CRYSTALS

COMBINATORIAL ALGORITHMS

AND

TENSOR CATEGORIES

Lecture C Categorical prerequisites Carlegories are (for us) a useful language for keeping track of a large amount of mathematical data. We will happily ignore all set theoretic issues! Key example A category collects together a type of mathematical object and its properties. The main example to have in mind is the category of vector spaces over a field F Det A category & consists of . A collection of objects . For any two objects A, BEG, a collection Horng (A, B) of morphisms from A to B · A rule for composing marphisms Home (AB) × Home (BC) -> Home (AC) f.A -> B, q:B -> C +> g.f: A -> C . For each object AEG a morphism idA E Encl(A) = Home (A, A) such that i) (Associativity) For morphisms

f:A→B,g:B→C,h:C→D we have $h \circ (q \circ f) = (h \circ g) \circ f$ f:A→B ii) (identity) for any morphism $i d_{B} = f = f = f$ Example Vect, is the category of vector spaces over the field F: objects: vector spaces / F morphisms: Hom (V, W) = {linear maps V→W}. with composition and identity defined as usual Exercise Think of as many examples of categorics as you can. At least 10! · Can you think of two categories that have the same objects but different morphisms? Can you think of two categories with different objects that "feel" the same (ie they should be equivalent in some sense in the same way that I and the infinite cyclic group teel the same before you learn about group homomorphisms). Functors

Def A fundor F:G->D between two callegories is an assignment of • an object $F(A) \in D$ for every object $A \in G$ • a morphism $F(f) \in Hom_{D}(F(A), F(B))$ for every morphism $f \in Hem_{E}(A, B)$. such that i) $F(id_A) = id_F(A)$ ii) $F(q-f) = F(q) \cdot F(f)$ Example Let Set be the category with objects sets, and morphisms functions. F: Vect -> Set is the functor that assigns to a vectorspace the set of its elements, and to a linear map, the same map considered as an ordinary function. Example: Any category has the identity functor id: G->G Exercise Let Ab be the category of abelian groups. Fix any abelian group M and define H: Ab - Ab; H(A) = Hem(M,A) $T \land Ab \rightarrow Ab; T(A) = A \otimes_{\pi} M$ prove these are functors

Exercise Try and think of as many examples of functors as you can. as you can. Example Let Carl be the category whose objects are categories and whose merphisms are functors, This is a category! Maps In mathematics we like to study objects up to some kind of isomorphism (or homeomorphism, homotopy, isotopy, or other version of someness.) Det in a category G, a norphism fellom (A,B) is an isomorphism if there exists a gellom (B,A) $g \cdot f = id_A$ and $f \cdot g = id_B$ g is called the inverse of { and is denoted f Exercise Show that I' (if it exists) is unique Det We call a morphism fellom(A,B) a monomarphism if for any g,hellom(X,A) f.g = f.h (ie left cancellation holds) Similarly an epimarphism 13 on where right

Cancellation holds. Remark It is true that injections are always mono-morphisms, but the converse is not true! Similary, all surjections are epimorphions, but the converse is not true. Exercise Let Ring be the category of rings. Consider the inclusion q: Z ~> Ge Is it a monomorphon? Is it an epimorphism? Is it an isomorphism? Det A subobject of an object AEG is simply a monomorphism i: U -> A. The category of subobjects of A, sub(A), has objects monomorphisms i: U-A an morphisms $H_{-m}(i:U \rightarrow A, j:V \rightarrow A) = \int fetbm(U, V) | i = j \circ f \int$ ie morphisms making the diagram find A commute. Exercise Check that in the category Set, isomorphism classes of subobjects are simply subsets. Check the above is actually a category and define

quotient objects in analogy with this (use epimorphisms) What are the quotient objects in the category of sets?

Remark The notion of sub and quotient object above is maybe a little too weak and gives some strange results (eq to is a quotient of Z in Ring) We want warry about it have as it want effect us but it is something to be aware of.

Direct sums The categoricat notion of a direct sum is Det 17 A, BEG are objects of a category, a coproduct of A and B is an object ALIBEG along with two morphisms A - AUB - BB such that, for any object CEG and morphisms A tA, CL FB B Ahere is a unique Morphism such Ahat q: AUB -> C ta je ta $A \xrightarrow{L_A} AUB \xleftarrow{L_R} B$ commutes.

We can think of AUB as the universal object that "contains" both A and B. Exercise show that disjoint union in Set and direct sum in Vect give coproducts. Proposition If ALB exists, then it is unique up to unique isomorphism. proct: Suppose in X is B and A jA y LB 3 are two coproducts. Then by the universal property, there exist morphisms q:X > Y, Z:Y > X such 4hat $A = \frac{JA}{4} + \frac{JB}{4} = B$ LA X LB commutes. Thus we get a diagram $L_{A} = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3$ which commutes. But by uniqueness, we must

have to p=idx. Similary we show fort = idy , D , The construction of a coproduct can be extended to arbitrary families. If {X.], ieI is a family of objects in G, a coproduct of {X; } is an abject WX; and a family of maps p: Xi - WX; such that for any other object Y and maps f: Xi -> Y, three is a unique map of LX, -> Y such that f; Y 1 q commute for all if. X ____> للX; ، ^{(e}t Exercise Suppose X, X, X, are objects in a category G. Assume that the coproducts $X_{1} \sqcup X_{2} (X_{1} \sqcup X_{2}) \sqcup X_{3}$ and $\bigsqcup_{i=1,2,3} X_{i}$ exist. Show that there is a unique isomorphism $(X_{1}\cup X_{2})\cup X_{3} \simeq \bigsqcup_{i=1}^{1} X_{i}$ making An diagram $X_{i} \xrightarrow{\bigcup_{n} (X_{1} \cup X_{2}) \cup X_{3}} \downarrow^{2}$ commute. ____х.

Exercise Let P be a posed regarded as by setting $Hom(a,b) = \begin{cases} \{*\} & if a \leq b \\ \phi & otherwise \end{cases}$ a category (ie an arrow a -> b whenever a < b). Interpret the notion of a coproduct in the longuage of posets. Proposition There is a natural bijection $Hom(A \sqcup B, C) \simeq Hom(A, C) \times Hom(B, C)$ proof: Suppose we have a pair of maps $A^{*} \xrightarrow{f} C^{*} C^{*} \xrightarrow{g} B^{*}$ Ann by the universal property, Ahre is a unique map of: ALB -> C. We denote flig:= of. Now we prove that Hom (A,C) × Hom (B,C) - Hom (AUB,C) (1,g) -> fug is a bijection. First injectivity. If commutivity of f, Ug, = f, Ug, , then we have , by $f_{1} \cup g_{1} = f_{1} \cup g_{2}$ A ----- AUB < LA A

	he 10	F L	l l	5.V		()e	ur.)	14).	0	י 	= C	Ĵι	•.	•	•	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·	(+	۹ ر	2Ē	, ()		FL			• • • • • • •				• • • • • • •
 	•	•	•	•	Ċ	P		•	Þ	• [- -	Ĺ	Ļ	C	P" •	Ļ	B	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	Ĺ]	•	•	•
• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
• •								•	•	•	•	•	•	•	•		•			•	•					•					•				•	•	•
• •		•	•	•				•	•	•	•	•	•	•	•		•	•	•	•	•					•					•				•	•	
• •	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		•	•	•	•	•
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•
• •																0					0																
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•	•	•	•	•	•	•	•
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•
• •																																					
• •		•						•	•	•	•	•	•	•	•		•							•				•	•	•							
• •	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•				•	•	•			•	•	•	•
																																				•	
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																													0								
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		•	•	•
• •																																					
• •																																			•		
• •																																					
• •																																					

Lecture 1: Natural transformations. Suppose we have two constructions we can apply to a vector space $\vee \longmapsto \vee$ (eq we could have $\hat{V} = V^{\oplus 2}$ and $\tilde{V} = Hom(k^2, V)$ a natural map $\hat{V} \rightarrow \hat{V}$ is a linear map whose definition does not depend on the specific vector space in question, but can be applied to all vector spaces uniformally. For example, we have a natural map $q_{V}: V^{\otimes^{2}} \longrightarrow Hem(k^{2}, V)$ $(u,v)\longmapsto \left(\begin{pmatrix}\lambda\\\mu\end{pmatrix}\longmapsto\lambda u+\mu v\right)$ notice we didn't have to choose a basis or anything else specific to V. We can interpret this categorically. A "construction" is a functor. A map between construction is a morphism between images of the functors. Suppose F, G: G -> D are functors, then

a natural morphism should be a collection of morphisms $X_{A} : F(A) \longrightarrow G(A)$ one for each object AEG. But not just this! What does it mean for this family to not depend on choices? Lets go back to the example of vector spaces. Essentially we want to avoid picking any specific representation of V. E.g. picking a basis. Choosing two different bases gives an isomerphism Checking that air map of is the same for these two different bases is the same as checking that V@2 (f,f) V@2 QV V Hom(k'V) - Hom(k'V) $m \longrightarrow \left(\begin{pmatrix} a \\ b \end{pmatrix} \longmapsto fom \right)$ commutes. We can generalise this notion.

Def Suppore F,G:G -> D are two functors. A natural transformation &: F=>G is a collection of morphisms (in D) $\{\alpha_{A}: F(A) \longrightarrow G(A)\}$ for each object in G, such that, for each morphism fellome (A,B) in G, $F(A) \xrightarrow{F+} F(B)$ $\alpha_{A} \int \alpha_{B}$ $G(A) \xrightarrow{Gf} G(B)$ We say a is a natural isomorphism if each kg is an isomorphism. Exercise Define two functors P, 2: Set ->Set P(X) = the power set 2× = Fun(X, {oir) functions X > {oir] Complete the definition of these functors and show they are naturally somerphic. Exercise Let Nat (F,G) be all natural transfer inctions Show that the set of objects functors F: G-D with morphisms natural transformation is a category.

Monoialal Catzgorics Loosely, a monoidal category is a category that has a notion of tensor product, modelled on the properties of the tensor product of vector spaces. The properties we will axiomative are $\cdot U \otimes V$ is functorial. Le linear maps $f: U \rightarrow U'$ and g: $V \rightarrow V'$ give a map fog: $U \otimes V \rightarrow U' \otimes V'$. • $(U \otimes V) \otimes W \simeq U \otimes (V \otimes W)$ in a natural way • $k \otimes V \simeq V \simeq V \otimes k$, in a natural way. Def A monoidal category is a tuple $(E, \otimes, \alpha, 1, l, r)$ where • G is a category • S: CXC -> C is a functor (the tensor product) · a is a natural isomorphism $\infty \circ (1 \otimes \times id_{\mathcal{C}}) \longrightarrow \infty \circ (id_{\mathcal{C}} \times i\otimes)$ of functors ExExE ~ E (the associator · 1 is an object of & (the identity) · l and r are natural (somorphisms $1 \otimes - \stackrel{\ell}{\Rightarrow} id_{\mathcal{C}} - \otimes 1 \stackrel{r}{\Longrightarrow} id_{\mathcal{C}}$

such that (i) the following diagram objects A, B, C, D E G: commutes for all (pentagon axion) $((A \otimes B) \otimes C) \otimes D$ QABC & idd ABB,C,D (A@(B@C))@D $(A\otimes B)\otimes (C\otimes D)$ a_{A,B,COD} $\longrightarrow A \otimes (B \otimes (C \otimes D))$ $A \otimes ((B \otimes C) \otimes D)$ (ii) the following diagram commute for all objects $A, B \in G:$ (triangle axion) $(A \otimes 1) \otimes B \xrightarrow{a_{A,1,8}} A \otimes (1 \otimes B)$ A@idz Jak

Lecture 2 Examples Ex 1 The prototypical example is of course Vectik . USV is the usual tensor product. · au, v, w ((u & v) & w) := U & (V & w) extended linearly • <u>1</u> := k Ex 2 In fact Vect k has another monoidal structure: (Vect K, &, id, {0}, l, r). Fx3 Set has a monorialed structure given by disjoint union. • associator is the identity • 1 = t • 1=+ · l, r are the electrity. Exercise Determine another monoidal structure on Set Set, Ex4 Let G be a finite group. Define Vect_k(G) to be the category of G-graded vector spaces. I.e. objects: vector spaces with a decomposition V= = = V morphisms: linear maps preserving the grading (ie $q(V_g) \leq W_g$ if $q: V \rightarrow W$).

We can define a G-grading on the usual tensor product V&W by $(V \otimes W)_{g} := \bigoplus_{x,y \in G} V_x \otimes W_y$ = y = gThis is functorial because for any marphisms $\varphi: \bigvee \rightarrow \lor \lor$, $2 + \cdot \wr \lor \rightarrow \lor \lor$ the linear map (827 preserves the grading, i.e. $q \otimes 2(V_{x} \otimes W_{y}) \subseteq V'_{x} \otimes W'_{y}$ and so $\varphi_{\text{ext}}((N_{\text{ext}})) \in (N_{\text{ext}})^{d}$ The associator from Vectik also works in Vectik (G) because $a_{u,v,w}((u_x \otimes V_y) \otimes W_z) \subseteq U_x \otimes (v_y \otimes W_z)$ and su $\alpha_{\mathcal{U},\mathcal{V},\mathcal{W}}\left(\left(\mathcal{U}\otimes\mathcal{V}\right)\otimes\mathcal{W}\right)_{(xy)} \subseteq \left(\mathcal{U}\otimes\left(\mathcal{V}\otimes\mathcal{W}\right)\right)_{x(y)}$ $= \left(\mathcal{U} \otimes (\mathcal{V} \otimes \mathcal{W}) \right)_{xyz}$

The identify doject (as a v.sp) should clearly be 1=1k. But what should the grading be? We must have $1_{q} = \begin{cases} k & for q = p \\ 0 & \text{otherwise} \end{cases}$ for some fixed peG. Thus $V_{g} \simeq (1 \otimes V)_{g} = \bigoplus_{ky=g} 1 \otimes V_{y}$ = I N V = V p'q so we must have $g=p^{-1}g^{-1$ Now we can Ex5 Let R be a ring. An (R, R)-bimadule is an abelian group M, with que structure of both a left and right R-madule such that $(a \cdot m) \cdot b = a \cdot (m \cdot b)$ for meM, a, b \in R. Tensoring over R gives a monoidal structure.

Ex6 The category of endofunctors End(G) is monorable with composition. EX7 Defin Steed to be the category of super-vector spaces, that is, vector spaces with a decomposition $\sqrt{-}$ we say V's is the even part, V, is the sold part. Morphions are grading preserving linear maps. Tensor product is defined as follows; VOW is the usual tensor product $(\vee \otimes \vee)_{\circ} := (\vee \otimes \vee)_{\circ} \oplus (\vee \otimes \vee)_{\circ}$ $(\mathsf{V}\otimes\mathsf{W})_{\mathsf{L}}:=(\mathsf{V}\otimes\mathsf{V}_{\mathsf{L}})\oplus(\mathsf{V}_{\mathsf{N}}\otimes\mathsf{V}_{\mathsf{A}})$ v is honogenear, If veV; we use the notation [VI:=i. We can choose the following associator; $\rightarrow U \otimes (V \otimes W)$ α_{uvw}: (U⊗V)⊗W $\alpha_{UVW}((u\otimes v)\otimes w) := (-i)^{|u|+iw|} u\otimes (u\otimes w)$ for u, v, w homogeneous. important: preserves the grading!

auvw ((uv)w)x Quev, w, x (-1) (u(vw))x $(-1)^{|u|+|v|+|x|} (uv)(wx)$ a vowx Q UV W&X $(-1)^{|u|+|w|}$ $(-1)^{|u|+|x|}$ ((vw)x) $(-1)^{|u|+|v|+|x|}$ $(-1)^{|u|+|w|+|x|}$ $(-1)^{|u|+|w|+|x|}$ $\frac{1}{(-1)} = \frac{1}{(-1)} = \frac{1$ What should the unit be? 1-dim obviously, so either 1=k, or 1=1k, Note that Ikek, = 1ko, so we must have 1=1ko Now we need to determine the morphisms l, r! We need maps ly, ry such that $(\mathcal{U} \otimes 1) \otimes \mathcal{V} \xrightarrow{\alpha_{u1V}} \mathcal{U} \otimes (1 \otimes \mathcal{V})$ ru⊗idv idu⊗lv Uov

Translating: A vel, vel homogeneous, $r_{u}(u\otimes\lambda)\otimes v = (-i)^{|u|+iv'}u\otimes \ell_{v}(\lambda\otimes v)$ So it looks like $l_{V}(1\otimes v) = (-1)^{v} 1_{V}$ $r_{u}(u\otimes\lambda)=(-1)^{|u|}\lambda u$ would work! Again, it is important these are actually morphisms in SVectik-

