,,.
Starting with the Hessian

1 m

i=1

it proves convenient not only to replace V2L by its expectation, but also to
ignore the second derivative terms VZc;, i = 1,2,--- ,m. This leads to the
calculation of the correction term

hp = —H 'V, PF
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where

H,=1,+27CTC, C = Vec.

Here P,, provides a suitable monitor as H,, is generically positive definite so
that

The associated fixed point iteration is
x +x— H,'V,P~L.

The ultimate rate of convergence at step k depends on the variational matrix
evaluated at x%, the minimum of the current iteration step. This is

I - H'V2P,=H,' (H,—VP,),

i=1

If the constraints are linear then Vic; =0, i = 1,2,--- ,m, so that the spec-
tral radius w of the term 7, + Z, determines the ultimate rate of conver-
gence. Here w = O (! X" — x'},,”) + 0 (1) for n large enough as a consequence
of consistency and the law of large numbers by the argument used in the
unconstrained case. Under these conditions the scoring based minimization
procedure will be effective eventually. However, if the constraints are nonlin-
ear then —v (¢; 4 6;) tends to the corresponding Lagrange multiplier and the
term in V2¢; cannot be so easily ignored. In the following example, in which
the initial parameter choices are v = y/n, @ = 0, evidence is developed that
the scoring algorithm can behave in very much the same fashion as in the
unconstrained likelihood case.

Example 4.7.1 Consider the mixture density

+ exp — 4.7.4
V2rmoy 1 + pa P 203 (4.7.4)

Random numbers generated according to a realisation of this density can be
considered also to be generated according to the density

1 (y — m1)> 1 (y — o)’
X) = T exp — + ToeXp ———5—,
f(y| ) \/%0'1 1 €Xp 20_% \/%0_2 2 €XD 20_%
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where

T
X = [$17N17017x27ﬂ2702]7

subject to the constraints

M1
c(x) =21 — =0,
1) ' 1+ e
ca(x) = g — Ha
M1+ pi2

Thus it should be possible to recover iy, jio, 01,09 from data generated ac-
cording to fr by considering the likelithood defined by f subject to the above
constraints. Let

Then
fylx) = x1e1(y) + T2e9(y).
We have:
En(x> = Zlog f(yl‘x)a
i=1
u 1
vx['n X) = VZT, 4.7.5
=3 759 (47.5)
where
- — 2 1
T_ 1 YT (yi — 1) _ L
v [( y L1 O'% 7x1< U% o1 €1,
Yi — M2 (yz - M2)2 1
<1, T2 O_% ,.ﬁEQ( 0'% - 0_—2) 62]. (476)

This is an example where the use of the sample information proves
convenient. Here this gives

1 — 1
S, = — —ViVZT. 477
n ZI: fyila)? (4.7.7)

It follows from (4.2.11), (4.7.5), and that the scoring method using

the sample information gives a set of equations for the correction hg which
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can be written as the linear least squares problem:

V27V |
V27V 0o
vi /(Vnf(yilx)) v2y(er+061)
r= hs+ | vV2y(ca+65) | . (4.7.8)
vi/(Vnf(yilx)) — e

VT (af () |

Note that the penalised constraint contributions appear first. This is because
they typically have a larger scale than the likelithood contributions, and this
ordering is advisable for numerical stability when a QR factorization is used
to solve the least squares problem (compare )

Numerical results are presented for computations carried out using p; =
1., pg = 2. for two cases:

e 01 =09 =.5, and
e 0y =0y=".7.

A composition algorithm [95] is used to produce random numbers to pro-
wide data on the mizture density for n = 100, 1000, 10000. Results obtained
using two different seeds for a uniform generator are displayed in the tables
given below. In both the estimated values and a summary of the iteration
progress are given. The latter is given in the column headed ‘P-H steps’
which summarises the number of scoring iterations in each Powell-Hestenes
step. The final column gives the computed multiplier estimates. In each case
the exact values of the parameters were taken as starting values and appear
to provide a fair test while the initial multiplier estimates were set to 0. The
estimate computed by the “tnner’ scoring algorithm is accepted when the mag-
nitude of the directional derivative computed from (m is less than 1076,
The initial step taken in the linesearch is checked and modified appropriately
to ensure that the argument of the log in evaluating the log likelihood is pos-
itive. The ‘outer’ iteration is terminated when ||c|| < 107*. Note that the
performance of the algorithm improves significantly as n is increased. Note
also that the sample replacement for the expected Hessian does not
appear to have caused any deleterious effects in the scoring iteration in this
application.
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n 1 [4o o1 09 P—H steps | multipliers
100 | 1.151 | 2.097 | .4691 | .5456 | (5,3,2,2) 1.008, .9994
1000 | .9907 | 1.997 | .4770 | .5151 (3,2,2) 1.004, .9980
10000 | 1.030 | 2.001 | .5220 | .5063 (3,2) 9982, 1.006
100 | 1.072 | 2.131 | .5749 | .7568 | (8,5,2,2) | 1.0064, .9966
1000 | .9933 | 1.993 | .6605 | .7274 (4,2,2) 1.002, .9992
10000 | 1.081 | 1.990 | .7422 | .7156 (3,2) 9996, 1.000

Table 4.7: Results for first seed.

n 41 I o1 09 P—H steps | multipliers
100 | .9390 | 1.997 | .5602 | .5586 | (6,6,2,2) | 1.019,.9911
1000 | 1.103 | 2.030 | .5851 | .5016 (3,2,2) 1.000, .9998
10000 | 1.028 | 1.999 | .5261 | .5133 (3,2) 1.002, .9988
100 | .7886 | 1.982 | .7808 | ..7536 | (6,4,2,2) | 1.005,.9980
1000 | 1.231 | 2.002 | .8534 | .7120 (4,2,2) 9996, 1.000
10000 | 1.110 | 1.986 | .7652 | .7270 (3,2) 1.000, .9998

Table 4.8: Results for second seed.

Exercise 4.7.1 The numerical results suggest that the Lagrange multipliers
have asymptotic limit 1. Show that this result holds for the mizture problem
as formulated here using constraints.

4.7.2 A trust region method

This subsection is based on [61] which gives a careful discussion of the imple-
mentation of ideas due to Byrd and Omojokun for developing a trust region
method for equality constrained optimization problems . This algorithm aims
to improve on the Powell-Hestenes method by combining the two processes
of reducing the objective function and satisfying the equality constraints. By
avoiding the need to do a complete minimization of the objective function
at each iteration it is expected that the total work necessary will be reduced
considerably, but at the cost of developing a significantly more complicated
algorithm. The key to this combined approach is to notice that to a sig-
nificant extent the two processes of minimization and multiplier update are
independent activities as locally the constraints are approached most rapidly
in the direction of the constraint normals while the constrained optimization
has to be completed in the tangent space of the constraints. The importance
of a compromise can be seen by considering what might be considered a first
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try at generating a descent direction in a trust region context. Let
1(x,A\) =L —Xc, g =V, L.
Then a possible system to be considered based on a sequential quadratic
programming (SQP) approach could be
1
min h”g + ~h”V2[h,
h 2
Ch+c=0,
] < A.

However, this system will not be consistent in general because the norm
constraint on h will prevent satisfaction of the linear constraints if the bound
A is too small. To compromise let ( € (0,1) be a relaxation factor, and
consider a (vertical or normal) step toward constraint satisfaction defined by

min [|Cv +cf|, [[v] < CA.

The uncoupling idea is employed by setting v = CTw which leads to a simple
constrained least squares problem for v. Now, to reduce the function value,
consider the variant on the original proposal given by

1
oy T Ay T2
mhlnh g+ 2h Vilh,
Ch = Cv,
[h]] < A

This problem has a nonempty feasible region because it already contains v.
An improvement can be sought in an approximation to the tangent space by
setting

h=v+7d,

where Z is a basis for this tangent space satisfying

CcZ =0.

With this choice the linear constraints are automatically satisfied so the new
problem, after dropping constant terms, reduces to

1
min (g + Vilv)' Zd + 2d"7"Vizd,
|Zd]| < v {a% = |vI}.
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The idea now is to update x
X< x+h

provided there is a suitable reduction in the monitor function. The form
suggested here has the exact penalty form

Y=L+ pc|.

A suitable reduction is decided by comparing the actual reduction in ¢ (ared)
with the linear prediction

1
pred = —h'g — §hTVilh + u(|le|l = |lc + Chl).

Otherwise A is reduced and the above process repeated. If the step is suc-
cessful then it is necessary to consider the possibility of increasing A, and the
estimate of the Lagrange multipliers A must be upated. This can be done by
solving

COTA = Cg

at the new point. The devil is, of course, in the detail, and [61] should be
consulted, especially on the implementation techniques needed to cope with
large scale problems.

It appears that typically this trust region approach outperforms the rela-
tively simple and robust Powell-Hestenes type of method which suffers from
the disadvantage of having to restart the computation at each update step.
This is illustrated in the following table taken from [64]in which the mixture
density estimation problem is solved by two methods. The first is a new
algorithm which uses the Bird and Omojokum trust region approach and
includes a scoring option (as in Powell-Hestenes) or a quasi-Newton update
option, selecting between them on the basis of progress. The second is a fairly
standard, well performed SQP implementation due to Schittkowski (KSc85).

4.8 Appendix 1: The Powell-Hestenes method

The derivation of the Powell-Hestenes correction is carried out for the case
of linear constraints (c; (x) = ¢/x —d;, i = 1,2,--- ,m) for simplicity. The

necessary conditions for a minimum of P,, give

1 m
— VL, 42 Tx —d; +6,)c =
nV L, + Wigl(czx +0;)c; =0,
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case 1 starting from true parameters | starting from hypothesised values
MLESOL | NLQPL MLESOL | NLQPL
n Niter Nf Niter Nf Niter Nf Niter Nf
10 19 10 | 15 23 9 10 | 17 21
102 | 11 12 19 12 16 17 | 11 25
103 | 4 ) 13 22 8 9 13 16
104 | 3 4 9 18 6 7 15 19
case 2 starting from true parameters | starting from hypothesised values
MLESOL | NLQPL MLESOL | NLQPL
n Niter Nf Niter MNf Niter Nf Niter Nf
10 | 16 17 | 15 17 11 12 119 20
102 | 6 7 21 37 8 9 29 35
103 | 6 7 9 21 4 ) 14 26
104 | 4 ) 16 23 6 7 25 36

Table 4.9: Comparison results of MLESOL and NLQPL

and these determine x as a function of 8. The aim is to adjust @ so that
Cx(0) —d =0,

where C' : RP — R™, C}, = c;fr. If a Newton iteration is used to solve this
equation then a correction dy to the current 6 is given by

0x
0%59 = —(Cx(0) —d).

To calculate g—g differentiate the necessary conditions to obtain the equation

{—lViﬁn + ZVC'TC} 8_x = —27C7.
n 00

The special form of the right hand side should be noted. Transforming this
equation using the orthogonal factorization C7 = [ Q1 Q2 } [ [é } gives

QT —lViEn—i—nyCTC QQTa—X:—ny U )
n 00 0

To compute the inverse of QTV2H, Q when + is large let

1 A B
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Then a straightforward computation gives the estimate

1 77—Ty77—1 1 Lrr-Trr—-1pn-1 1
FU U+ (9(7—2) —3;U U BD™ + (’)(7—2) (48.1)
D' BTUTTU + O(%) D'+ 0(3) o
Thus 5 .
ro% _ T -
so that 5 .
e
C—=—-1+0(-).
00 + <7)
Substituting in the Newton step gives
0o =1 +0(1/y)][Cx —d] (4.8.2)

The advantage of a good estimate for the Lagrange multipliers can be seen by
arguing in similar fashion. Let 2v0; = \; 4+ ¢; where ); is the exact multiplier
and X the solution of the constrained problem. Then

_%VX[,”(X) +2y(Cx—d+6)"C =0,
_%vxgn(ﬁ) +ATC =0,

Subtracting gives
(—%@ + 2VCT0) (x — %) =-2C"¢,

where the bar denotes a mean value is appropriate. Arguing as above gives
[x = x[[ = O(l[ell/7)- (4.8.3)

The above development of the Powell-Hestenes algorithm follows the original
derivation given by Powell. The feature of the method in this form is the
nonlinear least squares formulation which suggests it should allow for easy
extension of the scoring method, but this requires more work. To connect
with a more general mathematical programming formulation note that the
necessary conditions for a minimum give the equations

k
1
nV +Z o8;Vc c ( )

=1

This gives
2007 = \; (4.8.5)
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where \! is the Lagrange multiplier for the i’th constraint. This suggests an
equivalent formulation in augmented Lagrangian form:

1
H,=—L,+Nc+oc'c (4.8.6)
n

which differs from #,, by 007 8. As this term is constant in each sequential
minimization it does not affect the successive iterates. Let

D,(A) = min H, (x,A) . (4.8.7)

Then A" maximizes D,(A) under suitable conditions. It follows that the
Powell-Hestenes correction can be interpreted as a correction step in com-
puting the maximum of D,. In this context it can be derived readily as a
consequence of the identities

VADG = C, (488)
ViD,' = —ol — ViD,t, (4.8.9)

assuming the necessary inverses exist. Thus the Newton step for maximizing
D, can be considered as made up from

1. the Powell-Hestenes step, and
2. a Newton step for maximizing D,.

Methods for estimating this second component of the Newton step in order
to accelerate the Powell-Hestenes step have been considered by several au-
thors. The simplest is due to Jittorntrum [53] who suggests a one parameter
correction of the form

)‘j-‘rl = Aj + w; (A] — Ajil) s

where A7 is the Powell-Hestenes corrected estimate at step j. He shows
that {\;} is a valid sequence of multipliers provided {w;} C [a, ], a finite
interval, and o is large enough. The Jittorntrum correction at step 7 is
T (AJ i—1
cj (A - AT
(c;—cjn)" (A=A

(4.8.10)

wj:—

Fletcher suggests using a quasi-Newton approach to estimate the correction
which proves effective for general problems but does not fit in with the scoring
philosophy adopted here.



212 CHAPTER 4. LIKELIHOOD COMPUTATIONS



Chapter 5

Parameter estimation 1in
ordinary differential equations

5.1 Introduction

In its basic form the estimation problem seeks to determine information on
a parameter vector 3 € RP characterizing a particular implementation of a
process modelled by the system of ordinary differential equations

Xt x.8), (5.1.1)

dt
where f € R x R™ x RP — R™ is assumed to be at least twice continuously
differentiable, from observations on the state variable x (t) € R — R™ given
by
Yi :Ozx<tz)+€m 1= 1,2,"' , N, (512)

where y; € R¥, O; € R™ — RF defines the observation process , and e; € R*
is a vector of random variables corresponding to measurement errors in the
observations. Note that the exact state variable values x (¢;) are unobserved.
Hence their estimation is part of the problem solution. Because they enter
the model in a different capacity to the actual parameters these latter are
distinguished by referring to them as S3.

