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Lecture 0 Categorical prerequisites
categories are (for us) a useful language for
keeping track of a large amount of mathematical
data

.

We will happily ignore all set theoretic issues !

Key example A category collects together a type
of mathematical object and its properties . The
main example to have in mind is the category of
vector spaces over a field F-

Def A category 6 consists of
• A collection of objects
• For any

two objects A
,
Be6

,
a collection

Home(A ,B) of morphisms from A to B

• A rule for composing morphisms
Hong/ AB) ✗Hang(Bc)→ HangCA C)
f : A→ B

, g
:B→c → g. f

: A→ C

• For each object A c-6 a morphism

ida c- End (A) ÷ Home (A.A)5

such that

i) (Associativity) For morphisms



f. A→B
, g
:B→ C

,
h :c→ ☐

we have

hfgof) = Cho g) of
ii) ( identity) for any morphism f- : A→B

idgaf = f = foida

Example Veit, is the category of vector spaces
over the field F :

objects : vector spaces / F
morphisms : Hom (V

,
W) = { linear maps V→w} .

with composition and identity defined as usual

Exercise Think of as many examples of categories
as you can .

At least 10 !

• Can
you
think of two categories that have the

same objects but different morphisms ?
• Can

you
think of two categories with different

objects that " feel " the same ( ie they should be

equivalent in some sense
,

in the same way
that

I and the infinite cyclic group feel the same
before you learn about group homomorphisms ) .

Functors



Def A functor F :b→D between two categories
is an assignment of

• an object F(A) c-D for every object AEG
• a morphism F-(f) c- Hamp (F/A) ,

F- (B) ) for every
morphism f- c- Hong(A.B) .

such that

;) F( ida) = idf(a)
ii) Ffg . f) = f- (g) a -9 f)
Example Let set be the category with objects
sets

,
and morphisms functions .

F : Vectt → Set

is the functor that assigns to a vectorspace the set of
its elements

,

and to
a
linear map , the same map

considered as an ordinary function .

Example : Any category has the identity functor id :6→6
Exercise Let Ab be the category of abelian groups .

Fix
any

abelian
group

M and define

H : Ab→ Ab ; It (A) Ham (M , A)
T : Ab→ Ab ; 1- (A) :=A☒qM

prove these are functors



Exercise Try and think of as many examples of functors
as you

can .

Example Let Cat be the category whose objects
are categories and whose morphisms are functors .

This is a category !

Maps
In mathematics we like to study objects up to
some kind of isomorphism (or homeomorphism ,

homotopy , isotopy ,
or other version of sameness .)

Def In a category 6 ,
a morphism f- c- Hom (A)B)

is an isomorphism if there exists age
Hom (BA )

sit .

g. f
= ida and f- g=idB

g
is called the inverse of f and is denoted f

"

Exercise show that f
"

( if it exists) is unique .

Def we call a morphism feHom(A,B) a

monomer phism if for any g.he Hom (X , A)

fog = f. h

( ie left cancellation holds /

similarly an epimorphism is on where right



Cancellation holds .

Remark It is true that injections are always mono -

morphisms , but the converse is not true !

Similarly ,

all surjection, are eipimorphisms ,

but the

converse is not true .

Exercise bet Ring be the category of rings .

Consider

the inclusion

q : I- Q

Is it a monomorphism? Is it an epimorphism? Is it

an isomorphism?

Def A subobject of an object A c- 6 is simply
a monomorphism i : U→ A

.

The category of subobjects of A , sub(A) ,
has

objects monomorphisms i : U→ A an morphisms

Hamfi :U→A,j:V→A)={f:eHom(u,v) / i=j of } .

ie morphisms making the diagram ff
"

A commute
.

Exercise check that in the category set , isomorphism
classes of subobjects are simply subsets

.

Check the above is actually a category and define



quotient objects in analogy with this Cuse epimorphisms )
what are the quotient objects in the category of
sets ?

Remark the notion of sub and quotient object
above is maybe a little too weak and gives some

strange results leg Q is a quotient of TL in Ring)
We want

worry
about it here as it wont effect us

but it is something to be aware of .

Direct sums

The categorical notion of a direct sum is

Def if A.BEG are objects of a category , a
coproduct of A and B is an object Aw B. Ele
along with two morphisms

A Aw B ←iB is

such that
,
for any object CEG and morphisms

A c<f_B B
there is a unique morphism 4 : AUB→ C

such that
c

iii.
A→ Au B- B

LA LB Commutes .



We can think of AUB as the universal object
that "contains" both A and B

.

Exercise show that disjoint union in set and
direct

sum in Vect give coproducts .

Proposition If AWB exists ,

then it is unique
up to unique isomorphism .

proof : suppose .

A -1A> ✗ B

and A y B

are two coproducts .
Then by the universal

property , then exist morphisms y :X→Y ,4 :Y→X
such that

A

✗

B☒¥¥
.

commutes
. Thus we get a diagram

la=Y¥ .

j , = ip

A→ X- B

LA LB

which commutes
.
But by uniqueness , we must



have 4op=id× . Similarly we show 404 = idy ☐
.

The construction of a coproduct can be extended to

arbitrary families . If {✗if ,
ieI is a family of

objects in 6 ,
a c-product of { ✗ i } is an object

Effi and a family of maps pi : Xi- HA- such that
for any other object ✗ and maps fi :X ,

-→ Y
,

there

is a

unique map 4:44.
→ Y such that

y

i y commute for all ie I
.

✗
i
→ UX ;

f-
if I

Exercise suppose X ,
,
K

,

X
,
are objects in a category

G. Assume that the coproducts
✗ ,uXz

, (X ,uX, )uX, and Uxiis 1,2?

exist
.
Showthat there is a unique isomorphism

Kirk)u× , - i.¥, ✗ i

making the diagram

× ,
I#
4)ux,
f-

% ¥↳✗i commute .



Exercise Let P be a poet regarded as a category
by setting

Hom (a.b) =/ {
*7 if aeb

¢ otherwise

( ie an arrow a→b whenever as b) .

Interpret the notion of a coproduct in the language of
poets .

Proposition There is a natural bijection

Hom (AWB , c) = Hom CA ,c) ✗ Hom (B.c)

proof : suppose we have a pair of maps
A Ic -9B

then by . the universal property ,

there is a unique
map q

: AwB→ c. We denote fug :=y .

Now we prove that

Hom (A.c) ✗Hom(B. c)→ Hom(AuB
,
c)

(f. g) 1-> fug
is a bijection .

First infectivity . If f. ug , -- fig, ,

then we have
, by

community of

A# AUB A



that

f. = fig ,

☐ La
= fzug , - La = f ,

and similarly gig , -
Now surjectivity . Suppose q c- Hom (AWB

, c) , then

4 = 40 Law 40lb .
☐
.



Lecture 1 : Natural transformations .

Suppose we have two constructions we can apply
to a vector space

V1→ ✓

Vi→ v0

(eg we
could have ✓ = V

" and Ñ= Hom (Kir )

a natural map Ñ→Ñ is a linear
map whose

definition does not- depend on the specific vector space
in question ,

but can be applied to all vector. spaces
uniformatty .
For example

,
we have a natural map

Yu : V → HandKJV)
(uh- ( (felt> tu -1µV )

notice we didn't have to choose a basis or anything
else specific to V.

We can interpret this categorically .
A

"construction"

is a functor .

A map between construction is a

morphism between images of the functors .

Suppose F
,
G : G→D are functors , then



a natural morphism should be a collection of
morphisms

✗
A

: F- (A)- G (A)
,

one for each object AEG .
But not just this!

what does it mean for this family to not depend on
choices?

Lets
go
back to the example of vector spaces .

Essentially we want to avoid picking any specific
representation of V. Eg . picking a basis .

Choosing two different bases gives an isomorphism
f :v→V .

Checking that our map Yu is the same for
these two different bases is the same as

checking that

✓④
2

✓
④ 2

of /a
Homlk' V1# Hom (KV )

m→ ( (E.)↳ f. m)
comments . We can general ise this notion .



Def suppose F. 6 :L→ D are two functors
.

A natural transformation ✗ : F⇒G is a

collection of morphisms (in D)

{ ✗A: F(A)
→(A) /

Aeg

for each object in 6 ,

such that
,
for each

morphism fe Home ( A ,B) in G
,

F (A) FCB )

✗Af /✗B
G (A) GYB) commutes

.

We say ✗ is a natural isomorphism if each ✗A
is an isomorphism .

Exercise Define two functors P ,
2- : set→set

P (X) = the power at

2✗ = Funk , {oil ) functions ✗→{oil .

Complete the definition of these functors and show

they are naturally isomorphic .

Exercise Let Nat (F.G) be all natural transformation ,
show that the set of objects functors F : G→D with
morphisms natural transformations is a category .



Monoidal Categories
Loosely ,

a monoidal category is a category that has
a notion of tensor product , modelled on the properties
of the tensor product of vector spaces . The properties
we will axiomatic are

• U☒V is functor ial . I.e .

linear maps f- : U→U
'

and

g.
V→v

'

give a map f☒g:U☒V→ U'☒V '

.

• (U☒Y☒w_~U☒(v☒W) in a natural
way

• K☒VeV=V☒K
.
in a natural

way .

Def A monoidal category is a tuple
(e.☒ ,a. 1 ,

e
,
r )

where
• G is a category
• ☒ : -6×6→ is a functor (the tensor product)
• a is a natural isomorphism

☒ of ☒ ✗ ide )→ ☒ a (idex ☒ )
of functors 6×6×6→ 6 (the associate)

• 1 is an object of G (the identity )
• l and r are natural isomorphisms

☒ - ⇐ idea -☒I idea



such that

4) the following diagram commutes for all

objects A ,
B
,
C

,Def :

(pentagon axiom)
((A-☒B) ☒c)☒D

AA.pe/QidD/ ¥3,9b✓

(A☒(B☒c))☒D (A☒B)>☒K☒D)

µA,B☒c , D B ,C☒D

A-☒ ((BÉc)☒D)→ A-☒ (BÉK☒D))
idA☒aBfP

4) the following diagram commute for all objects
A. Be 6 : (triangle axiom)
(A-☒1)☒B¥BA☒(1×0 B)

raoxid.lv/idA0xlB
A-☒B



Lecture 2 Examples

F-✗ 1 The prototypical example is of course Vectlk
• U☒V is the usual tensor product .
• Au

,yw
(Cu☒ v1☒W ) := U ☒ (V☒w ) extended linearly .

• I ⇐ 1k

• ☒ v ) = Av rtv☒7) = Tv .

F-✗ 2 In fact Vect µ has another monoidal
structure :( rect,k ,

☒
,
id
, {o } ,

e
,
r) .

F-✗ 3 Set has a monoidal structure given by
disjoint union .

• associate is the identity
• 1=4
• l

,
r are the identity .

Exercise Determine another monoidal structure on
set

.

F-✗ 4 Let G be a finite
group .

Define Vectk(G)
to be the category of G-graded vector spaces. 1.e. :

objects : vector spaces with a decomposition A-④VgGEG
morphisms : linear maps preserving the grading

(ie 44) c- Wg if 4 : ✓→ W ) .



We can define a G-grading on the usual tensor
product V☒W by

(V☒w)g:=¥gV×☒Wy .

✗
,yEG

This is functorial because for any morphisms

4 :✓→V1 , 4 :W→w
'

the linear map 40×4 preserves the grading ,
ie

.

40×4 (V×☒Wy) c- V1☒wj
and so

go.it/(voxW)g)s(v'oxW')g .

The associate from Vectk also works in Vectlk (G)
because

au.v.nl/9QVy)oxWz)sUxQ(VyQWz)
and so

au.v.nl/CU0xVloxw)ay,i-(U0(voxw)) ✗ ly t)
= ( u☒(V☒WD×yt



The identity object (as a v.sp) should clearly
be 1=1k

.

But what should the grading be ?
We must have

11g= {
K for g.=p

0 otherwise

for some fixed peg . Thus

Vg- 110×4
= 1-01×0×4
g xyeg

= X-p☒ Vp-1g
= Vp- '
g

so we must have g=p
- '

g
ie p=1 .

Now we can

use the same l
,
r as for Vectlk .

F-✗5 Let R be a ring .
An (R

,
R) -bimodule is an

abelian group M ,
with the structure of both a

left and right R-module such that
(a.m)eb = a. (m.b) for mem

, a.
be R

.

Tenscoring over R gives a monoidal structure .



F-✗ 6 The category of endo-functors End (G)
is monoidal with composition

.

F-✗7 Define street to be the category of super-
vector spaces ,

that is
,
vector spaces with a decomposition

✓ = V.④ V ,

we say Vo is the even part
,

V
,
is the odd part .