Braided monoidal categories

We have ignored a key property of \otimes in Vectik. Nancely that $v \otimes w \mapsto w \otimes v$ gives a natural isomorphism $V \otimes W \simeq W \otimes V.$ Remark Such a structure does not exist in all cases. Take for example Vectik (G) and consider $|k_q \otimes |k_h \simeq |k_{gh} = |k_h \otimes |k_q \simeq |k_{hq}$ If ghthy in G then there are no grading preserving linear maps between them! Again, we will not simply require that A&B ~ B&A but instead specify how they are somorphic. Def A braided moncidal category consists of a monoidal category & and a natural isomorphism $\mathsf{C}: \otimes \Longrightarrow \otimes \cdot \mathsf{T}: \mathsf{G} \times \mathsf{G} \Longrightarrow \mathsf{G}$ Here I: G×G → G×C is the "flip" functor. τ (A,B) = (B,A), τ (f,g)=(g,f). The braiding maps CAB are required to satisfy the following two commutative diagrams:

(hexagen axion) $(B \otimes A) \otimes C \xrightarrow{\alpha_{BA,C}}$ $B\otimes(A\otimes C)$ CARSID drec AC $(A \otimes B) \otimes C$ BOCOA) a_ABC a B,C,A A@(B@C) C_{A,B@C} >`(&@C`)⊗A $C_{A\otimes B,C}$ $C\otimes (A\otimes B)$ (A&B)&C ac,A,B a_{A,B,C} A&(B&C) $(C \otimes A) \otimes B$ id_A&C_{B,C} CACOLL AO(COB)-→(A&C)&B a-1 A,C,B

Example The category Vect, is braided with braiding given by flip: V&W -> W&V Similarly Set with the monorabel structure given by Cartesian product is broorabed. There two examples are special, in the sense that doing the braiding twice is the identity Det If G is a braided monoridal category with braiding c, we say G is symmetric if Cxy = Cyx or equivalently if Cyx cxy = idxey for any two objects X, YEG. Not all braided categories are symmetric! Example The category of tangles, Tang, is braided by using the braiding $C_{m,n}: M + n \longrightarrow n + M$ (exercise: check this gives a natural isomorphism clearly c1, c1, = c1, = + = i=l_1+1

Why consider braided monoidal categories instead of simply symmetric ones? Yong-Baxter equation The Yang-Baxter equation is an equation that asks for an operator VE Vect. REEnd(V&V) to sotisfy the equation $R_{23}R_{13}R_{12} = R_{12}R_{13}R_{23}$ where $R_{ij}: V \otimes V \otimes V \longrightarrow V \otimes V \otimes V$ is the operator obtained from R by acting on the ith and jth tensor factors. i.e. $R_{23} = i = l_V \otimes R$. $R_{12} = R \otimes i = l_V$, $R_{13} = T_{12} \circ R_{23} \circ t_{12} \leftarrow flip$ In fact, we can try and make sense of this in any monoidal category by noticing the YBE has an equivalent form: Let Q = T . R. Then the YBE is equivalent to $(O\otimes id) \cdot (id\otimes Q) \cdot (Q\otimes id) = (id\otimes Q) \cdot (Q\otimes id) \cdot (id\otimes Q)$ The YBE originated in statistical physics. Operators of the form R appear in statistical nuchanical systems and if they satisfy the YBE then the system is integrable, Hence there was a large amount of interest in finding solutions to the YBE

In fact, braided monoidal categories give a procedure for producing a large number of solutions: Proposition If G is a braided monoridal cat, with braiding c (and trivial associator) then the braiding c_{XX} satisfies the XBE, or more generally, for any 3 objects X,Y,ZEG: $\left(\begin{array}{c} C_{y2} \otimes id_{y} \\ X \end{array}\right) \cdot \left(\begin{array}{c} id_{y} \otimes C_{y2} \\ X \end{array}\right) \cdot \left(\begin{array}{c} c_{xy} \otimes id_{z} \\ \end{array}\right)$ $= \left(id_2 \otimes C_{XY}\right) \cdot \left(C_{XZ} \otimes id_Y\right) \cdot \left(id_X \otimes C_{YZ}\right)$ proof: We want to show Alu following hexagon commutes $Y \otimes X \otimes Z \xrightarrow{i d_y \otimes C_{XZ}} Y \otimes Z \otimes X$ $C_{XY} \otimes i d_Z \xrightarrow{1} C_{Y \otimes X_1Z} \xrightarrow{2} C_{YZ} \otimes i d_X$ $C_{XY} \otimes i d_Z \xrightarrow{1} C_{Y \otimes X_1Z} \xrightarrow{2} C_{X \otimes X_1Z} \xrightarrow{2} C_{$ $Y \otimes X$ $X \otimes Y_{2}$ $Y \otimes Y \otimes X$ X&Y&Z ⇒ Z⊗Y⊗X id ec xy <u>->78x8y</u> Cxzeldy

Triangles () and (2) commute as these are exactly the hexagon axioms once we forget about associators.
Square (5) commutes since $C: \otimes \Rightarrow \otimes C$ is a natural transformation and so the square $A\otimes B \xrightarrow{f\otimes g} A'\otimes B'$
$ \begin{array}{c} C_{A,B} \\ B \otimes A \end{array} \xrightarrow{g \otimes f} B' \otimes A' \end{array} $
commutes, in particular, for $A = X \otimes Y$
$\mathcal{B} = \mathcal{Y} \otimes \mathcal{X}$ $f = \mathcal{C}_{\mathcal{X}\mathcal{Y}}$
$g = i \mathcal{A}_{z}$
Apart from showing that braided monoidel codegories give us solution to Alu YBE, it also generates actions of the braid group:
Braid groups Def The braid group on n strands, Bn, is the group whose elements are isotopy classes of

braid diagrams: eq: with multiplication given by vertical stacking. More formally, a braid diagram is one that can be isotoped to a vertical stacking of fly diagrams The diagrams Theorem Bn has presentation $\mathcal{B}_{n} = \left\langle \begin{array}{c} \sigma_{i}^{n} & i = 1 \\ \sigma_{i}^{n} & \sigma_{i}^{n} & \sigma_{i}^{n} & \sigma_{i}^{n} \\ \sigma$ eg (1432)

ie by sending of $\mapsto s_i = (i, i+1) \in S_n$. This is a surjective map and if we define the pure braid group as PB = ker TT = { diagrams whose strands match up { dots in order E PB 5 eq. thin thre is an exact sequence $| \longrightarrow PB_{n} \longrightarrow B_{n} \longrightarrow S_{n} \longrightarrow |$ Remark If you know some topology this comes from the following fact: Let Creg := { ZE [1 Z; # Z; } then Sn Q [reg freely and $PB_n \simeq \pi_1 (\mathbb{C}_{req})$ $B_{n} \simeq \pi_{1} \left(\mathbb{C}_{Rq}^{n} / S_{n} \right)$ In general, if a finite group acts freely on a top space X, there is an exact sequence $(\longrightarrow \pi_{i}(X) \longrightarrow \pi_{i}(X/_{G}) \longrightarrow G \longrightarrow)$

Lecture 5 Motivating examples We will first consider the category D, consisting objects: (V,e,f,h) V a finite dimensional vector space/C $e,h,f\in End(V)$ st. [he]=2e, [hf]=-2f [ef]=h. morphisms: Hong (V,W) = linear map q: V -> W such that goev = ewoy $e_{V} = e_{W} e_{V}$ q. hu=ewig Remark This is the category of sly-representations where sly is the Lie algebra of 2x2 traceless matrices. The following shows that it also has something to do with differential operators on P! Example Consider An (infinite dim) vector spice $\mathbb{C}[xy]$ of polynomials in two variables and the operators $e:=x\partial_y$ fi=y ∂_x h:= $x\partial_x - y\partial_y$ These operators satisfy the necessary relations! (check). Let $V(m) := \mathbb{C}[xy]_{m} = \operatorname{span}\{x^{n}, x^{n-1}y, \dots, y^{n}\}$ ie the subspace of homogeneous degree n polynomials. The operators e, f, h preserve each V(m) so

we get that $(V(m), e, f, h) \in \widetilde{D}$,
Lemma The operators e, f are nilpotent and h is diagonalisable on V(m)
proof: The operators e, f, h can be depicted as
e x ^m +
$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
$2 \left(\begin{array}{c} 0 \\ m \\ -1 \end{array}\right)$ $x^{m-2}y^{2} = 2m - 4$ $3 \left(\begin{array}{c} 0 \\ m \\ -2 \end{array}\right)$
$m - 1 \begin{pmatrix} 1 \\ x \end{pmatrix} 2$ $m - 1 \begin{pmatrix} 2 \\ 2 \end{pmatrix} 2 - m$ $m \begin{pmatrix} 1 \\ 1 \end{pmatrix} 1$
λ. A
le $e^{m+l} = f^{m+l} = 0$ and $\{x^{a}y^{b}\}$ is an eigenbasis for h.

For two objects $V, W \in \hat{D}$, we can form the direct sum $V \oplus W$ with $e_{V \oplus W} = \begin{pmatrix} e_V & o \\ o & e_W \end{pmatrix}$. and so on. Def $D_1 \subseteq D_1$ is the subcategory of objects isomorphic to a direct sum of the objects V(m)ie $V \in D_1$ if there exist integers a_m such that $\vee \simeq \bigoplus \vee (m)^{\oplus a_m}$ Remark in fact D,=D, This isn't a particularly difficult fact but it would take us more time than I'd like to spend on the issue, so I define our way out of An problem. $\frac{Prop}{Prop} Hom(V(m), V(n)) = \begin{cases} Cid & if m = n \\ O & o/w \end{cases}$ proof: Let $q:V(m) \longrightarrow V(n)$ be a marphism and set $v:=q(x^m)$. Note $e(v) = e \cdot q(x^{m}) = q \cdot e(x^{m}) = q(o) = 0$ Thus v= 2xn for some 2EC. Now note $h(x) = h \cdot \varphi(x^m) = \varphi \cdot h(x^m) = \varphi(mx^m) = mv$ But h(lx") = lnx" so we must have either $\lambda = 0$ of n = m.

1f Z=0 then
$\varphi(x^{m-\alpha},y^{\alpha}) = \varphi\left(\frac{(m-\alpha)!}{m!} + \frac{\alpha}{2}(x^{m})\right)$
$=\frac{(m-\alpha)!}{m!} (f \circ f^{\alpha}(x^{m}))$
$=\frac{(m-\alpha)!}{m!}\int_{-\infty}^{\infty}f(x^{m})=0$
$so \varphi = O$,
On the other hand, if m=n then by a similar argument as above, $cp(x^{n-a}y^{a}) = cp(\frac{(m-a)!}{m!}f^{a}(x^{m}))$
$\mathcal{O}\left(x^{n-\alpha}y^{\alpha}\right) = \mathcal{O}\left(\frac{(n-\alpha)!}{m!} f^{\alpha}(x^{m})\right)$
$=\frac{(m-\alpha)!}{m!}f^{\alpha}-q(x^{m})$
$=\frac{(m-a)!}{m!}f^{a}(\lambda x^{m})$
$= \lambda \times \sqrt{-2} y^{\alpha}$
so $\varphi = \lambda \cdot id$. [].
· · · · · · · · · · · · · · · · · · ·

We can put a monoidal structure on D,
VOW = usual tensor of vector spaces.
even= everdytidew
$f_{V\otimes W} = f_V \otimes id_V + id_V \otimes f_W$
$h_{V \otimes W} = h_V \otimes id_W + id_V \otimes h_W$
with V(0) as the identity object and trivial associator
Example Consider $V(1) \otimes V(1) =: W$. This has a basis $x \otimes x = 1$
$y \otimes x + x \otimes y = 0$ 2 () $y \otimes y = 0$ $y \otimes y \otimes 0$ $y \otimes y \otimes 0$ $y \otimes 0$
$S_{\circ} V(1) \otimes V(1) \cong V(2) \oplus V(0)$
Remark It is clear that $V \otimes W \in \widetilde{D}$, (once you check the relations) but it is a priori not clear why $V \otimes W \in D_1$, You will check this on the problem set.

Prop The natural transformation CVW = flip defines a braiding for D1. proof: What do we need to prove? - that it is a natural transformation (square commute) - hexagon axioms commute (immediate since we know) it for Vert). Recall CVW must be morphisms in D.! $C_{VW} \cdot C_{V\otimes W}(v \otimes w) = C_{VW}(c \cdot v \otimes w + v \otimes c \cdot w)$ = W& e.V + e. W&V = (id wer + e wid,) (wer) = ewer c c (vew) Car in fact D, is a symmetric manoidal category. B Q VOn is simply permutation of tensor factors. Rewark One way to get a more interesting braiding is to define the associator differently (using the KZ equation - a differential equation on $\mathbb{C}^n_{reg} \coloneqq \{(z_1, ..., z_n) \in \mathbb{C}^n \mid z_1 \neq z_2\}$ Monodromy In fact $B_n \cong \pi_1(\mathbb{C}^n \operatorname{reg} / S_n)$

A powerful philosophy in modern algebra: "Deform/quantise to reveal hidden structure" Lets define Dy (q 15 formal variable) rational objects: (V, e, f, K) where • V is a fin. dim. V.Sp over C(q)• e, f, K \in End (V) such that L14K is invertible (think) (think) $KeK^{-1} = q^2 e KfK^{-1} = q^2 f$ $[e,f] = \frac{K-K}{q-q-1} = \frac{q^{h}-q^{-1}}{q-q-1} = [h]_{q}$ Def The q-analogues of integers are defined as the rational functions: $[n]_{q} := \frac{q^{n} - q^{-n}}{q - q^{-1}} = \frac{q^{n}}{q^{-1}} \left(\frac{q^{2n} - 1}{q^{2n} - 1}\right) = q^{1-n} \left(\frac{2n - 2}{q} + \frac{2n - 4}{q} + \frac{1}{q}\right)$ $= 9 + 9 + \dots + 9$ $\sum_{q \to 1}^{\infty} [n]_q = n,$

we also define the factorials $[n]_{i}^{l} := [n]_{i} [n-i]_{i} \cdots [i]_{i}$ Remark D, is in fact representations of Ug(s12) An quantum group for s12. Example Consider the vector space $\mathbb{C}(q)[x, y]$ with operators $e := x \partial_y^{q} \qquad f := y \partial_x^{q} \qquad K := q^{2} x^{2} - y \partial_y^{q}$ $e := x \partial_y^{q} \qquad f := y \partial_x^{q} \qquad K := q^{2}$ where $O_x^q(x^ny^m) = [n]_q x^{n-1}y^m$ Dy (xnym) = [m] xnym-1 How do we interpret K? $K(x^{n}y^{m}) = q^{x \partial_{x} - y \partial_{y}}(x^{n}y^{m}) \coloneqq q^{n-m} x^{n}y^{m}$ We can check the relations: KeK⁻¹(x^ay^b) = 9^{b-a} Ke(x^ay^b) $=q^{b-a}[b]_{q}K(x^{a+1}y^{b-1})$

 $=q^{b-\alpha}[b]q^{a-b+2}x^{a+1}b^{-1}$ $=q^2 e(x^a y^b)$ Similarly for the other two. Observation e, f, K can be restricted to $V_q(m) := \mathbb{C}(q)[xy]_m = homogeneous of deq. m poly's.$ Def Dy is the subcategory of Dy consisting of all objects W, isomerphic to a direct sum of the Vy(m). Remark Actually Da is almost all of Dy. It is The so called type I representations. Exercises Repeat the structure analysis of V(m) as for V(m), calculate Hom (Vy (m), Vy (n))

We can define a monoralal structure on Dy: VOW = the usual tensor product of v.sp's. e = e & id + K v & e w $f_{v \otimes w} = f_v \otimes K_W + i d_v \otimes f_W$ K = K & K W Note: We've broken a symmetry with respect to flipping tensor products.

Solution to 7a: We would like to show that in a braided monoidal category 6, the following diagram commutes We will suppress the tensor symbol completely, and sometimes the subscript on natural transformations. Consider the diagram: $A(II) \longrightarrow (II) A$ $\frac{a}{1}$ (AI) $i \rightarrow AI \rightarrow AI \rightarrow IA \rightarrow L$ I(iA)(ii)ci * li (4) (3)(1A)) We want to prove * commutes as this is simply (i) tensored by I on the right. So if * commutes so does (i) by the following argument:

 $AI \xrightarrow{c} IA$ $(AI)I \xrightarrow{ci} (IA)I$ $ri \quad Li$ $AI \xrightarrow{i}$ IAA The inner diagram is what we assumed commutes, and the outer squares commute by naturality of r. ie take X=A1 and f=rA, LA or CA,1 in: $\times 1 \xrightarrow{1} \times 1$ $X_{1} \xrightarrow{t} X_{2} \xrightarrow{t} X_{2}$ Thus the arter trianghe commutes. Now we come back to (ii). To show * commutes, note that the outer hexagon axion commutes by the hex axiom. (1) commutes by the triangle axiom. (2) commutes by the naturality of c: ie take X=A, Y=11 S=A, T=1 and fle i and g=l_1 in the following.