Superficially, this estimation problem is not a standard parametric mod-
elling problem of the kind considered in the previous chapters because the
manifold of system model responses depends not only on the parameters
occurring explicitly in the differential equation, but also implicitly on pa-
rameters required to take account of intrinsic degrees of freedom equal in
number to the order of the differential equation system. The implicit pa-
rameters are certainly not avoidable in the sense that the various means

213
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used to specify them effectively classify the different algorithms applied to
the estimation problem. However, they do have some properties in common
with so-called ignorable or nuisance parameters as the knowledge acquired
in determining an implicit parametrization is not of direct relevance to the
desired answer to the original question asked. The manner of specifying
the implicit parameters can directly influence problem solution computation
properties such as the domain of attraction of the Gauss-Newton iteration.
Two classes of method are highlighted. If additional conditions are adjoined
to make explicit the specification of the implicit parameters then we refer to
an embedding method . If the cost function is chosen appropriately and the
differential system plus auxilliary conditions is integrated exactly to generate
the state variable values needed to compare with the observations then the
embedding method is an example of a maximum likelihood method . Thus
previous discussion applies. New points of interest which occur here include
choosing the form of embedding and the role of approximate methods in
estimating the likelihood function. This leads naturally to the question of
consistency of estimates determined from the approximate likelihood. In the
alternative class of methods the differential equation is treated as an explicit
constraint on the likelihood objective. This requires the use of techniques
of constrained optimisation in estimating the explicit parameters. This ap-
proach is referred to as the class of simultacous methods . An immediate
question is “do these two classes of method produce identical results”?

Remark 5.1.1 If the vector of parameters 3 is null then the problem reduces
to that of finding a smoothed approximation to the state variable trajectory
generating the noisy data.The general estimation problem can be formulated

. L . . . a8
as a smoothing problem by adjoining the differential equations 7 = 0 to

5.1.1) and augmenting the state vector — x. This proves convenient

X
B
in describing the simultaneous class of methods in which the state variables
and parameter values are estimated together. However, it may not be the
most efficient way to implement this class of methods. It is convenient also in
Ezxamplelb.5. 1| where a simple case is considered in the solution of a nonlinear
boundary value problem. In the embedding methods on the other hand the
state variables are determined in each iteration by explicit integration of the
differential system and then applied in a correction step to update the current
parameter values. One point to note is that if the differential equation is
linear in the state variables then this property will most likely be lost in the
smoothing problem formulation .

Here, for ease of presentation, the following assumptions are made:
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1. The random variables €;, i = 1,2,--- ,n, are independent and can be
well replicated by samples from a normal distribution with mean 0 and
covariance matrix o21.

2. The sampling interval is bounded so that there is no restriction in
assuming 0 <t <ty < --- <t, <1.

3. The model is assumed to be a true model in the sense that 33" >

x* (t) = x (t,8") both satifies (5.1.1)) and generates the observed data

through (5.1.2)).

In this case both the method of maximum likelihood and nonlinear least
squares lead to the same estimation principle:

X %8, (5.13)

min anznw r=yi— Ox(t), 5 =

x(t;),i=1,2, n, 3 n

This is a constrained optimization problem in which the values of the state
variable x (¢;) are constrained by the differential equation. It is assumed

that this optimization problem has a unique solution X <t, B which satisfies

appropriate first order necessary and second order sufficiency conditions [73].

Remark 5.1.2 This last condition is distinctly nontrivial and begs some im-
portant questions. For example, let k = 1 so that O; = ol . What restrictions
if any does the form of o; place on solvability of the estimation problem.
Some insight can be gained from the following development. Assume a fized
representer o for the observation functional , let x* (t) correspond to the
hypothesized “true” model solution which generated the deterministic compo-
nent of the data, and set 1 (t) = oTx* (t). Recovery of n(t) from the observed
data only could be attempted by a smoothing calculation provided n is large
enough (at least hypothetically). Repeated differentiation of n(t) at t = t,

gives
d*n (to)
T *
— =0 to, X =
dts d)s( 0 7ﬂ ) dts )
where @, depends on its arguments through products of mixzed partial deriva-
tives of f of order up to s — 1. For example,

S
rd’x

s=0,1,-,

d)O :X(t0)>7
¢1 = f<t07X /8*)
b, = V.ff+ 0L

ot
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Taking s = m—1 gives a system of (nonlinear) equations for x* (to) given the
values of the derivatives of n(t) at t = to. If the Jacobian of this system is
nonsingular then it can be solved by Newton’s method and the model solution
can then be reconstructed in consistent fashion by using the differential equa-
tion to develop successive terms in the Taylor series for x about x* (ty). The
nonsingularity condition on the Jacobian can be interpreted as a condition
on o. There is a connection here to mathematical systems theory with o’ x
corresponding to the systems output, and the Jacobian rank condition being
the requirement of observability as in Remark[1.4.1) in Chapter 1.

If the differential equation is linear in the state variable x and has the
particular form

f(t,x,B) =M (t,B)x+q(t)

then V£ = M. Here the Jacobian can be computed relatively easily for small
values of m. For example, if m = 3 then

0T¢0 ol
Js =V, | oleg, | = o' M
ooy ] Lo o

Example 5.1.1 Consider the simple chemical reaction A — B — C with
rate constants B1 and [ respectively. The corresponding differential system
18

dA
B A 1.4

dB
dt
dcC

= B, (5.1.6)

= 51A — BB, (5.1.5)

Here

[ -8 0 0
M = pr =B 0,
0 B 0

01 02 03
J3 = Bi1 (02 — 01) Ba2(03—02) O
| B (02— 01) + B1f2 (03 —02) —B3(03—02) O

Note that J3 has a column of zeros if o3 = 0. This indicates that the obser-
vation functional should include a component of the reaction product if the
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data is to be estimable. The eigen decomposition V diag{—p31, — 2,0}V =1 of

M is

pr—pF2 0 0 —b 51152 00
A 10 —fs 5itg 10
Bp -1 1 0 1 11

It follows that the fundamental matrix of the differential equation is
X (t,0) = Vexp (diag{—p1, —32,0}t) VL. The row of the Gauss-Newton
design matriz corresponding to the residual v; = y; — ol X (t;,0)z for the
problem of estimating 5y, B, and z is

o’ [ Vexp (diag{—p1, —02,0}t;) V(X (t;,0)2) ] { v 7 } .

This shows that because V' is lower triangular the design matriz cannot have
full column rank unless o3 # 0 in agreement with the above prediction. This
problem is not encountered directly if the estimation problem uses the infor-
mation that the differential equation solution is a sum of exponentials as in
subsection 4.6.1 and considers the residuals

Ty = Y; — W1 €Xp (_ﬁltz) — W2 €XP (—thl) — Ws.

However, successful estimation still requires that the observations contain
significant contributions from both exponentials.

Remark 5.1.3 There is a considerable literature on identifiability problems.
Typically this considers the output function as given and the identifiability
problem as associated with the parametrization so the above emphasis on
the choice of a suitable representer o for the output function is somewhat
different. Use of a Taylor series expansion to tackle the observability problem
for nonlinear differential equations is considered explicitly in [89]. Recent
work includes the development of polynomial time, semi-numerical algorithms
for analysing the identification problems for systems of differential equations
with rational function right hand sides [97].

There are two main approaches to the estimation problem:

The embedding method (subsection The embedding approach leads
to an unconstrained optimization problem which can be solved by stan-
dard methods such as the Gauss-Newton form of the scoring algo-
rithm. However, it removes the differential equation constraint
on the state variable x () by embedding the differential equation into a
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parametrised family of boundary value problems which must be solved
explicitly in order to generate trial values. This has the apparent dis-
advantage of requiring information on the structure of the differential
equation at set-up time in order to impose stable boundary conditions

on (5.1.1). Here By, By € R™ — R™ are assumed known while b is a
vector of additional parameters which has to be determined as part of
the estimation process. The key requirement of the embedding method
is that the resulting system , has a numerically well deter-
mined solution x (¢, 3,b) for all 3,b in a large enough neighborhood
of 8%, b* = B1x*(0) + Byx* (1). The qualification that the solution
be capable of being stably computed is important here. A sufficient
condition discussed in subsection [5.2.5|is that the boundary conditions
be compatible with the dichotomy structure of the model equa-
tions [6] when such a structure is available. Note that this might
be a stronger condition than that the estimation problem has a well
determined solution. Typically the embedding approach also requires
additional information. For example, if it is known that the initial
value problem for the differential equation is stable then the initial
value choice By = I, B, = 0 is allowable. If such a priori knowledge is
not available then it is shown in the next section (Remark that
suitable conditions can be computed when the differential equation is
linear. If the differential equation is nonlinear then the device avail-
able in the linear case can be applied with the aim of ensuring that
the linear differential equations for the Newton correction have well
determined solutions. Examples where this approach can be successful
include unstable systems whose initial value trajectories are chaotic.
Note nonlinearity could require that the selected boundary matrices
need to be revised in order that the iteration steps of the estimation
procedure are well determined.

The embedding approach has the advantage that it leads to algorithms
that are relatively simple to formulate. Let

v _|ox Ox
BE = 98" ob |

Then the gradient of the objective function ([5.1.3)) is

(5.1.8)

1 n
VigpmF =—— Tory t; 5.1.9
(8.b) - ;rz i Viewx (ti), (5.1.9)
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where the gradient term components can be evaluated by solving the
linear boundary value problems

ox ox

8,3()+328,8( ) =0, (5.1.10)
d 0x 0x
th)B = Vi fag—i-vﬂf, (5.1.11)
and
3X ox
8b( )+Bgab( ) =1, (5.1.12)
d 0x ox

Given this information then the scoring (Gauss-Newton) algorithm is
applied readily.

simultaneous method (subsection This second class of meth-
ods has been called the simultaneous approach in [105]. The idea here is
to use a discretization of the differential equation to impose constraints
on the objective function (5.1.3). For example, if the discretization is
based on the trapezoidal rule then the resulting constraint set is

ci(x,8)=0,i=1,2-,n—1, (5.1.14)

where

C; (X, ﬁ) =Xj+1 — X — % (f (tiJrl,XiJrl,/B) + f (ti,Xi,,B)) . (5115)

2
This has the form of a first order recurrence for the state variable
values x;. If the differential equation is linear then the resulting matrix
representation of the linear system is block bi-diagonal . Here At; =
t;r1 — t;. The simultaneous problem is

min anZH |2, c(x,B8) =0, (5.1.16)

x(t:),i=1,2,

where c is the composite vector with block components c; given by
equation . The obvious disadvantage of this approach is that
the number of constraints tends to oo with n. However, the number of
effective degrees of freedom is just m which is the number of indepen-
dent pieces of information which must be added to in order to
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specify the solution uniquely. These additional degrees of freedom are
absorbed by the Lagrange multipliers in the simultaneous approach.
Here the Bock method [12] has a similar position to the Gauss-Newton
method in the embedding method. The common idea is to drop the
second derivative terms which in this case are derived from the multi-
plier coefficients in the augmented matriz in Newton’s method applied
to the necessary conditions. It turns out that the Bock method in
the simultaneous approach has a similar convergence rate estimate to
the Gauss-Newton iteration in the embedding method, but the justi-
fication required is not only quite different, it also makes explicit use
of the property that the observational errors are normally distributed
. Here this requirement is bound directly to the form of the objective
function and the assumption that the observational errors are normally
distributed.

A necessary step in both the embedding and simultaneous methods in-
volves the discretization of the system of differential equations. Much of the
development presented here centres on the trapezoidal rule . This
particular discretization has advantages both in mimicking the stability prop-
erties of the differential equation and in leading to compact algebraic problem
representations. This latter point proves to have advantages in analysing the
more detailed properties of the estimation methods. The trapezoidal rule is
the simplest case of compact, symmetric collocation methods [6] . Use of
other members of this family may be appropriate if achieving required accu-
racy in the integration of the differential equation proves difficult. The basic
idea used is that of building up interpolation polynomials of increasing order
by requiring them to satisfy the differential equation at a sequence of inter-
polation (collocation) points in [t;, t;11] as well as fitting to the solution and
its derivative values at t;,t;,1. If there are k interpolation points then a poly-
nomial of degree k+ 3 is suggested. If a polynomial of degree k42 is specified
then the equations defining the interpolation polynomial can be solved only
if a compatibility condition on the data is satisfied. This condition is then in-
terpreted as the desired discretization. Here compact refers to the restriction
of the interpolation data to the interval [t;,t;+1]. The method is symmetric if
the interpolation points are distributed symmetrically in the interval. Such a
choice tends to have truncation error advantages, but unsymmetric formulae
can have interesting properties. This approach was suggested originally as a
means for computer generation of differential equation discretizations in [74].
A single collocation point at the mid point of the interval picks up a form of
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Simpson’s rule :

X(tip1) — x(t;) = A6tl{d);(;z) + 4dx(t;:1/2) + dx(;;ﬂ)}a (5.1.17)
X(tiy172) = %(X(ti-i-l) +x(t:)) — Agti (dX(CZH) - d);(;l)) . (5.1.18)

The desired discretization can be obtained by eliminating x(¢;11/2) between
these equations using the differential equation. Smaller truncation errors can
be obtained by using additional collocation points, and use of Gauss-Lobatto
points proves particularly favourable. One possibility in the simultaneous
method is to use equations , directly as constraints on the
objective function.

An alternative approach to the integration of the boundary value prob-
lem is the method of multiple shooting [75] . This makes use of the ezact
discretization available for linear differential equations

Xip1 — X (tig1, 1) X = Vi, (5.1.19)

where the fundamental matrix X (¢;11,%;) is defined in , and the par-
ticular integral v; in (5.2.7)). This exact form also has a block bi-diagonal
matrix representation. It is used here only for reference purposes. How-
ever, it has been applied in the very successful software package PARFIT
based on [12]. Traditionally initial value methods have been used to es-
timate the fundamental matrices. This is a possible cause for concern in
the situation where the differential equation can support rapidly varying in-
creasing and/or decreasing solutions while the actual signal is more slowly
varying and satisfactorily represented on a relatively sparse set of mesh points
ti € K, i=1,2,--- ,k = |K|. Such rapidly increasing solutions would be a
problem for multiple shooting implemented using an initial value solver to
evaluate the component fundamental matrices. The reason for this is that
if the shooting points K are chosen using a bound on the corresponding
fundamental solution matrix norms as in [75] then the grid spacing is deter-
mined by the requirement to follow the more rapidly increasing members of
the set of solutions rather than to follow the more slowly changing target
solution. This could be thought of as a characteristic example of the use
of a non-stiff solution procedure on a stiff problem . However, the choice
of solution method corresponding to this situation is potentially much more
interesting, and in Example a problem which fits this category is dis-
cussed. Here the differential equation is discretized on a grid on which the
rapidly growing solutions are poorly represented by the trapezoidal rule dis-
cretization, but the slowly varying problem solution is well represented and
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is still found satisfactorily using the trapezoidal rule discretization when the
boundary conditions are chosen appropriately.

Approximations to values of the state variables are going to be needed
at each data point ¢ € T in order to evaluate the log likelihood, and this is
going to put constraints on the choice of the discretization grid K. Unless
otherwise stated it will be a convenient simplification to assume that points
of both grids are equispaced in 0 < ¢t < 1. The possibilities for choosing the
discretization grid are the following:

1. Integration of the differential equation is easy and a grid K coarser
than that corresponding to the set of observation points T is adequate.
In this case interpolation methods are used to estimate solution values
for points of T not in K. Linear interpolation provides a method with
an accuracy compatible with the trapezoidal rule approximation.

2. It proves convenient to work with the solution grid K and the obser-
vation set T identical. This requires that T provide a suitable mesh
for the differential equation integration in addition to being part of the
refinement process of a regular sampling scheme.

3. Sufficiently accurate integration of the differential equation needs a
finer solution grid K than the given observation set T. If T ¢ K then
interpolation is required to provide the necessary solution values at the
observation points.