Morphisms are grading preserving linear maps .

Tensor product is defined as follows :

V☒W is the usual tensor product

(v☒W)o:=(V.☒4)0+(40×4)
@④W) , :=(V.☒4)0-(40×4)
←

ie v is homogeneous .

If vevi we use the notation /v1 :-. i. We can choose
the following associates :

✗
uvw

: (U☒V)☒W → U☒(v☒W)

auuw((u☒4☒w) := C- 1)
""'"

u☒(u☒w)
^

for Yu , w homogeneous . )
important : preserves the grading !



Kevin
auvw ④V.MX

Llultlwl

(1)
'" ' ""+1×1

(w) (w ×)C- 11 (ulvwl)×

auvoxwx \ ✓ W☒X

f ,jut
+ '

wtf ,ylultlxlufguwyx) (- 1) 141+14+1×4,1141 -114+1×1 ufu /w×µ
"

-fi
""%,

"""Y, ,)
"" '%(vlwxl )iduoavwx

What should the unit be ? 1-din obviously , so
either 1=118 or 1=14 .

Note that

¥1k , = Iko
,
so we must have =/to

Now we need to determine the morphisms l
,
r !

We need maps lv.ru such that

@☒ 1)☒v → U☒(I☒V )
AUIV

ru☒ ☒ lv

U☒V



Translating : if well , veV homogeneous ,

rule☒A)☒ v = C- it
"""

u ☒ lv(7☒v )
so it looks like

rulu ☒7)= C- 1)
' " '
An lvA☒v) .- (a)

" '

Tv

would work ! Again ,

it is important these are actually
morphisms in svectlk .



Braided monoidal categories

we have ignored a key property of ☒ in Vectik .

Namely that v☒wi→w☒v gives a natural
isomorphism

V☒W_~W☒V
.

Remark such a structure does not exist in all
cases .

Take for example Vectlk (G) and consider

1kg☒Khekgh kh☒Kg=lkhg
If gh thy in G then thee are no grading preserving
linear maps between them!

Again ,
we will not simply require that A-☒Be B-☒A

but instead specify how they are isomorphic .

Def A braided monoidal category consists of a
monoidal category 6 and a natural isomorphism

c : ☒⇒ ☒ • c- : 6×9=>6
Here t : 6×9→ 6×6 is the "

flip
" functor

.

c- (A ,B) = (B.A) ,
c- ( f.g) =/ g. f) .

The braiding maps CAB are required to satisfy
the following two commutative diagrams :



(hexagon axiom)

(B☒A)☒ccB☒(A☒c)
ftp.Qidc/ ↳☒CAC

(A☒B)☒C B☒%☒A)
n

☐
ABC] ¢3 .CA

A☒(B☒c)→(B⇐. C)④A
CA,B☒C

(A☒B)☒c↳c☒(A☒B)
a"A,B# A,BsA☒(B☒c) ⇐☒A)☒B

idA☒¥ IIB
A°☒(c☒B)→(A☒c)④B

a"AfB



Example The category Vectk is braided with braiding
given by flip :V☒W →W☒V

similarly set with the monoidal structure given by
Cartesian product is braided

. These two examples
are special , in the sense that doing the braiding
twice is the identity
Def If 6 is a braided monoidal category
with braiding C

,
we say 6 is symmetric if

[II = Cy ✗ or equivalently if Cy✗
• c×y=id×☒×

for any
two objects X, YEG .

Not all braided categories are symmetric !
Example The category of tangles ,Tang ,

is braided

by using the braiding
Cm

,
n
: Mtn→ n+ m

÷÷ :*

•

÷j
"""se :<heck this

gives a natural isomorphism

==
Q @

clearly c
, .cc , ,

= ci
,
=

.

=/
.

/
.

/ = id
, +1



Why consider braided monoidal categories instead of
simply symmetric ones ?

Yang -Baxter equation
The Yang -Baxter equation is an equation that asks
for an operator

R c- End (V☒V ) ,
Vevect

.

to satisfy the equation
Rz,Riz Riz = RizR 131223

where Rij : V☒V☒V→V☒V☒V is the operator obtained
from R by acting on th ith and jth tensor factors .

i.c. Ras = idv☒R .
R ,z= R☒ idv ,

R
, ,
= Tno Rz, at ☐

← flip

In fact , we can try and make sense of this in any
monoidal category by noticing the YBE has an

equivalent form :

Let Q = To R .

Then the YBE is equivalent to

CQ☒ id)o(id☒Q)c(Q☒id)=(id☒QHQ☒id)o(id☒Q)

The ✗BE originated in statistical physics . Operators
of the form R appear in statistical mechanical systems
and if they satisfy the YBE then the system is

integrable .
Hence there was a large amount of interest

in finding solutions to the ✗BE .



In fact , braided monoidal categories give a
procedure for producing a large number of
solutions :

Proposition If 6 is a braided monoidal cat
,

with

braiding c (and trivial associate) then the
braiding C

✗✗ satisfies the ✗BE
,
or more

generally ,
for any

3 objects ×
,
Y

,
2- EG :

☒ • ( idf C ) . (C✗✗ ☒ idq)✗2-

=(idz☒ g.) • (c×z☒idy) - (id Cyz )
-

proof : We want to show the following hexagon
commutes

✗☒✗☒z idY☒y☒z☒✗
↳✗

☒ idf #yz☒id×J
✗☒Y☒E > 2-☒Y☒X

I 1
'

idiocyz
idzoxcxy①

✗☒2-☒ Y- 7-☒✗☒ Y

cxzoxidy



Triangles ① and ② commute as these are

exactly the hexagon axioms once we forget
about associates

. flip functor
j

Square ③ commutes since c :☒⇒ ☒ at is

a natural transformation and so the square

A-☒B ¥9 A'☒B '

CA ,B f / CA:B '
B.☒A9 B'☒A

'

commutes
,
in particular , for

A = ✗☒Y

B = YXOX

f = Cxy

g
= idz ☐

.

Apart from showing that braided monoidal
categories give us solutions to the YBE ,

it also

generates actions of the braid group :
Braid groups
Def The braid group on n strands , Bn ,

is

the group whose elements are isotopy classes of



braid diagrams :

• • • • •

eg :

with multiplication given by vertical stacking .

More formally ,
a braid diagram is one that

can be isotope to a vertical stacking of
the diagrams

• • > i
.
@ ⑨ & @ QQ , i

' @

a. =/ 1 . " / All I
• @ , L ' ⑨ @ @ @ @ -

' '

@

i ixl

Theorem Bn has presentation

dig. --9.9.
Ii -jl >1)Bn = {di ii=l . - - n - l \ 4.4*4=4-+194+1

Notice that there is a natural map# iBn→Sn
that is given by reading off the permutation
given by the strands

'

•
of £ £ •Seg → ( 14321

I 2 3 4 5



ie by sending di → si = (i , it 1) E Sn .

This is

a surjective map and if we define The pure braid

group
as

PB;
Kerr = {diagrams whose strands match up f.dots in order

e.g.
• • • a •

IY
.

/ c- PBS.

then there is an exact sequence
I→ PBN→ Bn- Sn→ 1

.

Remark If
you
know some topology this comes

from the following fact :

Let ① Ieg {Ee en I 2- i -1-3. } then 5nA ① Lg
freely and PBnet , ( orig)

Bnt it
, ( ①rig / Sn)

In general , if a finite group acts freely on a top
space

✗
,
there is an exact sequence

I→ it
,
(X) → it

,
(✗/G)→ G→ I



Lecture 5 Motivating examples

we will first consider the category Ñ , consisting
of

objects : Che , f ,h) V a finite dimensional vector space#
e.h

,
f c-End (v ) sf .
[he]=2e ,

[h f ] = -2f Ie f ] =h .

morphisms : Hong ,(V,W) = linear map q : ✓→ w

such that goer
= ewoy

4. fu
=

ewoy

yo hu = ewocf

Remark This is the category of sl ,- representations
where sl

,
is the Lie algebra of 2×2 traceless matrices .

The following shows that it also has something to do with
differential operators on P!

Example Consider the (infinite dim) vector space E[ ✗ y]
of polynomials in two variables and the operators

e.= ✗dy f :=yQ h:-. ✗of - ydy
These operators satisfy the necessary relations! Check) .

Let
✓ (m) :=E[×y]m:=span{✗^ , ✗""y ,

. . -

, y
"}

ie the subspace of homogeneous degree n polynomials .

The operators e. f , h preserve each km) so



we get that (Kmt ,e. f. b) c- Ñ ,
i

Lemma The operators e. f are nilpotent andhisdiagonal isable on km)

proof : The operators e. f , h can be depicted as

h m

a
e ✗

m

f
' f) m

2

"Yan - z
/ m -1
in
- '

y
' Dm -4

3 [ I m - 2
;

m - if I 2
✗ ym
"

@ 2-m

m f 1 1

50 - m

ie em
"
= f-
m-11=0 and { xayb ) is an eigenbasis

for h .



For two objects V,we Ñ ,
we can form the

direct sum ✓☒W with ev☒w=(¥÷Éj )
.and so on .

Def D ,
c-Ñ

,
is the subcategory of objects

isomorphic to a direct sum of the objects Vcm)
ie VED

,
if there exist integers am such that

V_~④ ✓(m)
am

m

Remark In fact D.=D
,

-This isn't a particularly
difficult fact but it would take us more time than
I'd like to spend on the issue ,

so I define our way
out of the problem .

Prop Hom (km)
,
✓ (n)/ = {

Eid if m=n

0 4W .

proof : Let 4 : km)→Un) be a morphism and
set v. = of ( ✗m) .

Note

e C) = e. 41×7=4 oelxm) =p co)=o
Thus ✓ = Axn for some tea .

Now note

h (v ) =h . 41×4=404×4--4 Lmxmtmv
But had)=7nxn so we must have either

1=0 of n = m .



If 2--0 then

qcxm
- '

ya )=yi!fYxm))

=
(m - a)!

mi 4of
"

(✗m)

Cm - a) !
=

mi f :p (✗
m) = 0

so 4=0 .

on the other hand
, if m=n then by a similar

argument as above ,

41×-51=4 ( falxm))

=

cnn.ie?-f:yCxm1=cmI#fTtxm)=7xm-aya
so 4=1 . id

. ☐ .



We can put a monoidal structure on D ,
:

V☒W = usual tensor of vector space> .

eu☒w=

evoxidw-idpxewfvow-fvoxidw-idvxofwhvow-hvoxidw-i.cl
, hw

with No) as the identity object and trivial associate
Example Consider ✓(1)☒✓(1) = : W

.
This has a

basis e D2 f
✗ ☒ ✗

' f Iz
y
☒✗ + ✗☒YOO y ☒✗

- ✗ ☒

y Do
if I 1

y☒Y f - z

so V11)☒V( 1) eV(2)④V10)

Remark It is clear that V☒WeÑ
,
(once you check

the relations) but it is a priori not clear why
V☒W c-D

, ,
You will check this on the problem

set
.



Prop The natural transformation cvw = flip defines
a braiding for D , -

proof : What do we need to prove ?
- that it is a natural transformation (square commute )
- hexagon axioms commute ( immediate since we .knayit for Veit ) .

<
Recall cvw

must be morphisms in D
,
!

Crni ev☒w(v☒w) = Cvw (e.v☒ w + ✓☒e.w)
= w☒e.✓ 1- eewxcv

→
= ( idwxoev + ewoxidv) ( w☒v )
= ew☒✓

a Cvw ( V ☒W) ☐

Car In fact D ,
is a symmetric monoidal

category . Bnrd V☒n is simply permutationof tensor factors .

Remark one
way
to get a more interesting braiding

is to define the associate differently (using they
kz equation - a differential equation on

monodromy① nreg:= {ft , , . . . ,Hein / 2- it 2- ;) . of

in fact Bn =Til "reg /Sn)



A powerful philosophy in modern algebra :

" Deform/quantise to reveal hidden structure
"

Lets define Ñg ( q is formal variable) rational
functions

objects : (V , e. f. K) where a
• V is a fin .

dim
.

v.sp over ①(g)
•
e
,
f
,

k c- End
①(g)
(V ) such that

(think K is invertible

K=qh ) Kek
- '
= je Kfk"=q"f

[e. f) =
"

=

9h - g
-h

"

%
= Ch ]g

Def The g- analogues of integers are defined
as the rational functions :

qn - g
- n

[n ]
,
:=

⇒ =q"(9)=q'"(q"-3g"-¥ . .+ )
9=1 92 - I

= qn
- '

+ q
n -

}
. . .