XY _ fg __ ST · · · C · · · · · YX _ gf _ TS 3 commutes by the naturality of l, is take X = A1, Y = 1A, $f = C_{A,1}$ in $1\chi \longrightarrow 1\gamma$ We are left with only having to show the commutivity of that two triangles (4). These follow from a more general triangle: $((1 \times 1)) \land \longrightarrow ((\times 1))$ li (iii)

One can show the commutativity of this triangle using the pentagon axiom (which is what you should expect given it only involves a, l). $((1)) \times) \times ai$ $((1)) \times) \times ai$ $((1)) \times ((1)) \times ai$ $((1)) \times ((1)) \times ai$ $((1)) \times ((1)) \times ai$.**Q**. • • • • • • • • • • • • • • 🗙 (| |)(xxy) $a \qquad 1 (xY) \qquad 1 (xY) \qquad a \qquad i(li) \qquad a \qquad i(li) \qquad a \qquad i(li) \qquad a \qquad i((1 \times Y)) \qquad i(1 \times Y) \qquad i((1 \times Y)) \qquad i(1 \times Y)) \qquad i(1 \times Y) \qquad i(1 \times Y))$ 1) commute by the triangle axiom, while (2) commute by naturality of a. This forces A to commute which is (iii) tensored by I. By a similar argument to the above (iii) must commute and the proof is complete.

Lecture 7 A braideal and a not so braided category.
Observation The map $c = flip$ does not give a braiding on D_q . Indeed on $V_q(1) \otimes V_q(1)$:
e. flip (xoy) = e(yox)
= $e_{y\otimes x} + K_{y\otimes e_{x}}$ = $x\otimes x$,
flip.e(x&y)=flip(ex&y+Kx&ey)
= $+lip(q \times \otimes x)$
$= q \times \otimes \times$
We need to deform our flip map. Consider the operator ie q then (vow) = q to if Kv=q
$R_{V,W} = q^{\frac{1}{2}hech} \cdot \sum_{i=0}^{\infty} q^{\binom{i}{2}} \frac{(q-q^{-i})^{i}}{(i)^{1}} \cdot \sum_{v=0}^{i} q^{\binom{i}{2}}$
Note: the operators e and f are nilpotent so the sum is finite! Here $q^{\pm h\otimes h}(u\otimes v) = q^{\pm mn} u\otimes v$ if
sum is finite! Here $q^{\pm n\otimes n}(u\otimes v) = q^{\pm nn}u\otimes v$ if Kutan us cod Kutan v
Ku=q ^m u and Kv=q ⁿ v.
Example Let $V = V_q(1)$. $R_{VV} = Q^{-1} \cdot (1 + (q - q^{-1}) e e f)$
$R_{VV}(x\otimes x) = q^{\frac{1}{2}} \cdot x \otimes x R_{VV}(y\otimes x) = q^{-\frac{1}{2}}(y\otimes x + (q - q^{-1})x\otimes y)$
$R_{VV}(x\otimes y) = q^{\frac{1}{2}} \times \otimes y R_{W}(y\otimes y) = q^{\frac{1}{2}} y \otimes y$

 $R_{VV}^{\dagger} = q_{V}^{\dagger} \begin{pmatrix} q_{V} & q_{V} & q_{V} \\ q_{V} & q_{V} & q_{V} \end{pmatrix} \begin{pmatrix} q_{V} & q_{V} & q_{V} \\ q_{V} & q_{V} & q_{V} \end{pmatrix} \begin{pmatrix} q_{V} & q_{V} & q_{V} \\ q_{V} & q_{V} & q_{V} \end{pmatrix}$ Exercise: Check that is commutes with e, f, K. Check this satisfies the hexagon axion on V&V&V. This The map CVW = Rhiv the defines a braiding on Dy that is not symmetric. proof: We wont give a proof here but it is entirely possible to varify the herogon axioms explicitly. It should be clear that c = flip unless R = icl. Remark This is a deformation of D, in the sense that as q->1 (interpreted appropriately) we get R, ->id so Cvw -> Flip. One more monorial-1 category We will consider directed graphs, with no bops, and with every vertex having at most one incoming and at most one outgoing edge. We will call thuse line graphs.

If vel is a vertex of a line graph we write fu for the neighbouring vertex in positive direction and 4'v for the neighbouring vertex in negative direction t'v v fv We let fv=0 or f'v=0 if they don't exist. Define q(v) = max d'a (fav to f. $E(v) := \max \left\{ a \mid f^{-a}v \neq o \right\}$ Example .- $\varphi(v) = 2 = \varepsilon(v) = 4$ Prop For any vertex V, $cp(v) + \varepsilon(v) + 1$ in Au connected component of V. = # cf vertices Let Do be the category with: objects: line graphs with finitely many vertices morphisms: maps of directed graps $\alpha: L \rightarrow M$ such that $\varphi(\alpha v) = \varphi(v)$ Example Let B(m) be the unique connected line graph with m+1 vertices f^{m-1}bm f^mbm bra for from

proof: In effuer situation if $x \in Hom(B(m), B(n))$ then $\alpha(b_m) = b_n$ (unique vertex with single out arrow). But $q(b_n) = m$ and $q(b_n) = n$ so if $b_n \neq b_n$ then α cannot exist. If m = n then since α is a map of graphs we must have $\alpha = id$. A tensor product We want to define a line graph L&M vertices: {a@b1ach, beM} edges: Determined by the following rule $f(a\otimes b) = \begin{cases} fa\otimes b & \text{if } \epsilon(a) \ge \varphi(b) \\ a\otimes fa & \text{if } \epsilon(a) \prec \varphi(b) \end{cases}$ It is clear this define a line graph.

Example B(1) & B(2) f_{b_1} $f_{b_1\otimes b_2}$ $f_{b_1\otimes f_2}$ $f_{b_1\otimes f_2}$ Exercise Prove that q(asob) = q(a) + max(C,q(b)-E(a)]. $E(a \otimes b) = E(b) + max \{0, E(a) - q(b)\}$ The associator is defined to be the identity map. The This gives the structure of a monordal category. cate ger y. prod: We need to show & is a functor le if we have maps $\alpha: L \rightarrow L'$, $B: M \rightarrow M'$ Ann $\alpha \otimes \beta: L \otimes M \rightarrow L' \otimes M'; \ \alpha \otimes \beta(u \otimes v) := \alpha(u) \otimes \beta(v)$ is a morphism, ie (use above exercise) $\varphi(\alpha \otimes \beta(u \otimes v)) = \varphi(u \otimes v)$ it respects composition (immediate). We also need to check that x=id is a norphism in the category, after which naturality and the pentagon axion are immediate. (again, us above)

What about a braiding? Lets Look at B(1) & B(1): p' _____ (p' b, | b|&b, ---- b|&fb, £b, \ {b,⊗b, {b,⊗fb, The flip doesn't work. In fact: The The monoidal category D. cannot be made into a braided monoidal category. prost: see problem set. We can however still find a nice natural isa. C :L⊗M →M&L Define &: L -> L to be the "upside down" map that turns each connected component upside down: $g_{B(m)}: B(m) \longrightarrow B(m) = f(t^{a}b_{m}):= t^{m-a}b_{m}$

Warning: E is only a map of sets! It is not a morphism in D. . It is still natural in the sense that is is a natural isomorphism {: U ⇒U where U: Do -> Set is the forgetful functor. Det Define CL,M: L&M -> M&L by $C_{L,M}(u \otimes v) := \begin{cases} (\xi_{M}(v) \otimes \xi(u)) \\ M \otimes L \end{cases}$ ie $C_{LM} = S_{M \otimes L} (S_{M} \otimes S_{L}) \circ Hip$ Prop C_{LM} is a morphism in D_{δ} proct: Thursday. Example CB(1), B(2) $\{S_{B(2)} \otimes \{S_{B(1)}\}$

So if C is not a braiding, what is if?	· · · · · · · · · · ·
Det A coboundary noncidal category is rategory G with a ratural isomorphism $C: \otimes = 7 \otimes \cdot flip$ satisfying:	s a monoidal
° C _{M,L} °C _{L,M} = ;l M,L°L,M	· · · · · · · · · · ·
• the following commutes (L&M)&N CL,M&IdN (M&L)&	· · · · · · · · · · · ·
a _{l,M,N}	C _{M&L} ,N
$L\otimes(M\otimes N)$	N&(M&L)
id & C _{M,N}	a ⁻¹ N, M, L
$L\otimes(N\otimes M) \xrightarrow{C_{L,N\otimes M}} (N\otimes M) \otimes C_{L,N\otimes M}$	
Thm The category Do is coboundor	• • • • • • • • • • •

Remark There is a precise sense in which $D_{0} = \lim_{q \to 0} D_{q}$ As monoidal atequies. Notice that lim RV(1)V(1) does not exist. If we take RVW(RWV·RVW)-2 · Hip this defines a coboundary structure on Da and we can say the limit is true a coboundary cats. What is the analogue of the braid group? Previously, we had B. R. Von Let & be a coboundary category and LEG. Can we find groups G, such that GR Lon? Def The caches group Cn is the group generated by symbols spy, 1 < p < q < n and relations: interval 5 5 = 1 $if \qquad [p,q] \cap [k,l] = 4$ Spg Skl = Skl Spg $H [k, L] \subseteq [P, q]$ Spy Skl = Suu Spy

ie u = q - (k - p) = p + q - kV = q - (l - p) = p + q - lProp There is a surjection $C_n \rightarrow S_n$ given by $S_{pq} \rightarrow (p,q)(p+1,q-1)...$ (ie flip the interval [p,q]). The kernel PC, is called the pure caches group. proof: It isn't difficult to check this is a group how and clearly the mage of 512 S23... Sn-in generate S_n. Remark The exact sequence also comes from topology. Namely $DC_n = \pi_1(M_{ont}(R))$ $C_n = \pi_1([M_{ont}(R)/S_n])$ Moduli space of stable rational curves with nel marked points

Lecture 7 Thm If G is a coboundary category, for every object LEG, Anne is a map $C_r \longrightarrow Aut(L^{\otimes r})$. proof: We want to think about the image of Sin as "flipping" the tensor product LOLO...OL. For any objects L, L2,..., Lr define $G_{L_1,L_2,...L_r} = C \otimes id \circ C \otimes id$ $C_{L_1,L_2,...L_r} = C_{r-1,L_r} \otimes L_{r-1,L_r} \otimes L_{r}$ ····· C & id · C L, L & ... & L : L, &L, &... &L, $\rightarrow L_r \otimes L_{r-1} \otimes \ldots \otimes L_1$ So we have isomorphisms Opq:= id & OLp, Lp+1, ..., Lq & id & r-q We can define the map $C_n \longrightarrow \operatorname{Aut}(L^{\otimes n})$ by $\operatorname{Spq} \longmapsto \mathcal{O}_{pq}$. We just need to show that the \mathcal{O}_{pq} chey the relations in the cactus group. First we check that $\sigma_{pq}^2 = 1$. We concentrate on p=1, q=n, the other cases being similar.

Note on = on wid . CL, Lon-1 50 = G & Rd · C L, Lon · C L, Lon · id & O, n-1 = 0² = 1 by induction by repeated & application of the by CBA' CAB=id axion. Coboundary axion. The relation $s_{pq}s_{ke} = s_{ke}s_{pq}$ when $[kl] \cap [pq] \neq \phi$ is clear since s_{pq} and s_{ke} act on different densor factors. The final relation for [kl]=[pq] follows from a similar but more involved calculation to the spg = id case D. Ain of the course Construct interesting coboundary categories and calculate the associated cactus grp actions to discover some nice combinatorics!

Reflection groups Let V be a finite dimensional innerproduct space over k (= C, IR, O) A reflection se GL(V) is a finite order operador of the form If k = C replace $S(v) = S_{\alpha}(v) := v - 2 \frac{(v \alpha)}{(\alpha \alpha)} \alpha$ with (F-1) for a real of unity f.tor some a e V. $\frac{1}{2} \left(\frac{(va)}{(xa)} \times \frac{1}{2} \right) \left(\frac{va}{(xa)} \times \frac{1}{2} \right)$ $1 + \frac{1}{\alpha} = R \alpha$ Note that H = ker(s_-id) = Rx to sa fixes a dim V-1 dimensional subspace and s(x) = -x 50 $S_{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -\frac{1}{2} \end{pmatrix}$ or ξ . in some basis, le it is diagonalisable. Def A reflection group over k is a pair (W,V) of an inner product space V, and a finite group $W \subseteq GL(V)$

generated by reflections. The rank of W is dim V, and we say W is essential if V » = {veV |qv=v for all geW} = { o} Remark A rational reflection group is sometimes called a crystallographic group or a Weyl group. Remark Any rational reflection group can be made into a real (or complex) reflection group by considering the induced transformations of V&R (i.e. extending scabers).

Note that o'in = O'in- Wid & CL, Lon-1 = id@0',,-, ~ C Lon-, L by induction on a and the coboundary axion. In addition, Alu following commuter by naturality $\begin{array}{c} C_{L}^{n-1} \\ L \otimes L^{\otimes n-1} \\ \end{array} \quad (d \otimes \otimes_{1n-1}) \\ L \otimes L^{\otimes n-1} \\ \end{array}$ So $=\sigma_{in}$ by def $=\sigma_{in}$ by $\sigma_{in}^{\prime 2} = \sigma_{in-1}^{\prime} \otimes id \circ C_{L,L} \otimes n-1 \circ id \otimes \sigma_{i,n-1}^{\prime} \circ C_{L} \otimes n-1 L$ 50 = 0' &ide C L, Lan-1 . C Lan-1, L. O'In-1 & id = id by symmetry axion $= o_{1,n-1} \otimes id \circ o_{1,n-1} \otimes id$ $= \sigma_{1,n-1}^{2} \otimes id$ = id by induction on

Lecture 10 Examples (i) The only reflection on Q is 5: 7+>-2 So the only rank I reflection group is $\mathbb{Z}_{1} \simeq \langle \lambda m - \lambda \rangle.$ (ii) Embed a regular n-gon into IR² centered at the origin. We can take W = {s | x any vertex or midpoint of } Then W=D. the difiedral group of order 2n D, is a radional reflection group if and only if n=3,4,5 (iii) Let E; be a basis of R. S, EGL, (IR) where $\sigma \in S_n$ is given by the appropriate permutation matrix. We have that

 $(a,b) = S_{\varepsilon_{a}} - \varepsilon_{b}$ so Sn is generated by (rateral reflections). Note: It is not essential! (IR") Sn = R(E,+E2+...+En) But for this reason we can see $S_n \subseteq GL(\mathbb{R}^n/\mathbb{R}(\varepsilon_1, \ldots, \varepsilon_n))$ This is essential. Proposition If (W,V) is a reflection group then there is an injective map $W \longrightarrow GL(V/W)$ and (W, V/VW) is an essential reflection group. proof: The map is well defined since VW is W-invariant, and if gEW acts as the identity on V/VW, that means, for any VEV $q_{\rm V} + V^{\rm W} = V^{\rm W}$ ie que VW by that means veVW so gu=v. Hence the map is injective. Now we must calculate (V/VW)W. Suppose $V+VW \in (V/VW)W$. Then $q_{V} + V^{W} = v + V^{W}$

for all get. ic gu-veVW reflections s, so s(sv-v) = sv-v W is generated by V-5V = 5V- $\mathcal{S}^{\mathcal{V}}$ so ver W and hence (V/W)W={of. Remark We could alternatively take $(W, (VW)^{\perp})$ to be an equivalent essential reduction. Gal Classify real and rational reflection groups. The above says it is enough to only consider essential reflection groups. We will make one more reduction: If (W, V,) and (W, V) are two reflection groups then define $(W_1, V_1) \oplus (W_2, V_2) = (W_1 \times W_2, V_1 \oplus V_2)$ Det A reflection group (W,V) is irreducible if it does not allow a rentrivial decomposition as above

Prop If well is an element of a reflection group, and $s_a \in W$ then $s_{wa} \in W$. proof: This follows from ws w = Swx, To see this : \bigcirc $\omega s_{1} \omega^{-1} (\omega \alpha) = -\omega \alpha$ a wsaw fixes Hwa pointwise. \bigcirc $\omega s_{\alpha} \omega^{-1} (\omega \alpha) = \omega s_{\alpha} (\alpha) = -\omega \alpha$ (2) We need to show that $w_{a}w'(\lambda) = \lambda$ for any $\lambda \in H_{wa}$. Note that $(\lambda, w_{\alpha}) = (w^{-1}\lambda, \alpha)$ since w is an orthogonal operation. I.e. $\lambda \in H_{w_{\alpha}}$ if and only if $w^{-1}\lambda \in H_{\alpha}$. Thus $w_{z}w'(1) = w(w'\lambda) = \lambda$ <u>Г</u>.