Typically cases 1 and 2 above prove suitable strategies when the integra-
tion of the differential equation is relatively easy. The reason is that the
parameter estimates reflect the stochastic properties of the errors in the ob-
servations and so the attainable accuracy in the case of regular experiments
is restricted by the generic O(n~'/?) convergence rate associated with maxi-
mum likelihood estimation, while it amounts to carelessness if the error from
the discretization contributes more than the O(k~?) rate associated with, for
example, the trapezoidal rule in all but cases of severely unequal mesh grad-
ing. A similar error rate is achieved when linear interpolation is used to fill
in intermediate solution values in case 1. It is a reasonable, minimum expec-
tation that the sample points ¢t € T should be capable of well representing
the general behaviour of the signal. The slow almost sure convergence rate
attainable even in the large data set case makes very important the achieve-
ment of a small value for the standard deviation o of the experimental error.
Some improvement in the parameter estimates can be obtained by careful
consideration of the experimental design [15]. Faster convergence rates are
achievable in the closely related problem of frequency estimation , but rather
different algorithms are favoured [92].
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The most difficult problems correspond to nonlinear problems which do
not meet the dichotomy criterion when linearised about the solution trajec-
tory, but do have locally well determined solutions which typically change
rapidly, often in narrow transition regions. In these circumstances adaptive
mesh selection techniques can be expected to be important, as can continua-
tion methods for developing suitable solution approximations systematically
as the computation proceeds [6]. A classic example is provided by limit cycle
behaviour in the Van der Pol equation , example . What to observe in
order to well determine the estimation problem in cases where the solution
changes dramatically becomes a good question.

5.2 Linear differential equations

Equation ([5.1.1)) is specialised to

dx

=Mt 8)x+q() (5.2.1)

in this section. Note that this equation is linear in the state variables but
not necessarily linear in the parameters.

Example 5.2.1 One class of problems that leads to linear differential equa-
tions is obtained by considering separable regression models

o (t) = Zangz (tv 6) ) ﬂ € Rm (522)

Here ® (t) satisfies the p’th order differential equation computed from the
relation of linear dependence

O ¢ - ¢y
1 1
L
. . . . | =0
om P .. gl
Let
b1 By
ey L gl
A; = (_1) %T—l—l) 1(?i+1) )
1 p




224 CHAPTER 5. PARAMETER ESTIMATION

then this differential equation is

A, A
o) 4 Zr=lpe-1 44 20 — . (5.2.3)

AP Ap
The condition for this equation to be nonsingular is A, # 0. Note that A,
is the Wronskian of ¢1, ¢a2,- -+, ¢p so this is just the standard linear indepen-

dence condition. Equation can be converted into a first order system
by setting ‘
;=00 =12... p.

The result is

0 1
dx A
— = . 2.4
di o 1 |¥ (5.2.4)
_A0 L B
AP AP

Familiar examples include:

1. exponential fitting : ¢; = e, i =1,2,--- p, and
ti71
1+4B1t++LmtP?

In general, if L (¢1,---,¢r) ¢ = 0 is the k’th order differential equation
satisfied by ¢q,- -+, Pr, then

2. rational fitting : ¢; = i=1,2,---,p.

d

Liy1 (¢1, -+ ps1) Prg1 = (E - bk+1> Li (1, ¢n) Pey1 =0

provided
LLi (o1, bn) drs

e L on 00 Ger
Thus, in principle, a sequence of differential equations of increasing complex-
ity can be generated recursively provided Ly (¢1, -+ , ¢r) ¢r1 7# 0 correspond-
ing to linear independence of the ordered subsets of the ¢;.

Exercise 5.2.1 Show that the fitting problem is correctly posed for equation
given data in the form
7; :e{X(ti,B)—f-&i, 1= 1,2,"' , .
Associated with the first order system ([5.2.1)) is the family of fundamental
matrices X (¢, &) defined by
dX

=M X X (66 =1. (5.2.5)

Fundamental matrices have the properties :
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1. X (t,n) =X (,€) X (&,n);

2. X(tm) =X (n1);
3. T =-XTIM(tB);
T (s,
4. D MTXT (s,1).

Any solution of (5.2.1)) can be written using the fundamental matrix as

x(t) =X (t,6)x(§) +v(t¢E), (5.2.6)

where the fixed vector x (£) can be thought of as fixing the degrees of freedom
in the general solution , and the particular integral v (¢, &) is given by

v (t,€) = /;X (t,u) q(u) du. (5.2.7)

The trapezoidal rule discretization (5.1.15) provides an approximation to
(5.2.6). The exact equation evaluates on the given discretization grid K to
give

C; (X, ,6) = Xj+1 — X (ti—i-la tl) X; —V (ti+1,ti) y Z = 1, 2, s ,k’ — 1. (528)

This corresponds to the multiple shooting or exact form of the constraint
equations in contrast to the trapezoidal rule discretization or approximate
form.

The embedding method requires the explicit solution of a system of
boundary value problems at each step of the parameter estimation process
in order to evaluate the state variables and their derivatives with respect to
the parameters. As the differential and boundary operators change only as
a consequence of changes to the parameter values 3, b when the boundary
value problem is linear, this works if and only if the equation determining
the state variables has a well determined solution. From with the
specialization ¢ = 0 the general solution satisfies the boundary conditions

(5.1.7) provided
1
(Bi+ B2X(1,0))x(0) + BQ/ X(1,u)q(u)du =b (5.2.9)
0

can be solved for x(0) for each set of parameter values 3 . This is only
possible for general b if (B; + B2 X (1,0)) has a bounded inverse for the range
of 3 of interest. This condition is appropriate here because b has the role of
the extra vector of parameters to be estimated and so must be regarded as
a general vector unless additional information is avaiable.
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5.2.1 Constraint elimination by cyclic reduction

Cyclic reduction in the form considered here is an elimination procedure ap-
plied recursively to a block bi-diagonal matrix system. This provides a useful
generalisation to earlier discussions which considered a more restrictive case
involving tri-diagonal matrices. In its simplest form each step expresses the
current even indexed variables in terms of the immediately adjacent variables
of odd index. It has been applied to the solution of boundary value prob-
lems by Wright [117] who was interested both in parallel implementation of
the solution process and in questions relating to its stability. However, the
memory access stride of the cyclic reduction process considered is generically
a power of two, and this tends to cause computer memory contention prob-
lems which reduce the computational efficiencey [44]. But the flip side is that
the process offers significant insight into the structure of the solutions of the
system of differential equations, and it is in this sense that it is considered
here.

It simplifies addressing in developing the cyclic reduction procedure to
assume that n = 2¥ 4+ 1 - but it should be noted that this is not a necessary
assumption in this context and a general formulation of the procedure under
the name of wrap-around partitioning has been developed in [44]. Associated
with the basic difference scheme is the stencil for the initial step which
expresses X; in terms of x; 1, X;y1:

—Xi1n T 0 —viy . k
{ 0 1 },2_2(2)2,

where X; = X (t;11,t;), vi = Vv (tiv1,t;). Operators C; are introduced to
produce the transformation

|: _Xi—l 1 0 —Vi_1 :| |: V;-l —1 VVil W1 :|
— .

0 _Xz 1 —V;

1
Ci H 0 G —d

1

(5.2.10)

Typically this transformation can be based on methods such as orthogonal
reduction or partial pivoting with row interchanges. The right hand stencil
in has the following important interpretation. The first row gives
the interpolation equation at stride 21,

x; = VX1 + WiXip1 + wy,
while the second row gives the constraint equation at stride 21,
HiIXZ'_1 + G}Xz‘-i-l - dzl = 0.

This is the first step in a recursive procedure in which the constraint equations
are successively reduced, and the interpolation equations updated. Let x;
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be a state variable to be eliminated at step j corresponding to a stride of 27
in the resulting constraint equation. The current adjacent values are written
x_, xy, and these will form the support values for the interpolation equation
for x, after the elimination step. Let x, be a value adjacent to x, which has
been eliminated already. At this stage it will have supports given either by
X_, Xg, with corresponding interpolation equation

— J J
X = Vix_ + Wixs + wy,

or by x,, x4, with corresponding interpolation equation
Xg = V('Ijxs + ng+ + Wg.

The next step of cyclic reduction applies to the constraint equations relating
the active solution values (those not already eliminated) at the current stride.
This gives

i+l o & o —dj_} [Vsjﬂ —I witt witt

0 H. & -d. Hitt 0 Gt —dit!

The interpolation equations must now be updated by replacing x, by its
support using the new interpolation equation. This gives

Xg = {V/ + WIVIT  x_ + WIW[ %, + w) + Wwlt,
for state variables with support x_, x,, or
X, = ViV 4 (V] 4 VW sy ) 4 Vi,
for those with support x,, x,, while the constraint equation introduced is
Hit'x 4+ Gt x, — it =0,
After k£ elimination sweeps the result is a system of interpolation equations
X, =V(t)xi+W(t)x, +w(t;),i=1,2,--- n, (5.2.11)
and a constraint equation
Hx; + Gx, = d. (5.2.12)
Setting ¢ = 1, n in the interpolation equations gives the boundary conditions

V(tl) =1, V<tn) =0,
W (ty) =0, W(t,) =1,
w(t1) =0, w(t,) =0. (5.2.13)



228 CHAPTER 5. PARAMETER ESTIMATION

The estimation problem can now be written

X1,%Xn,B

min Z lyi — O; (V (t) x1 + W () X + W (£:)) |2 (5.2.14)

subject to the m constraints ((5.2.12)). Here the Lagrange multipliers for this
reduced problem pick up exactly the m degrees of freedom needed to specify
the solution of the differential equation ({5.1.1)).

Remark 5.2.1 The above development permits something to be said about
the choice of appropriate boundary conditions for the embedding algorithm for
the smoothing problem for a linear system of differential equations. These are
characterized by the triple (By, B2, b). What is required is that (By, By) be
chosen such that the system

AHEN

1s computationally as well behaved as possible. Consider, for example, the
orthogonal factorization

[H G]=[U" 0]Q".

Then suitable (By, By) , possibly up to a suitable scale factor p, can be found

from
H G ur o QT
(ol [wel[g]. een

[ Bi By | =pQ5. (5.2.16)

This choice of boundary conditions depends soley on the differential equation
and in this sense is natural . It can be considered best possible as it does
not affect the spectral conditioning of provided p s in the range of
the singular values of U. This provides a sense in which this choice has
an essentially passive role in the solution of the boundary value problem.
Here the conditioning of the matriz U in provides a measure of the
inherent sensitivity of solutions of the differential equation system to two
point boundary conditions of the form .

The above discussion is becomes more complicated if there is a nontrivial
parametric dependence for then a range of parameter values must be allowed
for in the estimation problem, and this may militate against a single fixed
choice of embedding boundary conditions. It is conceivable that the nonlinear
behaviour in parameter space could require some adaptivity to be introduced
into the boundary condition selection process.

This gives
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The order in which the intermediate variables are eliminated is

1+1  3+1 5+1 7T+1
1241 3241 5241 72+1
122 32241 52°+1 7.2°+1
If the individual frontal matrices C7 are orthogonal then the result of the

processing of the constraint stencils in the case n = 22 + 1 is a factorization
of the form Q)R where () is orthogonal and

V-1 W
S O B
R = Vi Wl (5.2.17)
H G
Introducing permutations
pr:2,4,3,1,5—1,2,3,4,5,
pr:1,3,2,4 —= 1,2 3,4,
and associated permutation matrices Pr, P;, then
—I W Vs
= -1 'V W.
_ T 4 4
R = P,RP, = IV, W, (5.2.18)
H G

is basically an upper triangular matrix while ) = Q\Pg involves the trans-
formation of the constraint equation stencils. In this context, the updating
of the interpolation equations corresponds to steps which are intermediate
steps in a backsubstitution based on R. Note that if the C; are based on
orthogonal transformations then the computations at each stage develop an
orthogonal transformation taking the matrix of the (permuted) constraint
equations to upper triangular form. The numerical stability of this case is
considered in [IT§].

Exercise 5.2.2 For the case n = 22‘—1- 1 considered above write out the or-
thogonal matriz Q in terms of the C frontal matrices.

5.2.2 Properties of the reduced system

There are two main points to make about the equations that result from the
cyclic reduction process applied to (5.2.8)):
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1. The interpolation equation ([b.2.11) is generic in the sense that it must
hold for values x(1),x(t,) corresponding to any solution of the differ-
ential system.

2. The quantities V;, W;, w, which define the interpolation equation, and
the quantities G, H,d which define the constraint equation are by no
means uniquely defined as premultiplying the transformation matrix
C; by any block upper triangular, nonsingular matrix

C { i } C (5.2.19)
Ry

leads to another recurrence of the same form as it preserves the zero
submatrix produced by the original transformation . It follows
from @ that the freedom in the interpolation equation resides
in Ry Ry (the unit matrix must be preserved in the interpolation
equations for different schemes to be comparable), and from (5.2.12)
that the freedom in the constraint equation resides in Ry which serves
to scale this equation.

Note that, from (5.2.6)), the final constraint equation for the multiple shooting
form of the recurrence ([5.2.8) requires that

tn
G 'H = —X(tn, t1), G_lwlf =v(ty, t1) = / X (tn,u)q(u)du
t1

independent of Ry. These quantities will be approximated if discretized forms
of such as the trapezoidal rule are used.

Next assume that V' (t), W (t), w (t) satisfying are differentiable
functions of their arguments. Differentiating and eliminating using the dif-

ferential equation (5.2.1)) gives

. { (252 — MV (1)) x (1) + (2 — MW (1)) x (1) }

dw
—i—% — Mw(t) —q

:{ (4 — M){V () + W (t) X (L, t1)} x (t2) + }
(£ —M){w@®)+W (@) v(ta,t))} —q [

on substituting for x (¢,,) using (5.2.6), (5.2.7). Thus V (¢) + W (t) X (tn, t1)

satisfies the homogeneous differential equation as x (¢;) can be prescribed
arbitrarily. However, neither V' (¢) nor W (¢) can do so separately in general
as the pair of boundary conditions would overspecify the solution of
the first order system. A similar comment applies to w (t).
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In considering the generation of the multiple shooting formulation of the
recurrence it is convenient to start with C; which satisfies

c, { ——{%; } _ { lgi } (5.2.20)

where X; = X (¢;41,t;), and the exact form of D; is determined by the trans-
formation . A further scaling which takes D; to the unit matrix is necessary
to make the transformation correspond exactly to . However, it fol-
lows from below that this rescaling, which involves premultiplying
the transformed tableau by a nonsingular matrix, does not affect the deter-
mination of V', W, w. Nor does it affect the freedom in the interpolation

equation. The simplest choice satisfying ([5.2.20) is given by

—X; I
@:[X; [] (5.2.21)

Assume equispaced points ¢; for simplicity. Then ¢; = t; + (i — 1)At, At =
(t, —t1) /(n —1). Postmultiplying (5.2.10]) by

x (ti-1) V(tim) x (t1) + W (tim1) x (tn) + W (ti-1)
x(ti) | _ V(t) x (t1) + W (t:) x (tn) + w (L)
X(tlm) V (tie1) x (t2) + W (¢ (12+1)x( n) + W (tis1)

gives

( -X; 1 —Aq-1 I 0 —vig )
V(ti_l)X(tl)—l—W(ti )X )
V(t)x(t1) + W (t;) x(

V (tis) x (t1) + W (ti41) x
1

\ Vs

(5.2.22)

The second component equation that results from(5.2.22)) gives no new in-
formation. Substituting the values for the terms in the recurrence relations
in the first equation and collecting terms gives

WV (tig1) = 2X (tig1, )V (8) + X (i, i)V (81 x (1) +
W (tiv1) = 2X (tiga, t)W (8) + X (i, i)W (1) }x () +

W (tiv1) = 2X (tipr, to)w (8) + X(tipr, tio)W (tic1) = vi — X (i1, ti) Vi,
(5.2.23)
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Expanding the coefficient of x (;) in this equation up to terms of O(A#?),
and using

X(t,u):]—F(t—u)M(u)—i—@ <M2( )—i-dd—]\f( )) + O(t — u)?,

gives

V (ta) — 2V (6) 4V (1) — 2 (AtM(u-) + 28 e+ ﬂ—%m))) V()

+ (QAt(M(ti) - At%(ti)) + 2A¢2 ( (t:)* + %( ))) V (tio1) + O(A?)