+ gl
- n

-
so

him
g-

> I
[n]
,
= h

.



we also define the factorials
[NI
,

! [n]
,
[n - i]g . - - [ I]

,

Remark Ñ
,

is in fact representations of Uqlsk)
then quantum group for slz .

Example consider the vector space Q(g)[× , y] ,

with operators
✗Q - y2y←

"
9-
derivative

e- ✗Oy
"

f:=yQ? K
:=q

where 0×9 ( xnym ) = [n] , ✗
""

ym
§ ( xnym) = [m], xnym

-1

How do we interpret k?
n -m

Kcxnym)=q×%%(✗ nym) :=q ✗nym
We can check the relations :

Kek
- '

Cxayb ) = qb
- a

ke (✗ayb)
= qb

- "

[ b)
g
k ( ✗" '

yb
- 1)



=

q
b- "

[big ga
- b+2

✗

a -11

yb
- I

=

q
'

e ( ✗ayb)

similarly for the other two .

Observation e. f.K can be restricted to

Vg (m) := ①G) [✗ y]m= homogeneous of
deg . m poly 's .

Def Dg is the subcategory of Ñ, consisting
of all objects W

,
isomorphic to a direct sum

of the Vgcml .
Remark Actually Dq is almost all of Ñg .

It is

the so called type 1 representations .

Exercises Repeat the structure analysis of Vg (m)
as for Vcm)

,
calculate

Hom (Yon) , Vacn))
.



We can define a monoidal structure on Dg :

V☒W = the usual tensor product of v.sp 's .

eww = er☒ idw + Kvxoew

f-
☒w

= fr☒Kw + id
✓
④ f-w

k
V☒W

= Kw

NIK : We've broken a symmetry with respect
to flipping tensor products .



Solution to Fa :

We would like to show that in a braided

monoidal category 6 ,
the following diagram

commutes

A1_É IA

(i)%
A-

We will suppress the tensor symbol completely , and
sometimes the subscript on natural transformations .
Consider the diagram :

All 1)If 1) A

%lie ② ei ④ a)
(A1 ) I Al IIA 1 ( in) ( ii )

A④
4A) I→ 1 (A1)

a

we want to prove * commutes as this is simply
C) tenscored by 11 on the right . So if * commutes
so does ( it by the following argument :



C

Al > 1A
tr ri
A-1) I ( IA) I

ti %r

e

÷
JA ✓

The inner diagram is what we assumed commutes ,
and the outer squares commute by naturalitiycfr.ietake ✗ =AI and f- = ra , la or Cay in :

✗ 1 ✗ 1

rt fr
✗ f-> ✗

Thus the outer triangle commutes .
Now we come back to (ii)

.

To show *

commutes
,
note that the outer hexagon axiom

commutes by the hex axiom . ① commutes

by the triangle axiom .② commute , by
the natural ity of c : ie take ✗ = A

,
4=11

5.A
,
-1=1 and f- = i and g-- ly in the following .



✗Y# ST

t k
YI# TS

③ commutes by the natural ityofl.ie take
✗ = AT ,

Y= 1A
,

f- = CA
,
, in

Tx ly

et te
I y

we are left with only having to show the
commutivity of the two triangles ④ . These

follow from a more general triangle :

(IX ) y a- 1 (Xy)

ei\
,
Le Ciii)

✗Y



One can show the commutativity of this
triangle using the pentagon axiom (which is

what you should expect given it only invokes a,e) .

¢ I 1) x) Y

Ciix)
① /Gili↳

u ② "Xxx)
" ""

→
1 (XY) ①

.

:#
1 (( Ix )Y) 111 (xx))

① commute by the triangle axiom ,

while ②
commute by naturalily of a. This forces *
to commute which is (iii) tonsured by 1 . By
a similar argument to the above, Ciii ) must
commute and the proof is complete .



Lecture 7 A braided and a not so braided category .
Observation The map e- flip does not give a braiding
on Dg .

Indeed an Vg (1)☒ Vg (1) :

e. flip ( ✗☒g) =e(y☒✗)
= e.

y
☒ ✗ + Kyoxex

= ✗☒ ✗ ,

flip .ec/-oxy)--flip(e.xxoy-K--xoxey)--flip(qXQx)
= 9 ✗☒ ✗ .

We need to
"

deform "

our flip map . Consider the

operator ← ie q£h①h(v☒w)=q¥ if Kv=qa
as Kw=qb .

Ryw:=q±h☒ho[q(it @
- g-1)in

w
e'☒fi

i=o

Note : the operators e and fare nilpotent so the

sum is finite ! Here 9±h☒h(u☒v)=q£mnu☒v if
Ku=qmu and Kv=q^v .

Example Let V=V
,
(1)

. Rw=q±h¥( I + (g- g-1)e ☒ f)
Rw (✗☒x) = 9£ .

✗☒✗ Rw(y☒×)=q%(y☒× -11g -ai 'K☒y)
Rw ( ✗ ☒g) = 9¥ ✗☒

y Rw(y☒yl=q÷y☒y



Rw -- ai :( " 1,9-5 ' )
.

9

Exercise : Check that is commutes with e
,
f
,
k

.

Check this satisfies the hexagon axiom on VOXVQV .

Thru The map cvw := Rwu • flip defines a

braiding on Dg that is not symmetric .

proof : We wont give a proof here but it is entirely possible
to verify the hexagon axioms explicitly .

It should be

clear that c =/ flip unless R = id
.

Remark This is a deformation of D , in the sense that

as q→ 1 ( interpreted appropriately ) we get Rvw→id
so Cvw→ flip .

One more monoidal category
we will consider directed graphs ,

with no loops ,
and

with every vertex having at most one incoming and
at most one outgoing edge .

We will call these
line graphs .

•
•

✓ ✗
•← •

•→ •← •

•

to-•



If rel is a vertex of a line graph we write fv
for the neighbouring vertex in positive direction and
f-

'

v for the neighbouring vertex in negative direction
•→ • -7 •

f-'r v fv
We let fv=o or f-

'
v = o if they don't

exist
.

Define ycv) :-. max {a / fav -1-0 } .
Ecu ) max {a / f-auto}

.

Example •→•→ •→ •→

og
→ •→•

qcv )= 2 Ecu ) = 4

Prop For
any

vertex v
, qcv ) + Ecu) + I = # of vertices

in the connected component of ✓
.

Let Do be the category with :
objects : line graphs with finitely many vertices
morphisms : maps of directed graps ✗ :L-7M

such that 4(✗ u) = ycvl

Example Let B.(m) be the unique connected

line graph with mil vertices
•→•→ • →

. . . →• → •

bm fbm Ibm fm
- '

bm fmbm



Prop Ham (Bern)
,
Ben)) ={ { id} if m=n¢ olw

proof : In either situation if ✗ c- Hom (BCN , Bcn))
then ✗ ( bm)=bn (unique vertex with single out
arrow) .

But q(bm)=m and Qcbn)=n so if bm =/ bn
then ✗ cannot exist

. If m=n then since ✗

is a map of graphs we must have ✗ = id
. ☐

.

A tensor product
we want to define a line graph L☒M

vertices : { a☒b I aeh , bem } .

edges : Determined by the following rule

f-(a☒b) = {
fa☒b if Ela)3qCb)

a ☒ fa if {(a) < cfcb)

It is clear this defines a line graph .



Example B.(1)☒ BG)

b.→ fb
,
→fb

,

- I

E

,

"É☒Éb,☒ÉbbiÉfÉ io b
,

l

t ' t i
I fb,

I
fb,☒b
,

-> Fb,☒fb, fb,☒fZbz '

l
- - - - -

- - -
-
-
-

'

Exercise Prove that ceca☒b) = y (a) + Max{0,4lb) -da)} .
Ela☒b) = { (b) + max {0, Ela) -9lb)} .

The associates is defined to be the identity map .

Thm This gives the structure of a monoidal
category .

proof : we need to show ☒ is a functor
le if we have maps ✗ :<→ L

'

,
B : M→ M

'

then ✗ ☒ p :L M→ L'☒M
'

; ✗☒p(u☒v) :-. ✗Cu)☒Blu)
is a morphism

,
ie

4 (✗☒Blu ☒v )) = 4(u☒v) (use above exercin)
it respects composition ( immediate) .

We also need to check that ✗ = id is a morphism
in the category , after which naturality and the
pentagon axiom are immediate . (again ,

use above)
☐

.



What about a braiding ?
Lets Look at Ba) ☒ Bcl) :

b
,
→ fb ,

-
- -

- -

b
, f b,☒b ,→ b.☒ fb , f
ti t

,

fb
, I f-b.☒b, Fb,☒fb

,
i

1-
- - -

- -

d

The flip doesn't work ! In fact :

Thru The monoidal category Do cannot be
made into a braided monoidal category .

proof : see problem set
.

We can however still find a nice natural iso :

C :L☒M→ M☒L

Define } ,
:L-7L to be the "

upside down
"

map

that turns each connected component upsidedown :

•

9 {
Ben,
:B (m) →Blm) ✗fabm) :=fm

-

abm

•
I•÷•-±



Warning : g is only a map of sets ! It is not
a morphism in Do .

It is still natural in the

sense that is is a natural isomorphism

g :u⇒u

where U :D
.

→ set is the forgetful functor .
Def Define CL.mil/QM-MQL by

9.mCu☒v) :={ ( { c)☒Ku) )
M☒L - M L

ie chm = { m☒i( 9m09 ,)o flip
Prop {µ is a morphism in Do

proof : Thursday .

Example CBA)
,
B(2) TBH

• -7 •

"

!
. -

! I



So if c is not
a braiding , what is it ?

Def A coboundary monoidal category is a monoidal

category 6 with a natural isomorphism
c : ☒⇒ ☒ • flip

satisfying :
a C
µ
,
L
' CL ,M

= id
L☒M

• the following commute ,

(L☒M)☒N (M☒ c)☒ N

AL,Mµ L
,
N

L☒(MÉN) N☒(M☒L)

idL☒C
,

N ,
M
,
L

L☒ (WGM)→ (N☒M)☒L
CL

,
N☒M

Thru The category Do is coboundary monoidal



Remark There is a precise sense in which

Do = lim D
q
→ 0 9 .

As monoidal categories . Notice that {II. Rra, v1 , )
does not exist

.

If we take

Rvw(Rwvo Rvw)
- £

. flip
this defines a coboundary structure on Dg and
we can say

the limit is true a coboundary cats .

What is the analogue of the braid group?
Previously ,

we had Bna V☒n .

Let 6 be a

coboundary category and LEG .
Can we find

groups Gn
such that Gna L☒n ?

Def The cactus group Cn is the group generated
by symbols spy ,

I £p< gen and relations :

a spot = 1 [
interval

• spgske
= skespg if [pg ] n [Kf ]

= ¢ .

• spqske = Suu Spg if [K
,
I] s [p , q]

p u v k l
q

• - ee-e - o -o - o - a -@

É^



ie u = g- (k - p) =p -19
- k

v = g- ( l
-

p) = pig -
l

Prop There is a surjection cn→sn given by
Spg↳ ( p

,
a) ( p + i. g- 1) . . . ( ie flip the interval [p , g ] ) .

The kernel Pcn is called the pure cactus group .

proof : It isn't difficult to check this is a group hour
and clearly the image of s

,z 5, . . .sn
- in generate

Sn . ☐ .

Remark The exact
sequence

I→ Pcn→ Cn → Sn
→ I

also comes from topology . Namely
DCn=T, ( M-om.GR) ) cn=Ti([M-on.HR//SnJ)

&moduli space I 2 ①of stable rational
curves with na ③2 D:marked points

D.



Lecture 7

Thru If 6 is a c-boundary category ,
for every

object LEG ,
there is a map

Cn→ Aut ( Un) .

proof : we want to think about the image of
syn

. as
" flipping

" the tensor product L☒L☒
. . -
☒L

.

For
any objects L , , Lz , . . . ,Lr define ☒r - 3

☒ id
&

, ,Lz . . .Lr Chr
, , ,
Lr
☒ id
"

° [
r- z ,Lr. ,④Lr

☒ id a CL
, ,↳☒ . . -☒Lr

°
. . '

'

CL
, ,↳☒ - - . Lr

:L
,
☒Lz☒ .

- -
☒ Lr→ Lr☒Lr, , . - .

☒4

So we have isomorphisms

dpg := id
P- "
☒ g.

p ,↳ + , ,
. . . ,L
,

☒ id
r - 9

We can define the map cn→Aut(L☒^) by Spg↳Opg .

We just need to show that the op, obey the relations
in the cactus group .

First we check that apai =L .