Lecture II Rost systems.
Let W be a real reflection group. We saw on the problem set that W acts faithfully on $\widehat{R} = \int R_{so} a \int S_a a$ reflection in WJ
In fact, the combinatorics of \hat{R} will allow us to understand W and classify refl. groups. We define a modified verson of \hat{R} :
Def A root system $\overline{\Phi} \subseteq V$ in a Euclidean V.Sp. is a finite set of vectors satisfying (RI) $\overline{\Phi} \cap R\alpha = \overline{f} \pm \alpha \overline{f}$ if $\alpha \in \overline{\Phi}$ (R2) $s_{\alpha} \cdot \overline{\Phi} = \overline{\Phi}$ for $\alpha \in \overline{\Phi}$.
Example If $V = IR$, $Ahin \{\pm 1\}$ is a root system. If $V = IR^2$ some possible root systems are (i) $\{(\pm 1, 0), (0, \pm 1)\}$
$(ii) \{ \pm (2,0), \pm (1, \sqrt{3}), \pm (-1, \sqrt{3}) \}$

Let W(I) be the group generated by sa, act. Then Prop W(J) is a finite reflection group and every reflection group occurs in this way. proct (exercise) We will use not systems to understand the structure and clossify reflection groups. First jeb is to come up with a nice minimal generating set and relations. A total order on the real vector space V is an ordering such that (i) if $\lambda, \mu \in V$ then either $\lambda < \mu, \lambda = \mu, \mu > \lambda$ (ii) if $\eta \in V$ and $\lambda < \mu$ then $\lambda + \eta < \mu + \eta$ (iii) if $\lambda < \mu$ and $C \in \mathbb{R}$ then ch<cru if cro ch>cn if c<o Given any crolured basis { 1, ... Inf of V An lexicographic ordering is a total order (i.e. where $2\lambda_1 + \lambda_2 > \lambda_1 + \lambda_2$ and $\chi_1 - 3\chi_2 + \chi_3 > \chi_1 - 3\chi_2 - \chi_3$

Def A subset TTS & is called a positive system
$T = \{ \alpha \in \Phi \mid \alpha > 0 \}$
for some -lotal arder on V
A subset $\Delta \subseteq \overline{\pm}$ is called a simple system if Δ is a basis for span $\overline{\pm}$ and for any $\alpha \in \overline{\pm}$ we have
$\alpha \in \pm \mathbb{R}_{>o} \Delta$
(ie any root is either a positive or negative linear combination of Δ).
Lemma 17 DETT is minimal with every BETT is a positive linear combination of D, then $(x, B) \leq 0$ for
positive linear combination of D , $4lun(x, \beta) \leq 0$ for all $x \neq \beta \in D$.
proof: Suppose (a,B) >0, then
$S_{\alpha}\beta = \beta - \frac{2(\kappa\beta)}{(\kappa\alpha)} \approx = \sum_{\gamma \in D} c_{\gamma}\gamma$
either all coefficients are the cr -ve. Suppose Cy 20.
Two cases
$(1-c_{\beta})\beta = \frac{2(\alpha \beta)}{(\alpha \alpha)}\alpha + \sum_{\gamma \in D-[\beta]}^{\prime} C_{\gamma}\gamma$
So D is not minimal (B in positive span of D-[B])

(a) $C_{\beta} \ge 0$, so $O = (C_{\beta} - 1) + \frac{\lambda(\alpha \beta)}{(\alpha - 1)}\alpha + \sum_{\gamma \neq \beta} C_{\gamma}\gamma$ Impossible since $C_{\beta} - 1 \ge 0$ $\frac{2(\alpha \beta)}{(\alpha - 1)} > 0$, $C_{\gamma} \ge 0$ Similarly, we rule out the possibility that SXB<0. []. Lemma D as above is a simple system. proof: We just need to show that D is linearly independent. Suppore $\sum_{\gamma \in O} c_{\gamma} \gamma = 0$ We rewrite as $\sum_{c_{\gamma} > \circ} c_{\gamma} \gamma = \sum_{c_{\gamma} < \circ} c_{\gamma} \gamma = \eta$ Calculate $0 \leq (\eta \eta) = \left(\sum_{c_{\gamma}>0} c_{\gamma} r, \sum_{c_{\gamma}<0} r^{\gamma}\right) \leq 0$ so n=o and so cy=o for all r. Theorem (i) If $\Delta \subseteq \overline{\oplus}$ is a simple system then there is a unique positive system TT st. $\Delta S T S \overline{\Phi}$ (ii) If TT is a positive system then there is a unique simple system Δ st $\Lambda \subseteq \Pi \subseteq \Phi$

proof: (i) Firstly if Δ is a simple system, choose an ordering of Δ and take TT to be the resulting positive system. Suppose TT' is another positive system containing A. If Z'CaR = 7 is such that Caro thin since aso area for all REA, we have 720, so JETT'. But this shows $TT' = \{ \gamma \in \overline{\mathcal{L}} \mid \gamma \text{ is a +ve sum } j = TT \}$ (ii) If TT is a positive system, we take $\Delta \leq TT$ to be the minimal subset such that TT is positive linear sums of \equiv . If A' is another simple system in TT. Clearly Δ' 2 [KETT | & cannot be expressed { S Δ as a non-trivial pas sum } S Δ in TT But since Δ and Δ' are linearly independent these must be equalities Now we want to show that all positive/simple systems are alike. Prop If ACTT are simple/pos. systems and well then so are wACWTT.

We will show that
$$\{\omega \Delta c \ w TT \}_{w \in W}$$
 is a complete
collection of simple/pos. systems for \mathbf{E} .
First we analyze $s_x TT$.
Prop If $\alpha \in \Delta \subseteq TT$ then $s_x TT = (TT - \{\alpha\}) \cup \{-\alpha\}$
proof: Let $\sum c_{\gamma}r \in TT - \{\alpha\}$.
 $s_{\alpha}(\sum c_{\gamma}r) = \sum c_{\gamma}r - c\alpha \in TT$
 $so \quad still has at leadone poil coefNote $s_{\alpha}(\sum c_{\gamma}r) = \alpha$ as otherwise
 $s_{\alpha}^{\perp}(-) = s_{\alpha}\alpha = -\alpha \neq \sum c_{\gamma}r$. \Box .
Thus If $\Delta \subseteq TT$ and $\Delta' \subseteq TT'$ are simple/pos.
systems. And exists well at
 $w\Delta = \Delta'$ and $wTT = TT'$
proof: Induction on $n = \#(TT \cup TT' \setminus TT')$. Clearly if
 $n = 0$ then $TT = TT'$ so we take $w = 1$.
If $n > 0$, choose $\alpha \in \Delta$ st. $\alpha \notin TT'$.
 $\#(s_{\alpha}TT \cup TT' \setminus TT') = n - 1$$

so we can find well st w's TI = TT' and w's $\Delta = \Delta'$ let w=w's. Some notation: If BED and BEZ'car fun $h + (\beta) = \sum_{i=1}^{n} C_{a}$ So $TT = \{ B \in E \mid h \in (B) > 0 \} \}$ The W is generated by s_{α}^{*} , $\alpha \in \Delta$. proof: Let W'= (s | RE A). Cur strategy is to show that SpeW' for every BETT. Since $W = \langle S_{\beta} | \beta \in \pi \rangle$ this implies W=W. First observe that if BETT/A thin JacA $ht(s, \beta) < ht(\beta)$ and $s, \beta \in T$. indecd $5_{\alpha}\beta = \beta - \frac{2(\alpha\beta)}{(\alpha\alpha)}\alpha$ so if this is not drue then $(\alpha\beta) \leq 0$ for all $\alpha \in \Delta$, Hence $O \leq (\beta\beta) = \sum_{\gamma \in \Delta} (\beta\alpha) \leq O \implies \beta = 0$ $\gamma \in \Delta \qquad \gamma \leq O$ This means we can find a sequence of simple

roots $x_1 x_2 \dots x_r$ st. $ht(s_1 \dots s_r B)$ is minimal Suppose $\gamma = s_1 \dots s_r B$ is not simple, then we can choose $\alpha \in \Delta$ st. $s_r \gamma \in TT$ and $ht(s_r \gamma) < ht(\gamma)$ Contradiction! So $\gamma \in \Delta$.							
This tells	us, if w=s_1,s_	FEW' dhat	• • •				
· · · · · · · · · ·	$\omega S_{\beta} \omega^{-1} = S_{\gamma} \in I$	\sim '	· · ·				
īε	$S_{\beta} = \omega S_{\gamma} \omega^{-1}$		Ľ,				
			• • •				
· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · ·				
			• • •				
			• • •				
			• • •				

Lecture 13 Relations in W(\$) We saw that if we fix a simple system $\Delta \subseteq \overline{\Phi}$ then $W = W(\overline{\Phi})$ is generated by s_{α} , $\alpha \in \Delta$. What relations are thre? There are some obvious ones $S_{\alpha}^{2} = ((S_{\alpha}S_{\beta})^{M_{\alpha}\beta}) = ($ Turns out there are the only cres! First we need so notation, for well $L(w) = \min \{r \mid S_{\alpha_1} S_{\alpha_2} \dots S_{\alpha_r} = w\}$ length $n(\omega) = \# \int \beta \epsilon \pi \left\{ \omega \beta < o \right\}$ number of flips Note: l(sa)=1, and n(sa)=1 for a e 1 If w= 5x, 5x,... Sx (w) we say this is a reduced expression for w. Lemma If a E A well then (i) if wa >0 then $n(ws_{\alpha}) = n(w) + 1$ (ii) if wa <0 then $n(ws_{\alpha}) = n(w) - 1$ proof: We must analyze, if warro {Broof Ws B<of = 5 {Broof WB<of Llass Since $\alpha \notin (B > 0 | w B < 0 f and if B = 4 hon w s_{\alpha}(s_{\alpha} \beta) < 0$ so $n(w s_{\alpha}) = n(w) + 1$

If wa<0 Hun
{B>0 \ w5 B<0} L1 {-x} = 5 {B>0 \ wB<0}
So $n(\omega < j) = n(\omega) - 1$.
Cor for any well, $n(\omega) \leq l(\omega)$ proof: If $\omega = s_1 s_2 \dots s_r$ (with $s_i = s_{x_i}$ for some $\alpha_i \in \Delta$) we can build ω from the left 1 n(1) = 0 $s_1 n(s_i) = 1$ $s_i s_2 n(s_i s_2) = \lambda \text{ or } 0$ $s_i s_2 s_3 n(s_i s_2 s_3) = 3 = r - 1$ $\omega n(\omega) \leq r$
thus if $r = l(w)$ we see $n(w) \leq l(w)$. D
Now we come to the most important property of W: Thus if $W=S_1S_2S_r$ (with $S_i=S_{\alpha_i}$ $\alpha_i\in \Delta$) is any expression and $r > n(w)$ then there exist $1 \le i \le j \le r$ s.t.

$S_{i+1}S_{i+2}S_{j} = S_{j}S_{i+1}S_{j-1}$	
and thus delete	
and thus $\omega = S_1 \cdots S_{i-1} \cdot S_{i+1} \cdots S_{j-1} \cdot S_{j+1} \cdots S_{r}$	
(we can reduce expressions by deleting in	$p_{r}, r \leq 0$
proof: Assume (). We will show a	· · · · · · · · ·
$W = S_{1} \cdot \cdot \cdot S_{1} \cdot S_{1+1} \cdot \cdot \cdot S_{1} \cdot S_{1+1} \cdot \cdot \cdot S_{r}$ $= S_{1} \cdot \cdot \cdot S_{1} \cdot S_{1+1} \cdot \cdot \cdot S_{r-1} \cdot S_{1+1} \cdot \cdot \cdot S_{r}$ $= S_{1} \cdot \cdot \cdot S_{1} \cdot \cdot \cdot S_{1-1} \cdot S_{r}$	· ·
· · · · · · · · · · · · · · · · · · ·	
	Consider
Now we show (): We have that n(w) < r s, x, 20 if this is	Consider
Now we show (): We have that n(w) < r s, & so if this is s, S, 2 > o true two	Consider
Now we show (): We have that n(w) < r s, x, 20 if this is s, S, 2x, 20 true, then s, s, s, a, 20 Lemma above	Consider
Now we show (): We have that n(w) < r s, & so if this is s, S, 2 > o true two	

$\alpha_{j} > \alpha$
$\leq_{j-1} \alpha_j > 0$
$S_{i+1} = S_{j-1} = X_j > 0$ from pos to reg.
S_{i+1} S_{j-1} X_{j} > O from pos -lo reg
$S_{i} S_{i+1} \cdots S_{j-i} \stackrel{\alpha}{j} < 0$
But the only positive root swapped to regative by s; is R; so
$S_{i+1},\ldots,S_{j-1},\alpha_{j}=\alpha_{i}$
This means, if w'= 5;+,s; that
$\omega S_j \omega^{-1} = S_j$
$\omega_{j} = \varsigma_{j} \omega_{j}$
$\leq_{i+1} \dots \leq_{j-1} \leq_{i} \leq_{i+1} \dots \leq_{j-1} $
C_{cr} $N(w) = l(w)$
proof: We know $n(w) \in l(w)$. If $l(w) > n(w)$ then we can take an expr.
w=s1Se(w) and find two elements to delete, condradicting minimality.

Thus $W \simeq \left\langle S_{\alpha} \mid S_{\alpha}^{2} = \left(S_{\alpha}S_{\beta} \right)^{m_{\alpha\beta}} = 1 \right\rangle$
ie, these are the only relations in W.
proof: We will show that any relation
$z'z' \cdots z' = /$
Is a consequence of the relations above. Note r=29 is even. Indeed
$det(s_i) = -1$, and $det(1) = 1$
We will induct on q. The case q=1 is immediate. Assume q>1. Rewrite as:
$S_1 S_2 \cdots S_{q+1} = S_r S_{r-1} \cdots S_{q+2}$
This cannot be a reduced expr. So the deletion condition applies.
Thus Alure exists Ki <j <="" q+1="" s.t.<="" td=""></j>
Siting 5: = 5; Sj-1 or alternatively
$l = 5_{i} 5_{i+1} \dots 5_{j-1} \dots 5_{j-1} \dots 5_{j+1}$
This involves 2(j-i) simple relflections, so we can apply induction (!!! unlers 2(j-i)=r)

This must be a result of the stated relations
$l = S_{1} \dots S_{r} = S_{1} \dots S_{i} (S_{i} \dots S_{j-1}) S_{j+1} \dots S_{r}$
$= S_1 \dots S_1 \dots S_r$
which again by induction is the result of the cloted relations
Now if $2(j-i)=r$ (ie $i=i, j=q+1$) we get
$S_2S_3S_{q+1} = S_1S_2S_q$
We could rewrite (1) as
$S_{1}S_{3},S_{r}S_{r} \leq 1$
repeating the same steps:
$S_2S_3S_{3+2} = S_1S_1S_1S_{1-1}S_{q+3}$
so the LHS must not be reduced and we can again find subwords that imply the theorem intess
$S_{3}S_{4}, \dots, S_{q+2} = S_{2}S_{3}, \dots, S_{q+1}$
which implies
SzSzSzSq+1 Sq+2 Sq+1 Sq+2 Sq+1 Sy =1 We now try the original trick again!
$S_{3}S_{2}S_{3}S_{q+1} = S_{4}S_{5}S_{q+2}$

The lange	-HS is ment tron	n-t which th	reduce h wi relad	ll in licns	se h ply unli		с <u>с</u> (Qла	epec d 4	il f	hr fer		
· · · · ·	s,	۶,	ک ^م +۱	= 535	۲ ^۲ ۲ ^۲ ۲	،5٩		· · · · .		• •	• •	• •
But	T an		· · · · ·	shy	tha-		= 53	· · ·	• • •	• •	• •	• •
Repea		•		· · ·	· · ·	· · ·	• • •	· · ·	· · ·	• •	• •	• •
· · · · ·	· · · ·	S ₃ S ₄ .		د در = 1) : : : :				· · ·	• •	• •	• •
will cycli	rimply c peru					ting	ы:4 У 9'	h f ive	furth		· · ·	· · ·
			1 - ()		້ ເ ີ 7.	- ₂ , - ,			· · ·	• •		
										י ה ה ה	• •	· ·
	this r <nown< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td></nown<>									 		
		edu ce re lat		t.	(ct)) 9 9 9		whi			0 0 0 0	• •
	this r <nown< td=""><td>edu ce re lat</td><td></td><td>÷.</td><td>(51)</td><td></td><td></td><td>whi</td><td></td><td>· ·</td><td>· ·</td><td>· ·</td></nown<>	edu ce re lat		÷.	(51)			whi		· ·	· ·	· ·
But	this r <n< td=""><td>edu c re lat</td><td></td><td>t.</td><td>(=1)</td><td></td><td></td><td>whi</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· · · · · · · · · · · · · · · · · · ·</td></n<>	edu c re lat		t .	(=1)			whi		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
But	this r <n< td=""><td>edu ce re lat</td><td></td><td>£.</td><td>(54)</td><td></td><td></td><td>whi</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· · · · · · · · · · · · · · · · · · ·</td></n<>	edu ce re lat		£.	(54)			whi		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
But	this r <n< td=""><td>edu ce re lat</td><td></td><td>+.</td><td>(51)</td><td>), e =</td><td></td><td>whi</td><td></td><td>· · · · · · · · · · · · · · · · · · · ·</td><td> . .<</td><td>· · · · · · · · · · · · · · · · · · ·</td></n<>	edu ce re lat		+ .	(51)), e =		whi		· · · · · · · · · · · · · · · · · · · ·	 . .<	· · · · · · · · · · · · · · · · · · ·
But	this r <n< td=""><td>edu ce re lat</td><td></td><td>t.</td><td>(51)</td><td>), e =</td><td></td><td>whei</td><td></td><td> . .</td><td> . .</td><td>· · · · · · · · · · · · · · · · · · ·</td></n<>	edu ce re lat		t .	(51)), e =		whei			· · · · · · · · · · · · · · · · · · ·
	this r <n< td=""><td>edu c re lat</td><td></td><td>t.</td><td>(=1)</td><td></td><td></td><td>whi</td><td></td><td> . .<</td><td> . .</td><td>· · · · · · · · · · · · · · · · · · ·</td></n<>	edu c re lat		t .	(=1)			whi		 . .<	 . .	· · · · · · · · · · · · · · · · · · ·
But	this r <n< td=""><td>edu co re lat</td><td></td><td>t.</td><td>(=1)</td><td></td><td></td><td>whi</td><td></td><td> . .</td><td> . .</td><td></td></n<>	edu co re lat		t .	(=1)			whi			