= At? (% - 2M(ti)% + (M (t:)* — %(t ))V) + O(AP).

There is an identical expression for W (¢). The corresponding expression for
w (t) must take account of the inhomogeneous term. This requires expanding
the term v; — X (ti41,t;)v,_1 up to terms of O(At?) (the trapezoidal rule
proves convenient), and gives

W (tir1) = 2X (tigr, t)W (1) + X (tig, i)W (i) =
A (ilﬂ —2M(t )Ci;tv + (M(t;)* - ﬂ ; 1

The O(At?) terms correspond to second order differential systems, and these

can be equated to zero as the boundary conditions ([5.2.13) can now be sat-
isfied. The equation satisfied by V att=1t;, i =2,3,--- ,n—11s

2V v ) B
= M)+ (M(1)” = )V = 0. (5.2.24)

If the substitution V' (t) = X (¢,£)® (¢) is made then ((5.2.24)) reduces to

dM

d>®
t =
X697
This is equivalent to the equation
d2

so the solution satisfying the boundary conditions is

V= X(t,0)(1—t). (5.2.25)
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A similar calculation gives
W = X(t,1)t. (5.2.26)
The corresponding equation for the particular integral is
d? dq
— (Xt =X —= - Mt
i (. ow) = x 7 (- wa).

and this has the solution satisfying the homogeneous boundary conditions

1
d
W= / X(t,00G(t,u) X ' (u,0) (d_q — M(u)q> du (5.2.27)
0 U
where G is the Green’s function for the second order operator j—; with zero
function boundary conditions.
g(t,U) = _(]‘ - U)t7 t<u,
=—u(l—1t), u<t.
The constraint equation correponding to this choice of C' has
tit1
Gll = I, Hzl = —X<ti+1,ti,1), dll = X(ti+1, u)q(u)du (5228)

ti—1

Note that V' and W show the same growth as the fast (respectively) slow
solutions of linear differential equation (equations ([5.2.25)) and ((5.2.26))). This
possibility of very large elements occurring is unattractive numerically. This
realisation of the cyclic reduction process will be called the ‘compactification’
case [0] .

5.2.3 The orthogonal reduction
Growth in the computed G}, H},d} can be prevented by using orthogo-

i
nal transformations in the cyclic reduction process as this preserves column
lengths in the transformed matrix. Orthogonal matrices in the transforma-

tion family must satisfy

CTR"RC = 1.
where R is given by (5.2.19)). Thus
R'R=CTC™,

1 -xT T —X1 xt
T4 XTOg I I |
1 { I+ X TXt 1-XTx! }

T4 | I-XTTXT T XxTTX!
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It is convenient to consider the general form of transformation by revealing
the freedom in the transformation explicitly . Let Rl_lng = 5. Then the
x (t1) component of the transformed system (5.2.23|) corresponding to the
transformation given by RC' is

(L4 S1) V (tir1) = 2X (tisr, 8)V (&) + (T = S1)X (B, ti-1) V (Ei-1)

This term can be O(At?) for smooth enough data only if S; = O(At) = AtS.
Also

AtS (V (tig1) — X(tig1, tic1)V () = AtS (QAt%(ti) — AtM(t;)V (tz>) +O(At?)

so O(At) terms in expanding S(t + At) can be ignored in determining the
differential equations defining the interpolation operation. For example, the
differential equation satisfied by V' is

A2V dv ) dM
W+2(S—M))E+(M —QSM—E>V_O. (5.2.29)

The inhomogeneous terms transform to
Vi — X(tip1, ti)vier + ALS (vi + X (i, 6)vie1)

d
= At? (d—(z — Mq + QSq) + O(AP?).

To compute S(t) corresponding to orthogonal transformation note that

(X(tiﬂ,ti)XT(tiﬂ,tz'))_l = (I + At (M(t;) + M (t;)) + O(AtQ))_17
=1 — At (M(t;) + M"(t;)) + O(AL?).

Thus
T L[ 21 — At (M(t;) + MT(t;) At (M(t;) + M (¢;) )
Let

M (t;) + M7T (t;)
2
where U is upper triangular with zero diagonal, and D is diagonal. Then

=U"+2D+ U,

At(M(t)+MT (1))

I - AF(252)

1
R=—
V2

- At (555) +O(A#2),
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so that, as S; = Ry 'Ry,
M (t:;) + M" (t:)

S(t;) = 5 : (5.2.30)
Substituting in ((5.2.29)) gives
v dV dM
— (M- M) — — (M"M+— |V =0. 5.2.31
= T ) ( * dt) (5.2:31)

Again there is a corresponding equation for W. The equation for the partic-
ular integral term is
d*w

dw dM dq
-+ (M- M) — — [ M"M + — = —+ M'q. 2.32
iz ) ( +dt>w g PAMa (5232

To solve for V note that (5.2.31)) factorizes (the order must be respected) to

give
d d
—+M ) [ ==-M)V =0
(dt + ) (dt >

Making the standard variation of parameters substitution V' = XY gives

d dY
—+MT ) X— =0.
(dt * > di

It is straightforward to verify that this equation has a fundamental matrix
given by X~ It follows that
ay

Y
— =X (t,O)X‘T(t,O)Cil—t(O), and

dt
V= {[X(t,u) X T (u,0) du} {/le—l (u,0) X7 (u,0) du}_l.

Remark 5.2.2 The use of a limiting argument in which At — 0 in de-
riving the equations for V, W, w could suggest that the dependence on the
two parameters t, At should be acknowledged explicitly by the adoption of
a notation such as V (t, At). However, this is not necessary here. This fol-
lows because the discretization 1s satisfied exactly by for all
At, and not just in a limiting sense. The notation acknowledging depen-
dence on both t and At is required for solutions of approximate discretiza-
tions such as that which would be obtained by using the trapezoidal rule to
integrate . In such cases solutions given as linear combinations of
V(t,At), W(t,At), w(t,At) can be analyzed using the methods of differ-
ence (defect) correction [32]. The solution given here then corresponds to

V(t,0), W(t,0), w(t,0).
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5.2.4 Interpretation of the constraint equation

As the combination of the influence matrices Z =V (¢)+W (t) X (t,, t1) must
satisfy the homogeneous differential equation (5.2.1)), while the individual
components must satisfy boundary conditions appropriate to a second order
system, it follows that the simplest form for the determining equations is

d V() _
Li(K) (E - M> { W) 0, and (5.2.33)
Li(K) (% — M) w (t) = L1(K)q. (5.2.34)

where L is the differential operator

LK) = 5+ K()

and the correspondence with the transforming matrix (5.2.19) is given by
K - 25 - M, AtS - R;lng.

The compactification case corresponds to S = 0, while orthogonal reduction
corresponds to S = (M + M7T) /2.

Some insight into the different stability characteristics of the compacti-
fication and orthogonal reduction cases can be obtained by considering the
first order systems associated with (5.2.33)), (5.2.34]). The first order system
here can be written

i x| 2]

%{Z}:N{‘Hﬁt[g}, (5.2.35)
with matrix

=" s )

Here Y can be either V or W with corresponding terms Zy, Zy, completing
the solution vector.

The role of the constraint equation can now be identified. The solution
x (t) constructed using the cyclic reduction derived quantities V, W, w satis-
fies the higher order equation ([5.2.35)) and so potentially depends on a larger
set of fundamental solutions. The function of the constraint equations is to
remove this unwanted generality. Let

x=Vx(t1) + Wx(t,) +w.
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Then the requirement that x satisfy the lower order system ([5.2.1) is, using

(5.2.35),

dx
0= T Mx — q,
= (C;—‘t/ —MV) x (t1) + (dd_V;/ —MW) x(tn)—i—cil—‘;v — Mw —q,
= Zyv(t)x (t1) + Zw(t)x (t,) + z(t). (5.2.36)

This form of constraint depends on ¢, but this dependence does not contain
independent information as a change in ¢ dependence (for example, from ¢;
to t;) is achieved by premultiplying each term by Z (¢;,t;), a fundamental
matrix for the Z dependence

Li(K)Z(,€) =0, Z(£.6) = 1.

The point to note here is that the terms 2y, Zy,, z satisfy the same homo-
geneous equation. A form independent of ¢ can be obtained by integration,
for example. This gives

{/: Zvdt} x (t) + {/: det} X (tn) = _/tlt" adt.

Exercise 5.2.3 The constraint equation relates x(t1) and x(t,).
Show that this equation is equivalent to .

Exercise 5.2.4 Verify that the linear system is equivalent to (5.2.34).

5.2.5 Dichotomy and stability

A generic starting point in our analysis of estimation problems is the assump-
tion that the problem under consideration has a well determined solution, at
least when correctly formulated. Aspects of these considerations which are
relevant here include:

1. The estimation problem may have a well determined solution but is
this true also of the boundary value embedding formulation ?

2. An explicit differential equation solution procedure is not an explicit
part of the simultaneous method problem statement. Does this indicate
possibly more robust solution properties?
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3. Let the boundary value formulation of the differential equation problem
have a well determined solution. Does it follow that the (w;, V;, W;)
determined by the cyclic reduction algorithms is also well determined.
This is suggested in the orthogonal case by the connection with the sta-
ble orthogonal factorization and back substitution algorithm for solv-
ing linear equations. Note that these quantities are independent of the
boundary conditions on the original differential equation. It follows
that stability or otherwise of these augmented equations is a generic
property of the original differential equation only and does not depend
on its boundary conditions.

The stability analysis of the initial value problem

dx

— =f(t,x), x(0)=h.

~=tx), x(0)

is classic. It is required here that solutions with close initial conditions
x1 (0), X5 (0) remain close in an appropriate sense for large t. For exam-
ple:

1. Strong (initial value) stability requires ||x; (t) — x3 (¢)|| — 0, ¢t — oc.

2. Weak (initial value) stability requires ||x; (t) — X2 ()|| remain bounded
as t — o0o. This property is most useful for linear systems. Chaos
provides an example of bounded families possessing unbounded first
variations. In most circumstances the initial value behaviour of such
families must be considered as unstable from a computational point of
view.

Numerical considerations introduce the concept of stiff discretizations. These
are discretizations which inherit at least a form of the weak stability charac-
teristics of the original problem. In the linear case this corresponds to a map-
ping of nonincreasing solutions of the differential equation onto nonincreasing
solutions of the difference approximation. Note that very rapidly decreasing
solutions of the differential equation cannot carry significant solution infor-
mation forward, but would require a fine mesh to follow them accurately.
Thus it is desirable that a mesh better adapted to follow the actual solution
effectively should be used. In this context use of stiffly stable discretizations
is appropriate [I8]. However, initial value computations are not limited to
initial value stable problems. For example, computing fundamental matrices
is important in multiple shooting calculations. It is possible to compute these
to satisfactory accuracy for relatively unstable problems over short enough
time intervals by taking the discretization interval At small enough and using
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methods consistent and stable in the sense of Dahlquist [21]. As indicated in
the introduction to this chapter, attempting to resolve all components of a
fundamental matrix accurately when the initial value formulation is unstable
can have similar problems to using a non-stiff integrator to solve a stiff ini-
tial value problem. In the multiple shooting case the requirement is that the
breakpoints be chosen sufficiently close together for the computed matrix to
be an adequate approximation to the exact multiple shooting matrix [75].

Example 5.2.2 Differential equations with constant coefficients. Let
f(t,x) = Mx—q.

If M is non-defective then weak stability requires that the eigenvalues \; (M)
satisfy Re{\;} < 0, i = 1,2,--- ;m. These inequalities must be strict for
strong stability. Now consider the one step discretization

Xi+1 = TA (M) X; + V;.

Here Ta (M) is the amplification matriz, and At is the discretization interval.
The condition for a stiff discretization is that

Re{Ai (M)} <0= [N (TA)| <1, i=1,2,--+,m.
For the trapezoidal rule

1 AR (M) /2
’)\i (TA)l - 'I—At)\i (M) /2"
<1ifRe{N (M)} <0

The stability discussion for the constant coefficient case does not gener-
alise too easily in the sense of providing a readily computed stability criterion
for the case where M is a function of t. Some partial results can be based on
the concept of kinematic eigenvalues [6]. A more general tool is provided by
the “logarithmic norm” [T01]

1 (A) = lim L +hAj -1

Jlim. . , (5.2.37)

where || || is a subordinate matrix norm. Because p(A) can be negative
it is clearly not a norm. An important example that illustrates this point
corresponds to the case of constant M with negative eigenvalues where the
spectral norm is used in the computation of p(M). A key result is the
differential inequality

< (M) [|x[], (5.2.38)
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where the derivative is the upper right Dini derivative

L v(t+h) =y (@)
dt_+7hli%l+su]? h '

(5.2.39)

Here p (M) can be a function of t. The logarithmic norm can be extended
to unbounded and nonlinear operators.

The spirit of the above discussion is provided by a concern for problems
which are dominated by considerations of exponential growth and decay. This
works well enough for linear systems. However, it is an incomplete picture
when attempting to analyse the stability of a nonlinear system by studying
the stability of a local linear approximation. Here the local linearisation can
predict instability in the sense of arbitrarily large departures A, of initially
close Ay trajectories when the nonlinear system supports attractive regions
which capture solution trajectories typically referred to as chaotic . The
instability of the nonlinear initial value problem in this case is one of phase
rather than amplitude. To classify this behaviour let X (¢) be a fundamental
matrix of the linearised differential equation, and define

IRRT T 1/2¢
A= Jim (XTX) 7 (5.2.40)
Then
A = log (J|A]]) . (5.241)

where || e || is the spectral norm, is called the first Lyapunov exponent . A
positive value of A\; is commonly used as an indicator of chaotic situations.
The logarithms of the other eigenvalues of A give higher Lyapunov exponents
and these provide further structural information on the properties of the
attractor. For a discussion in a computational context see [20].

Boundary value stability introduces rather different considerations. It
could be expected to be more relevant to the estimation problem because now
the information determining the parameter estimates generically is distributed
in a manner more resembling the setting of multi-point boundary values. Here
the problem is

d
d—’t‘ —f(t,x), B(x)=Bx(0)+ Bx (1) =b.
Behaviour of perturbations about a solution trajectory x = x* () is governed
to first order by the linearised equation

L(z) = fl—j LWL (% (1) 7 = 0. (5.2.42)



5.2. LINEAR DIFFERENTIAL EQUATIONS 241

Here (computational) stability is closely related to the existence of a (modest)
bound for the Green’s matrix :

G(t,s)=Zt)B(Z)'BiZ(0)Z(s)™", t>s, (5.2.43)
= —ZWBZ)'Byz(1)Z(s)", t<s, (5.2.44)

where Z (t) is a fundamental matrix for the differential equation linearised
about the trajectory described by x*, and

B(Z) = B, Z(0) + B>Z(1).