We concentrate on p=l
,

q=n ,
the other cases being similar.



Note on = 9ns ,☒
id 0cL ,L☒n

- l

so

9? = 9
n - ,

④ id
0cL

, <
☒n - ,

a 9 n -Fide CL
,
<
☒n - i

= 9nF rdo Cylon -1
• cL,<☒n-l☒9n,É

)→
= 0in -i = 1) by induction

- by repeated
✓

by CBA ' capsid axiom .

application of the
coboundary axiom .

The relation spgske = skespg when [ke] nfpq] =/ ¢ is

clear since spa and she act on different tensor

factors .

The final relation for [ke] c. [ pa] follows from a similar

but more involved calculation to the spot = id case ☐
.

Aim of the course construct interesting coboundary
categories and calculate the associated cactus

grp
actions to discover some nice combinatorics !



Reflection groups
Let V be a finite dimensional innerproduct space
over k f-E

,
R

,
Q) . A reflection sc.GL/v) is a finite

order operator of the form# If 1<=0 replace

scv)= Sdv) :-. v
- 2 a

with leg - 1) for
a root of unity f.(✗a)

for some ✗ c- V.

✗

i
am

i

'

Est
'

'

'

-

, Ha := Rx
"

Note that Ha:=ker(sa- id) = Rat so sa fixes
a dim V- l dimensional subspace and six)= -✗

so
'

'

-

.

.

s✗= ( o i. ores .

in some basis
,
ie it is diagonal isable .

Def A reflection group over
K is a pair (W ,

V ) of an
inner product space V, and a finite group WSGL (v )



generated by reflections .

The rank of W is dim V
,
and we

say
W is

essential if
vw:={veVlgv=v for all gew} = {o}

Remark A rational reflection group is sometimes
called a crystallographic group or a Weyl group .

Remark Any rational reflection group can be made
into a real (or complex ) reflection group by
considering the induced transformations of ¥112
( i.e

. extending scalars) .



Note that din = 9.n -Fid 0cL
,
[
☒n - i

= id☒Q
,
n - i

• cL☒n- ; L

by induction on n and the coboundary axiom .

" """"^ ""→ """" ↳ "

"°µm☒, µn. .

Ci? L t f cen- i. L C
L ☒L☒n☒di, L☒ (☒n

- 1

So

ai=mÉicidoxa.ii.jo?n...T--9n-QidocL.Loxn-iocLoxn-..Lo4n.,oid&xbT
ÉbyÉy axiom

=D
, n ,

id 09ns
,

id

= d. i.
,
☒ id

= id by induction on n .



Lecture 10

Examples

(i ) The only reflection on Q is s
,

: Its -7

so the only rank 1 reflection group is

742=(7--1) .

Cii) Embed a regular n - gon into 1122 centered

at the origin .
We can take

W =⇐ / ✗ any vertex or midpoint of)
.

a side

Then we Dn the dihedral group of order 2n
Dn is a rational reflection group if and only
if n=3

,
4

,
5

I
-

- t
1

Ciii) Let E ; be a basis of R
"

. Sn C-GLNCIR)
where • c- Sn is given by the appropriate
permutation matrix .

We have that



(a.b) = Sea-Eb
so Sn is generated by (rational reflections) .

Note : It is not essential ! CR" )sh= 112¢ ,-15-1 . . - + En )
But for this reason we can see Sns GL(R%R(q+

. .

This is essential
.

Proposition If (W
,
V ) is a reflection group

then there is an injective map
w-a ( Yvw)

and (W , YVW) is an essential reflection group .
proof : The map is well defined since VW is

W - invariant
,
and if gew acts as the identity

on VIVW
,
that means

,
for any vev

gv+VW=vw
ie
gue

VW by that means vevw so gv=v .

Hence the map is injective .

Now we must calculate (VAW)W . Suppose
v+VWe (VAW)W .

Then

gv
+
VW = ✓ + Vw



for all gew.ie gv-vc-VW.hr is generated by
reflections s

,
so

s (sv - v ) = sv - v

v - su = Su - ✓

sv = ✓

so ve VW and hence (VAW)W={of .

Remark we could alternatively take (w ,
(vwf)

to be an equivalent essential reduction .

Goal classify real and rational reflection
groups

.

The above
says

it is enough to only consider
essential reflection groups . We will make one

more reduction :

If CW , ,
V
,) and (W, V,) are two reflection groups

then define

(w , ,
V
,
)☒(W< 4) = (4×4,40+4)

Def A reflection group (W ,
V) is irreducible

if it does not allow a nontrivial decomposition as
above .



Prop If Wew is an element of a reflection
group ,

and SAEW then Swa c-W .

proof : This follows from wsaw
"
= Swan . To see

this :

① wsaw
" (wa) = - wa

② wssnw
" fixes Hwa pointwise .

① wsaw
- ' (wa) = Wsa (a) = - wa

② We need to show that wsaw
" (7) =] for

any
1- c- Hwa .

Note that (7 ,
wx) = ( w-17 , a) since

w is an orthogonal operator . 1.e. Ae Hwa if and

only if wit c- Ha .

Thus wsaw
- ' (1) = Wcw-'7) =] .

☐
.



Lecture 11 Root systems .

Let W be a real reflection group .
We saw on the

problem set that W acts faithfully on
É={Boats a reflection in W}

In fact , the combinatorics of É will allow us
to

understand W and classify reft . groups .

We define a modified versa of Ñ :

Def A root system OIEV in a Euclidean v. sp .

is a finite set of vectors satisfying
(Rt) In Ra = {±a} if one

(R2) g.§ = ☒ for a c- § .

Example If V= IR
,
then {± I } is a root system .

If V= 1122 some possible root systems are

( i) { (1--1,0) , (o ,
± 1) }

(ii) { ±(z,o)
,
±( 1

,
B)

,

± 1- 1.B) } .



Let W (E) be the
group generated by sa ,

a-§ .
Then

Prop WCOI ) is a finite reflection group and every
reflection group occurs in this

way .

proof : ( exercise) .

We will use root systems to understand the structure
and classify reflection groups .

First job is to come up

with a nice minimal generating set and relations .

A total order on the real vector space V is an ordering
such that

( i) if 7 ,µ c-V th
n either Tyr , 7 =µ , µ > ?

Iii) if qev and Ayu then 1-124+2
Ciii ) if 7.<µ and CER then

c.1 < car if c > o

CA >
car if c < o

Given
any

ordered basis {7 ,
. . - In} of V

the lexicographic ordering is a total order ( ie
.

where

22
,
+7
,

> 7
,
+ Iz

and

1
, -312+7 , > 1 ,

- 37
z

- Ts



Def A subset +c- § is called a positive system
if

+ = {✗ c-☒ I ✗ so }
for some total order on V

A subset ☐ c- I is called a simple system if
D is a basis for span § and for any ✗

C- §
we have

✗ c- I R
>☐

( ie
any

root is either a positive or negative linear
combination of ) .

Lemma It ☐SIT is minimal wrt
every Belt

is a

positive linear combination of D. then (✗ ,B) so for
all ✗ =/ PED .

proof : suppose (✗ ,B) so ,

then

sap =P - %%- ✗ = Eigg
either all coeffaents after -9%

. Suppose Cy 30 .

Two cases

① CB< 1 ; then

a-g) p = %✗¥ ✗ + Eiczy
NED- fp}

so D is not minimal (B in positive span of D- { p})



② Cp>_0 ,
so 0 Gps 1) +

2GB)

⇒ + E' err
8=1 B

impossible since Cp - 130 42T¥ > o , Cy 30

similarly ,
we rule out the possibility that sap < o .

A
.

Lemma D as above is a simple system .

proof : we just need to show that D is 1.nearly
independent . Suppose

E.
'

Cyr = 0
JED

we rewrite as

E.
'

Crr
= E-cry = y

Cy
> o Cy<o

calculate oscyn) = (Egr ,
E-crr ) so

Cy>o cyano
so 2=0 and so g.= o for

all V. ☐

Theorem ( i) If ☐SOI is a simple system then
there is a unique positive system IT st

.

A sit c- OI

Iii ) If IT is a positive system then there is a

unique simple system A
st

As its § .



proof :(i) Firstly if D is a simple system ,
choose an

ordering of D and take IT to be the resulting
positive system .

Suppose IT
'

is another positive system containing A .

If Eisa =p is such that g > o then since ✗ so

✗ c- ☐

for all ✗ c- D
, we

have
y
> o

,
so yet

'

.
But this shows

IT'={gets IV is a +ve sum } =IT
.

of A

Cii) If IT is a positive system ,
we take A sit to

be the minimal subset such that IT is positive
linear sums of § .

If A
'

is another simple system in IT . Clearly
d
'

z {✗ c-IT / ✗ cannot be expressed
as a non-trivial

possum } £
1h IT

But since D and D
'

are linearly independent
these must be equalities ☐

.

Now we want to show that all positive /simple
systems are alike .

Prop If ACIT are simple /pos . systems and weW
then so are w A C WIT .



We will show that {WAS wit}weW is a complete
collection of simple/ pos . systems for É .

First we analyse salt .

Prop If ✗ c- ASIT then £1T =# - {a} ) u {-a }
proof : Let Ecyr c- IT - {a} .

YEA

£ (Egr ) = Egr - ex c- IT

[
so

-

still has at least
one Pos . coef

Note § (Eigg) = ✗ as otherwise

sj( - ) = Sax = - a # E' Cyr . ☐
.

Thm If ☐ SIT and A' c-IT
'

are simple /pos .

systems ,

there exists wew st

WA =D
'
and WIT = IT

'

proof : Induction on n= # (Hult
'

/IT) . Clearly if
n = 0 then IT=P

'
so we take w = 1

.

If n > 0 ,
choose ✗ c- A s.t.ae/IT !

# (£1Tut
' l t ') = n - I



so we can find W' c-W stwsF=1T ' and w 's,A=Ñ
let w=w's

,
, ☐

Some notation : If BEST and BE ⇐ sin then

ht ( p) : -- E's

so IT = { Be# 1 http) > of .

←
called simple

reflections
Thm W is generated by sa ,

✗ c- A.

proof : Let W'=( saline A) .
Our strategy is to

show that spew
'

for every Belt . Since

W=(Sp / Pelt)

this implies W'=W
.

First observe that if BEITIA then 9- ✗ c- A
St

.

ht⇐ B) < ht ( B ) and spelt .

indeed sap =p - ¥I}- ✗ so if this is not true
then (✗ B)so for all ✗ c- A

,
Hence

0£ ( Bpo) = E's ( Ba ) so ⇒ 13=0 .

JED ^( go
✗
to

This means we can find a sequence of siinple



roots ✗
,
✗
,
. . .

✗
r
St. ht (Sa

,

. . -I.B) is minimal
suppose z= Sai

. - Sgrp is not simple
,

then we can

choose ✗ c-Ast . say c- IT and ht(say )< http)
contradiction ! So ye A .

This tells us
,
if w=sa

,

. . -grew
'

that

wspw
' '

= Sy C- W
'

ie sp
= wsyw

" EW
"

D
.



Lecture 13 Relations in WCOI )

we saw that if we fix a simple system ☐ c- §
then W= WCOI ) is generated by £ ,

✗ c- A -

What relations are there? There are some obvious

ones :

Sj =L , ⇐Sp )
"P

= 1

Turns out there are the only ones !

First we need so notation
, for Wew

lcwt-minf.ir/sa.sai..sr--wf length
n (w) = # { Belt / wB< of number of flips

Note : Ksa) =L ,
and n(sa) -- l for ✗ c-

If w= safe, . . - Sae,w , we say
this is a reduced

expression for w .

Lemma If ✗ c- D. weW then

C) if wa > 0 then n (wz ) = nlw) -11
(a) if wx < o then n (Wsa) = nlw) - l

proof : we must analyse ,
if wx > o

{ is > a Iwgp < of = %{ p > o / wB< of v14 .

Since a¢{BsolwB<of and if Bet then us, (sp) - o
so n (Ws

,
) = news + I



If Waco then

{ is >olws.pro}w{-x}=sa{P¥lw
So n(ws

,
)=n (w ) - l .

☐

Car for
any
wew

,
nlw)elcw )

proof : If w=s,s , . . -Sr (with Si = Sai for some
ai c-D) we can build w from the left

1 n(1) =o

S
,

ncs , ) = I

5,52 n(5,527=2 or 0

5,52s, ncs.ES,) =3 or I

: :
w n (w) fr

thus if r=l(w) we see n (w) El lw) .
☐

Now we come to the most important property
of W :

Thm If w=s,sz . . -Sr (with Sissi died) is

any expression
and r > new) then there

exist if i - jer st .