Lecture lly
If W is a finite reflection group WEGL(V), we fix a root system, with a simple system
$M \mathcal{O} \overline{\Phi} \geq \nabla$
$W \simeq \langle S_{\alpha}, \alpha \in \Delta \rangle S_{\alpha}^{i} = (S_{\alpha}S_{\beta}) = 1 \rangle$
Def A Coxeter group is a pair (W,S) where SEW is a finite generating set and
$W \simeq \left\langle s \in S \left s^{2} = (s + 1)^{m} (s + 1) = 1 \right\rangle$
for some $M(s,t) \in \mathbb{Z}_{>1} \cup \{\infty\}$
Example (i) Das the infinit dihedral group is
$\langle s, t \rangle \langle s^2 = t^2 = t^2 \rangle$
here $S = \{s, t\}$ and $m(s, t) = \infty$
(ii) $S_{n} \simeq \langle S_{1} \dots S_{n-1} \rangle \langle S_{i}^{2} = (S_{i}S_{i+1})^{3} = (S_{i}S_{i})^{2} = \langle S_{i}S_{i} \rangle \langle S_{i}^{2} = \langle S_{i}S_{i} \rangle \langle S_{i} \rangle \langle S_{i}^{2} = \langle S_{i}S_{i} \rangle \langle S_{i} \rangle \langle S_$
Def To a Coxeter group (W,S) we associate a Coxeter graph • vertices: S • edge labelled 5 <u>m(st)</u> t whenever m(st)>2

Example (i) Da 5 t (ii) S₅ ¹ c <u>3</u> c 2 3 $\frac{1}{2} = \frac{3}{2} = \frac{3}$ $S_n = \frac{3}{1} = \frac{3}{2} = \frac{3}{3} = \frac{3}{2}$ n-z n-) Remarks (i) (st)² = 1 means stst=1 ie 5t = t's' = ts so $(5t)^2 = 1$ means s, 1 commute. (ii) 3 occurs a lot, so we after heave it off (iii) k-multiple edges : means <u>k+2</u> so c= o - o is the same as c - o - o Det Let WEGL(V) and WEGL(V') be reflection groups. We say W and W' are isomorphic as reflection groups if there exists an isometry $\phi: \bigvee \longrightarrow \bigvee'$ st. An induced map $\phi: GL(V) \longrightarrow GL(V')$ identifies W and W', is $\phi(W) = W'$

Exercise Find an example of two reflection groups that are the same as abstract groups but not isomorphic as reflection groups. The Let $W \subseteq GL(V)$ and $W \subseteq GL(V')$ be essential reflection groups. $W \cong W'$ as reflection groups if and only if their Coxeter graphs are isomorphic. proof: If WaW, then clearly their coxeter graphs are isomorphic. Now suppose the Coxeter graphs agree. Fix root systems, and simple systems $\Delta_{f}[\alpha_{i},\ldots,\alpha_{r}] \subset \overline{\Phi} \subset V \quad \text{and} \quad \Delta_{f}' = \{\alpha_{i}',\ldots,\alpha_{r}'\} \subseteq \overline{\Phi}' \subseteq V'$ consisting of unit vectors, so that the common Coxeter graph is Now consider Alu linear map $\phi: V \longrightarrow V'_{i} \propto_{i} \longmapsto \alpha_{i}'$. This is an isomorphism since Δ and Δ' are bases for spin $\overline{\xi} = V$ and $\operatorname{spin} \overline{\xi}' = V'$. Furthermore, the value of (x; x;') is

determined by $m(\alpha'_i, \alpha'_j) = m(\alpha'_i, \kappa'_j)$ (using the fact that the coxeter graphs coincide). So $(\alpha_i' \alpha_j') = (\alpha_i \alpha_j)$ and hence & is an isometry. & identifies W and W since it identifies of ond E' Ц. We have learnt that Irreducible Connected finite reflection { [1:] Coxeter graphs groups { Coxeter groups } Conving from finite } Coxeter groups }]] Def If (W,S) is a Coxeter group the subgroup $W_{\tau} = \langle s | s \in I \rangle$ IcS is called a parabolic subgroup Exercise (W_{I}, I) is a Coxeter group and $W_{InJ} = W_{I} n W_{J}$.

The If WCGL(V) is a refl. group, fix ACJ. If $\Gamma = \Gamma \sqcup \Gamma_2 \sqcup ... \sqcup \Gamma_r$ is the Coxeter graph decomposed into connected components, then $W \simeq W_{S_1} \times W_{S_2} \times \cdots \times W_{S_r}$ Where S; are the generators corresponding to the vertices in F; More over if T is connected, then W is irreducible. proof: First we show W is irreducible if T is connected. Suppose I is connected and W=W×W2. This means V=V, OV2 and so A must be partitioned into Anv, and Anv, . We also must have $S_{\alpha}S_{\beta} = S_{\beta}S_{\alpha}$ for a e InV, BEDNZ. But dhis would imply [is disconnected. What remains to prove is that if S=IIJ and Γ_{I} and Γ_{J} are not connected by a path thun $W \simeq W_{I} \times W_{J}$. Clearly WI and Wy are subgroups that commute with each other and W=WIWJ.

Further more WINWJ = WINJ = Wy = {id]
$\mathcal{S}^{\mathcal{S}}$ $\mathcal{W} \cong \mathcal{W}_{\mathcal{I}} \times \mathcal{W}_{\mathcal{J}}$.
We just need to find a compatible decomposition of V, which is given by
of V, which is given by
$\Delta = \Delta_{I} \sqcup \Delta_{J} , \Delta_{I} = \{ \alpha \in \Delta \mid S_{\alpha} \in S_{I} \}$
and $V = \text{span} \Delta_{I} \oplus \text{span} \Delta_{J}$.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Lecture 15 Recall we have reduced our problem to classifying Caxeter graphs that come from finite Coxeter groups

finite reflection } group // iso // Connected Coxeter } group // group is finite // iso // iso When is a Coxeter group finite? Det For a Coxeter group (W,S) or a Coxeter graph [(vertices S), Alm Coxeter matrix is $A = \left(-2\cos\frac{\pi}{m(s,t)}\right)_{s,t\in S} \quad \left(s=1, m(s,s)=1\right)$ Example (i) $S_3 \xrightarrow{3} A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ evals = 3, 1 $(ii) S_{n} \quad (- \circ - \cdots - \circ) \quad A = \begin{pmatrix} \lambda - i & G \\ -i & 2 - i \\ G & -i & 2 \end{pmatrix} \quad def = n$ evals $7 \circ$ (iiii) $D_{\infty} \sim A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} det = 0$ evals = 4,0 $A = \begin{pmatrix} 2 - 1 & 52 \\ -1 & 2 - 1 \\ -52 - 1 & 2 \end{pmatrix} \quad de = -252$ evals = 2+52, $\frac{1}{2} (4 - 52 \pm 50)$

Let V(W,S) = Spandesyse form: A defines a bilinear $(x, y) := \frac{1}{2} \times^{+} A y$ It W=GL(V) is a reflection group and S comes from a choice of simple roots $\Delta \subset \overline{\Phi}$ then $S = \{S_{\alpha}, f_{\alpha \in \Delta}\}$ $(e_{S_{\alpha}}, e_{S_{\beta}}) = -\cos \frac{m(\alpha \beta)}{m(\alpha \beta)}$ in V(W,S), but this is exactly the inner product (x B) in V. So $V \longrightarrow V_{(w,s)}; \& \mapsto e_{s}$ is an isometry. In this case (--) is an product, hence it is positive definite, ie inner (x,x)>0 for x+0 Sc, if W is finite then (-,-) is positive definite Fact the following are equivalent: (i) (x,y) := ix Ay is positive definide (positive semi-def.) (ii) A has only positive eigenvalues (nonnegative evals.) (iii) The principal minos of A are positive (nonnegative) positive semidefinde means (xx)>10 | for all x.

Thus Connected Coxeter] Connected Coxeter] graphs coming from finite Coxeter] C & groups with A positive definite] Our strategy (i) Find all of these (a) Show all of them actually have a finite Coxeter group (ie the above is an equality). Prop The following are positive definite (n vertices) $\mathbb{B}_{n}/\mathbb{C}_{n} \xrightarrow{4} \cdots \xrightarrow{8}$ D_n $E_{n} = 6, 7, 8$ H2 0-00 H, 0 -0 -0 $T_{1}(m) \circ \frac{m}{m}$

proof: For any graph on the list, deleting one vertex gives another graph on the list. Make this vertex index the final row/col in A. All the proper principal minors are therefore >0. So we only need to check that det A > 0, Compute! []. Prop The following are all positive semidefinite but not positive definite (n+1 vortices) F_4 \circ $-\circ$ $-\circ$ \circ $-\circ$ \circ $-\circ$ \circ $-\circ$ \circ $G_2 \circ G_2 \circ G_2$ \tilde{B}_{0}^{\ast} \tilde{A}_{0}^{\ast} \tilde{A}_{0}^{\ast} \tilde{A}_{0}^{\ast} \tilde{A}_{0}^{\ast} \tilde{A}_{0}^{\ast} $\begin{array}{c} \sim & 4 \\ C_{2} \\ \end{array} \circ \underbrace{4} \circ \underbrace{-} \circ \underbrace{$ \tilde{D}_n \tilde{D}_n \tilde{D}_n \tilde{D}_n \tilde{D}_n \tilde{D}_n F_{c} -c l -c E_{s}

proof: Note that the removal of the blue vertex on each graph gives a positive definite one. Thus we only need to check that det A = O. Compute! [] Lening The following are not positive definite Z4 0-0-0-0 We will eventually prove that any positive definite graph must appear on the list above. To do this we will rule out the types of subgraphs that can apper. Det Let I' and I' be Caxeter graphs, we say I' is a subgraph of I' if I' is obtained from I by deleting vertices and/or lowering weights of edges. edges; We sa a matrix A is indecomposable if no simultaneous permutation of rows and columns gives a block diagonal matrix. It is clear that Lemma T' is connected, if and only if A is indecomposable. indecomposable. Prop If A is any real symmetric positive semi-definite matrix which is indecomposable and with all off-diagonal entries <0, then:

(a) ker A = {xeiR" | xtAx = 0 } and has dim < 1 (b) the smallest eigenvalue has multiplicity 1 and has an eigenvector with all entries positive proof: Frabenious-Perron Aleory. Cor If I is a connected Caxeter graph that is positive semidefinite then every proper subgraph is positive definite. proof: Suppose I' is a subgraph of a connected graph I. Let A and A' be the respective matrices Suppose A 13 nxn, and A' 13 kxk. We have $\alpha'_{j} = -2\cos\frac{\pi}{m(ij)} \ge -2\cos\frac{\pi}{m(ij)} = \alpha'_{j}$ since $m(i'_j) \ge m'(i'_j)$. Suppose for contradiction that A' is not positive definite, le chure kists of k \in R^k st $x^t A x \leq 0$ Now consider the vector $\hat{\mathbf{x}} = \begin{pmatrix} \mathbf{x}_{k} \\ \mathbf{x}_{k} \\ \mathbf{v}_{k} \\ \mathbf{v}_{k} \\ \mathbf{v}_{k} \end{pmatrix} \in \mathbb{R}^{n}$ $o \leq \hat{x}^{k} A \hat{x} = \sum_{i \leq j, j \leq k} |x_{i}| |x_{j}| \leq \sum_{i \leq j, j \leq k} |a_{ij}| |x_{i}| |x_{j}|$

 $\leq \sum_{i,j}^{\prime} \alpha_{ij}^{\prime} \times_{i}^{\prime} \times_{j}^{\prime} = \times^{t} A'_{X} \leq 0$ isijek Thus $\hat{x}^t A \hat{x} = c$ and so b $A h Prop A \hat{x} = 0$ and so ker A $\pm c$. By part (b) of the prop \hat{x} has strictly positive entries, so n=k. But Alun Since $\sum_{i \in j, j \in N} |\alpha_{ij}| |x_i| |x_j| = \sum_{i \in j, j \in N} |\alpha_{ij}'| |x_i| |x_j|$ and a; '> a; , we must have a; = a; Centradiction! Theorem The lists above are the only connected Coxeter graphs that are positive (semi)-definite proof: By flow chard: Suppose Γ is a positive semi-definite graph not on the lists above. Let M = Maximum weight, n = # vertices. Bank of ∏? >2 (# vertices) X [= A] no Ism finite? yes m<∞ €a On the lists

yes M=3 30 15 M = 3 Does 1 contain a circuit? nc m > 3 How many yes Haw many branch paints >3 edges in P? Π⊇Ấ One none Ĺ55<u>Ď</u> X one Are Avere $\Gamma = A$ branch points? 51 What yes degree? ᠮᡃ᠌᠊ᢅᡄᢩ NO }' ح $\Gamma \ge D_{L}$ Γ⊇́β, MS LsC' m=5 ·m = ? a > 2 Γ=Ê, asbec 1 50-0-..-0 m=40-1 - <u>μ</u>ο-...-ονυ yes $T = D_n$ A٥ a=1 a=1 U=V=3 632 b>2 u=4 lc=2 V=3 c=3 T=Z , or $\Gamma = E_{1}$ or \tilde{E}_{1} $\Gamma = B_{n}$ $\Gamma = H_4 a H_3$ yes n > 4] no []=Z 9=1, 622, 025 **√**. T 2 E (a=1, b>2, C=4 $\Gamma_2 \widetilde{F}_1$ $\Gamma = F_4$ $\Pi = E_{q} \text{ or } 2E_{q}$

Lecture I7 Rational reflection groups. Recall if WEGL(VQ) for VQ a Q-vector space, then we can look at the corresponding granp $W \subseteq GL(V_R)$ $V_R = V_Q \otimes_R R$ and this is a real netlection group. If V is a real rector space, a Q-lattice, is a Q-subspace UEV s.t. the natural map USOR-V is an isomorphism. I.e. U must be the Q-span of a R-basis of V. Example V=R2 Here are two, 2-dim'l Q-subspaces · U = span of ('o) (")] this is a Q-lattice • $U = span_{Q} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix} \right)$ this is not a Q-lattice, WEGL(V) Remark A real reflection group is (or comes from) a rational reflection group, it dure exists some Q-lattice USV st W preserves U.

We can also think about integral reflection groups. These are called "Crystallographic". A Z-lattice (or just lattice) in an R-vector space V is a Z-submodule MCV st. the natural map $M\otimes_Z R \longrightarrow V$ is an isomorphism (ie Z-span of a basis). Det if W ⊆ GL(V) is a reflection group for V a neal vector space, we say W is Crystalbographic f it preserves a Z-lattice in V. Prop If $W \in GL(V)$ is a Crystalboraphic reflection group, Ahn if $\Phi \ge \Delta$ is a root system, with simple roots, Ahn for any $\alpha \neq \beta \in \Delta$ $m(\alpha,\beta) = 2,3,4 = -6$ proof: Since W is Crystallographic, it can be represented by integer madvices, and thus have integer trace. Consider 5,58 is a rotation in the plane spanned by a, B, with angle 21 (m(x, B). So $+r(s_{a}s_{b}) = olim V - 2 + 2\cos \frac{\pi \pi}{M(\alpha \beta)} \in \mathbb{Z}$ So $\cos \frac{2\pi}{M(\alpha\beta)} \in \frac{1}{2} \mathbb{Z}$ ie $m(\alpha\beta) = 2, 3, 4 \text{ or } \delta$. D.