Definition 5.1 Let
a= sup ||G(ts)].- (5.2.45)

0<s,t<1

Then « s called the stability constant . In this context, modest o means
that small perturbations in the problem data lead to small perturbations in
the resultant solution.

Stability of the linear boundary value problem (5.2.42)) expressed by (|5.2.45))
is closely linked to the property of dichotomy .

Definition 5.2 : FEquation possesses a (strong) dichotomy if there
exists a constant projection P, depending on the choice of Z, such that, given
the splitting of the solution space

Sy« {ZPw, we R™}, Sy« {Z(I—-P)w, weR™},  (5.2.46)

there exists k > 0 such that

(1)l
S, = P Moo
[t
S
b <S> 1665)] <K, t<s

Note that such a k always exists for ¢, s € [0,1]. Computational interest is
in relatively small values of k given such a range restriction.

Remark 5.2.3 The significance of dichotomy in the computational context
is a consequence of a result of de Hoog and Mattheij [22]. They showed that
if the boundary conditions are separated so that

rank(B;) =7, rank(Bs) =m —r,
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and Z is chosen such that B (Z) = I then P = B1Z (0) is a projection and it
is possible to choose k = a. A weaker, but similar relation was shown if the
boundary conditions are not separated. It follows that there is a basic con-
nection between stability and dichotomy for linear boundary value problems.

The significance of dichotomy is that it provides a global labelling on 0 <
t < 1 of the rapidly increasing solutions ¢ € Sy and the rapidly decreasing
solutions ¢ € S;. This classification is fuzzy at the edges for solutions which
do not lie in either extreme category, and it flags as possibly dangerous
solutions which would try to flip between the categories. This classification
has another important interpretation. It means that boundary control at
t = 1 is important to ensure rapidly increasing solution components from
S5 do not dominate as lack of such control could allow a large perturbation
about x*(¢). In similar fashion rapidly decreasing solution components in S;
must be pinned down at £ = 0.

Dichotomy together with compatible boundary conditions provides the
boundary value problem property which is analogous to the stability require-
ment important in the solution of initial value problems.

Example 5.2.3 To illustrate the importance of compatible boundary condi-
tions consider the Mattheij system of differential equations [6] given by

1 —-19cos2t 0 1+ 19sin2t

M= 0 19 0 , (5.2.47)
| —1+19sin2¢ 0 14 19cos2t

[ et (=1 + 19 (cos 2t — sin 2t))

q= —18¢! : (5.2.48)
et (1 — 19 (cos 2t + sin 2t))

Here the right hand side is chosen so that the slowly varying functions x(t) =
ele satisfy the differential equations. The fundamental matriz is

e Bleost 0 efgint

X(t,0) = 0 e 0

—e Btgint 0 e*cost

It is characterised by rapidly varying fast and slow solutions determined by
the terms €', e2% and e~'8t. Because the fast and slow solutions are already
separated it is straightforward to verify that the system supports a dichotomy
— even one with exponentially decreasing bounds — with P = eyel +ezel. For
boundary data which gives two terminal conditions and one initial condition

000 100 e
Bi=|000]|,B=[010]|,b=]¢],
100 000 1
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the solution obtained using a trapezoidal rule discretization scheme and stan-
dard orthogonal factorization of the linear equations gives the results displayed
in Table[5.1] These computations are apparently satisfactory. However, there

At =.1 At = .01
x(0) | 1.0000 | .9999 | .9999 | 1.0000 | 1.0000 | 1.0000
x(1) | 2.7183 | 2.7183 | 2.7183 | 2.7183 | 2.7183 | 2.7183

Table 5.1: Boundary point values - stable computation

15 an interesting twist which becomes more apparent in the next case which
considers unstable conditions. For boundary data with two initial and one
terminal condition

0 01 000
Bi=]1000],B,=]0120{|,b=]c¢e],
1 00 000 1

the results are given in Table[5.3. They indicate clearly an unstable behaviour
in the first and third equations. The second equation is uncoupled from the
other two, and for it the terminal condition used is appropriate. One source
of the problems revealed would be the instability caused by the use of initial
conditions on an unstable problem. However, if this were the single cause
then it is somewhat surprising that the erroneous terms are larger in the
problem with larger At. Something else is going on here, and it has to do
with the breakdown of the trapezoidal rule discretization. Consider the simple
equation p
T
i AT.

The trapezoidal rule discretization gives

LAY Ay
9 Tit+1 9 Tr; = U.

If A < 0 then the marching procedure giving x;11 in terms of x; is always
stable in the sense that the amplification factor is always less equal 1 in mod-
ulus. However, if A > 0 then the recurrence breaks down when A = 2/At, and
produces an oscillating result if X > 2/At with amplification factor tending
to —1 when At is large (so called super stability) . This is not mirrored
exactly here, but the first and third equations are coupled and have solutions
which include terms proportional to €°t which correspond exactly to the value
of X which causes the super stability blow up in the initial value problem in
the above simple model when At = .1. Of at least as much interest is the
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apparently stable computation associated with the second (uncoupled) equa-
tion. Posed stably by virtue of a terminal condition, it manages to extract the
relatively slowly varying solution information despite the trapezoidal rule re-
currence giving an amplification approximately 10 times larger than the exact
figure e2°At for solutions of the homogeneous equation. The computations on
the coarser grid provide interesting evidence of a form of stiff stability avail-
able when the differential system supports nontrivial dichotomy. This prop-
erty of the trapezoidal rule is identified for systems of constant coefficients
in [27]. A sufficient condition is that the eigenvalues p; of the amplification
matriz satisfy

IANi| > 0= |us| > 1,

for solutions of the differential equation that are proportional to exp \it, © =
1,2,---,m. This requires that the dichotomy is preserved in a weak sense;
and the authors introduce the term di-stability for this property. The trape-
zoidal rule is di-stable for constant coefficient equations. This property is
verified readily for the above recurrence which gives

_ @+ 5]

|M’—m

2

The key observation is that if increasing solutions are mapped into solutions
that increase in magnitude then they are still controlled by boundary condi-
tions that are compatible with the dichotomy. This has the effect of continuing
to suppress any contribution to a slowly varying solution arising from the ef-
fects of discretization error in the rapidly changing terms. Note that it is
magnitude not sign of the difference equation amplification factors which is
important for this purpose.

At =1 At = .01
x(0) 1.0000 9999 1.0000 1.0000 | 1.0000 | 1.0000
x(1) | -7.9197+11 | 2.7183 | -4.7963+11 | 2.0369+2 | 2.7183 | 1.3169+2

Table 5.2: Boundary point values - unstable computation

The “natural” boundary matrices for the interesting case At = .1 calcu-
lated using the procedure developed in subsection |5.4.2] are given in Table
5.3l These bear out the importance of weighting the boundary data to re-
flect the stability requirements of a mix of fast and slow solutions.They give
solution values identical with those reported in Table [5.1]
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By By
99955 | 0.0000 | .02126 | -.01819 | 0.0000 | -.01102
0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000
.02126 | 0.0000 | .00045 | .85517 | 0.0000 | .51791

Table 5.3: natural boundary matrices in case At =.1,p=1

Useful information on the stability of the differential equations associated
with the computation of the cyclic reduction quantities w, V, W can be
obtained by considering the case M constant and diagonalizable by similarity
transformation (M = TAT™1).

Lemma 5.1 Let S = 0. Then N : R*™ — R?>™ s similar to a matrixz with

m Jordan blocks J; = Ai 1

A ,i=1,2--- m.

Proof.
N — M I | |T AT T!
N M | T A Tt |-
It can now be cast in the desired form by making symmetric row and column

permutations of the eigenvalue matrix without destroying the property of
similarity. mm

Lemma 5.2 Let S = (M+ MT) /2 and assume that M is non-defective.
Then corresponding to each eigenvalue \ of M for which —\ is not also an
eigenvalue is a pair £\ of eigenvalues of N. If £\ are both eigenvalues of M
then both correspond to (2 x 2) Jordan blocks in the similarity normal form

of N.
Proof.
det(N—/\]):det<{ M= —(Mj{.—l—/\f) ])
— (—1)™ det (M — AT) det (M” + AT) .

showing that the eigenvalues occur in 4 pairs. The eigenvector corresponding

to the eigenvalue J; is [tZT, 0} " where t; is the corresponding right eigenvector
of M. Let s; be the left eigenvector of M corresponding to A;.Then the
eigenvector v of N corresponding to the eigenvalue A = —); is

vV = [((M + N0 si)T ) —sZ-T}T
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unless —\; is also an eigenvalue of M. If M is non-defective and has a + pair
of eigenvalues then it is necessary to allow N to have a principal vector of
grade 2 associated with each eigenvalue. To calculate this when A = \; set

(M = NI M —MT —2)\1

(N = Nl)* = { 0 (MT + \1)°

Because M is non-defective it follows that the grade 2 vector will have the

\' .
form { uz ] where u; satisfies
i

(M" + NI)u; =0.
Now v; must satisfy
(M — NI v+ (M — NI)u,; = 0.
This is equivalent to the system
(M —NI)v;+u; =t

where v must be chosen such that the singular system is consistent. This
requires

It is now routine to compute v. To complete the lemma note that the ex-
istence of principal vectors of grade 2 implies the existence of 2 x 2 Jordan

blocks. mm

Example 5.2.4 The simplest instance of the occurence of principal vectors
of grade 2 when M has a pair £\ of eigenvalues corresponds to

—u 1 1 0

101 I Y G () 1
M = { 220 } , N —pl = 0 0 —p —2 | (5.2.49)

0O 0 -1 —pu

Here N has an eigenvector [1,,u,0,0]T associated with the eigenvalue p, but
no eigenvector of the form [x,xz, u, —1]T. The equation determining v is

i Y |

polo ol [—1}
2u 2u(p+1) [ w

It follows that
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Remark 5.2.4 The problem with the compactification case is evident from
these results. Assume that M has mo zero or pure imaginary eigenvalues.
Then corresponding to each Jordan block in N are new solutions of the form
polynomial times exponential. These are of the same type (fast or slow) as
the exponential terms. This follows because the characteristic powers of t
which appear in the new solutions multiplying an exponential term can be
wgnored for the purposes of this classification. If the number of fast solutions
differs from the number of slow solutions then the possibility of satisfying the
boundary conditions on both V- and W in a stable fashion appears
unlikely. For example, let be stable so that all solutions are slow. In
this case computation of V, W is most likely difficult as only half the slow
solutions can be pinned down att = 0. In contrast, the condition that there
be equal numbers of fast and slow solutions is automatically satisfied in the
orthogonal reduction case.

Numerical evidence of this numerical stability of the orthogonal factor-
ization system of differential equations for dichotomous systems can be pre-
sented using the Mattheij example. This problem ([5.2.47), (5.2.48) shows
significant potential for highlighting instability. Another problem which
presents similar difficulties [6] has data

—10 4+ 10s1n 20¢ 10 cos 20t

| €'(—9 + 10(cos 20t — sin 20¢))
| ef(11 — 10(cos 20t + sin 20t))

M:[ —10 cos 20t 10+10sin20t]’

This problem has the fundamental matrix

cos 10t  sin 10t} [elOt 0 1

X(t,0) = { —sin10t cos 10t 0 e 10

To check stability, the particular integral w (¢) has been computed for both
problems (see ([5.2.34))). In the first case

e'(—364 + 38(cos 2t — sin 2t))
Li(K)q = —360¢! ,
e'(—362 — 38(cos 2t + sin 2t))

while in the second ,
—219e¢
Li(#)a = [ ~179¢! ] '

The first order system ([5.2.35]) for the differential equation ([5.2.32)) has been

integrated using the standard midpoint rule (box scheme) and the solution
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values at the ends of the interval of integration ((0,7) in the first example,

(0,1) in the second) which are not fixed by the boundary conditions (/5.2.13))
are tabulated for numbers of mesh points n = 2%, k = 6,8, 10, 12, 14.

.k [ 6 | 8 [ 1w [ 12 [ 14 |
w(0)4 || 20.304 | 20.478 | 20.489 | 20.490 | 20.490
w(0)s || 19.994 | 20.000 | 20.000 | 20.000 | 20.000
w(0)g || -15.595 | -15.876 | -15.894 | -15.895 | -15.895
w(7)y || -366.22 | -370.12 | -370.36 | -370.38 | -370.38
w(7)s || -416.41 | -416.52 | -416.53 | -416.53 | -416.53
w(m)e || 373.39 | 377.02 | 377.25 | 377.27 | 377.27
w(0)s3 || 1.0449 | 1.0035 | 1.0009 | 1.0007 | 1.0007
w(0)4 || 20.957 | 21.001 | 21.003 | 21.003 | 21.003
w(l)s || -51.694 | -51.652 | -51.649 | -51.649 | -51.649
w(l)y || 2.5846 | 2.7097 | 2.7175 | 2.7180 | 2.7180

Examples of particular integral computations.

The general trend of the results indicate stable computations. In fact the
terminal values were among the largest recorded, and these are perfectly
compatible with the magnitudes of the coefficients in the differential systems.

Exercise 5.2.5 Show that the Green’s matriz (5.2.43), (5.2.44) has a unit

Jump when t = s. What s the significance of this result for the differential
equation satisfied by the Green’s matriz.

Exercise 5.2.6 Use a sketch to explain why rapidly increasing solutions of
a linear differential equation should be tied down by terminal boundary con-
ditions while rapidly decreasing solutions need to be tied down by initial con-
ditions if the boundary problem is to have a stably computable solution.

5.3 Nonlinear differential equations

An important computation associated with the embedding approach to the
parameter estimation problem is the explicit solution of the nonlinear dif-

ferential equation (5.1.1)) for a given parameter vector and given boundary
values. This problem is written

dx

- =f(tx), B(x)=b (5.3.1)
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The form of the boundary conditions has to be selected in the embedding
method. Here it is assumed that the boundary operator B (x) has the form

B (x) = Bix (0) + Byx (1). (5.3.2)

It is further assumed that the system has a well determined solu-
tion x* (¢) which satisfies the Kantorovich conditions for the application of
Newton’s method.

Stability in nonlinear problems becomes a property of the linear problem
governing the behaviour of perturbations about a current trajectory. In this
sense it is a local property. Easy nonlinear problems are associated with
relatively slow perturbation growth. Such problems can be expected to have
the property that Newton’s method applied to solve the discretized problem
will have a reasonable domain of convergence. The key property here is the
connection between the Jacobian matrix in the solution of the discretised
nonlinear BVP and the discretized linearization of the BVP about the cur-
rent trajectory. This is explored in the Appendix to this chapter. Linear
IVP/BVP stability requirements discussed in the previous section are inflex-
ible in the sense that emphasis on dichotomy means that solutions must not
depart too far from the classification as increasing/decreasing in order to
guarantee a moderate stability constant. Such a departure signals that the
characteristic stability property of being capable of following a slowly varying
solution with an appropriately coarse mesh need not hold if the linearised
equation has rapidly varying solutions. Important conflicting examples oc-
cur in the linearised equations that can be associated with dynamical system
trajectories. These include solution trajectories which have the properties:

e they can have a stable character — for example, limiting trajectories
which attract neighbouring orbits; and

e they have linearised systems which switch between increasing and de-
creasing modes in a manner characteristic of oscillatory behaviour . If
this switch is rapid then it could be difficult to satisfy the dichotomy
partitioning inequalities with a modest bound. This is likely to make
more difficult the solution of the nonlinear problem by Newton’s method.