Six ,Sitz . . - Sj = Sisi -1 , . . - Sj - , ①

and thus
←
delete
,Si Sj . t

W= Sir .si, , ' Sis , . . - Sj - isj , , " - Sr ②

(we can reduce expressions by deleting in pairs )
proof : Assume① . We will show ②

W= si " si in - " Sr

= s
,
. . .si

, Sis ; + iii.Sj- 1Sj+ ,
. . . Sr

= s
,
. . .fi

. . -Jj . . . Sr
Now we show ① : we have that new)< r

.

Consider

six
,
so if this is

Sisi , > o true
,
then

5,525394 > 0 Lemma above

⇒ new)3r
i

s
,

- - . Sjfj > ☐

So
,
for some

Kjar we must
: Sohag

lie
. for some leg's r we have S

,
- .

- Sj , ,✗j < 0

Thus we must have



Xj > o

Sj-19 .
> 0

i first time it swaps

Sai . - Sj- 19. > 0 from pos
to

neg
.

Si Siu . . . Sj-19' < 0

But the only positive root swapped to negative by Si
is ✗ i so

six , - . . Sj - 1%
= ✗
i

This means
,
if w'=si+

,
.
. . sp ,

that

Wsj w
- '
= Si

Wsj = si w

six ,
. . . Sj, , Sj = Sis ,-+ , . - -Sj, , ☐ ,

car nlw)=l( w)

proof : we know nlw)Elcw) . If llwl > nlw )
then we can take an expr .

W=s
,
- - - Secw)

and find two elements to delete
,
andradiating

minimality . ☐



Thm We ( sa / sj = Gasp)%P = 1)
ie
,
these are the only relations in W

.

proof : We will show that any relation

5,5 . - - Sr = I ①
Is a consequence of the relations above .

Note r=2q is even .
Indeed

det (Si) = - l ,
and det( 11=1

We will induct on
q .
The case 9=1 is immediate .

Assume q > 1
.

Rewrite as :

srsr -1 . - - Sg + z

This cannot be a reduced expr .

So the deletion
condition applies .

Thus
,

there exists Ki < jeg + I sit .

Six , . . . Sj = 5 ; . . - Sj - ,
or alternatively

I = Sis ,- + i - -Sj - i Sjsj - i - - - Six ,

This involves 2(j - i) simple reflections ,
so we can apply induction ( ! ! ! unless 2g - i )=r )



This must be a result of the stated relations

I = 5
,
. . -Sr = 5

,
. . .Si Gi - . . Sj - 1) Sj+ , . - u Sr
^ ^

= 5
,
. . . S i - i - Sj - . . Sr

which again by induction is the result of
the stated relations

Now if 2g - i)=r ( ie i=i , j=q+i) we get
5253 . - . 5g + ,

= 5,52 . . - 5g I

We could rewrite ① as

5253 . -
.Srs , = I ②

repeating the same steps :
5253 . - . 5g + z = 5,5 r Sr - , - - - Sq +3

so the LHS must not be reduced and we can

again find subwords that imply the theorem
unless

5354 . . - Sq + z = Szsz . . -5g + 1
which implies

53525 , - . .Sg+ , 5g+25g, , . . - 54 = 1

We now try the original trick
'

again
:

535253 . . . 5g+ ,

= 5455 ' - ' {+ z



The LHS is not reduced so we can repeat the

argument which will imply ② and therefor ①

follow from the relations unless

5253 . . . 5g+ , = 53525g . - . 5g II

But I and I imply that s
,

-

- Ss .

Repeating with

5,54 . . - Sr 5,5 , = I

will imply si.sc, and repeating with further
cyclic permutations will eventually give
S : = 51=55 . .

.
=Sr
, ,
and sz=§= . . .

= Sr = :t

But this reduce >① to Cst )' = 1 which is

a known relation ☐
.



Lecture 14

If W is a finite reflection group WSGLCV )
.

we fix a root system ,
with a simple system

WQ ☒ =D

MHP)
, 1)W _~( s

, ,
✗ C- A / Sj = (Sfp)

Def A Coxeter group is a pair (W ,
S ) where

Ssw is a finite generating set and

W - ( s c- 5 / s
-
= Cst )

Mkt)
= 1 )

for some MCs ,t) c- I
> ,
u { as }

Example ( it D.
•

The infinite dihedral group is

fs , -1 / 5=-1
'
= 1)

here S={s,t} and mls ,f) = •

(ii) Sn = ( s , . . .sn
, ,
/ si = (Sisi + ,)

>
= ( s

,

-g.)2=1 )
Ii -51 > I

Def To a Coxeter group (W ,
S)

we
associate

a Coxeter graph ,

• vertices : S

• edge labelled s t whenever mist) > 2



Example ( is D- ;=•t
(ii) 5

,

' o-3.cz

¥
4

a
-303-0 - . .

.

- a
-30

Sn
, z z n - z n - 1

Remarks Ii ) Cst )! I means

stst-li.es/---t-'s-'--tsso(stY--l
means

s
,
t commute .

(ii) 3 occurs a lot , so we often leave it off

Ciii) K -multiple edges o o means okto

so o- o- o is the same as a -40-0

Def Let WSGLCV) and W' c- GLCV ' ) be

reflection groups . We
say

W and W
'

are isomorphic
surjective

as reflection groups if there exists anrisometvy
4 : ✓→ v1

it
. the induced map ¢ : GLU ) →GLCV

' )
identifies W and W

'

,
ie ¢ (w) = W

'



Exercise Find an example of two reflection
groups

that are the same as abstract groups but
not isomorphic as reflection groups .

Thm Let WSGLCV ) and W's GLCV ' ) be essential

reflection groups .

We w
'

as reflection groups if
and only if their Coxeter graphs are isomorphic .

proof : If wow '

,

then clearly their Coxeter graphs
are isomorphic .

Now suppose the Coxeter graphs agree .
Fix root

systems , and simple systems
A:{g.nail CIC V and A'={q! . .gl/soI 's V1

consisting of unit vectors , so that the common
Coxeter graph is

u

w

'

⇐ o . . .
→

3
. -

-

/r
-

v

Now consider the linear map

¢ : ✓→Vi ai- ai
'

.

This is an isomorphism since A and D
'

are

bases for span§ = V and span§
'
= V1

.

Furthermore
,
the value of (✗' i g.

' ) is



determined by men ,

!
, g.

' ) = mldi g- )
(using the fact that the Coxeter graphs
coincide) . So

(✗ i' xj
' ) = ( ✗ i %)

and hence 4 is an isometry .

¢ identifies W and W
'

since it identifies §
and CI ' . 9

.

We have learnt that

Irreducible connected

{
Coxeter graphs

{ finite reflection coming from finite}groups coxeter groups
iso

Def If (W ,
S) is a Coxeter group the subgroup

WI = (s / seI) I cs

is called a parabolic subgroup
Exercise @± ,

I) is a Coxeter group
and

WINJ = WIN WJ .



Thm If WCGL (V) is a reft . group ,
fix ACOI

.

If T = futzw . . .wtf is the Coxeter graph
decomposed into connected components , then

weWs
,

✗Wsj - . -
✗Wsr

where Si are the generators corresponding to
the vertices in Fi .

More over if M is connected
,
then W is

irreducible
.

proof : First we show W is irreducible if T is connected
.

Suppose M is connected and W=W
,

✗Wz .

This means

✓ = V.☒Vz and so D must be partitioned into

AnV ,
and An V2 .

We also must have

5×5 p
= SpSa

for ✗ c- AnV1
, is c- AnVz . But this would imply

T is disconnected .

What remains to prove is that if 5- IUJ and

% and Mj are not connected by a path then

weWIXWJ .

Clearly WI and Wj are subgroups that commute
with each other and W=W±hf .



Further more W±nWj=W±ng=W¢ = { idf

so
weWI ✗WJ .

We just need to find a compatible decomposition
of V

,
which is given by

D= AIUD,- , D±={a- DI se SI }

and V= span I
④ span DJ . ☐

.



Lecture 15

Recall we have reduced our problem to classifying
Coxeter graphs that come from finite Coxeter

groups
irreducible

{ connected Coxeter{finite reflection } graphs whose Coxeter}
group group is finite

to
when is a Coxeter group finite ?

Def For a Coxeter group (WS ) or a Coxeter graph
T (vertices 5) ,

the Coxeter matrix is

A = C- 2 cos '¥+) (set miss)= 1)
sites

2 - I def =3
Example ( i ) Ss •

-3° A = ( I 2) evals =3
,
I

2- I C
def = n(a) Sn o_0 - - - -

- °

A = ( " Z " )
.

evals > 0

-

.

- i- i
°

- i 2

Ciii ) Das ce . A = (2-22) def = 0
- 2

eraIs = 4,0

Civ)
A = (-7%7) det = -ar

- ri - iz evals -_ 2+52
, { (4- rz t.ro)



1-et Kw ,s) span {esGses .

A defines a bilinear

form :

G. y) :={
✗
+Ay

If WSGLIV) is a reflection group and s comes from a
choice of simple roots DCI then 5=4×3

, , ☐

(es
,

, esp) = - cos map)
in Kw ,sj , but this is exactly the inner product
(✗ B) in V. So

V-slfw.gg i ✗ '→ es
,

is an isometry . In this case C- - ) is an inner

product
,
hence it is positive definite

,
ie

(x
,

x) so far ✗ 1=0

So
,
if W is finite then C- ,

- ) is positive definite

Fact The following are equivalent ..
(is ( x , y i.= Ay is positive definite (positive semi -def .)
(ii) A has only positive eigenvalues (nonnegative evals)
(iii)The principal Minos of A are positive (nonnegative)

positive semidefinite means
(xx) 30 for all ✗

.



Thus

connected Coxeter connected Coxeter
graphs coming{ from finite Coxeter } c- {groups withA positive definite }
groups

our strategy
4) Find all of these
]

(a) show all of them actually have a finite
Coxeter group ( ie the above is an equality ) .

Prop The following are positive definite

An o-
o- - - -

- ° (n vertices)
Bn /Cn 0-40- . - i

-o

Dn ⇒--o- i - i-

i
En o
- o- o- o- r . .

-0 h = 6
,
7
,
8

FL
,

o-o
-40-o

Hz 0-50- o

Hy 0
5-

o-o-o

Idm) a
_mo



proof : For any graph on the list , deleting one
vertex gives another graph on the list

.

Make this

vertex index the final row / cot in A. All the
proper principal minors are therefore so .

So we

only need to check that def A
> o

. Compute ! ☐ .

Prop The following are all positive semidefinite
but not positive definite

(n-11 vertices)
Ñ

, ☐
I

Ñn o

É
,

o-o
-40
- o-o

n

B) /§ ☐
4- a4- o

G
,

o
-60-o

B~ onto - . . . -0€
n

En c.
4- o- . . .

-04-0

In :>-o- - --0€
i

Éo
o- o -

É
-o- o

TT
,

o-o- o-
of
- o-o-o

És
o- o -

of
-
o-o-o -o

-o



proof : Note that the removal of the blue vertex on
each graph gives a positive definite one

.
Thus

we only need to check that det A = 0 .
Compute ! ☐

.

Lemma The following are not positive definite
2-
4

o- o
-50-0

5

75 o- o-o-o- o

we will eventually prove that any positive definite
graph must appear on the list above. To do this we
will rule out the types of subgraphs that can appear.
Def Let A andT '

be Coxeter graphs , we say
M

'

is a subgraph of M if i ' is obtained from M

by deleting vertices and/or lowering weights of
edges .

We sa a matrix A is indecomposable if no simultaneous
permutation of rows and columns gives a block diagonal
matrix

.

It is clear that

Lemma M is connected
,

if and only if A is

indecomposable .

Prop If A is any
real symmetric positive semi -

definite matrix which is indecomposable and
with all off diagonal entries to ,

then :



(a) Ker A = {✗ c- IR" I ✗TAX -

- o } .

and has dime I

(b) the smallest eigenvalue has multiplicity 1
and has an eigenvector with all entries positive

proof : Frobenius - Perron theory .

Cor If T is a connected Coxeter graph that is
positive semidefinite then every proper subgraph
is positive definite .

proof : suppose P '

is a subgraph of a connected
graph M

.
Let A and A

' be the respective matrices

suppose A is nxn
,
and A

'

is kxk .
We have

aij. = -2cosmyg 3 -2 cos

mlij )
=

aij

since mlij ) > my ij ) . Suppose for contradiction
that A

'

is not positive definite ,
ie

,
there

exists o# c- 112k st

d- A'✗ ⇐ 0

Now consider the vector

I =/ c- Rn

E.

as It A I = [iaijkillg.lt [
'

aijk.lk; I
⇐ i , jek leijtk



← £ aijxixj = ✗
+ A'

✗ so

it i. jtk

Thus ITAI = o and so b the Prop AI = 0

and so Ker A -1-0 . By part (b) of the prop I has

strictly positive entries ,
so n=k

.