Det Let I be a root system, I is called Crystallographic if, for any a, BEE $(\beta, \alpha) := \frac{2(\beta, \alpha)}{(\alpha \alpha)} \in \mathbb{Z}$ Note: 5 B=B-(Bx)x Lemma If \notin is a Crystallographic root system, then $W(\notin)$ is Crystallographic (ie it preserves a lattice). proof: $W(\overline{4})$ preserves $\mathbb{Z}\overline{4}$ · Show that Crystallographic ret! grps are the same as rational refl grps. Aim : · Classify Crystallographic root systems.

Lecture 17 (irreducible) real refl. groups //iso fconnected] pos. def. com { roct systems } (connected] connected (irr. rational) (i show this is an refl. gips) iso equality. - { crystallographic } { root systems } / Ko firr. crystellographic f refl. grps / iso (2) classify this) (3) understand this Lattices Let k be a field and RSK a ring, and Va k vector space. An R-lattice MCV is an R-submodule such that the natural map Mærk ---> V; mær -> Im. is an isomorphion (ie it is the R-span at a basis) Remark If BEV is a k-basis, thin R.B=: M is a lattice in V.

This Suppose G is a finite group, R a PID and k its field of fractions. If V is a finalim. G-module / k, Ahin Ahine exists a free R-submodule MEV, that is G-invariant and is an R-lattice. proof: We will find a k-basis T st. R.T is a free R-module, and invariant under G. Fix any basis B of V and define $\tilde{B} := \bigcup_{g \in G} g B$ and let $M = R \cdot \tilde{B}$ M is a finitely generated free R-module since V is a free module over R which is a PID. Let T be a free R-basis for M, we will prove that T is a basis for V. To see that T spans V, consider for some Pright R $V \Rightarrow \chi = \sum_{b \in \widetilde{B}} \lambda_{b} b = \sum_{b \in \widetilde{B}} \frac{P_{b}}{P_{b}} b$ Ne k cxeM Let c=TTqb, Ahus . <u>S</u>උ cx = $\sum_{t=T}^{t} r_t t$ since T is a basis $x = \sum_{i=1}^{l} \frac{f_i}{c} t \in span_k^{T}$ and so

To see T is lin ind, suppose $\sum_{t=\tau}^{t} \frac{P_{t}}{P_{t}} = 0$ for some Pt 9te R and let $C = \prod_{t \in T} q_t$, gh. $\operatorname{Span}_{\mathbb{K}}^{\mathsf{T}} \ni \sum_{t \in \mathsf{T}}^{t} \subset \frac{\mathsf{P}_{t}}{\mathsf{P}_{t}} = 0$ and so $C\frac{P_{t}}{a} = G$ for all t, since T is an R-basis for M. Since R is an integral domain, Pt = C and so T is lim, ind. It C. Cer If W is a rational reflection group, Alun W is a crystallegraphic refl. grp. proof: WCGL(VQ) for a fin, dim. Q-vector sp. VQ. By the above theorem, there exists a Z-lattice MCVQ, preserved by W. Recall; Det A root system Φ is Crystellographic, f $(\beta \alpha) := \frac{a(\alpha \beta)}{(\alpha \alpha)} \in \mathbb{T}$ for $\alpha, \beta \in \Phi$.

and we say I and I' are isomorphic if Alure is an isomorphism of vector spaces
Alure is an isomorphism of vector spaces
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
such that $f(\Phi) = \Phi'$ and $\langle f(\beta), f(\alpha) \rangle = \langle \beta, \alpha \rangle$ for all $\alpha \beta \in \Phi$
Remark Any road system $\overline{\Phi}$ is isomerphic to $7\overline{\Phi}$ for any $2 \in \mathbb{R}$ -got.
Consider two simple roots a, BE DEE
$\alpha \left(\begin{array}{c} 0 \\ - \end{array} \right) = \frac{2(\alpha \beta)}{(\alpha \alpha)}$
$\langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = \frac{4(\alpha, \beta)^2}{\ \alpha\ ^2 \ \beta\ ^2} = 4\cos^2 \Theta$
H \equiv is Crystallegraphic, this must be an integer! So $\theta = \frac{\pi}{2}$, $\frac{2\pi}{3}$, $\frac{3\pi}{4}$, $\frac{5\pi}{5}$ and the corresponding volves of $\langle \alpha \beta \rangle \langle \beta \alpha \rangle$ are
$\langle \alpha \beta \rangle \langle \beta \alpha \rangle = 0, 1, 2, 3$
But (x, B) and (B, a) must themselves be negative integers (since the angle must be obtuse).

We can summarise this in a table 4cos O (a B) (Ba) Θ * ヨレ 21 - l J . -1 <u>-</u>こ 31 67 · • 4 - 1 1/2 -. -3 3 <u>577</u> 3 1 3 1 3 -3 -1 0. The last column is calculated using $\langle \beta, \alpha \rangle = \lambda \frac{\|\beta\|}{\|\alpha\|} \cos \theta$ so $\langle \beta \alpha \rangle^2 = 4\cos^2 \Theta \frac{\|\beta\|^2}{\|\alpha\|^2}$ This leads to an amazing fact: (ii) vertices connected by -4 o wt 4, must be roots with squar lengths in ratio 2.
 iii) vertices connected by -6. wt 6 must be roots with square length in ratio 3.

It is clear that any isometry gives an isomorphism of a rost system, Thus since the Coxeter graph determines all the angles between all the roots, we only need to know the lengths of each root to completely determine E. Example (i) Thure is a single (up to iso) root system with Coxeter graph o~ This is because, whatever the length of the first simple root, the fact above demonstrates all other roots must have equal length. (ii) There are precisely two root systems with Coxeter graph 0-0-0-0-0-If we fix the square length of the first root, the square length of all the others must be either twice, er half this length. These examples demonstrate Prop A crystallographic rost system is determined by its Coxeter graph decorated with an arrow on each and or all edge, pointing to the longest root. This is called its Dynkin diagram

thm	The cri span ₹=	stallographic root si = V are	ystems such
	Type	Dynkin diagram	
	An	ooo · · · ·	-o N\$1
	Bn	د <u>لا</u>	-o n≥2
			_o V≥3
· · · · · ·	Dr		-° N 24
· · · · · · ·	E~=6,7,8		-o n=6,7,8
· · · · · ·		<u>ل</u>	· · · · · · · · · · · · ·
· · · · · ·	G	· · · · · · · · · · · · · · · · · · ·	
proot Cryste done	All that Mographic (except in	one needs to do is check root system exists which type E).	k that a hich we have
Rmk	This mean	ns each of Alu corre ps is rational. Note ps in type B and C	esponding Ahat Alu

Lecture 18 Some lattices. Let $\overline{\Phi}$ be a crystallographic root system with simple roots Δ . Det (i) The lattice A root = Z & D' called the root lattice (ii) A lattice $\Lambda \subseteq V$ such that $\langle \mathcal{X}, \alpha \rangle \in \mathbb{Z}$ for every $\alpha \in \underline{\Phi}$ is called a choice of weight lattice (eg Λ_{root} is a weight lattice) Example If span = V (call this semisimple Ahen define $\Lambda_{sc} = \{ \lambda \in V \mid \langle \lambda, \alpha \rangle \in \mathbb{Z}, \alpha \in \mathbb{F} \}$ This is a weight lattice, and every weight lattice Λ has the property $\Lambda_{root} \leq \Lambda \leq \Lambda_{sc}$. It is desirable to final a basis for A: Def If $\alpha \in \overline{\mathcal{F}}$, $\alpha v := \frac{2}{(\alpha \alpha)} \alpha$ and if $\Delta = \{\alpha_i \mid i \in I\}$. A choice of fundamental weights w. iEI are vectors w; EV such that $(\overline{\omega}_i, \alpha_j^{\vee}) = \xi_i$ $\Phi = \left\{ \pm \varepsilon_i, \pm \varepsilon_i \pm \varepsilon_j \right\}_{ij=1,2}$ $\chi_i^{\vee}, \, \omega_j^{-}, \, \Lambda$ Example (i) Take V= IR2 and $\Delta = \left\{ \alpha, = \varepsilon, \alpha, \alpha_2 = \varepsilon_2 - \varepsilon, \right\}$ Then $\alpha_1^{\vee} = \lambda \epsilon_1 , \ \alpha_2^{\vee} = \epsilon_2 - \epsilon_1$ 50

$\lambda = \alpha \varepsilon_1 + b \varepsilon_2 \in \Lambda$ if
$a = (\lambda, \alpha, \gamma) \in \mathbb{Z}$ is $a \in \frac{1}{2}\mathbb{Z}$
$b-a=(\lambda_1a_2^{\vee})\in\mathbb{Z}$.
••••••••••••••••••••••••••••••••••••••
• • • • Λ _{se}
α_2
- · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
If $\omega_1 = \alpha \varepsilon_1 + b \varepsilon_1$ then $\alpha = 1$ $\omega_1 = \frac{1}{2} \varepsilon_1 + \frac{1}{2} \varepsilon_2$ $b - \alpha = 0$ $\omega_1 = \frac{1}{2} \varepsilon_1 + \frac{1}{2} \varepsilon_2$
· · · · · · · · · · · · · · · · · · ·
If $\varpi_1 = \alpha \varepsilon_1 + b \varepsilon_2$ then $\partial \alpha = 0$ $b - \alpha = 1$ $\varpi_2 = \varepsilon_2$
$\langle \gamma, \alpha, \gamma \rangle = \langle \gamma, \alpha, \gamma \rangle$
$Def \Lambda^{+} = \{ \lambda \in \Lambda \mid (\lambda, \alpha, \gamma) > 0 \text{ for all } i \in I \}$
-
Is called the dominant cone (chamber and its elements are dominat weights
elements are dominat weights

We will call a root system semisimple if spon $\overline{\Phi} = V$
Example $\overline{\Phi} = \left\{ x_{ij} = \pm \varepsilon_{ij} \neq \varepsilon_{j} \right\} \in \mathbb{R}^{n} (GL_{n})$
Take $\Delta = \int \alpha_i = \alpha_{i+1} \int i = 1 \dots n - 1 \int \alpha_i^{V} = \alpha_i$
$\lambda = \sum_{i=1}^{n} a_i \varepsilon_i \in \Lambda$ if $(\lambda, \alpha_i^{\vee}) = \alpha_i - \alpha_{i+1} \in \mathbb{Z}$.
This is not semisimple !!! This means
$\Lambda_{sc} = \alpha \ \text{lattice} + (\text{span} \underline{\Phi})^{\perp}$ $\cong \mathbb{Z}^{n-1} + \mathbb{R}$
We need to make a choice. Let's set
$\Lambda = 72^{2}$
This certainly satisfies $(\lambda, \alpha_i^{\vee}) \in \mathbb{Z}$. Now we can set: $\widehat{\omega}_i = \sum_{i=1}^{i} \alpha_i \varepsilon_i$, $\alpha_j - \alpha_{j+1} = 0$ der j $\neq i$ and $\alpha_i - \alpha_{i+1} = 1$, dues $\widehat{\omega}_i = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_i$ $ \varepsilon_i \le n$
This is the only non semisimple root system we work with.
· · · · · · · · · · · · · · · · · · ·

Lecture 19 Crystals
We fix
· E a crystallographic root system
· $\Delta = \{ \alpha_i \mid i \in \mathbb{Z} \}$ a set of simple roots indexed by a set I.
• Λ a weight lattice (usually Λ_{sc})
· W; iEI, a set of fundamental weights
Det A Kashiwara crystal (or just crystal) is a set B , with functions $e_i, f_i: B \longrightarrow B \sqcup \{ o \}$ $e_i = q_i: B \longrightarrow T \sqcup \{ -\infty \}$ ie T $ut: B \longrightarrow A$
satisfying
(A1) If x, yeB, then $e_i(x) = y \iff x = f_i(y)$
$(A1.5)$ 4 $e_i(x) = y$ then
$wf(y) = wf(x) + \alpha_i + \varepsilon_i(y) = \varepsilon_i(x) - 1$ and
$\varphi_i(y) = \varphi_i(x) + 1$

 $(A2) = \langle w + (x), \alpha_{i}^{\vee} \rangle + \varepsilon_{i}(x)$ If $\varphi_i(x) = -\infty$ then we must have $e_i(x) = f_i(x) = 0$. Det A crystal B is · finite type if q; (x), E; (x) = - ~ \VEB · seminarmal if $c_{i}(x) = max k \in \mathbb{N} \left\{ f_{i}^{k}(x) \neq 0 \right\}$ E;(x)= max [kelN [ei(x) = 0] If B is seminormal then B is determined by its graph plus the data of wt(x) for every maximal element x. We can use graph theoretic language to describe B: connected, connected components, paths, etc. Rmk For A, ME N we say 2 4 it 2-velNA (eg. if BETT Ahn Bro)

Det 17 be B, we say b is a highest weight element (hwe) if e:(b)=0 for all if I. Proposition Let B be a seminormal crystal and $b \in B$ a have. Then $wt(b) \in \Lambda^{+}$ (is it is a dominant weight) proof: Since e,(b)=0, we must have e,(b)=0, so $0 < \varphi_i(b) = \varphi_i(b) - \varepsilon_i(b) = \langle \omega + (b), \alpha_i^{\vee} \rangle$ for all ict, so with is dominant. Д. Example $A_1 \mod \text{system} \quad \{ \equiv \{ \pm \alpha = \pm d \} \leq | R = V \\ \text{with} \langle \lambda_{\mu} \rangle = \frac{1}{2} \lambda_{\mu}, \quad \Delta = \{ a \} \text{ and } \alpha^{\vee} = 2 \end{cases}$ $\Lambda = \Lambda_{sc} = \left\{ \lambda \in \mathbb{R} \mid \langle \lambda, \alpha^{\vee} \rangle = \lambda \in \mathbb{Z} \right\} = \mathbb{Z}$ Then $\langle \mathcal{D}, \alpha^{\vee} \rangle = \mathcal{D} = 1$, $\Lambda^{\dagger} = IN$ and \preceq is the normal order on \mathbb{Z} . k∕t ° ŝα ו ' ג Let B be a connected seminormal crystal with a single highest weight element b, wt(b) = k $\varphi(b) = \varphi(b) - \varepsilon(b) = \langle wt(b), \alpha_i^{\vee} \rangle = \frac{1}{2}k \cdot 2 = k$

so our crystal is completely determined! $b \longrightarrow fb \longrightarrow f^2b \longrightarrow \cdots \longrightarrow f^kb$ where k = 2 k = 4 -kThese are the objects of Do! Det A morphism of crystals f: B -> C is a map TI: B -> C such that (1) $wt(\pi(b)) = wt(b)$ (2) $\varepsilon_i(\pi(b)) = \varepsilon_i(b)$ and $\varphi_i(\pi(b)) = \varphi_i(b)$ (3) $f_i\pi(b) = \pi(f_ib)$ and $\varepsilon_i\pi(b) = \pi(\varepsilon_ib)$. This make the collection of crystals for $(\overline{\Phi}, \Lambda, \Lambda)$ a category. Isomorphisms are bijections. Def 17 B and C are crystals, we define a crystal B&C with elements b&c, bEB, cEC $wt(b\otimes c) = wt(b) + wt(c)$ $\varphi_i(b\otimes c) = \max\{\varphi_i(b), \varphi_i(c) + (wf(b), \alpha', s)\}$ $\varepsilon_i(b\otimes c) = \max \{\varepsilon_i(c), \varepsilon_i(b) - (wt(c), \alpha_i^{\vee})\}$ $f_{i}(b \otimes c) = \begin{cases} f_{i}b \otimes c & \text{if } q_{i}(c) \leq \varepsilon_{i}(b) \\ b \otimes f_{i}c & \text{if } q_{i}(c) > \varepsilon_{i}(b) \end{cases}$

$\int e_i b \otimes c$ if $\varphi_i(c) < \varepsilon_i(b)$
$e_{i}(b\otimes c) = \begin{cases} e_{i}b\otimes c & \text{if } q_{i}(c) < e_{i}(b) \\ b\otimes e_{i}c & \text{if } q_{i}(c) > e_{i}(b) \end{cases}$
Prop B&C is a crystal. proof: We must check the crystal axioms Al (e;x=y => x=f;y)
Suppose $e_i(b\otimes c) = b'\otimes c'$.
$\underbrace{\operatorname{Casel}}_{(a)}: \varphi_i(c) < \varepsilon_i(b), \text{from } b\otimes c' = \varepsilon_i b\otimes c, s \in \mathbb{C}$
$q_i(c') = q(c) \leq \varepsilon_i(b) - i = \varepsilon_i(e,b) = \varepsilon_i(b')$
$f_{i}(b\otimes c') = f_{i}b\otimes c' = f_{i}e_{i}b\otimes c = b\otimes c$
Case2 and fi(booc)=booc' similar.
$wt(e;(b\otimes c)) = wt(b') + wt(c') = wt(b\otimes c) + \alpha;$
Smilar for y; and E;
$Aa(\varphi_{i}(x) = \langle wt(x), \alpha_{i}^{\vee} \rangle + \varepsilon_{i}(x))$
We calculate $q_i(b \otimes c)$
$\underline{Case 1} \varphi_i(b \otimes c) = \varphi_i(b) \text{flue}$
$\varepsilon_{i}(b) + \langle \omega H(b) \rho_{i}^{\vee} \rangle = \varphi_{i}(b) \geq \varphi_{i}(c) + \langle \omega H(b), \alpha_{i}^{\vee} \rangle$
= $\varepsilon_i(c) + \langle w f(b), \alpha_i^{\vee} \rangle + \langle w f(c), \alpha_i^{\vee} \rangle$
So $E_{i}(b) - \langle w + (c), \alpha_{i}^{\vee} \rangle > E_{i}(c)$

and thus		· · · · · · · · · · ·
E;(b&c)= E	$(b) - \langle \omega f(c) \rangle, \alpha \langle v \rangle$	· · · · · · · · · · ·
but wt(b⊗c) = wt(b		
	the second se	
E; (6&c)+(wt(6&c),a	$\langle v \rangle = \varepsilon_i(b) - \langle w + (c), \alpha_i v \rangle +$	$(ut(b), \alpha')$
		$+\langle w\{(c),\alpha^v\}$
	$= \varepsilon_{i}(b) + \langle w + (b), \alpha_{i}^{*} \rangle$	
	$= \psi_i(b) - \psi_i(b \otimes c)$	
Care 2 : Similar		Ū.
-		
rop it band	Care seminormal	22 12 0.00
proof: Similar argun	(CCV7())	
		· · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
	. .	
· · · · · · · · · · · · · · · · · ·	. .	
. .	. .	
	.	