The approach followed here begins by first discretizing the differential
equation to obtain an approximating system of nonlinear equations. For
example, using trapezoidal rule integration on the mesh considered in (|5.1.15])
gives

At;

Xi+1 — X =

(f (ti—‘rlaxi-i-laﬂ) + f(tuXZ)B))? 1= 1727 e, — L. (533)
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Augmenting these equations with the boundary equation, which is here as-
sumed to be linear, leads to the nonlinear system

F(x.) =0, B(x.)=Db (5.3.4)
where x,. is the composite vector
Xe = [x]," ,xﬂT. (5.3.5)
This system use can be solved by the following steps:
1 Newton step - solve for h
F'(x)h; = —F(x.), B(h)=b—B(x.).

where F’ is the variational operator (Jacobian of the nonlinear system)
derived from F. It is assumed that B is linear otherwise it too must be
linearized.

2 Perform a line search on an appropriate objective ® (\). Note that in
contrast to the problem of maximising a likelihood the problem here is
typically a descent computation so that the aim is to seek lower values
in the linesearch step. Relevant cases include:

Residual sum squares To balance differential equation and bound-
ary residuals note that individual differential equation residuals

are typically O (%) while the boundary residuals are typically
o).

® (A) = [|F (xc+ Ah) [+ [[b — B (xc + Ahy) % (5.3.6)
Affine invariant objective Here
®(\) = [, (5.3.7)
where h, satisfies the system of equations :
F'(xc)he = —=F(xc + Ah7), B (h,) =b— B (x.+ Ahf).

The (remote) possibility of the iteration cycling when this strategy
is used has been noted (4.2.9). However, h, is a descent vector for
the affine invariant objective (5.3.7)) in this case.

Let the linesearch terminate with A = \*.
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3 Update x. and test for convergence.

X, ¢ X. + A*h.

Remark 5.3.1 Here h. transforms correctly with x. as a contravariant vec-
tor. This contrasts with the use of the monitors and for quasi-
likelthood optimization where rescaling of the unknown log likelihood makes
no sense and the invariance is to transformations of the parameters to be
estimated. It is the form of affine invariant monitor considered here that was
shown to have the possibility of cycling in [J]. An improved implementation
which at least partially overcomes this problem is given in [17].

Example 5.3.1 The problem considered derives from the similarity solu-
tions to the flow between two infinite rotating discs . This problem was con-
sidered in [75] and the discussion makes for an interesting comparison. The
aim there was to demonstrate the advantages of the multiple shooting method
by solving a sequence of problems that had proved difficult by the methods
commonly used at the time. The stability advantage was emphasised by the
use of the 32 bit single precision computations available on an IBM 360/50.
The governing fifth order system of differential equations is:

dl‘l

) }

dt 25

dlL‘g

— =

dt 3

de‘g
E:$1x3+$§—xi+k,
dZE4

— =

dt 5

dilj'5

— = 2x5T T1T5;
7t 2%4 + T1T5;

and the corresponding boundary conditions are:

8] 8
e =
/N N
N O
~— ~—
[
V2) [

This problem corresponds to a form of nonlinear eigenvalue problem as k has
to be determined so that all siz boundary conditions are satisfied. The smooth-
ing approach sets k = wx¢(t) and adjoins the additional differential equation
ddet(t) = 0. This reduces the problem to a boundary value problem for a sys-

tem of 6 ordinary differential equations. The parameter s in the boundary
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conditions corresponds to the ratio of the speed of rotation of the two discs.
Here b is the distance between the two discs and corresponds to the square
root of the Reynolds number for the problem. The initial approximation used
s x =0 in all cases.

The system of differential equations is turned into a system of nonlinear
equations by using the trapezoidal rule integration formula. When combined
with the boundary conditions the result is a system of 6n equations in 6n
unknowns which can be solved by Newton’s method.

Results of numerical computations are given in Table 1 below. Three cases
are considered corresponding to s = 0.5, 0.0, —0.3, b = 9. Starting values
are x; = 0, 1 = 1,2,--- ,n. Other settings are n = 101, iteration tolerance
1071, and line search parameter = .25. The iteration tolerance is applied
to the objective function which is defined as \/®(\) where ®(N) is the affine
wnvariant objective in the first case, and the sum of squares of residuals in
the second. Note that the objective varies from iteration to iteration in the
first case, so that two entries in the table are made for each iteration in the
affine case, but maintains the same form for each iteration in the second so
that the starting value for each iteration is the terminating value from the
PTevious one.

In this problem, difficulty typically increases with increasing separation b
and decreasing rotation speed ratio s. However, another form of difficulty can
occur in the form of multiple solutions (the s = 0 case gets particularly diffi-
cult for this reason at intermediate values between b =9 and b = 18) . The
feature of the results is the manner in which the sum of squares of residuals
outperforms the affine invariant objective. This superiority is maintained in
the more difficult problems tried with larger b.

Example 5.3.2 A classic example to illustrate nonlinear stability is provided
by the Van der Pol equation :

d*x dx
(1 =22 = =0. 3.
T A :B)dt+a: 0 (5.3.8)

This is a “reliably” difficult example with difficulty increasing with X. The
limit cycle behaviour is illustrated in the scilab plot of initial value trajectories
figure[5.1 This shows convergence to the limit cycles for A = 1, 10.

The Van der Pol equation can also be posed as a boundary value problem. .
The transformation s = 4t/T maps a 1/2 period onto [0,2]. If a new variable
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it cov Ss
A \ objs \ objt A \ obj

s=0.5
0 3.3541-01
1(.25] 2.3096 00 | 1.770500 || 1 | 1.6807-01
2 1 2.2310 00 | 1.4067 00 || 1 | 5.9296-03
311 1.5757 00 | 8.7796-01 | 1 | 1.3200-03
4| 1 | 1.38771-01 | 2.0114-02 || 1 | 5.1152-06
51 1 2.4072-02 | 2.2878-04 || 1 | 7.0834-11
6| 1 2.3238-04 | 1.4847-08
711 1.4849-08 | 2.4315-15

s=0.0
0 3.999-01
11.25 | 1.7769 00 | 1.413400 || 1 | 1.2075-01
2] 1 2.2370 00 | 1.5573 00 || 1 | 1.8768-02
31.25| 1.5529 00 | 5.6232-01 | 1 | 1.0154-03
4 .25 | 1.5421 00 | 1.0481 00 || 1 | 1.5290-04
51 1 5.3675-01 | 7.1059-02 | 1 | 1.6576-07
6| 1 6.3186-02 | 3.5046-03 || 1 | 3.3204-12
711 3.4912-03 | 4.4195-06
81 1 4.4287-06 | 1.6675-11

s=-0.3
0 3.1213-01
1(.25] 1.6152 00 | 1.2853 00 || 1 | 1.0603-01
2 1.25| 1.9894 00 | 1.4501 00 | 1 | 1.5674-02
3] 1 1.0389 00 | 8.80146-01 || 1 | 5.1339-03
411 4.1931-01 | 4.2213-02 || 1 | 5.2968-04
51 1 5.1575-02 | 8.2002-04 || 1 | 2.4096-05
6| 1 8.4793-04 | 3.7020-07 || 1 | 2.4622-09
71 3.7013-07 | 1.4444-13 | 1 | 1.6204-16

Table 5.4: Rotating disc flow: numerical results for b =9

253
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-2 20
Figure 5.1: Van der Pol equation, initial value trajectories

xg = T/4 is also introduced then the differential equation becomes

dxl
— =X
ds 2
dx
d_s2 =\ (1 - x%) Tolz — xlxg,
d.??g
— =0.
ds
Appropriate boundary data is
010 000
Bo={000/|,Bi=]1010],b=0.
100 100

The first two conditions specify that the state derivative vanish at successive
extrema. The periodicity condition expressed in the third condition states that



5.4. THE ESTIMATION PROBLEM 255

the extremal values will alternate in sign. This system has the trivial solution
x = 0, so starting values need to avoid this. Continuation with AN =1 has
been used in the reported computations starting with the known solution for
A = 0. Meshes h = 1/100,1/1000 have been used, as has a mesh based on
extrema of Chebyshev polynomials shifted to [0,2]. Equispaced meshes such
as these can be expected to be inefficient as the need for adaptivity is clear
from the scilab figure [5.1 In this case similar accuracy is obtained for the
equispaced mesh corresponding to h = 1/1000 and the Chebyshev grid with
101 extrema. The results for A\ = 10 are summarised in figure [5.3. The
values for the additional cycles are obtained by reflection.

20 4 2.0 &0 4 | o

40 4 L an

20 4 20

20 1 +-20

-4 = + =40

-6 + 60

25 25 -0 -0

Figure 5.2: Van der Pol equation limit cycle, A = 10

Exercise 5.3.1 Show that h, is a direction of descent in (5.3.7).

5.4 The Estimation Problem

5.4.1 Basic questions

It is convenient to use the smoothing formulation of the estimation problem
(Remark in this subsection. Important questions that need to be
asked about the two approaches to the estimation problem suggested in the
introduction to this chapter are:

1. Are they equivalent? If so:

2. Are they consistent?
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Superficially the embedding and simultaneous methods look rather different.
This is not misleading. The relatively arbitrary component in the embedding
method has been noted, while the simultaneous method has a surprising
depth of structure. Perhaps the most obvious feature in common is that they
address the same problem! However, progress is possible on the question of
equivalence .

Theorem 5.1 An isolated local minimum of the sums of squares of residuals
for either the embedding or simultaneous method is also an isolated local
minimum of the sum of squares of residuals of the other. An appropriate
choice of boundary matrices By, By is assumed.

Proof. Let Sg(x) be the sum of squares of residuals in the simultaneous
method corresponding to feasible x, and let Sg (x, b) be the sum of squares of
residuals in the embedding method corresponding to given boundary vector
b. Let xg be an isolated local minimum of the simultaneous method in a
ball R (xg, p) of radius p for some p > 0. Then direct substitution gives

BlXS(O) + BQXS(l) = bs .

Because xg satisfies the corresponding sum of squares is defined for
the embedding method and Sk (xg,bg) = Sg(xg). Assume xg, bg is not
a corresponding local minimum of Sg (x,b). Then there exists x = xp €
R (xg,p), and b = bp such that

Sk (xp,bp) < Sg (xs,bg) .
However, xp is feasible for the simultaneous method. Thus

SS (Xp) = SE (Xp,bp) < SS (Xs) .

This is a contradiction. It follows that xg, bg provides a local minimum for
both methods. The argument can be reversed to show that if xg, bg is a
local minimum of the embedding method then it is a local minimum of the
simultaneous method also. m

This is a non—constructive argument. A more interesting result would be
one that addressed more of the structure of the methods. Thus it is of interest
to show that satisfaction of necessary conditions for either the embedding or
simultaneous methods can be deduced from satisfaction of the other.

Theorem 5.2 Let xg, Ag satisfy the necessary conditions on the simultane-
ous method, then xg,bs = B1xg(0)+ Baoxs(1) satisfy the necessary conditions
on the embedding method . Let xp, bp = Bi1xg(0) + Boxg(1) satisfy the nec-
essary conditions on the embedding method then there exists Ag, ALV,c =
V.Sg such that Xg, Ag satisfies the necessary conditions on the simultaneous
method .
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Proof. The necessary conditions for a stationary point of the simultaneous
method Lagrangian £ (x, X) = Sg (x) + ATc (x) give

AgCS = —VISs, (& (X5> = O,

where C's = V,c(xg) with ¢ given by (5.1.15)). This gives

(AT o}[ Cs }:—vxss

By By
so that
0 0
: Cg -1 :
0=[ AL 0 ol ==V.8 o

o] s s |
I, I,

ox

—_vmssa_ba

interpreting the right hand side as the solution of the trapezoidal rule dis-
cretization of . In the embedding form of the smoothing problem b
provides the adjustable parameters so this shows that the necessary condi-
tions for the embedding method are satisfied.

If the necessary conditions on the embedding method are satisfied then

ce 17|

V.S ol =0.
E { Bl---BJ 0
I

It follows that there is s € R™ VP such that

8. -1
v”"SE{By'E-BQ} =[sT 0].

Thus

VxSE:[ST O]|:BICEB2:|

whence

VISE = STCE
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showing that the necessary conditions on the simultaneous method are satis-
fied at xg with A = s. Note it is implicit in this argument that ¢ (xg) = 0
and so is feasible for the simultaneous method. m

Consistency for the embedding method reduces exactly to the question
considered in Theorem if an exact (multiple shooting) form of integration
is used to solve the embedded boundary value problem because the use of
an exact integration scheme is equivalent to using the true model. It follows
that the embedding method is an exact mazimum likelihood method for the
sum of squares objective corresponding to normally distributed observation
errors assumed in this section. This argument can be extended to an ap-
proximate form of integration such as that based on the trapezoidal rule by
taking into account truncation error effects . It turns out that the same form
of argument applies. The consistency argument for the approximate inte-
gration case relies on the estimates 3,,, b, computed using exact integration
producing small residuals when used as hypothetical initial guesses for the
finite difference scheme estimation for n large. This permits the Kantorovich
theorem to be applied to show that the finite difference estimates are increas-
ingly close to the estimates produced by exact integration as n — oo. This
happens because the contribution to the residuals made as a consequence of
the truncation error contribution to the approximate integration of the differ-
ential equation is relatively small compared to the stochastic errors provided
a suitable integration mesh is chosen.

The first requirement in the exact integration case is to ensure that the

log likelihood is well defined as a function of the parameters in a suitable
neighborhood of 3%, b*.

Assumption 5.3 There exist positive constants kq, ko, k3 and boundary ma-
trices By, By such that for all ||B — B%| < ki, ||b—b*|| < ko the bound-
ary value problem for has an unique solution x (t,3,b) satisfying
maxy er, ||X (¢;,8,b) —x(t;, 8%, b")[| < ks H ﬁ:ﬁ* H, where T,, is the set
of data points. This solution can be found by an application of Newton’s
method; and the conditions for an application of the Kantorovich Theorem

(Theorem are satisfied.

Theorem 5.4 Assume that Assumption[5.3 holds for the embedding method
applied to a sequence of reqular experiments as n — oo, and that

]' - * * * *
- > Vigmx (ti, 8%, b)) OTOV gpx (t;, 8, b") = 0 (5.4.1)
i=1
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for all n large enough, then the embedding method is consistent . That is
there exists ng such that, for n > ny,

[ g: ] njoo { ﬁ 1 , M — 00. (5.4.2)

Proof. Assumption ensures that the signal approximating the data is
well defined in the neighbourhood of the true parameter values. Thus it is
necessary only to verify that the Hessian matrix of the negative log likelihood
is positive definite at the true solution in order to apply the consistency
theorem (Theorem derived in Chapter 3. Here the negative of the normal
likelihood is given, up to an additive constant, by

20 (ve | ] ) =2y - ox @Bl

A sufficient condition for positive definiteness of the Hessian is

* T *
%5* {v(@b)ﬁ (y: { o ] ,Tn> Vi L (y: { 2 ] Tn>} -0

as this ensures positive definiteness in an open neighbourhood of [ ﬁ* } for
all n large enough as the limiting Hessian tends almost surely to its expec-
tation. This condition is just the positive definiteness assumption (5.4.1)) in
the statement of the Theorem. m

As in Chapter 3, equation (3.2.10) there is an associated rate equation ex-

pressed in terms of the variance . Here this is

BT [} 6) e

Now it follows from the assumption of continuous dependence that a
similar rate governs the difference in state variable values.