But then since

[iaijkilkjl =[
'

aijlx.lk; I
⇐ i. jen teigen

and a'
ij
> aij ,

we must have aij
= a

Contradiction ! 9
.

Theorem The lists above are the only connected
Coxeter graphs that are positive (semi)-definite

proof : By flow chart : suppose M is a positive
semi -definite graph not on the lists above .

Let

m = maximum weight ,
n= # vertices

.

(# vertices)↳QankA? smfmite?É|
✗ ✗

is



t-s-m-M-DoesMcontain@acircuitr.d
f. yes¥¥t⇐Éi×in T ?

krone ⇐ 7× /↳Aretherefbranch points?
✗ µ•§÷¥Txv

" '

Is
to

i-aa.ee/-÷%±E
' r=÷÷y

^=""¥÷×÷¥e-a ¥÷ |"µ2F3Zs- or•×¥)✗ u

✗
✓

Éb > 2. c > 5 ⇐nIf %④-pz v
" """ " "

p p
✗

✗ T=Esor=✗ ✗ ✗



Lecture 17 Rational reflection groups .

Recall if WSGL (Va ) for Ya a Q -vector

space ,
then we can look at he corresponding

group
WSGLCYR) 4,2=4%112

and this is a real reflection group .

If V is a real vector space ,

a Q - lattice
,
is

a Q - subspace USV sf
.

the natural map
U☒④iR→V is an isomorphism .

I.e
. U must be the

IQ - span of a IR -basis of V.

Example V=pi
Here are two

,
2-dim't Q - subspaces

• U= span,q{ (d) (1)f. this is a Q - lattice

• U' = span { (d) , (E)f this is not a
Q - lattice .

WSGLCV)
Remark A real reflection group is (or comes
from) a rational reflection group ,

if there exists
some Q - lattice USV st W preserves

U
.



We can also think about integral reflection groups .
These

are called "crystallographic " .

A K - lattice (or just lattice) in an 112 - vector space V

is a E- submodule MCV st . the natural map
140×-1<112→V is an isomorphism (ie E-span of a basis) .

Def If We GLCV) is a reflection group for
Vi a real vector space, we say

W is crystallographic
f it preserves a I- lattice in V.

Prop If WSGL (V) is a crystallographic reflection
group ,

then if
.

☒=D is a root system ,
with

simple roots ,
then for any

✗ =/BED

mlx
,
B) = 2,3 ,

4 or 6

proof : since W is crystallographic ,

it can be

represented by integer matrices ,

and thus have

integer trace .

Consider sasp is a rotation in the plane spanned

by a , P ,
with angle 2T/m(xp ) .

So tr Gasp) = dim V - 2+2cos!pJ c- I
.

So cosmYJ-pyc-l-z-K.ie mfr B) = 2,3 ,
4 or 6 . ☐

.



Def Let I be a root system ,
I is called

crystallographic if , for any
a
,
BEST

( 13.x) : = 242¥ e I.
Note : sap = B- (B a)✗

Lemma If € is a crystallographic root
system ,

then WCCI ) is crystallographic ( ie
it preserves a lattice ) .

proof : W (E) preserves II

Aim : • show that crystallographic reft . grps
are the same as rational reflgrps .

• Classify crystallographic root systems .



Lecture 17

{
irreducible {connected}← {

root systems }real ref / .
= pas . def .

groups
} "✗etergphyi

,

Fso
o

^

V1

{
irr . rational
reft . grps } ① show this is an ✓is
;) equality

.

V1

{
irr

. crystallographic } - {crystallographic }ref ! grps
root systems

y,,f-so

② classify this]
riderstand this

Lattices

Let K be a field and Rsk a ring ,
and Va

k vector space . An R- lattice MCV is an R -submodule

such that the natural map

M☒rk→ V; m☒7i→ 1m
.

is an isomorphism ( ie it is the R-span of a basis)

Remark If BSV is a K-basis
,
then R .B = :M is

a lattice in V.



Thm Suppose G is a finite group ,

R a PID

and k its field of fractions . If V is a fin .dim
.

G-module / k ,
then there exists a free

R - submodule MSV ,
that is G-invariant and

is an R - lattice .

Mi,

proof : we will find a K -basis T st. RT is

a free R-module ,

and invariant under G
.

Fix
any

basis B of V and define I :-# gB
and let

M = R .
B

M is a finitely generated free R-module since

V is a free module over R which is a PID .

Let T be a free R-basis for M ,
we will prove

that T is a basis for V. To see that T

spans V , consider

✓ → ✗ = E! abb = £1b for some ps ,qbeR
be B- beI 9b

F.c- K
Let c=lTqb ,

thus CX c- M so

b

ex = [irtt since T is a basis

TET

and so ✗ = [! E- t c- span KT .

£ET



To see T is 1in ind
, suppose

£ It = 0 for some Pt 9+ER
1- c-1- 9T

and let c- IT 9£ ,

then
tet

span ,zT 3- cP÷t = o
teT

and so cP¥=o for all t , since Tis an
R-basis for M .

Since 12 is an integral domain , Ptg , so
and

so T is 11in
.

Ind
. ☐

.

Cor If W is a
rational reflection group ,

then

W is a crystallographic reft . grip .

proof : WE GLCYQ ) for a fin .

din
.
Q - vector sp. Yo

.

.

By the
above theorem

,

there exists a E - lattice

McVie ,
preserved by W

.
D

.

Recall :

Det A root system $ is crystallographic of

(Ba> :-. 42B¥ c-I for a .pe# .



and we
say Io

and Io
'

are isomorphic if
there is an isomorphism of vector spaces

f : ✓→ V
'

V1

⇐ ¥
such that f-(E) = €

'
and ( ftp.fl.a) )-1ps , a)

for all a pest

Remark Any root system § is isomorphic to TIO

for
any

1-
c- R- {o } .

Consider two simple roots a
,
BE A c- OI

✗

p
( Ba> = 2GP)_

(✗ a)

G. Pkp ,a) = ,£Ñ_- 4050
If € is crystallographic ,

this must be an integer !
So D= I , ¥ , 3¥ , and the corresponding
values of {✗ B)Cpa> are

& B)(Ba) = o ,
1

, 2
,
3

But ( ✗
,
B) and ( B.a) must themselves be negative

integers (since the angle must be obtuse) .



We can summarise this in a table

4050 la B) (Ba) 0
" 1311%1×112

O O O Iz *

I - I - I 21T I
3-

- I - 2 2

2 or 3¥ or

- 2 - I 112

- I -3

5¥
3

3
- z

or

- ,
or

V3

The last column is calculated using
( Pix) --21B¥ cos 0 so

(B ✗5=4 cosio"P11×112

This leads to an amazing fact :
c) vertices in the Coxeter graph of I connected
by an edge o- o weight 3 ,

must be

equal length roots .

Cii ) vertices connected by a-40 wt 4
,

must
be roots with square lengths in ratio 2 .

iii ) vertices connected by -6 . wt 6 must
be roots with square length in ratio 3 .



It is clear that any isometry gives an isomorphism
of a root system ,

thus since the Coxeter graph
determines all the angles between all the roots , we

only need to know the lengths of each root to
completely determine § .

Example lilthere is a single (up to iso ) root system
with Coxeter graph

o-o- o - i - - -0

This is because
,
whatever the length of the first

simple root , the fact above demonstrates all other
roots must have equal length .

ii ) There are precisely two root systems with
Coxeter graph

0-40-o-o- . . .
-0

If we fix the square length of the first root , the
square length of all the others must be either
twice

,
or half this length .

These examples demonstrate

Drop A crystallographic root system is determined

by its Coxeter graph decorated with an arrow
on each a

-40
or a
-60 edge , painting to

the longest root .
This is called its Dynkin diagram



Thru the crystallographic root systems such
that span =V are

Type Dynkin diagram
An 0-0-0- . . . -0 n> 1

Bn ¥0-- - -
i - n > 2

Cn 05-0-- i - i - n 33

o

Dn ⇒-- ' ' - -°

n z 4

En --6
,7,8
o_0-- i -

i -0 n= 6,7 ,
8

1

Fg a-5--a

Gz ⇐

proof : All that one needs to do is check that a
crystallographic root system exists which we have

done (except in type E) .

Rmk This means each of the corresponding
reflection groups is rational .

Note that the
reflection groups in type B and C are isomorphic
but their root systems are not !

( B. a> =%B¥-



Lecture 18

some lattices
.
Let € be a crystallographic root

system with simple roots .

Def C) The lattice A roof II ☐
' called the

root lattice
Cii) A lattice AEV such that (2.x> c- I

for every ✗ c- CI is called a choice of weight
lattice leg A root is a weight lattice.)

Example If spanI =V (call this semisimple .
)

then define

Asc -- { tell I a. x> c-I
,
✗ c- I }

.

This is a weight lattice ,
and every weight lattice

✗ has the property ✗ roof c- A c- Nsc
.

It is desirable to find a basis for A :
Def If a c-I , ar :=÷x and if D= Lai lie If .
A. choice of fundamental weights of ie I are
vectors w~i c- V such that

cw-i.sn; 1=8 ij
Example C) Take V=R

' and §={±Ei , ±Ei±Ej}ij= ,
,
,

D= { ✗ FE , ,
✗2=5

- E
, } ✗Y , i. ^

Then ✗Y=2E , ,
✗f- Ez- E ,

so



7-- AE ,+bEz C- 11 if

2a= (2. air ) c- I ie a c- {I

b- a = ( 7 ,aY ) c-I .

§

Ai. : j•:# i. i.
^
"

o
e

N
✗

,

•

.

.

. :#4. •

•

•

•

lo @ o o

o o @ • @ a

If w~
,

=aE
,
+be

,
then 2A = I

b-a = o
WY = £E , -11-25

If w~a=aE , + be, then 2a=o

b-a = I WT = Ez

(7)✗ i > .

Def Ñ={ ✗c- A / CX.in?)zoforallic-If
Is called the dominant cone /chamber and its
elements are dominant weights



We will call a root system semisimple if span =V

Example ☒ = { t.j-i-t-EIT-g.li#jfslR
"

⑥Ln)
Take = {xi-q.in/i--l...n- i } .

✗ Y = ✗ i

A- Eiaiei c- N if A. ✗f) = ai - ai+ , c- E .

This is not semisimple ! ! ! This means

A = a lattice + (spanE)
1-

Sc

, In -1 × 112

We need to make a choice . Lets set

A = In

This certainly satisfies (7. ✗f) c- TL .

Now we can set : WY. = Eiaiei aj -9+1=0
for j =/ i and ai -ai, , = 1

,
thus

W~
,

' = E
,
1- Ez + . . -

+ Ei Kish

This is the only non semisimple root system
we work with .



Lecture 19 Crystals
We fix

• I a crystallographic root system
• D={✗ i lieI} a set of siinpk roots
indexed by a set I .

• 11 a weight lattice (usually Asc )
• w~i.ieI , a set of fundamental weights

Def A Kashiwara crystal (or just crystal) is

a
set B. with functions

ei.fi :B ->Bw{of
ieI

Ei Qi :B- Ivf- as }
wt :B→ A

satisfying
(a) If × ,yeB ,

then

eicx.by#x--fiCy)(A1.5)1feiCx)--ythen

why)= wtlx) +ai ,
E

; (g) =EiCx) - l and

Qi ly)=4i(x) -11



(4-2) Yik) = (wtlx) ,
✗Y ) + Eicxl .

If qicx) = - as then we must have eilx)=fiCx)=o .

Def A crystal B is

• finite type if qicxl.q.CN#-os-Vxc-B
• seminormal if

qikt-maxfkc-INlfikcxl-ofeilxt-maxfkc.IN/eikCAt-o}
The crystal graph of B is the coloured graph
with vertices B and edges ✗i>y if fifty .

If B is seminormal then B is determined by
its graph plus the data of wtlx) for every
maximal element x

.

We can use graph theoretic language to describe
B : connected

,
connected components

,
paths , etc .

Rmk For T.me A we

say 7sµ if

A-µ c- IND

leg . if Bet then is to )



Def It beB
,
we say

b is a highest weight
element (hwe) if e :(b)=o for all i c- I .

Proposition Let B be a seminormal crystal
and beB a hue

.