Lecture 19 We fix · E a crystallographic root system · $\Delta = \{ \alpha \in \{ i \in I \} \text{ simple roots} \}$ · A a weight lattice · w. iEI fundamental weight. (A root datum) Note $\overline{E} \leq V$ a real inner product space with inner product (-, -) (to match conventions in Bump-Schilling). Note if ac = 1 av = 2 a and so $S_{\chi}(\beta) = \beta - \langle \beta, \alpha^{\nu} \rangle \alpha$ Def A Kashiwara crystals (or just crystal) is a set B with functions crystal operators • e; , f; : B -> BU{0} $\bullet \varepsilon_{i}, \varphi_{i}: \mathcal{B} \longrightarrow \mathbb{Z} \cup \{-\infty\}$ ieI one for each simple root. wt · B ~ > A

Satistying (A1) if x, y∈B 4un e; x=y ⇐> x=f;y (A1.5) If eix=y thin $wt(y) = wt(x) + \alpha_{i} + \varepsilon_{i}(y) = \varepsilon_{i}(x) - 1, \quad \varphi_{i}(y) = \varphi_{i}(x) + 1$ $(A2) \quad \varphi_i(x) = \varepsilon_i(x) + \langle wt(x), \alpha_i^v \rangle$ and if $\varphi_i(x) = -\infty$ then $e_i(x) = f_i(x) = 0$ Def A crystal B is · seminormal it q(x)=max {keN { + x + 0} $\varepsilon_{i}(x) = \max \{ k \in \mathbb{N} \mid e_{i}^{k} x \neq o \}.$ · finite type if qi(x), Ei(x) = - ~ UxEB. Exercise seminormal => finite type. The crystal graph of B is the directed coloured graph with vertices B and an arrow x is y whenever fix = y. We say B is connected whenever its graph is.

RMK If 2, ME No say 23 M if
$\lambda - \mu \in IN \Delta $ — non-negative span of the simple roots.
Det If $b \in B$, we say b is highest weight if $e_i b = 0$ $\forall i \in I$
(ie no incominey arrows to b).
Prop Let B be a seminarmal crystal on b a highest weight element, then wt(b) e Mt (is a dominant weight)
proof: recall $\Lambda^{+} = \left[\Lambda \in \Lambda \left(\langle \Lambda, \alpha, \vee \rangle > 0 \right) \right]$. Since e, b = 0, we must have $\varepsilon_{i}(b) = 0$ so
$O \leq (\varphi_i(b) = \varphi_i(b) - \varepsilon_i(b) = \langle w + (b), x_i^{\vee} \rangle$
Example $(A,) = \frac{1}{2} + \alpha = \pm 2 \frac{1}{2} \leq R = V$ with $(\lambda, \mu) := \frac{1}{2} \lambda \mu$.
Then $\Delta = \{ \lambda \}$ and $\alpha = 2$, $\alpha^{\vee} = \lambda$ and $\{ \lambda, \alpha^{\vee} \} = \frac{1}{2} \lambda 2 = \lambda$
$\Lambda = \Lambda_{sc} = \left(\lambda \in \mathbb{R} \mid \langle \lambda, \alpha^{v} \rangle = \lambda \in \mathbb{Z} \right) = \mathbb{Z}$
Thun $\langle w, a^{\vee} \rangle = \omega = 1$, $\Lambda^{+} = IN$.

$\overline{\Phi}$
Let B be a connected seminormal crystal. B has either no, or a single highest weight element.
Suppose B has a single highest weight element $b \in B$, with $wt(b) = k \in \mathbb{N}$.
$\varphi(b) = \varphi(b) - \varepsilon(b) = \langle wt(b), x^{\nu} \rangle = wt(b) = k$
So Ahr crystel graph is
$b \longrightarrow fb \longrightarrow f^2 b \longrightarrow \cdots \longrightarrow f^k b$ wit k k-2 k-4 -k
These are the objects of Do!
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

1. Let $W = d\begin{pmatrix} a_1 \\ a_n \end{pmatrix} \in \mathbb{R}^n \setminus \Sigma' a_1 = o \int \Sigma (\mathbb{R}^n)$. tind a basis for W .
1) Make a list of hints.
- Cive me an example of XEW; - How do you find a basis/whol is a basis time a spenning ret, make it lin. Ind. - Find a vector lin. ind w/ X. - Repeat it?
- ls it spanning:
2. Find the nullity of $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y + 7 \\ y + 2 \\ z \end{pmatrix}$. - Can jou find v, st $T(v) = 0$
-What is the nullity modim of null(T). - Matrix of T. - find abasis of null space
. .

- Student computed	s will be hand tas	very good at	
		conceptual tas	
- Studen device	ts will be	in a classroom	n w/ personal
· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·			
· · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
		· · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · ·

Lecture 20 of crystals TT: B - C Det A (strict) morphism is a function such that $(d) + \omega = (d)\pi (d)\pi (d)$ $(a) \varphi_i(\pi(b)) = \varphi(b)$ and $\varepsilon_i(\pi(b)) = \varepsilon_i(b)$ (3) $f_{\pi}(b) = \pi(f_{b})$ and $e_{i}(\pi(b)) = \pi(e_{b})$ (where TT(0)=0). Rink (1) B and C should be crystale for the same root abatum. (2) This is a restrictive definition (3) This notes the collection of crystab for (ξ, Δ, Λ, ω) a category. (4) The isomorphisms are bijections. Def if B and C are crystals, we define a crystal B&C with elements b&c, beB, c=C $wt(b\otimes c) = wt(b) + wt(c)$ q; (boc) = max (q; (b), q; (c)+(wt(b), u;)] ε; (boc) = max { ε; (c), ε; (b) - (wt(c), α;) { $f_{i}(b\otimes c) = \begin{cases} f_{i}b\otimes c & \text{if } \varphi_{i}(c) \leq \varepsilon_{i}(b) \\ b\otimes f_{i}c & \text{if } \varphi_{i}(c) > \varepsilon_{i}(b) \end{cases}$

e;(b⊗⊂	$) = \begin{cases} e_i b_{\infty} \\ b_{\infty} \end{cases}$	⊗c if e;c if	ψ;(c) < ε;(<u>ι</u> ψ;(c) ≥ε;(ι		· · · · · · · · · · · · · · · · · · ·
Example $\Lambda = \mathbb{Z}^n$,	(GLn) &;=d;	₫ ={& _{ij} =d +d ₂ ++d	;-d.} ⊆ IR ⁿ l; i=1	$\Delta = \{ \alpha_i = \alpha_{ii+1} \}$	
Bay E	+ ⊃[1] d_₂			<u>^-`</u> ∍₪ &,	· · · · · · · · · · · · · · · · · · ·
Example	B ₍₁₎ ⁽¹⁾	0	(GL ₃)	.	· · · · · · · · · · · · · · · · · · ·
	ε', 2 Ο.Ο. —		· · · O· · · · · · · · · · · · · · · ·	· ·	· · · ·
	<u>ار، ا</u>	E E			· · · · ·
	¥ ፪.፬ -		ন্ত্র) ন্ত্র		· · · ·

Question Fer (GLn) can be find a on combinaterial rule for the arrows in B(1)? Can be identify the connected components? Prop BOC is a crystal. proof We check the crystal axions. $(AI: e, x = y \iff x = f, y)$. Suppose e(booc) = b'oc'. <u>Carel</u> b'=e; b and c'=c, ie $\varphi_i(c) < \varepsilon_i(b)$. We will calculate $f_i(b'\otimes c')$. $\varphi_i(c') = \varphi_i(c) \in \varepsilon_i(b) - i = \varepsilon_i(e_ib) = \varepsilon_i(b')$ $f = \varphi_i(c) \in \varepsilon_i(b) - i = \varepsilon_i(e_ib) = \varepsilon_i(b')$ $f = \varphi_i(c) \in \varepsilon_i(b) - i = \varepsilon_i(b) = \varepsilon_i(b')$ So f; (b'ec') = f; b'ec' = bec. <u>Case</u> 2 and f: (boc) = boc' follow by similar aiguments. $(A1.5:wt(e_ix), \varepsilon_i(e_ix), \varphi_i(e_ix))$ $wt(e_ib\otimes c) = \int wt(e_ib\otimes c) = wt(e_ib) + wt(c) = wt(b\otimes c)$ $wt(b\otimes e_ic) = wt(b) + wt(e_ic) + wt(b) + wt(b) + wt(e_ic) + wt(b) + wt(b) + wt(e_ic) + wt(b) + wt($ similar for E;, q;.

$(A2: \varphi_{1}(x) = \varepsilon_{1}(x) + (wl(x), \alpha_{1}^{v})).$
We need to calculate q, (boc)
$\varphi_i(b\otimes c) = \max\{\varphi_i(b), \varphi_i(c) + \{wt(b), \varphi_i'\}\}$
$\varepsilon_i(b\otimes c) = \max\{\varepsilon_i(c), \varepsilon_i(b) - \langle w + (c), \alpha_i^{b} \rangle\}$
$Case 1$: $\varphi_i(b \otimes c) = \varphi_i(b)$, Ahn
$\varepsilon_i(b) + \langle w + (b), \alpha_i^{\vee} \rangle = \varphi_i(b) > \varphi_i(c) + \langle w + (b), \alpha_i^{\vee} \rangle$
$= \varepsilon_{i}(c) + (wt(c),\alpha_{i}^{V}) + (wt(b),\alpha_{i}^{V})$
so $\varepsilon_{i}(b) - \langle wt(c), \alpha_{i}^{V} \rangle \geq \varepsilon_{i}(c)$
So $\varepsilon_i(bac) = \varepsilon_i(b) - \langle \omega f(c), \alpha_i^{\vee} \rangle$.
$\varepsilon_i(b\otimes c) + \langle wt(b\otimes c), \alpha_i^{\vee} \rangle = \varepsilon_i(b) - \langle wt(c), \alpha_i^{\vee} \rangle + \langle wt(b), \alpha_i^{\vee} \rangle + \langle wt, \alpha_i^{\vee} \rangle$
= $\varepsilon_{(b)} + \langle w + (b), \alpha_{(b)}^{\vee} \rangle$
$= \varphi_{i}(b) = \varphi_{i}(b \otimes c)$
Cased Smiler
Prop If B and C are seminarmal, so is B&C.
prof: similar arguments.

 $(GL_n) \rightarrow \{\alpha_{ij}\}, \Lambda = \mathbb{Z}^n, \omega_i = \underline{e}, + \underline{e}, + \underline{e};$ $\Lambda^{\dagger} = \left\{ \lambda \in \Lambda \mid \langle \lambda, \alpha_{i}^{\vee} \rangle \geq 0 \right\}$ $\langle \lambda, \alpha, \rangle = \langle \lambda, e_i - e_{i+1} \rangle = \lambda_i - \lambda_{i+1}$ $= \left\{ \lambda \in \mathbb{Z}^{n} \mid \lambda \geq \lambda, \geq \dots \geq \lambda^{n} \right\}$ $= \mathcal{P}_{\mathbf{n}-1} \times \mathbb{Z}$ Pr - portions with at most n ports $F_{-1} \mid \leq k \leq n$ (k), $(1, 1, ..., 1) = (1^k) \in P_n$ eg. GLz Exemple B(k): elements [intiglistinitik] 1112 $\varphi_1(\hat{-}) = 2$ st. $|\leq i_1 \leq i_2 \leq \ldots \leq i_k \leq n$ wt(-) = (2,1,0) $= \left(\frac{\mathbf{r}_{i_1} \mathbf{r}_{i_2} \mathbf{r}_{i_3} \mathbf{r}_{i_4}}{\mathbf{r}_{i_1} \mathbf{r}_{i_2} \mathbf{r}_{i_3} \mathbf{r}_{i_4}} \right) = \left(\mathbf{r}_{i_1} \mathbf{r}_{i_2} \mathbf{r}_{i_3} \mathbf{r}_{i_4} \mathbf{r}_{i_5} \mathbf{r$ $f_{1}(-) = [1]$ $\varepsilon_{i}\left(\frac{1}{1}\right) = \# = \frac{1}{1} \quad i \neq i'$ $-\int_{2}^{2}(1-x) = \prod_{1}^{2}(1/3)$ $\omega + \left(\underline{\Gamma(1; \ldots, 1)} \right) = \sum_{i=1}^{n} \varphi_{i}(-) e_{i}$ $f_i\left(\frac{|I_i|_{i_1}|_{i_2}|_{i_1}}{|I_i|_{i_2}|_{i_1}}\right) = \begin{cases} change the rightmost is its its \\ 0 & \text{if } ne its \end{cases}$

Exercise: draw the graph label with wt [] & []	$r = f \mathcal{B}_{(3)} fr (GL_3)$
(1 2 0) 2	$B_{(1)} \otimes B_{(2)}$ $B_{(1k)} \otimes B_{(1)}$
$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 2$	$ \frac{1}{3} \frac{2}{(1, 1)} $
(102) 3	ν 2 (υ
	e. (2).
$\lambda_{1} \geq \lambda_{2} \geq \cdots$	
	· · · · · · · · · · · · · · · · · · ·

T.		1	•	•	O I		
Ļ	وه	<u>-</u> +,	5	e.	2	V	

	to understand the three crystals: A, be B, c \in C What $f_i((a \otimes b) \otimes c)$?	torsor product rule better. B,C. (in (A&B)&C)
Recall f;(×@	y) = { ×∞f;y q;	$(y) \leq \varepsilon_{i}(x) = \varphi_{i}(x) - \langle \omega t(x), \alpha_{i}^{\vee} \rangle$ $(y) + \langle \omega t(x), \alpha_{i}^{\vee} \rangle \leq \varphi_{i}(x)$ $(y) > \varepsilon_{i}(x)$ $(y) + \langle \omega t(x), \alpha_{i}^{\vee} \rangle > \varphi_{i}(x)$
Reinterpre	sting:	
· · · · · · · · ·	ψ _i (×)	f.x@y_
we look at the mas	(u) + (u) + (v)	xof;y

Fer (A&B)&C faebec φ;(a) $\varphi_i(b) + \langle w t(a), \alpha_i^{\vee} \rangle$ a@{;b@c aøbøf.c $\varphi_{i}(c) + \langle w t(a), \alpha_{i}^{\vee} \rangle + \langle w t(b), \alpha_{i}^{\vee} \rangle$ the first row where Act with fi in accordance with the maximum value occurs. Check we get same table for A@(B@C)! Prop The map (asb)&c > as(bec) is an isomorphism of crystals $(A \otimes B) \otimes C \longrightarrow A \otimes (B \otimes C)$ Thus the category of all crystals (for a fixed root datum) is a monoidal category proof: The above shows that the bijection commutes with f: (and thus with e;). It follows from the definitions that y;, E;, and we are preserved. Generalising the above picture to a tensor product of crystals: BOB20...OB