The above consistency and convergence rate results assuming exact in-
tegration can be extended to two important applications of approximate
integration :

1. when each differential equation discretization grid K,, corresponds to
the observation grid T,,; and

2. when the discretization is made on a fine enough fixed grid {¢; € K, j =
1,2,--- ,|K|} independent of T, as n — oc.
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In the first case the condition for a regular experiment together with the
additional requirement that the differential equation be integrated satisfac-
torily ensures that the maximum mesh spacing At — 0, n — oo. In the
second case At is fixed and finite. This means that truncation error effects
persist in the solution of the discretized problem as n — oc.

The first step is to ensure that both the true and approximate log likeli-
hoods are well defined in a suitable neighbourhood of 3, b*. This requires
a reformulation of Assumption to take into account also the need for
the solution of discretised system based on the trapezoidal rule to be well
determined.

Assumption 5.5 There exist positive constants ki, ks, k3, kg and boundary
matrices By, By such that for all |8 — B%|| < k1, ||b—Db*|| < ky both the
boundary value problem for has an unique solution x (t,3,b) and
there exists Aty such that for all At < Aty the discretized system possesses
an unique solution xa (ti, B,b) defined on the discretization points t; € K
such that maxy (||x (tg, 8,b) — xa (tr, B, b)||) < k4 (At)®. These solutions
can be found by an application of Newton’s method; and the conditions for
an application of the Kantorovich Theorem (Theorem are satisfied. As
before the boundary value problem solution satisfies the continuous depen-
dence condition:

max 1% (tg, B,b) — x (ty, B, b")|| < K3

J

For an analysis of the convergence of the discretised system to the continuous
one see [6].

Also needed is a form of the Kantorovich Theorem packaged together
with equation (3.2.6)). This permits the minimum X of a given function f(x)
to be related to the corresponding minimum X, of the perturbed function
fe (x) = f(x) + g (x) for small values of .

Theorem 5.6 Assume there exists p > 0 such that X is the unique minimum
of f(x) in the ball S(X,p) in which the conditions of Theorem hold.
Further, that for € small enough, these conditions translate to the application
of Newton’s method to f. (x) for x € S(X,p). In summary:

(i) V2 fe (0) = V2. (V| < Ky flu— v, u,v € S (X p);
(ii) ||V - (R)7'|| < Ka;
(iii) ||[V2f. (X) ' VI (X)| < Ks, € = KiFKoK;y < L,

(iv) 2K5 < p.
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Then f. (x) has a unique minimumX. € S (X, p) as a consequence of Theorem

while equation gives
% = x| < 2K,

Note that K3 can be chosen to be proportional to € as V f. (X) = eVyg. (X).
This ensures that the conditions of the theorem can be met for € small enough.

Theorem 5.7 Assume Assumption holds, that At(n) = o(n™'/?) as
n — 00, and that n is sufficiently large that

1 n
E Z V(ﬁjb)xA (ti, ﬂ*, b*)T OTOV(ﬁjb)XA (ti, B*, b*) > 0. (544)
1=1

Then the embedding method based on the trapezoidal rule discretization is
consistent : R
Baimy | s [ ﬁ: ] .

Proof. The result is a consequence of successive applications of Theorem
to show that (Xa(m)). approaches (X,). as n — oo where, as before,
the subscript ¢ indicates a composite vector. The assumptions ensure that
the conditions of this theorem are satisfied provided the choice of K3 for
each n gives Kf — 0, n — oo with corresponding initial guess X,,. They
also ensure that the linearised equations that determine V(gpyx(t,3,b)
and V(g p)Xa@m) (t,3,b) have stably computable solutions which differ by
O (At(n)?). Let La denote the log likelihood evaluated using the solution
of the discretised system and r2 the corresponding residuals, n being under-

o~

stood . It is assumed they are evaluated at [ g" ] for each At(n). Then

n

1 1 1
NVebla= "Vl = Vbl
1
T ol Z {rrT OV gpxa (t) =1/ OV(grx (1)},
teT,
1 T
= o? {(rtA —1.) OVigpxa (1)
teT,
+ I‘tTO (V(Ig,b)XA (t) — V(@b)x (t))} . (5.4.5)

The deterministic contribution to %V(57b)£A comes from the terms
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1. (I‘tA - I‘t)T OV(ﬁ,b)XA (t), and

2. (X* (t) — X (t))T OTO (V(B,b)XA (t) — V(ﬁb)X (t))

Here use has been made of y; = &; + Ox}. Summation of the first set con-
tributes a term which is of the order of the truncation error o (n™!) when the
regular experiment condition is applied, while summation of the the second
depends not only on the truncation error estimate but also on the convergence
of (X,). to its limiting value and so is almost surely smaller. The stochastic
contribution comes from the terms e/ O (V(gpyxa (t) — V(gp)x (t)). The law
of large numbers shows that these terms make a small contribution almost
surely even before the truncation error component is taken into account. It
a.s.

follows that VﬁbﬁA —> 0, n =+o00= Ky — 0. Thus

n—0o0

<2KE % 0.

n—oo

H[ﬁ —Ba

The consistency result now follows from ((5.4.2)). =

Corollary 5.1 If the value of At is fixed small enough instead of proceeding
to the limit as At — 0 then there is a ball centred on l g* ] such that

Ba s :
[BA CS([b*},O(At)),n%oo.

This follows because the truncation error O (At?) is a factor in all the terms

in (5.4.5). Thus K} = O (At?) for all n large enough.

Remark 5.4.1 These results have consequences also for the performance of
the Gauss-Newton iteration. When At — 0 the asymptotic convergence rate
15 essentially the same as that of the exact procedure and approaches second
order. When At is fized the rate contains a truncation error term of O (At?)
and so asymptotes to a fast, first order method.

Exercise 5.4.1 Complete the proof of Theorem [5.1. That is given a local
minimum of Sg (Xx,b) show that it provides a local minimum of Sg (x).
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5.4.2 Embedding method details

The embedding method assumes that boundary conditions exist such that
the linearization of the differential system about the true solution of the es-
timation problem has a well determined solution. A sufficient condition for
this is that the linearized system of differential equations possesses a non-
trivial dichotomy . However, the Van der Pol example shows that nonlinear
problems can possess a well determined nonlinear stability behaviour in cir-
cumstances in which a fixed partion into increasing and decreasing solutions
of the linearised problem is not available . Di-stability may not provide
a panacea here. This means general solution methods should incorporate
such facilities as adaptive meshing to ensure reasonable integration accuracy
and a continuation facility to provide good enough starting values for the
iterative solver [6]. The embedding method has the advantage of being suf-
ficiently modular that well performed boundary value solvers can be readily
incorporated into the estimation procedure. The first step in implementing
the embedding algorithm is to determine suitable boundary conditions as
a key part of developing the boundary value framework . Two examples
taken from the honours thesis [17] illustrate problems caused by inadequate
adjoined conditions. In both examples initial conditions are imposed on the
system of differential equations. Potential problems are then illustrated using
plots of the sum of squares of residuals response surface as problem param-
eters are varied about imposed true values. The basic idea for the first plot
is taken from the paper [93]. The differential equation system considered is
the Fitzhugh-Nagumo equation

dx x3

d 1

% = =5 (@1 —a+bw), (5.4.7)
with true parameter values a = b = .2, and subject to initial conditions
x(0)T = [=1,1]. The response surface is plotted for parameter values in

the range —1 < a,b < 1 for terminal integration values ¢, = 20,40, 70, 100.
The plot given in [93] corresponds to the case t,, = 100. This system is
often used as a nonlinear example displaying periodic behaviour. There is
evidence of this behaviour here, but the plots also show regions of solution
roughness which increase with ¢,, in a manner suggesting chaotic behaviour,
and there is an interesting change in the character of the response surface for
larger values of b for each of the t,, values which could suggest bifurcation.
There appears to be a reasonable domain of attraction for initial parameter
values selected in the immediate neighbourhood of (.2, .2), but initial choices
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Figure 5.3: Estimation response surface plots for Fitzhugh-Nagumo equations
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outside this region are unlikely to provide successful starting values for the
estimation problem.

The second example provides dramatic evidence that an initial value for-
mulation of the embedding method is fraught with difficulty when the differ-
ential system is chaotic. We consider the Lorenz equations

dx

dx

d_tQ =T (28 — 1'3) — T2, (549)
dx 8

This system is chaotic with Lyapunov exponents A\; = .905, Ay = 0., \3 =
—14.57. The instability of the system is illustrated in Figure [5.4] where plots
of trajectories for two sets of initial values x* (0)" = [1,1,30], and % (0)" =
[—0.1,2,31] are displayed. Reasonably close initially, the trajectories begin
to diverge seriously about ¢ = 1, the divergence being more in phase rather
than amplitude. The response surface plots are very revealing. Here x* (0)
is taken as the true vector of unknowns corresponding to the boundary value
parameters in the embedding method. The response surfaces are plotted
as functions of x1(0),22(0) and correspond to terminal integration values
t, =1,3,5,10. The plots correspond to the choice n = 1000. The instability
of the response surfaces with respect to the initial value parameters as t,
increases is clearly evident . This conclusion is valid despite the instability of
the forward integration. The system actually possesses a backward stability
property [20] which means that the visual impression is correct even if the
numerical detail cannot be accurate. The crucial point is that the initial
value formulation of the embedding method in the case of chaotic system
dynamics is a recipe for serious disappointment. We have seen already that
inappropriate choice of conditions in the case of strong dichotomy leads to
serious problems. It follows that the adjoining of auxiliary conditions in the
embedding method must be done appropriately and the a priori choice of
initial values, if made at all, should be done with caution .

The recommended strategy is to choose the adjoined conditions equal to
the (natural) conditions determined in Remark when these are com-
puted for the linearised system corresponding to x variation evaluated at the
initial solution estimate x?, B°. These have the great advantage that they
can be set automatically. Typically we set p = 1 unless there is evidence of
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R

Figure 5.4: Diverging trajectory plots for Lorenz system
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Figure 5.5: Estimation response surface plots for Lorenz equations
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scaling problems. Let the matrix of the linearised system be written

Xll Xl2
F/ (XB,BO) — X22 X23
Xn-1)n-1) Xn-1)n

The procedure used here to determine the natural boundary conditions starts
by permuting the first block column of F’ to the last column position by
postmultiplying by a permutation matrix P. This gives

X12 Xll
Xog X3 0

Xan-1)n-1) Xm-1yn 0

An orthogonal factorization of the permuted matrix to upper triangular form
yields the desired form:

R11 R12 0 e 0 Rln
Roy Ros --- 0 R,
OTF (x2,3") P - 22 2 _ ? . (5.4.11)
Rip—1ym—1) Bm—1)n

To connect the result of this factorization with the cyclic reduction results

note that in equations (5.2.17)) and ([5.2.18)) it is shown that the cyclic re-

duction factorization can be related to an orthogonal times upper triangular
factorization of a permuted matrix

F' = QRPr,
while the above development gives
F' = QRPT.

Thus T
F'F = PYR RPr = P'R"RP.

It follows that for each 7, j there corresponds s, t such that

(F'R) = (B"R),

Thus there is a close relation which identifies corresponding elements pro-
duced by the two transformations.



5.4. THE ESTIMATION PROBLEM 269

Constraint matrices

H (Xg’ BO) = R(”_l)"“ G (X(c]7ﬁ0) = R(n—l)(n—1)7 (5412)

in the sense of the cyclic reduction calculations can be identified by analogy
with , and this identification permits the required boundary matrices
By, Bs to be computed by the orthogonal factorization ([5.2.16)). For this
choice of By and Bs to be satisfactory initially requires the initial estimates
of the additional parameters b to be adequate in the sense of leading to
sensible corrections in the initial Newton step. This is something like well
posed assumption for the estimation problem. However, it would be necessary
to recompute By, By and re-embed if there is evidence of serious deterioration
in the conditioning of the calculation of x. . One requirement is that ||Z]|
evaluated at the current iterate be small where

Z=[H((x,B) G(x,0) ] {gg }

If Z is small then there has been little loss of the initial orthogonality at
the current stage of the computation. If this is the case then computational
problems possibly suggest inherent problems with the differential system.
If Z is not small, and resetting the boundary conditions does not improve
matters, then the most likely causes are either the selection of poor initial
estimates, suggesting the use of a continuation strategy , or a differential
system that is not stably posed as a two-point boundary value problem.

The steps involved in the embedding form of the estimation algorithm
are as follows:

1. Provide starting values for 3 and b. The provision of a suitable initial
estimate for 3 is an expected requirement and could follow from exter-
nal information. However, the initial choice of b is linked to the choice
of embedding and satisfactory values could be harder to find.

The choice b = 0 is made in the following example.

2. Solve the embedded nonlinear system to provide the comparison values
X, in order to compute the residual vector at the current point (3, b).
It is assumed here that the problem log likelihood is a sum of squares
of residuals corresponding to a normal distribution of data errors. Cal-
culation of x. involves solving the nonlinear differential system so it
involves an inner iteration which terminates with F' (x.,3) available
as a byproduct of the Newton iteration.



270 CHAPTER 5. PARAMETER ESTIMATION

3. Use the scoring method to generate corrections to the current parame-
ter vector @ and boundary vector b. This requires integrating the vari-
ational equations (compare (5.1.10)), (5.1.11)), (5.1.12)), (5.1.13])) which
are linear but have matrix arguments:

F (x., 8) g—’; = V4F (x.,8), B (?;;) —0, (5.4.13)
F (x., ) % =0, B (%’I‘;) =1 (54.14)

4. Perform a linesearch using the likelihood as monitor. Note that this
requires values of x. in the search direction and these require the inte-
gration of the nonlinear system. This puts an emphasis on being able
to accept the initial (unit) step in the linesearch parameter. The cur-
rent parameter vector 3 and boundary vector b are then updated, and
the convergence test is applied.

Example 5.4.1 Again the Mattheij example : Consider the modification of
the Mattheij problem (5.2.47), (5.2.48) with parameters i = v, and G5 =
2. This system possesses the solution x (t,3%) = e'e for arbitrary v. The
modified system is:

[ 1 —BicosBat 0 1+ Bysinfat
M(t) = 0 b 0 ;
| 1+ BisinfBot 0 14 Bicosfot

[ ¢! (—1 + 7 (cos 2t — sin 2t))

f(t) = —(y =1

| ' (1 =y (cos2t +sin2t))

In the numerical experiments reported in Table[5.5 the natural boundary con-
ditions with p = 1 have been set at the first iteration . The aim is to recover
estimates of 3%, b* from simulated data "' Oe +¢€;, €; ~ N(0,.011) using the
Gauss-Newton algorithm. The computation is stopped when VFh < 1078,
Here the angle between the initially selected boundary conditions and those
that would be available at subsequent iterations remains small. We have

T _
I[Br B:],[Bi B»], —Illr <1072
k > 1, where k is the iteration number, and the norm is the Frobenius norm.