Then wt(b) c- A+ ( ie it
is a dominant weight )
proof : since g.(b) =o ,

we must have E
,

- (b)=o
,
so

0<4 ,

- (b)=4i(b) - E :(b) =(wt(b) , ✗f)

for all ic-I.sc wt (b) is dominant . ☐

Example A ,
root system §={±a=±2} c- lR=V .

with aµ)=£7µ ,
D={21 and ✗¥2

A- As {7- c- 112117×4=7 c-I}=K
Then fat , iv. =L

,
Ñ= IN and I is the

normal order on I.

-a a
Ñ

0 @ • • ⑧ • @ a ⑧ • a •

- 2 0 I 2

Let B be a connected seminormal crystal with a

single highest weight element b ,
wt(b) = k

q(b) = 4lb) - e (b) =(wt(b) , ✗f) =£k2=k



so our crystal is completely determined !
b.→ fb→ f

-

b → . . .
→ fkb

wt : K k- 2 1<-4 - K

these are the objects of Do !

Def A morphism of crystals f :B-C is a

map it :B→ C such that

C) wt(a-(b)) = wt (b)

(2) ei(T(b)I = Ei(b) and 4 ;Wb)) = Cfi (b)

(3) fit (b) = TH
.

-b) and eiT( b) = +(eib) .

This make the collection of crystals for (§ ,D.A)
a category . Isomorphisms are bijection > .

Def If B and C are crystals , we define a
crystal B.☒ C with elements b☒c ,

b. c-B. Cec

wtlb☒c) =wt(b) + wt (c)

4 :( b.☒c) = Max/Gilb) , y :(c) + (wt (b) , ✗Y ) /
E ; ( b☒c) = Max { Eik) ,

e
,

- (b) - (wtf ) ,✗ ! } }

if 4 :(c) EE:(b)
fills ☒ c)=/

fib a

b.☒ f ;c if 4 :(c) > Ei (b)



e:(b☒c)={%b☒c
if clikke

,
- (b)

b☒eic if Yik) > a. (b)

Prop B☒C is a crystal .
proof : we wrest check the crystal axioms
A1 (ei×=y⇐> ⇐ fig . . . )

suppose ei(b☒c)=b'☒c ' .

Cart : Yik)- Ei (b) , then b'☒ C' = e ;b☒c
,
so

Qi (d)=4f4sEi(b ) - I = Eileib )=Ei( b
' ) so

f:(b'☒c) = fib'☒c ' =fieib☒c=b☒c
Cased and f;(b☒c)=b'☒c ' similar

.

wt( eilboxc))=wt(b' i. who)=wt(b c) + ✗ i

similar for Yi and Ei .

A-214 :( ×)=(wt(✗1.x ! > + eicx)) :
we calculate qicb ☒c)

Corset 4i(b☒c)=Qi(b) then

9.(b)+ (wtlbl.at/--4iCb)3qicc)-lwtCb),aY)--EiCc)-fwtlb),9.Y-i(wtG),xiV ) .

So E :(b) - (wt (c) ,ai ) 3 Eiccl



and thus

G- ( boxc) = E:(b) - (wt (c) ,
air)

but wtlboxc)=wt(b) + wtcc) so

Eilb☒ c) + fwtlboxcbq.Y-eicbl-lwtkyxif-lwtlbl.si)
+ lwtcd.si )

= g.(b) + (wt (b) , air }

= -4 , (b) =p ; ( b ☒ c)

Cased : similar ☐
.

Prop If B and C are seminormal so is B☒C

proof : similar arguments .



Lecture 19

We fix
• § a crystallographic root system
• D= {✗ i lieIf simple roots

• A a weight lattice

• Ii E-I fundamental weights
(A root datum)
Note I c-V a real inner product space with
inner product f- , - ) (to match conventions in

Bump - Schilling) .

Note if ✗c-I , I :=¥> ✗ and so

SIP) =p - ( is , or> ✗

Def A Kashiwara crystals (or just crystal) is

a set B with functions
← crystal operators .

• ei.fi :B →Buff
i c-I

• Ei , Qi : B→ Iv { - as}
ji

one for each
• wt : B- A simple root .



satisfying
(A1) if × , ye B then ei✗=y ⇒ ✗ = fig
4- 1.5) If ei✗=y then

wt(g) = wtf) - ai , Ei (g) = Eik)- 1
, Yily1=4,1×7+1

(1-12) 4.G) = Eicx) + (wtlx) ,
✗F)

and If 4 ;
G) = - as then eicx)=f;Cx)=o

Def A crystal B is

• seminormal if

4-G) = max {KEN /t.tk/--ofEiCx)--maxfke1N/ekix--of .
• finite type if g.G) , Eicx) + - - the B .

Exercise seminormal ⇒ finite type .

The crystal graph of B is the directed coloured

graph with vertices B and an arrow ✗i> y
whenever fix =y .

We

say
B is connected whenever its graph is .



Rmk If 1
, µ

c- A
,
we say 73M if

7-µ c- IND ← non-negative span
of the simple roots .

Def tf be B
,
we

say
b is highest weight if

eib =o tieI

( ie no incoming arrows to b) .

Prop Let B be a seminormal crystal an b a

highest weight element , then
wt (b) c- At ( is a dominant weight)

proof : recall Ñ={tell / 4,9!) > of .

Since

eib = 0
,
we must have E.(b) =0 so

of Cfi (b)
= Yi (b)

- E
,
- (b) = (wt (b)

,
✗f) ☐

.

Example (A ,) §={±x=±2fsR=V with

a. µ> ⇐ £7M .

Then D= {2} and ✗ = 2
,
✗
'
= 2 and ft ,ñ) -1,72=7

A = Asa -- {✗ c- 11214 ,
d) =3 c-If - I .

Then (w~
,
✗4--0=1

,
✗
+
= IN

.



I A At
0 I 2

• • @ G ② • • a ⑥ a • a •

I ✗

Let B be a connected seminormal crystal .

B has either no
,
or a single highest weight

element
.

Suppose B has a single highest weight element
bets

,
with wt(b)=k c- IN

.

9(b) =p (b) - {(b) =/wtlb) ,✗v)=wt(b) = k

So the crystal graph is
b- f-b- f

-

b→ . .
- → fkb

wt k k -2 1<-4 - k

These are the objects of Do !



1. Let W = { (In) c- IR" / Eia .. -

- o } SIR!
find

a basis for W .

① Make a list of hints
.

- Give me an example of ✗ EW ,

- How do
you find a basis/what is a basis

find a spanning set , make it din . nd .
- Find a vector 1in .

incl w/ x .

- Repeat it ?

-
Is it

spanning
.

2. Find the nullity of T(
×

) =/ ÷? )
.

y
+ 2-I.

- Can you find v
,
st Tcu) -0

- What is the nullity → dim of null (T)
.

- Matrix of T.

- find abasis of null space . . .



What if no - one is speaking ?
- easier and easier questions
- stay silent .
- VERY LAST RESORT : give a partial answer

One person
dominates

- Directing questions
- What do others think?

- Ask dominant person to explain to the others .

- Have
a
sc-r.be

Sidetracked conversation
- Maybe not a bad thing .

- steer the conversation back.

No one understands whats going on
- Go back and explain first principles
- Change question to something simpler

specifics to SDU
- style of doing mathematics
- English language → alot of interaction will be

via chat .

Speak + type
- Some majors are

much weaker .



- students will be
very good

at

computational tasks .

- Can struggle with conceptual tasks .

- students will be in a classroom w/ personal
device

.



Lecture 20

Def A (strict) morphism of crystals it :B→ C

is a function such that

is wt(n(b) I = wt (b)
(2) 4i(+(b) ) =p (b) and E; (Tlb)) =E,- (b)
(3) fit (b) = IT (fib) and ei (Tcb)) = + (eib) .

(where a-(a) =o ) .

Qmk A B and C should be crystals for the same
root datum .

(2)This is a restrictive definition
③ This makes the collection of crystals for GI , D , 11,4)
a category .

(4)The isomorphisms are bijection , .
Def if B and C are crystals ,

we define a crystal
B.☒C with elements b☒c

,
beB. Cec

wtfbxoc) = wt (b) +wtcc)

Qi ( box c) = max{g. (b) , 4 ;k1+(wtlbl.si ) }

Ei ( b☒c) = max { Eilat , G. (b) - (wtcc) ,
a! ) }

ffb ☒ c) = {
fib☒ c if 9.(c) e e ; (b)

b.☒ f:c if 4 ;(c) > Ei (b)



ei(b☒c)={eib☒c it 4iC4< eicb)

boxeic if 4:(c) BE :(b)

Example (Gln) §={xij-di-djfc-IRh.D-fi-xii.is/1---Kn,w~i--d,-dz-...-dii--l-..n-1

f
B ☐→-2*-5 :

. - ☒
¥'

w~
, dz Is dn

"

Ben d
,

Example Be,☒Ba, for @↳)
e: :
☒→É→É

e : : : i
¥
a ☐ ☒

'% A.☒→g. →TID

I 1 1
01 to ☒ I -7 !

l t t
00 ☒ ol II.☒→G.Tj '☒



Question For (Gln) can we find a
combinatorial rule for the arrows in Bcf ?
Can we identify the connected components ?

Prop B☒C is a crystal .
proof : We check the crystal axioms .

(A1 : ei✗=y⇐> ✗ =fiy) .

Suppose eifb☒c) = b' ☒ c '
.

Card b'=e;b and c'=c ,
ie Yi (c)< E ; (b) .

We will calculate fi(b'☒ d) .

pile ')=4i(c)← Eilb) - l . = G.Gib) = Eilb
' )

Eby crystal axioms for B .

So f :(b'☒d) = fib'☒c' = b.☒c.

Cased and f :( box c) = b'☒ c
' follow by similar

arguments .

1.5 : wtleix) ,
Eileit

,
Yik;^) )

wt(ei(b☒c))= {wtleib c)
-

wtle.is/-iwtcc)wt(bo--eic)=wt(bj+wf(eig/=WHb-od1- ✗ i

similar for Ei , Gi .



¢-2 : qicx)=EiC×)+(wtlxl.li ) ) .

We need to calculate yilboxc)

Qi ( box c) = max{g. (b) , 4 ;k1+(wtlbl.si ) }

Ei ( b☒c) = max { Eilat , G. (b) - (wtcc) ,a! ) }

Case1_ : 4i(b☒c)=q ,-(b) ,
then

G. (b) + (wt (b) , air )=y ,

- (b) > g. (c)
+ (wt (b) ,q!)

=E;K)+(wtkl.at/-(wtlb),q!)
so G. (b) - (wtcc) , ✗Y) > Eicc)

so Ei(box c)= Ei (b) - (wt (c) , air ) .

Eilb☒c) + (wtlb-od.si/--Eilb)-(wtk1,aiY-(wtlb1,q.Y-fwtsq.Y=E;Cb)-(wtlb1,a! )

= 4 :(b) = 4 ,
-Cb☒ c)

Cased similar ☐ .

Prop If B and C are seminormal
,

so is

B☒C
.

proof : similar arguments .



(Gln) → {ai;] ,

11=2
"

,

w~i-e.tk?--+e-ia+=fxc-Ala.a7=o9
"

(✗ it ;) = (7
, e- i

- fi , ,) -Ti -Ti -1 ,

= { 7. c- Eh / 1
,
>_ tis . . .

> An}
= Pn

.
,xI .

Pu = portions with at most n parts

↳ 7,37<3 . - . 37m30

-

For 1 Ek en ( k)
,
( 1,1--1-1=11

" ) c- Pn

Example Bay : elements li.li#i--s-...ie-9 . 6<3

Ist
.

lei
,size . . . sik en 9 ,

(E) =2

4. ( ) = # of it , wtf -1=14,01

f. 1-7=1
Ei( )= # of it ,'s

ff -7=-1*3
wt(Iii)= £4 :(→ e-

if:(Iii)= { change
the rightmost itoi-11

0 if no i 's
.



Exercise : draw the graph of BG, for (G↳)
label with wts

.

☒

"2

☒ 3
☒ ☒ =L

' C2 lo) Ba,

f ↳ B
,
Biz,

I 1

( Izu)
12

3 12 ° 1)
B
, ,k)☒B , ,)

2

. :

i:
,I

1 2

(1) 1)
1 3

3
41 1)

i
v t

(1 oz )
I 3 2 I

¢ z 1)
3 3

↳
z z

É

3
( a 1 2)

7
,
3 727 .

- u 3 7-
r



Lecture 21

We want to understand the tensor product rule better .
Consider three crystals : A

,
B

,
C

.

If ac-A.be B.Cec .