Prop If X, 0X, 0 0X, EB (0 0) By then
$\varphi_i(x, \otimes \dots \otimes x_n) = \max \left\{ \varphi_i(x_j) + \sum_{k=1}^{j-1} \langle wt(x_k), \varphi_i^k \rangle \mid j = 1 \dots m \right\}$
and
$f_i(X_i\otimes\otimes X_m) = X_i\otimes\otimes f_iX_r\otimes\otimes X_m$
where is rem is the minimal value where The expression above acheives its maximum.
proof: by induction
Exercise Determine a similar statement for E; and C;.
Recall $Au (GL_n) crystal B_{(1)}$ $f \qquad 1 \longrightarrow [2] \xrightarrow{2} 3 3 \xrightarrow{n-1} [n]$ $wt = 1 \qquad e_2 \qquad e_3 \qquad e_n$
We will interpret the above rule for B(1).
What is
$\frac{1}{2} \left([\overline{X_1}] \otimes [\overline{X_2}] \otimes \dots \otimes [\overline{X_m}] \right) \xrightarrow{?}{?}$
Note: $\varphi_i([\underline{x}]) = \delta_{x_i}$ and

$\langle wl(\overline{x}), \alpha_i^{\vee} \rangle = \langle \underline{e}_{x}, \underline{e}_i - \underline{e}_{i+1} \rangle = \begin{cases} 0 & \text{if } x \neq i, i+1 \\ 1 & \text{if } x = i \\ -1 & \text{if } x = i+1 \end{cases}$
Example
q2 (IS & IS & IS & IS & IS & IS)
= 362010204200
= BOINTOLO ISOI
Case 1: If all i's appear to the left of all it I's.
The maximum first accurs at the rightmost i So f; changes the rightmost i to an it!
Cased: If Case 1 doesn't apply. There exists a sequence
There exists a sequence
$\xi = \left[\frac{X_{a}}{X_{a}} \otimes \left[\frac{X_{a+1}}{X_{a+1}} \otimes \frac{-1}{X_{b}} \right] \right]$ Where $X_{a} = i + 1$, $K_{b} = i$, and no is or i+1's occur between. Then
$f_{1}(\overline{X_{1}}\otimes\overline{X_{1}}\otimes\ldots\otimes\overline{X_{n}}) = f_{1}(\overline{X_{1}}\otimes\ldots\otimes\overline{X_{n-1}}\otimes\overline{X_{n+1}}\otimes\ldots\otimes\overline{X_{n}})$
Note $\varphi_i(\xi) = 0$ and $f_i(\xi) = 0$

Now we repeat by induction Algorithm for calculating f; (K. (.... & K. m)) 1. Under each box put a + for an i+1 - for an 1 nothing for other 2. Cancel pairs of (+,-) 3. Repeat 2 until no longer able to 4. Apply f; to the rightmost i labbelled by a non-cancelled - $<. Or, if no -'s, f_{i}(-) = O$ Example f2(103030202010203) = 103030202010503

	Exi	Qn	٩	le l		(GL	- 4)))		•	Ŧ	5	ع، <i>ا</i> (،)	2	•	•	•	•	• •	•	•	•	· ·	•	•	•	•	•	· ·	•	•
• •	f,	.(در - ا	•		•	3		€ -	(3 3).=) · ·	ع +	3(7	2	• C) • •	2		. (+ -+	•	3		3	•	د الم		ć.	2 2 1		- - -	•
• •										- - -			3	1					•	••••	•	•	•	· ·	•	•	•	•	•	• •		•
• •	•	=	4		Ì١	•	3		•	4	- •	י ב נ	t	• .	2		ۍ ۲		. I	+	•	3		3	•	.Ц С	F	ġ	2	• •		
• •		•	•	•		• •		•	•		0			•	•		•	0	•	• •	•	0	•	• •	•	•	•	•	0	• •		0
• •						• •		•	•		0							0	•	• •		0	•	• •	•		•					
• •		•	•	•	•	• •		•	•	•	•	•		•	•	•	•	•	•	• •	•	•	•	· ·	•	•	•	•	•	· ·		•
• •		•	•		•			•	•	•	•	•		•	•	•	•	•	•		•	•			•	•	•	•	•			•
• •		•	•	•	•			•	•	•	•	•		•	•	•	•	•	•	• •	•	•			•	•	•	•	•	• •	•	•
• •		•		•		• •		•	•	•	•			•	•	•	•	•	•	• •	0	•	•	• •	•	•	•		•	• •		•
• •					•			•	•		0	•			0	•	•	0	•	• •	•	0		• •	•	•	•	•	0	а а	•	0
• •		•	•	•	•	• •		•	•	•	•	•		•	•	•	•	•	•	•••	•	•	•	•••	•	•	•	•	•	• •		•
		•	•					•	•	•	•			•	•	•		•	•	• •		•			•	•	•	•	•			•
• •		•	•	•	•			•	•	•	•	•		•	•	•	•	•	•	• •	•	•	•	••••	•	•	•	•	•	• •	•	•
• •		•		•		• •		•	•	•	•			•	•	•	•	•	•	• •	0	•	•	• •	•	•	•		•	• •		•
• •			•	•	•	• •		•	•	•	•	•		•	•	•		•	•	• •	0	•		• •	•		•	•	•	• •		•
• •		•	•	•	•	• •			٠												•			• •	•	•	•	•	•			•
• •																																
• •																																
• •									٠												٠			• •								
• •		•																												• •		•

Lecture 22

Thim (Signature rule). If X, &X, &... &X_m EB, &... &B_m then $f_{i}(x_{i}\otimes \underline{\otimes} \times m) = \times \underline{\otimes} \underline{\otimes} f_{i} \times \underline{\otimes} \underline{\otimes} \times m$ where k is found using the following process. 1. Decorate each x; with $\varphi_i(x_j)$ -'s, and $\varepsilon_i(x_j)$ +'s $\varphi_i(x_j) = \varepsilon_i(x_j)$ 2. Inductively cancel + - pairs until we are left with a sequence ----++...+ 3. k is the index associated with the rightmost -. 1 ableanx A partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_r)$ sequence of positive integers. a weakly decreasing 15 The diagram of a partition is the left justified arrangement of boxes, with 2; boxes in

the it cow Example (3221) is a partition of 8 with diagram A semistandard tableau of shape 2 is an arrangement of possibilitive integers in Au diagram of 2, such that (i) rows are weakly increasing. (ii) columns are strictly increasing. A standard tableau is a semistandard tableau with strictly increasing rows. Example Tableaux of these (3221) 1 2 5 3 4 6 8 standard semistandard.

N SkCn $(GL_n)^{O}$ Special cases: B = (semistander tableaux) B(k) (shape λ=(k) with) (k) (entries 1,2,...) $\lambda = (k)$ k bexes crystals $B_{(1^k)} = \begin{cases} \text{semistandard tableaux} \\ \text{shape } \lambda = (1^k) \text{ with} \\ \text{entries } 1, 2, ..., n \end{cases}$ $\lambda = (1^k)$ Goal Understand B Prop The map RR: B ____ B (1) given by $\mathsf{RR}(|\underline{\mathsf{x}},|\underline{\mathsf{x}},|\underline{\mathsf{x}},\underline{\mathsf{x}},\underline{\mathsf{x}},\underline{\mathsf{x}}|) = [\underline{\mathsf{x}},\underline{\mathsf{x}}] \otimes \ldots \otimes [\underline{\mathsf{x}}_{\mathsf{L}}]$ is a morphism of crystals. proof: wt ([x,] ... [X]) = (u, ..., un) where $\mu_i = \# \{j \mid x_j = i \}$ On the Aherhand

 $wt(\overline{[x,]}\otimes \ldots \otimes \overline{[x,]}) = \sum_{i} wt(\overline{[x,]})$ $=\sum_{j=1}^{k}\sum_{i=1}^{k}e_{x_{i}}$ $=(\mu,\ldots,\mu_n)$ S RR preserves wt. Note, it we can show RR commutes with e, f; qun it also preserves E, and q; , since both B(k) and B^{®k} are seminormal. We have to show, if T, T' E B(k) the f;T=T' if and only if f; RR(T) = RR(T') f; changes the rightmost i of T to an itl. f; acts on RR(T) vie the signature rule, but all i's accur before itl's in RR(T), so fi increases the rightmost i to an itl. e, is handled similarly. Д.

For the (GL,) not datum, and for a partition define B₂ := {semistanderal tobleaux } B₂ := {shape 1, with entries } Runk Bz= \$ if I has more than a parts. Let $\lambda_1 + \lambda_2 + \ldots + \lambda_r = m$, be the number of boxes. Define a map RR: B1 -> B(1) by letting RR(T) be the row reading word of T: 511 Example If T = $(so \lambda = (432))$ 234 Au RR(T) = 30402030401010304 (read left to right, bettom to top). We define the Yamancuchi tableau un of shape 2, to be the tableau with all 1's the first row, I's in the second row and SO ON.

The the image $RR(B_{2}) \subseteq B_{11}$ is a connected component, with unique highest weight element U_{2} . proof: debyed. A way to create a new tableau from abl: T = a semistandard tableau x = a positive integer Tex = the insertion tableau Example $T = \begin{bmatrix} 1 & | & | & | & | & | & | \\ 2 & | & | & | & | \\ 2 & | & | & | & | \\ 4 & | & | & | \\ 4 & | & | & | \\ 4 & | & | & | \\ 4 & | & | & | \\ \end{bmatrix}$. [. . [.] . 233 4 4 2 2 3 4 4

• • • • • •		• • • • • •	•	• • • • • •				• • • • • • • •	• • • • • •			۱ ۲		1 2 4	• • • • • • • •	13	• • • • • • •	ζ,		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	Ч		• • • • • • • •	• • • • • •			• • • • • •	• • • • • •					•	• • • • • •	• • • • • •	
						7		· · · · · · · · · · ·						1 2 4		3	1	2		• • • • •																		
0	•	0	•	•	•	•	•	•	•	•	•	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	•	0	•	•	•	•	•	•	•	•
	•									•							•	•			•					•		•	•							•	•	
																												•										
																												•										
																			•																			

Insection al-					• •
Insertion algo					0 0
U 1 1 3 5 5 T= 2 3 4 4	<u>ک</u>	· · · · · ·	• • • • • •		• •
T=2344					• •
3 4					
					0 0
11255	· · · · · · · · ·				• •
λ. 2344					• •
					• •
• • • • • • • • • • •					• •
· · · · · · · · · · · ·	· · · · · · · · ·				• •
11255		· · · · · ·			• •
2334					• •
	4 × 4				• •
		· · · · · ·	• • • • • •		• •
2334		_ 4		element.	
2 3 3 7 					~
			B.,	2	• •
	· · · · · · · · · · · · · · · · · · ·) , , , , , , , , , , , , , , , , , , ,			• •
Def Let w P-symbol cf	be a word				• •
P-symbol of		$f = \omega_1$			• •
2 (1)					
P(w)= ((($\varphi \leftarrow w, j$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<		, i)
	A				
• • • • • • • • • • • •	c empty tab		· · · · · · ·	· · · · · · ·	· ·

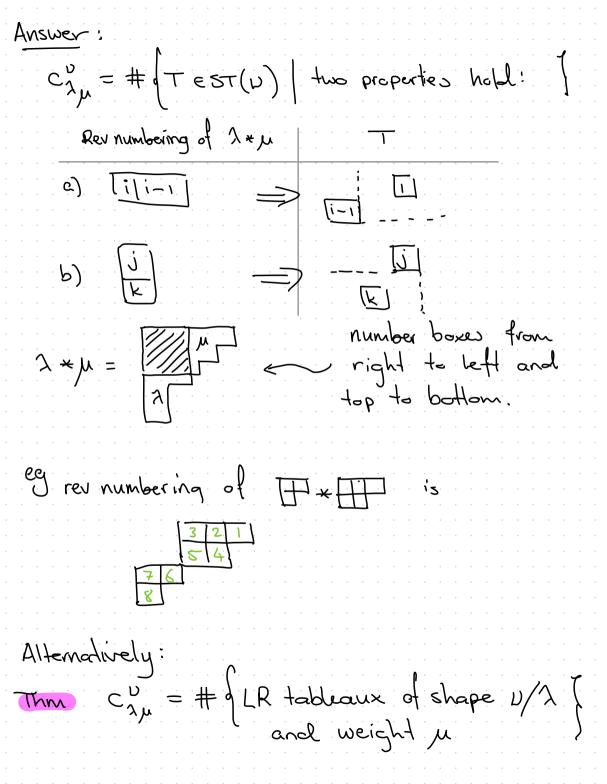
Example If w=132	· · · · · · · · · · · · · · · · · · ·							
$\phi \leftarrow 1 = \square$	4 132							
$\boxed{1} \leftarrow 3 = (\boxed{1} \boxed{3}]$	52							
$\boxed{13} \leftarrow 2 = \boxed{\frac{12}{3}} = P(w)$	(1]3)							
Question Experiment with PORR Do you have a guess for what this is? PoRR-12 Can you prove it in some special cases? Columns, rows ~ almost immediate. What about RROP? not the identity; eg w=132 P(132) = 3 ² RR(¹²) = 312. P(312) = ¹² / ₃								
We have a map $\frac{11}{11}B_{\lambda} \xrightarrow{RR} B_{(1)}$	M = Words (1n) length m							

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}$	1 1	
$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$W = W, W_{2}, \dots, W_{r}$	
Def Let $P($ insertion tableau) recording tableau) defined by $Sh(P(W_{i})) \leq Sh$	w) be the P-symbol (. Define Q-symbol (or t- be the standard tab $(P(w_iw_2)) \leq \ldots \leq sh(P(w_iw_2))$	lean
Example $\omega = 132$ $P(1) = \Gamma_{1}$ $P(13) = \overline{12}$ $P(132) = \overline{12}$ $\overline{12}$	$\gamma \gamma $	

W = 312	
$P(3) = \overline{3}$	· · · · · · · · · · · · · · · · · · ·
$P(31) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$G(312) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
$P(312) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	
Question · Apply P,	
· Reverse A	n process.
RSK Bom RSK	$ = \prod_{\lambda \vdash m} B_{\lambda} \times ST(\lambda) $
$RSK(\omega) = (P(\omega),Q)$	(ω) , $RSK(\omega^{-1}) = (Q(\omega), P(\omega))$
Ahis is a bijection	, and a crystal marphism.
$\underbrace{Cer}_{\lambda \vdash m} n^m = \sum_{\lambda \vdash m} \#B$	$^{\chi}$ # ST($^{\chi}$)
$\mathcal{N}_{i}^{\bullet} = \sum_{j=1}^{j \neq \infty} \# \xi$	$\sigma_{\tau}(z)^2$ (m=n)

Lecture 22 (Robinson-Schensted-Knuth) RSK correspondence $\longrightarrow \prod_{\lambda \vdash \mu} \mathcal{B}^{\chi} \mathcal{SL}(\chi)$ B[®]m w ~ > (P(w),Q(w)) (partitions of m words of length m semistal stal Thm (RSK) This is a bijection This is a morphism (and therefore an isomerphism) of crystals). proof sketch: We set up an incluction $\mathcal{B}_{(1)}^{\otimes m} \xrightarrow{\mathsf{RSK}_m} \bigcup \mathcal{B}_{\lambda} \times \mathsf{ST}(\lambda)$ decompose Bu & B $\mathcal{B}_{(1)}^{\otimes m-1} \otimes \mathcal{B}_{(1)} \xrightarrow{RSK_{m} \otimes id} \longrightarrow \coprod \mathcal{B}_{\mu} \otimes \mathcal{B}_{(1)} \times ST(\mu)$ is crystal norphism by induction Fact: Brook Broch = LIB, obtained from u by colding a single box.

Example for GL, n=3 B⊞®B^a → B ⊞ ⊔ B ⊞ ⊔ B ⊞ for n=2 $B_{\mu\nu}=\phi$ What about B208,? The answer is given by the Littlewood-Richardson rule. The Bro Br ~ UBD chere cyn is the "Littlewood-Richardson coefficient". This means the set [B1] is closed under tensor product. How would we compute CZM? ZHP, MH9 what is the mage of this map? $C_{\lambda\mu}^{\nu} = \# T \in ST(\nu)$ that are in the image.



ie 1//// · semistandard • # 1's= M, , # 2's= N2 ,... reading rows right to left
 and top to bottom produces
 a lattice word. Let crys(GL,) be the category of crystals whose connected components are all isomorphic to By for some 2. What is the coboundary structure on crys (GL,)? There is a unique map if sets Fr Br Br such that • $wt(\xi_{\lambda}b) = w \cdot wt(b)$ $W_{o} = (1, n) (2, n-1) \dots$ • $\xi_{n}(e,b) = f_{n-i}(\xi_{n}b)$ • $\xi_{\lambda}(f,b) = e_{n-i}(\xi_{\lambda}b)$ We can extend to a map $f_B : B \longrightarrow B$ by applying f_{χ} to the connected components

Thm (Kannitzer-Henriques) The map $a \otimes b \longrightarrow \tilde{f}_{B \otimes A}(\tilde{f}_{B}(b) \otimes \tilde{f}_{A}(a))$ gives crys(GLn) a coboundary structure. Questions (1) What is $\xi_{\lambda}(T)$ for T a semistanderal tableau? (2) If we B(1), what is the cartus group