The second example compares the performance of initial value and bound-
ary value methods on the Lorenz equations (5.4.8), (5.4.9), (5.4.10). The
“true” solution data is obtained by solving the initial value problem with
x*(0)7 = [1,1,30].
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D 05
O—[1/3 1/3 1/3 0= 01 o]
n=>51v=10, c =.1 n=>51,v=10, c = .1
14 iterations 5 iterations
n=>5l,v=20,0=.1 n=>51,v=20,0=.1
11 iterations 9 iterations
n=251,~v=10, 0 = .1 n=251,v=10, c =.1
9 iterations 4 iterations
n=251,v=20,0=.1 n=251,v=20,0=.1
8 iterations D iterations

Table 5.5: Summary of Gauss-Newton results for the modified Mattheij prob-
lem

Example 5.4.2 [t proved necessary to adjust the form of the estimation data
on the initial value form of this problem to obtain any results at all. The final
form used was

1007, o
YZ_|:0 0 1:|X(ti)+eiaz_1727"'ana

where €; ~ N (0,1), and n = 200. Starting estimates for b and (B are
generated by adding random noise to the exact values

B=p"+03,
b = b* + db,

with éb ~ N(0,31), 68 ~ N(0,0.151). Although a convergent iteration was
obtained,the result did not correspond to the expected solution. Results are
summarised in Figure[5.6: The natural boundary matrices corresponding to
the true solution x*(t) are

—0.0155 0.0084 —0.2942
By = | 0.0483 0.0061 0.8043 |,
—0.9790 0.1958 0.0574

and
—0.4504 —-0.7696 0.3434

By = 0 —0.4694 —0.3611
0 0 0

?
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Figure 5.6: Initial and converged solutions for the initial value formulation
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Solution at initial guess

Figure 5.7: Initial and converged solutions for the boundary value formula-
tion

and otherwise similar initialisation is used. These boundary matrices are used
here to define the particular form of the embedding method. The data used
corresponded to the choice y(t;)1 = *(t;)1 +&;,6; ~ N(0,1),i=1,2,---,200
corresponding to a failed case for the IVP. This time a satisfactory compu-
tation is achieved. This choice corresponds to the variable corresponding to
the drive equation. Results are summarised in Figure [5.7:

An example of a system with two positive Lyapunov exponents is given
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by the Lorenz (1996) equations
dl’l

S (e — )~ + . (5.4.15)
% =1 (23 — 24) — 22+ f, (5.4.16)
% — 2 (w4 — 25) — 25 + f, (5.4.17)
% =ux3 (x5 — 1) — 24 + f, (5.4.18)
% = 24 (21— 22) — 25 + , (5.4.19)

with f=8.17. The estimation problem based on this system is discussed in
some detail in [I] who note that the presence of two positive Lyapunov ex-
ponents requires a modification of their basic synchronized initial value ap-
proach which involves penalising both the first and third differential equa-
tions ,(5.4.15)) and (5.4.17)), and a consequent need to collect values of the
corresponding solution values as data items at each observation point . This
constraint on the provision of estimation problem data does not apply to the
boundary value embedding approach. This point is illustrated here using a
single solution value in the data sequence in the embedding algorithm.

Example 5.4.3 This ezample illustrates the robustness of the boundary value
embedding method in this more complicated situation. The data sequence is
chosen as

Y, = x* (tz)5 +8i7i = 1,2,' . ,200,

where ; ~ N (0,02), 0 = 0.3, and the * is used to denote exact quantities.
The computed boundary matrices are

—0.2466 0.3415 —0.0282 0.4924  0.6841
—0.1790 —0.2863 —0.1201 0.3459 —0.1249
By = 0.3798  —0.3457 —-0.6443 0.2565  0.2039
—0.7452  0.0797 —0.5354 —0.1267 —0.2342
—0.2778 —0.5959 0.1805 —0.4544 0.5535

and

—0.2674 —0.0961 0.1433 —0.0095 0.0998
0 0.4998  0.2637 0.6186 —0.1854

By = 0 0 —0.4222 —0.1365 —0.1302
0 0 0 —0.2775 —0.0612
0 0 0 0 —0.1493



5.4. THE ESTIMATION PROBLEM 275

Solution at initial guess
10
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Figure 5.8: Initial and converged solutions for the Lorenz 1996 model

starting estimates for b and B are generated by adding random noise to the
exact values

B=pB"+48,
b = b* + &b,

with b ~ N(0,1),683 ~ N(0,0.15). The results for the Gauss-Newton al-
gorithm are displayed in figure [5.8.  They show that rate of convergence
measured by number of iterations in this application, while still reasonably
satisfactory, proved distinctly slower than in the previous example with lit-
tle evidence of the asymptotic second order convergence expected for large n.
This may be a hint that a different choice of observed data could be more satis-
factory. The choice made in [1] is a consequence of the choice of the first and
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third equations for penalisation in order to synchronise with the corresponding
data items. The data choice made here is y,(t;) = x5(t;,3%),7 =1,2,--- ,n
and has no corresponding structural justification.

Exercise 5.4.2 Consider the multiple shooting method (exact integration).
Show that

R(n—l)(n—l)X(1> 0) + R(n—l)n =0, (5.4.20)

where R is the matriz corresponding to (5.4.11)) and X (t,0) is the fundamen-
tal matriz satisfying X (0,0) = I. Hence show that in this case the natural
boundary condition matrices are given by

[ B By | =pQr, (5.4.21)

where () is defined by the orthogonal factorization

{ X(lI,O)T ] =@,

and p is the scale factor in .

Why is this not a practical method for evaluating these conditions in gen-
eral?

5.4.3 The simultaneous method

The name implies that estimates of the solution vector x and parameter
vector 3 are refined simultaneously [105]. This is in contrast to the embed-
ding method with its nontrivial inner iteration which requires the solution of
the variational boundary value problems (5.1.10]), (5.1.11)), (5.1.12)), (5.1.13)
needed for the current Gauss-Newton iteration. The constrained optimiza-
tion setting of the simultaneous method is more complicated as Lagrange
multiplier estimates must be computed, but this approach has the advantage
that no form of boundary information is required. It is convenient here to
use the smoothing form of the problem in which the parameters are treated
as additional state variables (Remark [5.1.1), and the augmented differential
equation written

dx

— =f(t,x). 5.4.22
o = E{tx) ( )
The observation equations have the form

yi = Ox* (tl) + &;, 1= 1, 2, ey, (5423)
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and x., the blocked vector with sub-block components x(t;) = x;,i = 1,2, -+ | n,
is chosen to minimize 5~ 1", [|r; (x;) ||* where

The feature of the simultaneous method is that the objective is minimized
subject to equality constraints obtained by discretizing the differential equa-
tion. Using the trapezoidal rule assuming an equispaced solution grid with
spacing At which corresponds also to the points at which the observations y;
are made is the simplest of the available possibilities. Here the constraints
have the form

Ci(xiaxi+1>:O7 Z:1,2,,7’L—1
where
At
C;, =Xj1 — X3 — 7 {f (tz, Xi) + f (ti+1,Xi+1)} s (5424)
= Cy; (XZ) + Ci(i+1) (Xi—l—l) s 1= 17 2, e, N — 1. (5425)
Let

1 n
P (xe) = o > lri (xa) 113
=1

Associated with the simultaneous method is the Lagrangian

n—1
Lo (X, Xe) = B (x0) + > Al ey,
=1

n—1
= (I)n (XC) + A{Cll (Xl) + Z ()\i_lc(i,l)i (Xl) + AZTC” (Xz))
=2
+ AL e (X0) - (5.4.26)

Note that, as a consequence of the structure of the trapezoidal rule ,
the Lagrangian is separable in the sense that it can be represented as a sum
of terms each of which depends only on the individual sub-block components
x; of the state vector x.. The necessary conditions for a solution of the
constrained problem are

Vi Ln=0,i=1,2---,n, c(x)=0. (5.4.27)

Here the gradient of the Lagrangian gives the equations
1
——rTO + AV, ,ci1 =0, (5.4.28)
n
1
——1 O+ A Ve + A Vi =0, i=2,3,--- ,n—1, (54.29)
n

1
—51{0 + A Ve €ty =0,. (5.4.30)
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The Newton equations determining corrections dx., dA. to current estimates
of state and multiplier vector solutions of these equations are:

ViL,dx, + V2, L,dA\. = =V, LT (5.4.31)
Ve (x.)dx. = Cdx,. = —c (x.), (5.4.32)

where (setting Ag = A,, = 0 and making use of the block separability of the
Lagrangian)

1 At
Viﬁn = dlag {EOTO — ()\1;1 + )\Z)T TVizf (ti,Xi) s 1= 1, 2, cee ,n} y

(5.4.33)
Vix‘cn = CT? (5.4.34)
At
Cy=—1— 7inf(ti,xi) ; (5.4.35)
At
Ciiyr) =1 — 7vxz-+1f (tit1, Xit1) - (5.4.36)

Note that the choice of the trapezoidal rule makes V2L£,, block diagonal, and
that the constraint matrix C' : R™ — R(M™=1™ is block bidiagonal.

Equations (5.4.31) and ([5.4.32) are often rewritten using the linear de-

pendence of the Lagrangian on A, as

V2L, dx, + V2, LAY = —V, &7 (5.4.37)
Ve (x.) dx. = Cdx, = —c (X,), (5.4.38)

where A = A, 4+ dA.. This practice is followed in developing algorithms for
sequential quadratic programming in [73] for example.

A priori the assumption that the estimation problem has a well deter-
mined solution implies a well determined solution of the Newton equations
for good enough initial approximations. In this optimization context this
is equivalent to C possessing full row rank, and to the second order suffi-
ciency conditions holding [73]. The possible catch here arises because the
augmented matrix associated with equations (5.4.31)), (5.4.32) is symmetric
but indefinite. The Bunch-Parlett algorithm [46] provides a suitable solu-
tion procedure for such systems as it possesses similar stability properties to
complete pivoting. It has the disadvantage that it achieves its stability by
an interchange strategy that has the possibility of destroying the consider-
able sparsity structure of the augmented matrix in this case. For this reason
strategies which exploit the sparsity structure to allow systematic elimination
of variables in a fixed order are popular. However, this amounts to the use
of fixed pivoting sequences, and this introduces the possibility of numerical
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instability. Implications of this strategy for several variations of systematic
elimination strategies are considered below.

Choice of starting data in the simultaneous method requires initial esti-
mates of x and A in addition to initial estimates of the parameter values.
There is some structure in A which follows from . Note that

At At
inCi =] - 7infi, \Y =71 - _inJrlf/[:Jrl.

xi+1Ci 92

Grouping terms in (5.4.29)) gives the recurrence
At 1
= A+ A= Vi f (s x)" (A1 + A) = —=0Tr;, (5.4.39)
n

while equations ([5.4.28)) and ([5.4.30|) provide boundary conditions both on

this recurrence and the discretization of the target differential equation. For
simplicity consider the case where At = O (%), r; 1s a scalar and the obser-
vation structure is based on a vector representer o?. Then

—vn {5_” + inoT (xF — xi)} 0. (5.4.40)

Let w; = /nX;, i =1,2,--- ,n — 1, then equation ([5.4.39)) becomes

At i
—W;_1+W,; — TVXzf (ti,Xz‘)T (Wi,1 -+ Wz) = — ! 0. (5441)

vn
It follows from ([5.4.40) evaluated at X,,, Xn that the stochastic component

of the forcing term is normally distributed by assumption and has variance
(62/n) oo”. The remaining right hand side term is small as a result of the
dependence on o’ (x; —X;). Here the equivalence between the embedding
and simultaneous methods is valuable .This shows that the error term in
the maximum likelihood estimate of the augmented parameter vector in the
embedding formulation has a leading error term which is normally distributed
and has scale O(\/Lﬁ) (Theorem . Further, the discussion of consistency
shows that the truncation error in the trapezoidal rule leads to a smaller
order correction term in the maximum likelihood estimate. It follows that
the contribution of the o (x; —X;) term to the solution of is of
smaller order than the € term. Thus the assumption of normality together
with the scale of the variance permits the identification of with a
consistent discretization of the adjoint to the linearised constraint differential
equation system subject to a forcing term which contains a Wiener process
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component(compare equations (6.2.3) - (6.2.6)) [58]. The interesting and

important consequence is that (5.4.41)) indicates that the multipliers A; %3
n—o0

0,2=1,2,--- ,n—1, on a scale which is O (n*1/2). Note also that the scale
of the forcing term depends on ¢ so that the multipliers will be small when
the experimental error is small.

Remark 5.4.2 This estimate of the asymptotic behaviour of the multipliers
15 consistent with the conditions and . Only one of these is
needed to determine the recurrence with the satisfaction of the second being
equivalent to satisfying the optimality conditions. The occurrence of a form
of the adjoint differential equation in the necessary conditions is reminiscent
of the Pontryagin mazimum principle [006].

Example 5.4.4 The effect of the random walk term can be isolated in the
smoothing problem with data:

dx 01

E:[o o}x’

yi=[1 0]x4+e=1+4¢,~N(0,1),
G- 1)

ti: 7.:1a27"'7 )
(n_l) 1 n

where the data corresponds to the exact solution x(t) = e;. The trapezoidal
rule is exact for this differential equation so the truncation error component
18 absent in . The scaled solution w;, © = 1,2,--- . n — 1 obtained
for a particular realisation of the €; for n = 501, o = 5. is plotted in figure
[5.9. The relation between the scale of the standard deviation o and that of w
seems typical. This provides a good illustration that the n='/? scaling leads
to an O(1) result. Note the dominance of the first (red) component of the
scaled multiplier vector in 15 compatible with the structure of the
observation vector o = ey. The second component corresponds to a summed
version of the first and shows significant cancellation.

The above observations suggest that A. = 0 could be a suitable initial
choice for the Lagrange multipliers in the simultaneous method . Another
estimation possibility starts with an initial guess to the state vector x. and
estimates A, by minimizing ||[VL£,||3. This latter approach could prove at-
tractive when an initial solution of the boundary problem is made, as in the
embedding approach, in order to use an adaptive procedure to introduce an
appropriately graded mesh.
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Figure 5.9: Scaled multiplier vector components

5.4.4 Computational considerations in the simultane-
ous methods

The embedding method has the advantages both of straight forward imple-
mentation and an effective minimization procedure provided by the Gauss-
Newton method. The simultaneous method has a deeper mathematical pro-
gramming setting which has its own advantages to set against additional
complexity, being in principle capable of including the real world constraints
required by industrial and commercial applications into the algorithmic set-
ting. This has spawned several full scale mathematical programming pack-
ages including IPOPT [107] which has, at least in part, grown out of imple-
mentations of the simultaneous method as described here.

There are two basic approaches to using the structure of the Newton equa-
tions (5.4.31)), (5.4.32) in order to produce compact solution procedures for
the simultaneous method. These are the null-space method and the elimina-
tion methods. Both partition the unknowns into blocks that can be computed
compactly in a sequence of steps, and it is this partitioning that is equivalent
to using a fixed pivoting sequence in the solution of the augmented matrix
equations. If the partitioning is done by an orthogonal transformation then
the result is known as the null-space method . If unknowns are eliminated di-
rectly using the linearised constraint equations then the resulting approaches
are elimination methods . Both approaches are standard methods in sequen-
tial quadratic programming . Also considered here is a modification of the
Newton iteration due to B