What is

f- Ka b)☒ c) ? ( in ☒B)☒c) .

i

Recall

f :(✗☒g) = {
+"☒& 9-41<-941--4,1×1 - ftp.qq.v)

pity)+(wtcx) ,diY< 4,1×7
✗ ☒ fig cficy) > Eich

4. (yi-lwtlxl.si ) > 4,1×1

Reinterpreting :

9ilnf-f-x-QY-qicyl-lwtw.si) ✗☒figwe look

at the wax
of there



For (A-☒B)☒C :

Yi (a) f ;a☒b☒c

4 ; (b) + (what ,

✗ in a☒ fiboxc

4 ,

- (c) +(wtcal ,ai> + (wtlbl.si ) a☒b☒f :c

Act with fi in accordance with the first row where

the maximum valve occurs .

Check we get same table for A☒ ☒c) !

Drop The map @☒b)☒ c 1-7 a☒ Cb ④ c) is an

isomorphism of crystals
⇐☒ B)☒C→ A☒ (B☒c)

Thus the category of all crystals (for a fixed
root datum) is a monoidal category
proof : The above shows that the bijection commutes
with f. (and thus withe;) . It follows from
the definitions that Yi , Ei ,

and wt are preserved .
☐

.

Generalising the above picture to a tensor
product of crystals :

B.☒Bz . -
-
☒ Bm



Prop If ✗ 1×0×2×0 . . -☒✗me B ,☒Bz☒ . - -
☒Bm then

g- I
'

4- G.☒ . . -☒ ✗
n)=max{ 9 :(×;)-1£ (wtcxk) ,q! ) fj-i.i.mg1<=1

and

f :(✗ ,☒ . . Xm)= ✗ 1×0 . . .☒ fixr☒ . . -☒ ✗
m

where Krem is the minimal value where

the expression above acheiues its maximum .

proof : by induction ☐
.

Exercise Determine a similar statement

for Ei and ei .

Recall the@Ln) crystal Ba)
f-

'→☒→z -3> .
. - ☒

wt : g
,

Sz g En

☒m
we will interpret the above rule for Bay .

What is

f :(☒☒☒☒ .
. -
☒l⇒) ?

Nate : qi(☒)=8×i and



(wt(☒1. ✗ i )=(e- × , g.
-

g.+ ,) , {
° if ✗ =/ i.in

1 if ✗ = i

- i if ✗ = i -11

Example

of ( ③☒②☒☐☒ ☒☒☒☒☒ )
0 0 0 I 2 2 I

r

= ③☒④☒①☒②☒ f.④☒③☒☒
= ③☒④☒I☒②☒ ☒ ☒③☒☒

Case 1 : If all i 's appear to the left of all it 1 's .

The maximum first occurs at the rightmost i

so f- ; changes the rightmost i to an ill .

Case2 : If case 1 doesn't apply .

There exists a sequence

5 = ☒☒Ka☒ - - -
☒KJ

where ✗a=i°_ 1
,
✗ BI ! ,

a- nodi 's or i -11 's occur

between
. Then

f :(☒☒☒☒ . -☒☒)=f;☒ . . -
☒→☒×⇐ . )

Note pits )=0 and f :(57=0



Now we repeat by induction .

Algorithm for calculating fi(☒☒ . - -
☒ ×mJ)

1
.

Under each box put a + for an i -11

- for an i

nothing for other

2. Cancel pairs of (+ ,

- )

3
: Repeat 2 until no longer able to

4. Apply fi to the rightmost i labelled

by a non - cancelled -

5. or
, if no - 's ,

fil - 1=0

Example

ff#⑦ ☒ ③ ☒ ⑦ ④④☒ ☒② e-③)
1*-3-1 - +

=#⑦ ☒ ③ ☒ ⑦ ⑦④☒①☒ e-③



☒ 12

Example (Gta) Bay
4,(3) = I Ez(3) so

↳( 4 • I • 3 • 3 a 4 . 2 • 2 - 4 - 3 - 3 • 4 • 2 )
+ - - + + - -

ITEz(4)=L
= 4 • I • 3 • I

• 4 . 2 • 2 - 4 - 3 - 3 • 4 • 2



Lecture 22

Thru (signature rule) .
If × ,☒×,☒ . .

- ☒ ✗me B.☒ . .
-☒Bm

then
f
; (× ,☒-☒✗m) = ✗ ,☒ -☒f ;✗k☒ -☒✗m

where K is found using the following process .

1. Decorate each xj with Yik;) - 's , and Eicg. ) -1 's

Xj
- - . - .

- 1- 1-
. .
.

1-

--

Qicxj) Eilxj)

2. Inductively cancel + - pairs until we are
left with a sequence

- -

. . .
- + + . .

.
-1

3. K is An index associated with the

rightmost - .

Tableaux

A partition 2=61,72 ,
. - . ,7r) is a weakly decreasing

sequence of positive integers .

The diagram of a partition is the left justified
arrangement of boxes , with 2 ; boxes in



the ith row

Example (322 1) is a partition of 8 with

diagram

1¥
A semistandard tableau of shape 1 is

an arrangement of posititive integers in the
diagram of 1 ,

such that

Li) rows are weakly increasing .

Iii) columns are strictly increasing .

A standard tableau is a semistandard tableau

with strictly increasing rows .

Example Tableaux of shape (3 221)

¥¥¥E¥¥
5

standard
semi standard .



(G) aanspecial cases :
µ
,
5k¢ "

Bail:÷÷÷÷÷Y7- (k) shape A- (k) with

j
• crystals

/ semistandard tableaux
7=11") ;|k Bed,={ shape 1=1^-4 with |it entries 1,2

,
- - -

,
n

( 1,1
,
. .
- it ) ↳

Aken

Goal understand BIT
Prop The map RR :B(µ→B given by

RRCFH.tl#)-- ☒
. -
☒☒

is a morphism of crystals .

proof : wt(☒)=(µ ,
- -Mn) where

Mi = # { j / g- =i } .

on the otherhand



K

wtf ☒ . - -
④ )= [ wtf k;))

j = I

=

j= ,

£5'

=(µ ,
- . -Mn)

So RR preserves wt .

Note
,
if we can show

RR commutes with ei , f ; then it also preserves

Ei and 4 ; ,

since both Ba, and 13¥
'

are seminormal .

We have to show
,
if T.tk Buy the

fit =T
' if and only if fi RRCT) - RRE 't

fi changes the rightmost i ofT to an

i-1.fiacts on RRLT) via the signature rule ,
but

all i 's occur before it 1 's in RRCT)
,
so fi

increases the rightmost i to an ill .

e ; is
handled similarly . g.



For the (Gln) root datum
,

and for a partition
define

{
standard tableaux

B
,

:= shape 7
,

with entries |
.

Rmk By =¢ if 7 has more than n parts .

1-et 7,1-72-1 . - - +Tr = m
,
be the number of boxes

.

Define a map
☒m

RR : By→ Be
,,

by letting RRCT) be the row reading word
of T :

I 1 3 4

Example If T = 23 4 (so 7 = (4 3 2) )
.

3 4

the RRCT) =3 ④ 4 ☒ 20×30--4--0 I☒ 10×3 ☒ 4

(read left to right , bottom to top ) .

We define the Yamanouchi tableau u
,
of

shape 7 ,

to be the tableau with all 1 's

the first row
,
2's in the second row and

so on .



☒m

Thm The image RR(Ba) S B , ,, is a

connected component
,
with unique highest

weight element u, ,
proof : delayed .

A
way
to create a new tableau from old :

1- = a semistandard tableau

✗ = a positive integer
T← ✗ =

the insertion tableau

Example
+ =

← ✗ = '

l l I 4

2 3 3 c- 2

4 4

I 1 I 4

2 2 3

4 4 ← 3



I 1 I 4

2 2 3

34

c- 4

1- ← 1 :=[-



Insertion algorithm
I 1 3 55 ← 2

T= 2 3 4 4

3 4

I 1 2 55

2 3 4 4 ← 3

3 4

I 1 2 55

2 3 3 4

3 4
← 4

1 I 2 5 5

23 3 4 = : T ← 4
. ie an element of

344 ✓ BEM

Def Let w be a word in { 1,2 .
. . - in} .

The

P - symbol of w is : if w=w, wz. . - ur

Pcw) :-. f. . ( (¢ ← a)← wz) ← . . .

← wr)
t
empty tableau



Example If w= 132

¢ ← I = ¢ I 32

☒ ← 3 =

32

☒← z =

¥12 =P (W) ☒
,

2

Question Experiment with Po RR

• Do you
have a guess for what this is?

Po RR = id

• Can you prove
it in some special cases ?

Columns
,

rows → almost immediate
.

• What about RROP ?
not the identity , eg w = 132

P ( 132 = ¥
RR (7) = 312

.

P(3121=132
.

We have a map
④ m ×

"

I Ba, = words ( i. - n)1) By ←
-

- -
-

'

Atm length m
F P



I
1 is a partition
or m

,
1
,
-1
. . . -17rem

¢ 312

☒ 12

☒ 2

W = W
,Wzu - -Wr

#

Def Let Plw) be the P
- symbol of

insertion tableau) . Define Q -symbol for
recording tableau) to be the standard tableau
defined by

shfpcw ,)) c- sh(Nw ,# c- . .
- c- sh(P(win. . -wr))

Example w= 132

PC ,) =

| ""1-☒¥PG]) = ☒

P( 132) = 1T¥



W = 312

P(3) = ☒ I

Posit ⑤ ☒ Q(312)=F§

PGI 2) =- ☒

Question • Apply P ,
Q to w= 4213

• Reverse the process .

←
words semistd std .

tableaux

RSK
t ✗

BE <÷¥¥mB× ✗ star

RSK ( w) = ( Pcw) ,
Qcw)) .RS/4w-Y--(Qlw1,Pcw)

this is a bijection , and a crystal morphism .

⇐ nm = Ei #By # STH)
Itm

n ! = EI #STAY (m=n)



Lecture 22

RSK correspondence (Robinson -Schensted - Knuth)

B.
☒m

a)
- ¥1m BESTA)

"

words of
W'→ (PW) 'Q→) [ partitions of m .

i e
length in

semistd std

Thm (RSK) This is a bijection .

Thm This is a morphism (and therefore an
isomorphism ) of crystals ) .

proof sketch : We set up an induction
☒m Rskm

> H B
,
✗ ST (a)Be, ✗ 1-m

=/ / decompose Bµ☒B, ,,
B.
☒¥ ' Rskm

,

id

c.) ☒Bing
> H Bµ☒B , , ✗ Stfu)
µ 1-m -i

is crystal morphism
by induction

where 7 ranges over shapes
Fact : Bµ☒B , , = 1) By obtained from µ by adding

a single box
.



Example for Glu n =3

B
#
☒Bat B#

u B
#
u B☒

for n=2 B☒=¢ - 9
.

What about B ☒B ? The answer is givena µ

by the Littlewood -Richardson rule .

Thm B,☒Bµ_~uHBFc% where % is the

" Littlewood-Richardson coefficient
"

.

This means the set { By} is closed under tensor

product .

How would we compute cÉµ ? ftp.mi-g

B,☒BµR¥B☒ BIT 1) Boxster)
Wtp-19

what is the image of this map ?

CY
,
= #Test / 0) that are in

the
image .



Ariswer :

c¥µ = # {Test (w) / two properties hold : }
Rev numbering of 1 *µ T

a) hits ⇒
.

.¥
.

.

b) - ⇒ -- - -

IH
.

☒ :

number boxes from
i. *µ = - right to left and
F) top to bottom .

EY rev numbering of ☒ *1¥ is

¥1

Alternatively :
Thru Cia = # { LR tableaux of shape v11 }

and weight µ



i.e-

|¥#%µ
°

• semistandard
• # 1 's =µ , ,

# 2 's =µz ,
i - -

• reading rows right to left
and top to bottom produces
a lattice word

.

Let
crys (Gln) be the category of crystals

whose connected components are all isomorphic
to By for some 1 .

What is the coboundary structure on crys (Gln) ?

There is a unique map of sets

es,
:B
,
→ By

such that

• wtf,b) = Wo . wt (b) wi-G.nl/2,n- 1,1 . . .

• face:b ) = fn.ices.io)
• 5, (Fib) = en - it ,b)

We can extend to a map 9,3:B→B
by applying }, to the connected components



Thm (Kamnitzer - Henriques) The map

CAB : A☒B→B☒A

a☒bi→§z☒A( 5,3lb)☒}ACa))
gives cryo (Gln) a coboundary structure .

Questions

(1) what is fact) for T a semistandard
tableau ?

(a) If we B¥m ,
what is the cactus

group
action ?


